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Abstract

As deep learning networks increase in size and performance, so do associated
computational costs, approaching prohibitive levels. Dendrites offer powerful
nonlinear “on-the-wire” computational capabilities, increasing the expressivity of
the point neuron while preserving many of the advantages of SNNs. We seek
to demonstrate the potential of dendritic computations by combining them with
the low-power event-driven computation of Spiking Neural Networks (SNNs) for
deep learning applications. To this end, we have developed a library that adds
dendritic computation to SNNs within the PyTorch framework, enabling complex
deep learning networks that still retain the low power advantages of SNNs. Our
library leverages a dendrite CMOS hardware model to inform the software model,
which enables nonlinear computation integrated with snnTorch at scale. Finally,
we discuss potential deep learning applications in the context of current state-of-
the-art deep learning methods and energy-efficient neuromorphic hardware.

1 Introduction

Even as deep learning and large-scale neural networks are rapidly transforming the space of com-
puting, their implementations are still limited by the end of Dennard scaling and limits of hardware
performance scaling. Spiking Neural Network (SNN)s are a category of brain-inspired machine
learning algorithms that leverage event-driven binary-communication connectivity to address low-
energy data transfer, one of the largest energy consumption areas in deep learning [’7]. In spite of
offering one to two orders of magnitude improvement in energy efficiency [27, I8], these networks
generally use simple Leaky Integrate-and-Fire (LIF) neuron models which have limited expressivity;
SNNs using LIF neurons tend to perform worse than SOTA deep learning models.

In biological systems, dendrites are a structure that enable pre-processing of inputs en route to the
soma, providing much of the neuron’s overall computational capabilities [[4]. Dendrites perform
computations that include non-linear filtering, coincidence detection, directional selectivity, and am-
plification of synaptic inputs as key “compute-on-wire” properties of the “dendritic toolkit” [T, B&].
We hypothesize that implementing dendrites in hardware and utilizing them as key computational
elements in our algorithms will provide increased computational capabilities while increasing over-
all efficiency. As an example, [Z5, 0] shows a demonstration of hardware dendrites computing
simple functions while transferring data from input to the output soma, and [H] showcases some of
the more advanced computational capabilities of dendrites in the context of spatial and temporal
pattern recognition. Thus, dendrites implemented in hardware offer an approach to maintaining the
efficiency of a simple LIF based SNN while matching the machine learning performance of tradi-
tional ANNs. The primary challenges to realizing dendrite-enabled neural networks include a lack
of tools focused on large-scale machine learning as well as a lack of hardware support that leverages
the energy efficiency of these networks.
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Figure 1: Dendrites and hardware models of dendrites. In (a), we show a neuron schematic with
labeled dendrites. Biological neurons can perform a wide array of sub-threshold computation (pre-
threshold) through dendritic processing, integration, and synaptic weighting of inputs. In (b), we
show a resistor-capacitor circuit (RC circuit) to model a passive dendritic cable. In (c), we show
an example of a CMOS transistor-based model to emulate the RC circuit shown in (b) in silicon.
This sub-threshold CMOS dendrite model is the basis for our dendrite model. The leak and axial
conductance of the transistors can be modulated using the gate of the transistor.

Increasing adoption and usage of SNNs with dendritic components requires a rich set of tools and
components that machine learning domain experts can use to build out and evaluate large-scale
networks of dendrite-enabled neurons. Of the existing SNN deep-learning tools available, no current
offerings provide a deep-learning oriented multi-compartment dendritic model [[5, 22, 24]. Our
work builds on PyTorch with SpykeTorch [?4] to create a deep-learning-oriented dendritic library. In
this work, we will discuss the implementation of a multi-compartment dendrite library, demonstrate
how dendrites can reduce the number of LIF neurons required to learn functions and reduce the
number of signals passed over the SNN, and future applications of the dendrite-enabled LIF neuron.
We envision that this library may provide a touchstone for further development of deep SNNs, which
could justify new development of high-efficiency dendrite enabled SNN hardware designs in the
future.

2 Related work

2.1 Dendrites in hardware designs

Figure [ illustrates a linear passive cable model that represents a dendritic cable. As seen in Fig-
ure [(c), two transistors can represent a single stage in this dendrite. This lightweight dendrite
component, consisting of two transistors, provides a low energy and high density dendrite hardware
implementation, paving the way for highly dense dendritic hardware networks.

Dendrites have been modeled in silicon in analog and mixed-signal CMOS chips [29, 33, BR, 3, I"7].
These in silico neuromorphic systems not only model synaptic memory along the dendrite cable,
but also model key ion-channel properties to capture dynamics observed in dendrites. There is also
interest in leveraging beyond-CMOS dendrites to replicate dendrite-like density and connectivity
[0, 9, 8]. These devices provide energy-efficient computation through this re-creation of dendritic
structures. This hardware structure provides computation on the wire, as the computation and data
transfer occur on the same circuit.

2.2 Dendrites in spiking neural networks for machine learning

In terms of machine learning, the addition of dendrites have been shown to provide dynamic behavior
as well as increase the computational power of a spiking neuron [, 34, 37]. Dendrites in a machine
learning network have been leveraged to provide filtering of input signals, logical operations, am-
plification of signals, coincidence detection, and other dynamic computational operations [, I, [7],
with some research showing a combination of dendrites and synaptic plasticity can recreate error
propagation [BZ2]. These applications show a wide potential in the realm of machine learning ap-
plications for spiking networks [A1]. Adding dendrites to a spiking neural network, in this domain,
adds parameters to the network and can be conceptually seen as adding layers to a non-spiking neural
network. These properties of dendrites increase the expressivity of point neuron models and show



interesting properties that have the potential to dramatically improve the performance of spiking
neural networks.

Adding dendrites to a spiking neuron: Using dendrites to inform or enhance SNN design has
resulted in improvements in network performance [39], online-learning and feature updates [I3, I72],
and an implementation of novel activation functions [['T] that enables a single neuron to classify the
XOR logical function. Further research has also shown that dendritic SNNs can help improve online
training [BU, 31], keyword detection [[I], along with several other categories of applications [[I, T,
7).

2.3 Spiking models and software

There is a wide variety of biological neuron modeling tools, SNN modeling tools, and other software
frameworks available and in development. These range from highly detailed simulations of biologi-
cal processes, “middle-ground” simulations which allow larger scale network design, and simplified
models. There is, of course, some overlap between these categories, but most SNN tools fall within
this spectrum.

Some software libraries attempt to bridge the detailed simulation techniques with large scale sim-
ulations. Dendrify, for example, provides dendrite models at a fairly large scale with somewhat
biologically accurate models [26]. Based on the Brian 2 simulation system [B3], Dendrify extends
Brian 2’s neuron models to include a variety of dendrite behaviors. This tool, however, does not have
native support for surrogate gradient descent nor does it support extremely large SNN models, as
the underlying Brian 2 system uses numerical solvers for ODEs in the backend. Other tools, such as
Norse [28], provide simplified multi-compartment models for modeling synaptic plasticity, synaptic
recurrence, and other dynamic components of a spiking neuron. These tools do provide some den-
dritic benefits, but they do not allow explicit dendrite design within the framework. Our model and
tool are based on a hardware implementation of a dendrite cable as described in [5], simplified for
reasonable performance, and coupled with snnTorch to provide surrogate gradient descent learning
methods.

3 Methods
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Figure 2: Composition of a three dendrite network. I 3 are the inputs to dendrites D;_ 3. Each
dendrite sends a signal in the spatial and temporal dimensions, with a rate determined by A and 7
respectively. There is a leak and input weight component for each dendrite.

Our deep-learning focused dendrite library focuses on a linear cable model based on a hardware den-
drite model which would potentially provide high-efficiency computation. Our model uses PyTorch
and provides a dendrite building block for SNN development. To emulate the binary spike signaling
found in SNNs and enable learning, we leveraged snnTorch [U] which is a machine learning enabled
spiking neuron library. This library allows users to create SNNs from within PyTorch, leveraging
this well-known machine learning library for spiking networks. In this section, we will discuss the
methods used to implement a machine-learning focused dendrite library.

snnTorch provides spiking neuron functions which compute state, with either an internal state stor-
age option or as a parameter to the forward function. In our library, dendrites are modeled as stateful
components which save the previous dendrite current values computed from the previous time-step.



We implement the temporal and spatial current spread as a set of iterative computations which com-
pute the change in voltages based on a time value. Each dendrite has a definable temporal modifier,
a spatial value, a set of weights, and a configurable exponential kernel. The temporal component, 7,
represents the signal delay across taps, while A represents the spatial signal transmission constant.
These values are used to create a kernel which iterates through the number of time-steps specified to
compute the new current in the dendrite states. This is a simplification of the more complex active
dendrite model. This simplification enables larger-scale computation and is compatible with the
surrogate gradient functions provided in the snnTorch library.

Spiking networks in snnTorch use input data in a vector of M x N X [ size, where M is time, N is
batch size, and I is the input size (which can be n-dimensional). Our dendrite network implements a
resolution parameter, dt, which represents the number of “ticks” that occur between between M, and
a t value, which represents the time in-between each T'. If dt is one, then one iteration is computed
at an input. Smaller values of dt increase the number of iterations over the dendrite during a forward
pass. If the dendrite models are used in a traditional PyTorch network that does not consider state or
temporal changes of layers over time, the 7" value enables the dendrites to expand each input tensor
into time-steps. For SNNTorch or temporal-aware networks, the 7' value can be set to one, and the
input tensor’s time dimension will provide the needed temporal space.

Our library solves a dendrite model that is based on the hardware design in [?5]. From the initial
cable model, with I as inputs, D; as per-dendrite leak,7 as the per dendrite connection time constant,
and A as the dendrite space constant, we construct a simplified dendritic computational step.

Taking the multi-step ODE system of equations from [23] as a starting point, rather than solving
the ODE for a set number of time steps and resolution, we iterate over each dendrite pair during a
forward pass, computing the change in dendrite voltage. Before the dendritic operations, the external
inputs to each dendrite are modified by a weight value, such that I; = I; * D,,. These inputs are
applied to the dendrites, and the current in each dendrite is computed using this iterative method.
Figure D shows this method on a three dendrite network over two time steps, which would represent
a dt of 0.5. To simplify the equation, we define:

Iy = Input, *7xdt.
If there are NV dendrites in a chain, the first dendrite’s computation at step ¢ is computed as
DY = (DU + 1) + (D5t A+ dt),
the inner dendrites, where n > 1 and n < N are computed as

D! = (D! + 1) + (DL + A wdt) + (DY + A+ dt),

n—1 n+1

and the final dendrite’s new value is computed as
Dy, = (Dt + 1) + (D4 + A+ dt),

for the number of intermediate steps requested. The output of the final dendrite in the chain is sent
to an integrate and fire neuron implementation from SNNTorch which represents the soma. This
neuron acts as the soma of the overall dendrite neuron. As an alternative, the output value of the
last dendrite can be sent to the next module or layer in the network directly, for more advanced or
non-spiking network designs.

The end result of this computation is that the dendrite layer behaves as hybrid of a pooling layer, an
activation layer, and as a nonlinear transformation layer. This dendrite chain modulates the soma’s
output behavior, creating a pre-computation unit. In the next section, we demonstrate this behavior
against a set of nonlinear functions.

4 Capabilities

To further demonstrate the capabilities of dendrite enabled LIF neurons, we implemented a simple
fully-connected neural network using LIF neurons and a similar network using dendrite-enabled
neurons. We configured the input layer to broadcast the signal to a hidden layer, consisting of 256
LIF neurons, 16 LIF neurons, or 16 dendrite-enabled LIF neurons. This layer communicates to
the output neuron, which sends the membrane potential as output of the network. This network
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Figure 3: Architecture overviews of the networks trained on v/ and Mish(x). In (a), the architecture
of the simple fully-connected SNN is shown. In (b), the dendrtic network architecture is shown.
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is an implementation of spiking network linear regression method, which learns the objective by
minimizing the mean square error.

The SNN network is based on a design used as an exemplar model from the snnTorch library. A sim-
plified version of the architecture is shown in Figure Bd. The dendritic version, shown in Figure BH,
replaces the 256 neuron layer with 16 dendrite-enabled neurons, each with 16 dendritic inputs. This
effectively takes the 256 output value broadcast from the previous layer, and reduces the output to
16 signals. We chose this particular configuration so that there are still 256 computational operations
taking place, but the total data sent to the summary neuron is only 16 wide. In dendritic hardware,
the 256 dendrite computations would be computed as the signals are propagated through the network
which is leveraging the compute-on-wire capabilities of such hardware. Furthermore, this reduces
the total signals that would be sent “off-neuron”, which would reduce a network on chip communica-
tion cost. The final layer is a single dendritic neuron with a 16 dendrite input chain which combines
the hidden layer signals into the single soma. This neuron acts as a non-linear sum of inputs from
the previous layer. Finally, the output of this neuron is the membrane potential, rather than the spike
train. This follows the linear regression example from the original work. The 16 neuron SNN is the
same model as the 256 neuron model, but with far fewer neurons in the hidden layer.

In this example, our target functions are f (z) = /x and f (z) = Mish (x), which are a pair
of simple nonlinear functions. Mish is a self-regularized activation function, defined as f(x) =
x * tanh(Softplus(x)) [23]. Each input z of training data consisted of 1,000 random samples from
the range X, where X = {z € R|z > 0|z < 1} for /(z), and X = {z € Rz > —3|z < 1} for
the mish function. As spikeTorch and dendrites expect temporal data, the dataset shape became
10 x 1 x 1, with 10 copies of z in each batch.

Neuron weights and dendrite parameters were randomly initialized for the test. In the case of the
spiking network, the neurons were set to learn weight, threshold, and reset values. The dendritic
neurons were set to learn A, 7, leak values, as well as the soma’s threshold value. We trained each
network for 100 iterations over the sampled x values with a batch size of one. The results of these
tests are shown in table [.

Training was done on a workstation computer, running an Intel Xeon E5-1660 V4 with an Nvidia
Titan Xp GPU. The 256 neuron SNN took an average of 17.99s per iteration on the dendritic SNN
network, and 19.16s per iteration on the 256 sized hidden layer SNN network. The primary reason
for this performance is the iteration needed during training. The snnTorch framework uses itera-
tions during training to simulate time-steps. This adds a significant level of overhead to training.
There may be techniques to improve this performance, including leveraging more recurrent network
layouts.

256 LIF Hidden Layer 16 LIF Neuron Hidden Layer 16 Dendrite-LIF Hidden Layer

MSE /z 0.0021469349 0.0529211722 0.0010934038
MSE Mish(x) 0.003081422 0.00807074 0.003229788
Train Epoch Time  19.16s 6.18s 17.99s

Table 1: Comparison of LIF-only SNNs against a dendrite-enabled SNN on /2 and Mish(z). Test
data was created via taking a 1,000 step linear space sample between 0 and a random end value less
than 1. The average time to train an epoch is also shown to illustrate computational complexity.



After training, we took the output values of the network against a 1,000 input “test” dataset. This
dataset consists of a random sample of 1,000 values, selected from a random linear space with a
maximum value of 1.0. In tablell, the total error of each network is reported. The 16 LIF Neuron
hidden layer network performed worst, as would be expected for a smaller network. The dendritic
network and LIF-only SNN networks performed comparably, achieving similar performances. This
demonstrates the improved expressivity of SNNs when equipped with dendritic input trees. By
simply moving the computation of the LIF neurons into the dendrite, the network is able to achieve
accuracy parity with the larger network despite sending only 16 values to the next layer.

5 Conclusion

In this work, we have presented a library that enables simplified hardware-informed dendritic com-
putation in a machine learning enabled software environment. This library models a dendrite compo-
nent in torch, based on a sub-threshold CMOS transistor capable of 50 pJ for a single compartment
that provides two multiplicative operations per compartment. It is thus able to offer the low-power
potential of hardware dendrites in traditional machine learning applications. Even with our simpli-
fied time-stepped model, dendritic computation allows for far more expressivity with fewer total
neurons in a network than an equivalent LIF only network. Our experiments show that the addi-
tion of dendrites to a simple SNN network could provide similar performance to the LIF-only SNN
network, but with fewer total spikes sent across the network. We hope this tool will facilitate the
development of dendrite-enabled hardware-informed deep learning SNN, thus paving the way for
the next-generation of energy-efficient deep learning approaches.

Our current work examines the non-linear capabilities of dendritic computation for machine learn-
ing applications. Expanding on our simple examples, dendrites can further provide multiplicative
behaviors [R], and could potentially be used to replace attention layers in spiking networks [4{l]. Re-
placing these layers with dendrites could reduce energy and area on the chip while also increasing
expressivity and connectivity of neurons. This would entail designing a neuromorphic accelerator
which implements neural components such as dendrites, synapses, soma, axons etc. natively in hard-
ware. Designing hardware such as this requires future co-design of hardware and algorithms, and
the creation and design of novel SNN networks.

In addition to hardware support, software support will be critical to drive SNN development and
adoption. While there are a plethora of SNN deep learning libraries currently available, there is a lack
of hardware-aware dendritic deep learning libraries. We wish to pursue deeper and more complex
demonstrations of large-scale convolution and attention-based dendrite SNNs, to fully demonstrate
the capabilities of this type of system. Finally, we are working to extend a neuromorphic hardware
device performance estimation tool [8], that will provide energy and latency estimates for dendritic
SNN models. More work is needed to develop efficient, beyond CMOS hardware devices that can
leverage both the computational capabilities and energy efficiency gains that are available in dendrite
spiking networks.
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