
Gradient Alignment in Physics-informed Neural
Networks: A Second-Order Optimization Perspective

Sifan Wang1∗, Ananyae Kumar Bhartari2∗, Bowen Li3∗, Paris Perdikaris4
1Institution for Foundation of Data Science, Yale University

2Penn Institute for Computational Science, University of Pennsylvania
3Department of Mathematics, City University of Hong Kong

4Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania
sifan.wang@yale.edu, bowen.li@cityu.edu.hk, {ananyaeb, pgp}@seas.upenn.edu

Abstract

Physics-informed neural networks (PINNs) have shown significant promise in
computational science and engineering, yet they often face optimization challenges
and limited accuracy. In this work, we identify directional gradient conflicts
during PINN training as a critical bottleneck. We introduce a novel gradient
alignment score to systematically diagnose this issue through both theoretical
analysis and empirical experiments. Building on these insights, we show that
(quasi) second-order optimization methods inherently mitigate gradient conflicts,
thereby consistently outperforming the widely used Adam optimizer. Among
them, we highlight the effectiveness of SOAP [1] by establishing its connection
to Newton’s method. Empirically, SOAP achieves state-of-the-art results on 10
challenging PDE benchmarks, including the first successful application of PINNs
to turbulent flows at Reynolds numbers up to 10,000. It yields 2–10x accuracy
improvements over existing methods while maintaining computational scalability,
advancing the frontier of neural PDE solvers for real-world, multi-scale physical
systems. All code and datasets used in this work are publicly available at: https:
//github.com/PredictiveIntelligenceLab/jaxpi/tree/pirate.

1 Introduction

Physics-informed neural networks (PINNs) have emerged as a powerful paradigm in scientific ma-
chine learning by incorporating physical principles through carefully designed loss functions. These
loss functions act as soft constraints, guiding neural networks to learn solutions that respect underlying
physical laws while simultaneously fitting experimental data. The elegance and versatility of PINNs
have led to their widespread adoption in solving both forward and inverse problems involving partial
differential equations (PDEs). Their success spans numerous domains in computational science,
from fluid mechanics [2, 3, 4, 5], heat transfer [6, 7, 8] to bio-engineering [9, 10, 11] and materials
science [12, 13, 14]. The impact of PINNs extends even further, with significant applications in
electromagnetics [15, 16, 17], geosciences [18, 19, 20], etc.

Despite their broad applications, PINNs currently face limitations in convergence speed and accuracy
that affect their reliability as forward PDE solvers. This has motivated extensive research efforts
to enhance their performance through various methodological innovations. Significant advances
have emerged in neural architecture design, including novel network backbones [21, 22, 23, 24,
25, 26, 27], improved activation functions [28, 29], and effective coordinate embeddings [30, 31,
32, 33]. Other improvements have focused on optimizing the training process through enhanced
collocation point sampling strategies [34, 35, 36], more efficient optimizers [37, 38, 39, 40], and

∗These authors contributed equally to this work.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/PredictiveIntelligenceLab/jaxpi/tree/pirate
https://github.com/PredictiveIntelligenceLab/jaxpi/tree/pirate

advanced training strategies such as sequential training [41, 42, 43] and transfer learning [44, 45, 46].
Researchers have also explored alternative formulations of the learning objective, incorporating
numerical differentiation [47], variational principles inspired by Finite Element Methods [48, 49],
and specialized regularization terms [50, 51].

A particularly active area of research has centered on addressing gradient pathologies during training
[21, 52]. One prominent issue involves imbalanced backpropagated gradients across different
loss terms, leading to significant discrepancies in convergence rates and reduced solution accuracy,
especially in complex physical systems. This has led to the development of various adaptive weighting
strategies [21, 52, 53, 54, 55, 56, 57]. However, the equally critical issue of directional gradient
conflicts – where gradients from different losses point in conflicting directions – remains largely
underexplored [58, 59]. Our work aims to bridge this gap by systematically investigating, analyzing,
and resolving these directional conflicts in PINNs training. The key contributions of this work are
summarized as follows:

• We introduce a novel gradient alignment metric that extends cosine similarity to quantify directional
conflicts between multiple loss terms.

• We demonstrate that gradient conflicts hinder PINN training, with higher conflict scores linked to
slower convergence in various PDE systems.

• We show that second-order optimizers enhance gradient alignment by implicitly preconditioning
the loss landscape.

• We reveal that SOAP [1] can be viewed as an efficient approximation of the Newton preconditioner,
revolving gradient conflicts.

• We provide comprehensive experimental results across 10 PDE benchmarks, including the first
successful PINN application to turbulent flows with Reynolds numbers up to 10,000, achieving
2-10x accuracy improvements.

Taken together, this work advances our understanding of optimization dynamics in PINNs while
demonstrating how quasi second-order methods can enable more reliable neural PDE solvers for
solving complex physical systems. These insights pave the way for developing next-generation
optimizers for physics-informed machine learning, and beyond.

2 Overview of PINNs

Multi-task learning in deep neural networks requires simultaneously minimizing multiple competing
objectives – a challenge that manifests acutely in physics-informed neural networks (PINNs). Building
upon the work of [60], PINNs approximate solutions to partial differential equations by minimizing a
composite loss function that enforces both physical constraints and data-fitting objectives. Consider a
general PDE system:

ut +N [u] = 0, t ∈ [0, T], x ∈ Ω, (2.1)

with inital and boundary conditions

u(0,x) = g(x), x ∈ Ω, (2.2)
B[u] = 0, t ∈ [0, T], x ∈ ∂Ω, (2.3)

where N [·] represents a differential operator and B[·] denotes boundary conditions. The core idea of
PINNs is to approximate the solution u(t,x) using a neural network uθ(t,x). Through automatic
differentiation [61], we can compute the PDE residual:

R[uθ](t,x) =
∂uθ

∂t
(tr,xr) +N [uθ](tr,xr). (2.4)

This leads to a composite loss function that encapsulates multiple competing objectives:

L(θ) = 1

Nic

Nic∑
i=1

∣∣uθ

(
0,xi

ic

)
− g

(
xi
ic

)∣∣2
︸ ︷︷ ︸

Lic(θ)

+
1

Nbc

Nbc∑
i=1

∣∣B [uθ]
(
tibc,x

i
bc

)∣∣2
︸ ︷︷ ︸

Lbc(θ)

+
1

Nr

Nr∑
i=1

∣∣R [uθ]
(
tir,x

i
r

)∣∣2
︸ ︷︷ ︸

Lr(θ)

.

(2.5)

2

These loss functions aim to fit the initial, boundary conditions and the PDE residuals, respectively.
And {xi

ic}
Nic
i=1, {tibc,xi

bc}
Nbc
i=1 and {tir,xi

r}
Nr
i=1 may be selected either as fixed mesh vertices or through

random sampling during each training iteration.

3 Gradient Alignment in PINNs

Figure 1: Gradient conflicts and their im-
pact on PINNs optimization. The irregular
green trajectory illustrates how the optimiza-
tion struggles when facing two types of gra-
dient conflicts: Type I, where gradients have
similar directions but vastly different magni-
tudes, and Type II, where gradients have sim-
ilar magnitudes but opposing directions. The
red trajectory shows how appropriate precon-
ditioning through second-order information
could mitigate these conflicts by aligning gra-
dients both within and between optimization
steps, enabling efficient convergence.

A fundamental challenge in training PINNs is that differ-
ent loss terms often conflict during optimization. As illus-
trated in Figure 1, PINNs encounter two modes of gradient
conflict during training. The first, identified by [21, 52],
involves significant imbalances in gradient magnitudes. In
such cases, dominant loss terms overwhelm others, often
leading to model failure. Various self-adaptive weight-
ing strategies have been proposed to address this issue
[53, 54, 55, 56, 57].

This second mode arises when gradients from different
loss terms point in conflicting directions, forcing optimiza-
tion into inefficient, compromised trajectories. For ex-
ample, in the Navier–Stokes equations, enforcing no-slip
boundary conditions demands precise control of veloc-
ity gradients near walls, which can conflict with preserv-
ing mass and momentum conservation in the bulk flow.
First-order optimizers like gradient descent or Adam must
follow the average gradient direction, resulting in inef-
ficient zigzagging between competing objectives. The
severity of these conflicts increases with problem com-
plexity, becoming particularly acute for turbulent flows
where maintaining physical constraints across multiple scales is crucial. To better understand and
address these directional gradient conflicts, we introduce the alignment score, defined as follows.
Definition 1. Suppose that v1, v2, . . . , vn are vectors, then the alignment score is defined as

A(v1, v2, . . . , vn) = 2

∥∥∥∥∥
∑n

i=1
vi

∥vi∥

n

∥∥∥∥∥
2

− 1. (3.1)

This score ranges from [−1, 1] and naturally extends the concept of cosine similarity to multiple
vectors. As illustrated in Proposition 1, for the special case of n = 2, our score exactly recovers the
standard cosine similarity cos(v1, v2) = v1·v2

∥v1∥∥v2∥ , where 1 indicates perfect alignment, 0 suggests
orthogonal directions, and -1 represents complete opposition.
Proposition 1. For n=2, the alignment score A(v1, v2) equals the cosine similarity between v1 and
v2:

A(v1, v2) = cos(v1, v2) =
v1 · v2
∥v1∥∥v2∥

. (3.2)

The proof is provided in Appendix F.1. The alignment score enables us to quantify both the local
conflicts between individual loss terms within each gradient descent step and the global conflicts
across consecutive steps. Formally:
Definition 2. Let L =

∑n
i=1 Li be a composite loss function. At the k-th step of gradient descent,

let gk denote the full gradient and gk1 , g
k
2 , . . . , g

k
n denote the gradients of individual loss terms. We

define:

(a) The intra-step gradient alignment score:

Ak
intra = A(gk1 , gk2 , . . . , gkn). (3.3)

(b) The inter-step gradient alignment score:

Ak
inter = A(gk−1, gk). (3.4)

3

Figure 2: Gradient alignment scores and test errors during PINN training for solving the Navier-
Stokes equations with different optimizers. Additional benchmarks are provided in Figure 5, where
we observe the consistent phenomenon that first-order optimizers exhibit poor gradient alignment
and slow convergence of test errors.

The intra-step gradient alignment score becomes especially useful for PINNs applications where the
total loss typically consists of multiple terms. For example, in the case of solving the 2D Navier-
Stokes equations, the loss function includes separate components corresponding to momentum
equations in the x and y directions, the continuity equation, and boundary conditions for the velocity
fields u and v. Since these loss terms can have different scales and properties, they should be treated
separately rather than grouped together. Our intra-step score effectively quantifies gradient conflicts
across all these terms simultaneously.

The impact of alignment can be formalized through the following result, which shows that the rate of
loss decay under preconditioned gradient descent depends on the alignment scores.
Proposition 2. Let L =

∑n
i=1 Li : Rd → R be L-smooth (w.r.t. the Euclidean norm). Consider

preconditioned gradient descent

θt+1 = θt − ηht, ht = Ptgt, gt =

n∑
i=1

git,

where each Pt ≻ 0 satisfies µ ≤ λmin(Pt) ≤ λmax(Pt) ≤ M . Let ∆t := L(θt) − L(θt+1) and
assume η ≤ 1/(LM). Then:

(i) Single-step drop. For all t, if ∥hi
t∥ = λ for all i,

∆t ≥
(

η
M −

Lη2

2

) n

2

(
Aintra

t + 1
) n∑
i=1

∥hi
t∥2.

(ii) Two-step cumulative drop. Let a := ∥ht−1∥, b := ∥ht∥. Then

∆t−1 +∆t ≥ η
M

(
1− LηM

2

)
a2 + η

M

(
1− LηM

)
abAinter

t − Lη2

2 b2.

This result shows that higher intra- and inter-step alignment scores directly accelerate loss reduction.
The assumption

∣∣hk
t

∣∣ = λ for all k is not restrictive in the PINNs setting, where balancing the scales
of different losses is common practice. In fact, we adopt the weighting scheme proposed by Wang et
al. [21] (Appendix G.2), which ensures that all weighted gradients have the same norm.

In the following, we will demonstrate that gradient direction conflicts widely exist in training PINNs,
especially in the early stages of training. To this end, we conduct experiments on five representative
PDEs spanning from linear wave propagation to reaction-diffusion systems like the Ginzburg-Landau
equation and fluid dynamics governed by the Navier-Stokes equations. The detailed results are
presented in Figure 5 and corresponding experimental setup is provided in Appendix G.

Figure 2 presents gradient alignment scores and test errors during PINN training for solving the
Navier-Stokes equations with different optimizers. Importantly, we compute these scores from the
gradients after applying each optimizer’s gradient transformations, which captures the actual update
directions and their degree of alignment or conflict. We observe that the scores from first order
optimizer oscillate significantly near or below zero at early stages. It provides strong evidence for
persistent directional conflicts between gradients throughout the training process. Intuitively, these

4

conflicting gradients force the network parameters to follow an inefficient zigzag trajectory in the
loss landscape, significantly impeding convergence speed.

In contrast, the quasi second-order optimizers (e.g., Muon [62], SOAP [1], Kron [63]) consistently
maintains the higher positive values for both inter-step and intra-step gradient alignment scores
throughout training. This effective resolution of gradient direction conflicts directly corresponds
to significantly faster convergence in test error. It is worth nothing that SOAP achieves the highest
alignment scores among all optimizers, demonstrating its superior effectiveness. In the following
sections, we provide a theoretical explanation for why PINNs inherently suffer from directional
gradient conflicts and establish a formal connection between SOAP and Newton’s method, offering
deeper insight into its empirical success.

4 Intra-step Gradient Alignment of PINNs at Initialization

In this section, we show that gradient conflicts are intrinsic to PINNs near initialization, regardless
of the optimizer used. For simplicity, we analyze the intra-step gradient alignment for a two-layer
neural network solving the one-dimensional Laplace equation under small weight initialization. This
setup allows for a tractable analysis while capturing key phenomena, and the results naturally extend
to more general PDEs. Following the setup in Section 2, and without loss of generality, we consider
the 1D Laplace equation: {

∆u = u′′ = 0 on [−1, 1],
u(±1) = g±1.

(4.1)

We approximate the solution u(x) by a two-layer network with width N :

u(x, θ) =

N∑
i=1

aiσ(wix) = a · σ(wx) , (4.2)

where a = (a1, . . . , aN),w = (w1, . . . , wN) ∈ RN , and θ = (a,w) ∈ R2N . Moreover, we limit
ourselves to the activation function σ(x) = tanh(x). In this case, the loss (2.5) reduces to

min
θ=(a,w)

L(θ) = 1

Nr

Nr∑
p=1

|u′′(xp, θ)|2︸ ︷︷ ︸
Lr(θ)

+
1

2

∑
s=±1

|u(s, θ)− gs|2︸ ︷︷ ︸
Lbc(θ)

. (4.3)

Proposition 3. At initialization, we assume that the weights ai, wi are initialized by i.i.d. Gaussian
N (0, ε2) with small ε = o(1). Then the alignment score converges to a binary random variable in
the infinite width limit:

lim
N→∞

A(□(∇Lb),□(∇Lr)) = O(ε2) + C□

{
sgn (g−1 − g1) with prob. 1

2 ,

− sgn (g−1 − g1) with prob. 1
2 .

(4.4)

where □ = GD,Adam,Shampoo, or Soap denotes the corresponding optimizer update rule, and
C□ is a constant depending on the optimizer.

The proof is provided in Appendix B. As a direct implication, the intra-step alignment score exhibits
no preferred direction. Consequently, all optimizers fail to induce consistent intra-step alignment
between∇Lb and∇Lr near initialization, as empirically validated in Figure 5. In contrast, SOAP
maintains a perfect inter-step alignment score of 1 throughout the entire training process. In the
following section, we provide a theoretical explanation for this distinctive behavior.

5 Gradient Alignment in Quasi Second-Order Optimization

In this section, we aim to reveal why quasi Second-order optimizers can naturally promote gradient
alignment via the following lemma.
Proposition 4. Let L(θ) be a twice differentiable loss function with Hessian H(θ), and let P (θ) be
a preconditioner with uniformly bounded inverse P−1(θ). Consider the preconditioned gradient
descent update with exponent 0 ≤ s ≤ 1 and learning rate η > 0:

θt+1 = θt − ηP−s(θt)∇L(θt). (5.1)

5

Let gt = ∇L(θt), then the alignment score A(gt, gt+1) satisfies:

A(gt, gt+1) = 1− η2

2

∥HP−sgt∥2

∥gt∥2
+O(η3). (5.2)

To maintain alignment A (gt, gt+1) ≥ 1− ϵ for ϵ > 0, the learning rate η must satisfy:

η ≤

√
2ϵ∥gt∥2
∥HP−sgt∥2

. (5.3)

The proof is presented in Appendix C. This bound specializes to the following cases: For vanilla
gradient descent (P = I), ηmax =

√
2ϵ

λ2
max(H) , and for Newton’s method (P = H, s = 1), the

maximum learning rate can be relaxed to ηmax =
√
2ϵ. These results imply that preconditioners

approximating the Hessian effectively relax learning rate constraints, enabling the use of larger
learning rates while maintaining optimization trajectory consistency. Comparing these cases reveals
that Newton’s method eliminates the dependency on the condition number of the Hessian, allowing
for a constant maximum learning rate regardless of problem conditioning. This finding aligns
with our theoretical understanding that accurate second-order information mitigates the effects of
ill-conditioning, allowing for stable optimization even with aggressive learning rates.

Next, we establish that under some assumptions, the SOAP optimizer [1] can be interpreted as
approximating to using Hessian as the preconditioner:

wt+1 = wt − η Soap(gt) ≈ wt − ηH−1gt. (5.4)

Formal assumptions and proof are provided in Appendix D.

Table 1: Comparison of optimization methods showing preconditioner types, storage and compu-
tational complexity for a n × n weight matrix, and practical compatibility with mini-batches and
scalability with large neural networks. The theoretical connections between Shampoo, Muon, and
quasi-second-order methods are detailed in Appendix D and E.

Method (Approx.) Precond. Storage Computation Mini-batch DNN
Natural Gradient [64, 37] F−1 O(n4) O(n6) ✗ ✗

BFGS/L-BFGS [65] H−1 O(n2) O(n2) ✗ ✓

SOAP [1] H−1 O(n2) O(n3) ✓ ✓

Kron [63] F−1/2 O(n2) O(n3) ✓ ✓

Shampoo [66] H
−1/2
ada O(n2) O(n3) ✓ ✓

Muon [62] H
−1/2
ada O(n2) O(n3) ✓ ✓

ConFig [58] N/A O(n2) O(n2) ✓ ✓

DCGD [59] N/A O(n2) O(n2) ✓ ✓

In Table 1, we compare various popular methods to tackle the identified directional gradient conflicts
in the context of PINNs. While all these methods are theoretically promising, some face practical
limitations in the context of complex PDE systems. L-BFGS is unsuitable for large-scale or stochastic
training, as gradient noise disrupts its Hessian updates and line search procedures. First-order variants
such as ConFiG [58] and DCGD [59] attempt to alleviate conflicts via gradient surgery or projection.
These methods yield incremental improvements but remain constrained by the inherent limitations of
first-order updates.

Natural gradient descent (NGD) requires computing and inverting the Fisher information matrix at
every iteration and is restricted to float64 precision, which is inefficient on GPUs and consumes 2×
more memory while being 2-4x slower than float32. As a result, NGD has only been demonstrated
on relatively simple benchmarks with smooth solutions, where very small networks suffice and
convergence issues rarely appear. On more challenging PDEs with sharp transitions or complex
dynamics, NGD fails to scale: it is highly sensitive to hyperparameters, lacks mini-batching support,
and often diverges.

To illustrate the limitations of NGD, we revisited the 2D Poisson and heat benchmarks of [37],
using their official implementation and comparing against SOAP under both float32 and float64

6

precision. We tested MLPs of varying depth and width, reporting the best results across ten random
seeds for each method. While SOAP reliably converged, NGD exhibited some failures for some
random seeds, which is also acknowledged in [37]. Even under successful runs, NGD underperforms
SOAP in both accuracy and stability, as summarized in Table 2.

Table 2: Comparison of relative L2 errors for different MLP architectures and optimization methods
(NGD vs. SOAP) on Poisson and Heat 2D PDE benchmarks, evaluated in both float32 and float64
precision.
PDE Architecture (Method) Float32 Float64

Poisson

[2, 32, 1] (NGD) 4.87× 10−2 ± 3.61× 10−2 3.84× 10−7 ± 2.92× 10−7

[2, 32, 32, 1] (NGD) 1.65× 10−1 ± 3.93× 10−2 1.27× 10−6 ± 2.86× 10−7

[2, 32, 32, 32, 1] (NGD) 2.48× 10−1 ± 1.75× 10−2 3.14× 10−6 ± 5.10× 10−7

[2, 256, 1] (NGD) 1.56× 10−1 ± 6.34× 10−2 6.10× 10−7 ± 1.68× 10−7

[2, 256, 1] (SOAP) 3.06× 10−6 ± 7.12× 10−7 6.08× 10−7 ± 2.13× 10−7

[2, 256, 256, 1] (SOAP) 1.87× 10−6 ± 5.19× 10−7 4.06× 10−7 ± 1.81× 10−7

[2, 256, 256, 256, 1] (SOAP) 1.35× 10−6 ± 3.45× 10−7 2.99× 10−7 ± 1.05× 10−7

Heat 2D

[2, 32, 1] (NGD) 5.98× 10−2 ± 5.46× 10−2 7.68× 10−6 ± 1.85× 10−6

[2, 32, 32, 1] (NGD) 5.95× 10−1 ± 2.29× 10−4 2.32× 10−6 ± 1.17× 10−6

[2, 32, 32, 32, 1] (NGD) 5.95× 10−1 ± 4.58× 10−4 5.13× 10−6 ± 5.25× 10−7

[2, 256, 1] (NGD) 5.95× 10−1 ± 1.05× 10−3 8.69× 10−6 ± 6.49× 10−6

[2, 256, 1] (SOAP) 4.61× 10−6 ± 8.12× 10−7 3.03× 10−6 ± 6.06× 10−7

[2, 256, 256, 1] (SOAP) 2.74× 10−6 ± 9.52× 10−7 2.04× 10−6 ± 4.10× 10−7

[2, 256, 256, 256, 1] (SOAP) 2.65× 10−6 ± 5.00× 10−7 1.33× 10−6 ± 2.61× 10−7

In contrast, quasi-second-order methods (e.g., SOAP [1], Kron [63], Muon [62]) naturally promote
directional gradient conflicts via preconditioning and mitigate ill-conditioning in the loss landscape
[67] while maintaining computational tractability. As previously illustrated in Figure5, SOAP
consistently achieves the highest gradient alignment scores, likely due to its closer approximation to
Newton’s method – an observation further supported by our theoretical analysis in Appendix D.

Building on these insights, we now present comprehensive numerical experiments that demonstrate
the superior accuracy and convergence behavior of quasi-second-order methods across a diverse set
of PDE benchmarks.

6 Experiments

To rigorously evaluate the performance of the aforementioned quasi second-order methods, we
examine a diverse set of 10 representative and challenging PDEs that govern fundamental physical
phenomena. These equations span wave propagation, shock formulation, chaotic systems, reaction-
diffusion processes, fluid dynamics, and heat transfer. The detailed description of the problem setup,
including the PDE parameters, initial and boundary conditions, numerical implementations, and
supplementary visualizations, are presented in Appendix G.

Baselines. We focus our comparisons on PINN approaches that are scalable to large neural networks,
as scalability is essential for solving realistic, large-scale physical problems. Consequently, we
exclude methods based on natural gradients [37, 38] and L-BFGS variants [40], as these typically
rely on full-batch training, require high-precision (e.g., float64) computation, and are limited to small
network sizes—making them impractical for the complex PDE benchmarks considered in this work.

Our baseline setup is based on the current state-of-the-art training pipeline proposed by [27]. Specif-
ically, we adopt PirateNet [27] as the backbone architecture, which is known for its stability and
scalability to deeper networks. All weight matrices are initialized using random weight factorization
(RWF) [69], Exact periodic boundary conditions are strictly enforced when applicable [70].

For model training, we use mini-batch gradient descent with the Adam optimizer [71], which has
become the de facto standard for training PINNs due to its robust performance and computational
efficiency. To improve training efficiency and robustness, we use learning rate annealing [21, 72]
for loss balancing. In addition, we employ causal training [73, 72] to address causality violations

7

a b

c

d

e

Figure 3: Simulating complex fluid dynamics using PINNs with SOAP optimization. (a) Kolmogorov
flow at Re=10,000: comparison between reference solution and PINN predictions demonstrates
accurate capture of turbulent structures across multiple time steps. (b) Spectral energy distribution
showing PINN’s superior resolution of fine-scale dynamics compared to traditional numerical solu-
tions at various grid resolutions. (c) Lid-driven cavity flow at Re=5,000: streamlines and centerline
velocity profiles show excellent agreement with benchmark data from [68]. (d) Kuramoto-Sivashinsky
equation: PINNs accurately predicts complex spatiotemporal patterns and chaotic dynamics. (e)
Rayleigh-Taylor instability (Pr=0.71, Ra=106): evolution of temperature field shows precise capture
of interface dynamics and mushroom-shaped structures characteristic of this flow.

when solving time-dependent PDEs. For challenging benchmarks, we implement time-marching and
curriculum learning strategies [42].

Importantly, this baseline represents one of the most accurate and scalable PINN pipelines currently
available, achieving state-of-the-art performance across a diverse set of PDE benchmarks [72, 74].
For instance, on the standard Allen-Cahn benchmark, which has been extensively evaluated by various
PINN methods, our proposed baseline outperforms most existing approaches, as demonstrated in Table
8. A comprehensive description of the techniques employed and the hyperparameter configurations
are provided in Appendices G.1 and G.2, respectively.

State-of-the-art results. Table 3 highlights the consistent performance improvements of quasi-
second-order optimizers across a wide range of PDE benchmarks. Among them, SOAP achieves the
best overall results, likely due to its closer alignment with Newton’s method (Table 1), making it
particularly well-suited for the multi-objective nature of PINN optimization.

Compared to our baselines, SOAP reduces relative error by 6.4x on the wave equation. For nonlinear
1D problems, it achieves a 6.9x improvement on the Allen-Cahn equation, and approximately 2x
improvements on both the Korteweg-de Vries and Kuramoto-Sivashinsky equations. The performance
gains become particularly pronounced for coupled diffusion-reaction systems. The Grey-Scott and
Ginzburg-Landau equations exhibit an order of magnitude reduction in error. On challenging
Navier-Stokes benchmarks, including the lid-driven cavity and Rayleigh-Taylor instability problems,
SOAP demonstrates a more than 10x error reduction. We highlight and discuss these substantial
improvements in detail below.

Complex fluid dynamics. Our most significant achievement is successfully applying PINNs to
complex fluid dynamics problems that were previously considered beyond their capabilities. In

8

Table 3: Comparison of optimizer performance obtained by training PINNs with Adam, Adam+L-
BFGS, and SOAP, respectively, across various PDEs, following the training pipeline described in
Section 6. The evaluation metric is the relative L2 error over the entire spatial-temporal domain.

Benchmark Adam Adam+L-BFGS Kron Muon SOAP

Wave 5.15× 10−5 5.08× 10−5 8.62× 10−6 9.34× 10−6 8.05× 10−6

Burgers 8.20× 10−5 8.20× 10−5 4.85× 10−5 4.52× 10−5 4.03× 10−5

Allen-Cahn 2.24× 10−5 2.25× 10−5 3.63× 10−6 4.95× 10−6 3.48× 10−6

Korteweg–De Vries 7.04× 10−4 7.33× 10−4 5.48× 10−4 4.19× 10−4 3.40× 10−4

Kuramoto-Sivashinsky 7.48× 10−2 – 5.49× 10−2 3.51× 10−2 3.86× 10−2

Grey-Scott 3.61× 10−3 – 1.89× 10−4 1.95× 10−4 1.88× 10−4

Ginzburg-Landau 1.49× 10−2 – 7.53× 10−3 4.58× 10−3 4.78× 10−3

Lid-driven cavity (Re = 5× 103) 3.24× 10−1 – 7.05× 10−2 6.70× 10−2 3.99× 10−2

Kolmogorov flow (Re = 104) 2.04× 10−1 – 8.62× 10−2 6.89× 10−2 3.20× 10−2

Rayleigh-Taylor instability (Ra = 106) 7.32× 10−2 – 5.74× 10−3 1.80× 10−2 5.22× 10−3

particular, we demonstrate breakthrough results in three challenging cases that combine multiple
physical constraints and have historically proven difficult for PINNs, see Figure 3.

For the lid-driven cavity flow at Reynolds number 5,000, SOAP enables a dramatic improvement in
accuracy, reducing the relative L2 error from 32.4% to 3.99%. As shown in Figure 3c, our model
successfully captures intricate flow features including secondary and tertiary corner vortices, showing
excellent agreement with the benchmark results of [68].

The Rayleigh-Taylor instability presents an even more challenging test, requiring simultaneous
handling of interface dynamics and coupled velocity-density evolution. SOAP enables accurate
prediction of the characteristic mushroom-shaped structures that develop as heavier fluid penetrates
into lighter fluid, achieving a relative L2 error of 0.52% – nearly an order of magnitude improvement
over the best baseline’s 7.32%. Figure 3e demonstrates excellent agreement with reference solutions
across multiple time steps, capturing both the initial linear growth phase and subsequent nonlinear
development.

Our most impressive result comes from the turbulent Kolmogorov flow at Reynolds number 10,000 –
marking the first time PINNs have successfully captured turbulent dynamics at such high Reynolds
numbers. Our model achieves a relative L2 error of 3.20%, compared to 20.4% with our baseline.
Figure 3a shows that our predictions accurately reproduce both the large-scale flow structures
and the complex cascade of smaller eddies characteristic of turbulent flows. Moreover, spectral
analysis reveals that our PINN solution maintains higher spectral energy at high wavenumbers
compared to traditional numerical solvers, even those using a 1024 × 1024 grid resolution. This
demonstrates PINNs’ potential advantage in resolving fine-scale dynamics without requiring explicit
grid discretization – a key capacity for turbulence modeling.

Ablation studies. We conduct systematic experiments to evaluate SOAP’s performance across
different architectures and hyperparameter settings, establishing the robustness of our approach. Our
first investigation examines SOAP’s effectiveness across three representative architectures: standard
MLP, modified MLP [21], and PirateNet [27]. As shown in the top panel of Figure 4, testing each
architecture on four benchmark PDEs (Wave, Burgers, Allen-Cahn, and KdV equations), we find
that SOAP consistently improves accuracy compared to Adam regardless of the underlying network
backbones. In particular, PirateNet seems to be the most effective architecture across all test cases,
leading to its selection for our main experiments.

As illustrated in the bottom panel of Figure 4, our results of SOAP’s hyperparameters reveal two
critical factors affecting performance. The preconditioner update frequency presents a clear trade-off
between accuracy and computational cost. While more frequent updates yield better results, the
improvements diminish beyond an update frequency of 2, which we selected as the optimal balance
for our experiments. The momentum parameter β1 proved especially crucial: high momentum
(β1 = 0.99) consistently achieves the best results, while low momentum (β1=0.01) significantly
degrades performance across all test cases.

9

Figure 4: Optimizer performance comparison and ablation studies. Top: Relative L2 error across PDE
benchmarks using different optimizers. Bottom left: Relative L2 error for varying preconditioner
update frequencies in SOAP optimizer. Bottom right: Relative L2 error with different momentum
values in SOAP optimizer.

For completeness, we also compared SOAP against ConFiG [58], a recently proposed method for
addressing gradient conflicts in PINNs that has demonstrated relative good performance compared
to established baselines such as PCGrad [75] and IMTL-G [76] in multi-task learning. Despite its
promising theoretical foundations, ConFiG showed some sensitivity to hyperparameter settings in our
experiments, resulting in inconsistent performance. These results highlight the practical advantages
of SOAP’s more robust optimization approach.

Computational costs. While SOAP requires approximately 2x longer training time compared to
baselines (Table 7), our focus is exploring the performance frontier of PINNs through extended
training to full convergence. Impressively, error and loss convergence curves (Appendix G.6) indicate
that SOAP typically achieves rapid initial convergence, reaching a reasonable accuracy (approximately
10−4) within the first 10,000 iterations, followed by gradual error reduction in subsequent iterations.
This suggests the potential for reducing training time by up to 10x while maintaining competitive
performance. These findings motivate future research into designing computationally efficient
optimization algorithms and training strategies for PINNs, paving the way for practical and scalable
applications in complex physics simulations.

7 Conclusion

This work advances our understanding of gradient conflicts in training of PINNs. We proposed
gradient alignment scores as a quantitative measure of such conflicts, and provide both theoretical
analysis and empirical evidence demonstrating their prevalence during PINN optimization. Fur-
thermore, we show that second-order optimization methods implicitly promote gradient alignment,
offering a principled approach to mitigating these conflicts. Particularly, we uncover a connection
between SOAP and Newton’s method. Extensive experiments across 10 PDE benchmarks confirm the
effectiveness of quasi second-order optimizers, with SOAP achieving state-of-the-art performance.

Building on these insights, several promising research directions emerge. While SOAP demonstrates
the power of gradient alignment in handling coupled physical constraints, opportunities exist for
more efficient preconditioned algorithms that maintain their effectiveness with reduced computational
cost. More broadly, our work suggests that the principles of gradient alignment and second-order
preconditioning could benefit many deep learning applications involving competing objectives, though
challenges remain in scaling these approaches to larger systems. Success in these directions could
transform both scientific computing and multi-task optimization.

10

Acknowledgment

B.L. would like to acknowledge support from National Key R&D Program of China Grant No.
2024YFA1016000. P.P. and S.W. acknowledge support from the US Department of Energy under the
Advanced Scientific Computing Research program (grant DE-SC0024563), the Nvidia Academic
Grant Program, and the Institute for Foundations of Data Science at Yale University. We also thank
the developers of the software that enabled our research, including JAX [77], Matplotlib [78], and
NumPy [79].

References
[1] Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,

and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

[2] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

[3] Muhammad M Almajid and Moataz O Abu-Al-Saud. Prediction of porous media fluid flow using
physics informed neural networks. Journal of Petroleum Science and Engineering, 208:109205,
2022.

[4] Hamidreza Eivazi, Mojtaba Tahani, Philipp Schlatter, and Ricardo Vinuesa. Physics-informed
neural networks for solving reynolds-averaged navier–stokes equations. Physics of Fluids,
34(7), 2022.

[5] Zhen Cao, Kai Liu, Kun Luo, Sifan Wang, Liang Jiang, and Jianren Fan. Surrogate modeling
of multi-dimensional premixed and non-premixed combustion using pseudo-time stepping
physics-informed neural networks. Physics of Fluids, 36(11), 2024.

[6] Jiaxuan Xu, Han Wei, and Hua Bao. Physics-informed neural networks for studying heat
transfer in porous media. International Journal of Heat and Mass Transfer, 217:124671, 2023.

[7] Hassan Bararnia and Mehdi Esmaeilpour. On the application of physics informed neural
networks (pinn) to solve boundary layer thermal-fluid problems. International Communications
in Heat and Mass Transfer, 132:105890, 2022.

[8] Gargya Gokhale, Bert Claessens, and Chris Develder. Physics informed neural networks for
control oriented thermal modeling of buildings. Applied Energy, 314:118852, 2022.

[9] Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R Witschey, John A Detre, and Paris
Perdikaris. Machine learning in cardiovascular flows modeling: Predicting arterial blood pres-
sure from non-invasive 4D flow MRI data using physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 358:112623, 2020.

[10] Xuelan Zhang, Baoyan Mao, Yue Che, Jiaheng Kang, Mingyao Luo, Aike Qiao, Youjun Liu,
Hitomi Anzai, Makoto Ohta, Yuting Guo, et al. Physics-informed neural networks (pinns)
for 4d hemodynamics prediction: an investigation of optimal framework based on vascular
morphology. Computers in Biology and Medicine, 164:107287, 2023.

[11] Federica Caforio, Francesco Regazzoni, Stefano Pagani, Elias Karabelas, Christoph Augustin,
Gundolf Haase, Gernot Plank, and Alfio Quarteroni. Physics-informed neural network esti-
mation of material properties in soft tissue nonlinear biomechanical models. Computational
Mechanics, pages 1–27, 2024.

[12] Enrui Zhang, Ming Dao, George Em Karniadakis, and Subra Suresh. Analyses of internal
structures and defects in materials using physics-informed neural networks. Science advances,
8(7):eabk0644, 2022.

[13] Hyogu Jeong, Jinshuai Bai, Chanaka Prabuddha Batuwatta-Gamage, Charith Rathnayaka, Ying
Zhou, and YuanTong Gu. A physics-informed neural network-based topology optimization
(pinnto) framework for structural optimization. Engineering Structures, 278:115484, 2023.

11

[14] Haoteng Hu, Lehua Qi, and Xujiang Chao. Physics-informed neural networks (pinn) for com-
putational solid mechanics: Numerical frameworks and applications. Thin-Walled Structures,
page 112495, 2024.

[15] Alexander Kovacs, Lukas Exl, Alexander Kornell, Johann Fischbacher, Markus Hovorka,
Markus Gusenbauer, Leoni Breth, Harald Oezelt, Masao Yano, Noritsugu Sakuma, et al.
Conditional physics informed neural networks. Communications in Nonlinear Science and
Numerical Simulation, 104:106041, 2022.

[16] Arbaaz Khan and David A Lowther. Physics informed neural networks for electromagnetic
analysis. IEEE Transactions on Magnetics, 58(9):1–4, 2022.

[17] Marco Baldan, Paolo Di Barba, and David A Lowther. Physics-informed neural networks for
inverse electromagnetic problems. IEEE Transactions on Magnetics, 59(5):1–5, 2023.

[18] Jonthan D Smith, Zachary E Ross, Kamyar Azizzadenesheli, and Jack B Muir. Hyposvi:
Hypocentre inversion with stein variational inference and physics informed neural networks.
Geophysical Journal International, 228(1):698–710, 2022.

[19] Chao Song and Yanghua Wang. Simulating seismic multifrequency wavefields with the fourier
feature physics-informed neural network. Geophysical Journal International, 232(3):1503–
1514, 2023.

[20] Pu Ren, Chengping Rao, Su Chen, Jian-Xun Wang, Hao Sun, and Yang Liu. Seismicnet: Physics-
informed neural networks for seismic wave modeling in semi-infinite domain. Computer Physics
Communications, 295:109010, 2024.

[21] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow
pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021.

[22] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33:7462–7473, 2020.

[23] Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter
networks. In International Conference on Learning Representations, 2021.

[24] Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed
neural networks (fbpinns): a scalable domain decomposition approach for solving differential
equations. arXiv preprint arXiv:2107.07871, 2021.

[25] Namgyu Kang, Byeonghyeon Lee, Youngjoon Hong, Seok-Bae Yun, and Eunbyung Park.
Pixel: Physics-informed cell representations for fast and accurate pde solvers. arXiv preprint
arXiv:2207.12800, 2022.

[26] Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung
Park. Separable physics-informed neural networks. Advances in Neural Information Processing
Systems, 36, 2024.

[27] Sifan Wang, Bowen Li, Yuhan Chen, and Paris Perdikaris. Piratenets: Physics-informed deep
learning with residual adaptive networks. arXiv preprint arXiv:2402.00326, 2024.

[28] Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions
accelerate convergence in deep and physics-informed neural networks. Journal of Computational
Physics, 404:109136, 2020.

[29] Jassem Abbasi and Pål Østebø Andersen. Physical activation functions (pafs): An approach for
more efficient induction of physics into physics-informed neural networks (pinns). Neurocom-
puting, 608:128352, 2024.

[30] Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of fourier feature
networks: From regression to solving multi-scale PDEs with physics-informed neural networks.
Computer Methods in Applied Mechanics and Engineering, 384:113938, 2021.

12

[31] Francisco Sahli Costabal, Simone Pezzuto, and Paris Perdikaris. δ-pinns: physics-informed
neural networks on complex geometries. Engineering Applications of Artificial Intelligence,
127:107324, 2024.

[32] Chengxi Zeng, Tilo Burghardt, and Alberto M Gambaruto. Rbf-pinn: Non-fourier positional
embedding in physics-informed neural networks. arXiv preprint arXiv:2402.08367, 2024.

[33] Xinquan Huang and Tariq Alkhalifah. Efficient physics-informed neural networks using hash
encoding. Journal of Computational Physics, page 112760, 2024.

[34] Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training
of physics-informed neural networks via importance sampling. Computer-Aided Civil and
Infrastructure Engineering, 2021.

[35] Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Rethinking the importance
of sampling in physics-informed neural networks. arXiv preprint arXiv:2207.02338, 2022.

[36] Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

[37] Johannes Müller and Marius Zeinhofer. Achieving high accuracy with pinns via energy natural
gradient descent. In International Conference on Machine Learning, pages 25471–25485.
PMLR, 2023.

[38] Anas Jnini, Flavio Vella, and Marius Zeinhofer. Gauss-newton natural gradient descent for
physics-informed computational fluid dynamics. arXiv preprint arXiv:2402.10680, 2024.

[39] Yongcun Song, Xiaoming Yuan, and Hangrui Yue. The admm-pinns algorithmic framework for
nonsmooth pde-constrained optimization: a deep learning approach. SIAM Journal on Scientific
Computing, 46(6):C659–C687, 2024.

[40] Jorge F Urbán, Petros Stefanou, and José A Pons. Unveiling the optimization process of
physics informed neural networks: How accurate and competitive can pinns be? Journal of
Computational Physics, 523:113656, 2025.

[41] Colby L Wight and Jia Zhao. Solving Allen-Cahn and Cahn-Hilliard equations using the
adaptive physics informed neural networks. arXiv preprint arXiv:2007.04542, 2020.

[42] Aditi S Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M Kirby, and Michael W Mahoney.
Characterizing possible failure modes in physics-informed neural networks. arXiv preprint
arXiv:2109.01050, 2021.

[43] Wenbo Cao and Weiwei Zhang. Tsonn: Time-stepping-oriented neural network for solving
partial differential equations. arXiv preprint arXiv:2310.16491, 2023.

[44] Shaan Desai, Marios Mattheakis, Hayden Joy, Pavlos Protopapas, and Stephen Roberts. One-
shot transfer learning of physics-informed neural networks. arXiv preprint arXiv:2110.11286,
2021.

[45] Somdatta Goswami, Cosmin Anitescu, Souvik Chakraborty, and Timon Rabczuk. Transfer learn-
ing enhanced physics informed neural network for phase-field modeling of fracture. Theoretical
and Applied Fracture Mechanics, 106:102447, 2020.

[46] Souvik Chakraborty. Transfer learning based multi-fidelity physics informed deep neural
network. Journal of Computational Physics, 426:109942, 2021.

[47] Pao-Hsiung Chiu, Jian Cheng Wong, Chinchun Ooi, My Ha Dao, and Yew-Soon Ong. Can-pinn:
A fast physics-informed neural network based on coupled-automatic–numerical differentiation
method. Computer Methods in Applied Mechanics and Engineering, 395:114909, 2022.

[48] Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. hp-vpinns: Variational
physics-informed neural networks with domain decomposition. Computer Methods in Applied
Mechanics and Engineering, 374:113547, 2021.

13

[49] Ravi G Patel, Indu Manickam, Nathaniel A Trask, Mitchell A Wood, Myoungkyu Lee, Ignacio
Tomas, and Eric C Cyr. Thermodynamically consistent physics-informed neural networks for
hyperbolic systems. Journal of Computational Physics, 449:110754, 2022.

[50] Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-
informed neural networks for forward and inverse pde problems. Computer Methods in Applied
Mechanics and Engineering, 393:114823, 2022.

[51] Hwijae Son, Jin Woo Jang, Woo Jin Han, and Hyung Ju Hwang. Sobolev training for physics
informed neural networks. arXiv preprint arXiv:2101.08932, 2021.

[52] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to train: A neural
tangent kernel perspective. Journal of Computational Physics, 449:110768, 2022.

[53] Wensheng Li, Chao Zhang, Chuncheng Wang, Hanting Guan, and Dacheng Tao. Revisiting
pinns: Generative adversarial physics-informed neural networks and point-weighting method.
arXiv preprint arXiv:2205.08754, 2022.

[54] Wenqian Chen, Amanda A Howard, and Panos Stinis. Self-adaptive weights based on balanced
residual decay rate for physics-informed neural networks and deep operator networks. arXiv
preprint arXiv:2407.01613, 2024.

[55] Sokratis J Anagnostopoulos, Juan Diego Toscano, Nikolaos Stergiopulos, and George Em
Karniadakis. Residual-based attention in physics-informed neural networks. Computer Methods
in Applied Mechanics and Engineering, 421:116805, 2024.

[56] Li Liu, Shengping Liu, Hui Xie, Fansheng Xiong, Tengchao Yu, Mengjuan Xiao, Lufeng Liu,
and Heng Yong. Discontinuity computing using physics-informed neural networks. Journal of
Scientific Computing, 98(1):22, 2024.

[57] Jiahao Song, Wenbo Cao, Fei Liao, and Weiwei Zhang. Vw-pinns: A volume weighting method
for pde residuals in physics-informed neural networks. Acta Mechanica Sinica, 41(3):324140,
2025.

[58] Qiang Liu, Mengyu Chu, and Nils Thuerey. Config: Towards conflict-free training of physics
informed neural networks. arXiv preprint arXiv:2408.11104, 2024.

[59] Youngsik Hwang and Dongyoung Lim. Dual cone gradient descent for training physics-informed
neural networks. Advances in Neural Information Processing Systems, 37:98563–98595, 2024.

[60] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[61] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of
algorithmic differentiation. SIAM, 2008.

[62] Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024.

[63] Xi-Lin Li. Preconditioned stochastic gradient descent. IEEE transactions on neural networks
and learning systems, 29(5):1454–1466, 2017.

[64] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

[65] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

[66] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor
optimization. In International Conference on Machine Learning, pages 1842–1850. PMLR,
2018.

[67] Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in
training pinns: A loss landscape perspective. arXiv preprint arXiv:2402.01868, 2024.

14

[68] U Ghia, K.N Ghia, and C.T Shin. High-re solutions for incompressible flow using the navier-
stokes equations and a multigrid method. Journal of Computational Physics, 48(3):387–411,
1982.

[69] Sifan Wang, Hanwen Wang, Jacob H Seidman, and Paris Perdikaris. Random weight
factorization improves the training of continuous neural representations. arXiv preprint
arXiv:2210.01274, 2022.

[70] Suchuan Dong and Naxian Ni. A method for representing periodic functions and enforcing
exactly periodic boundary conditions with deep neural networks. Journal of Computational
Physics, 435:110242, 2021.

[71] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[72] Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to
training physics-informed neural networks. arXiv preprint arXiv:2308.08468, 2023.

[73] Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for
training physics-informed neural networks. arXiv preprint arXiv:2203.07404, 2022.

[74] Zhongkai Hao, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi
Zhang, Songming Liu, Lu Lu, et al. Pinnacle: A comprehensive benchmark of physics-informed
neural networks for solving pdes. arXiv preprint arXiv:2306.08827, 2023.

[75] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

[76] Liyang Liu, Yi Li, Zhanghui Kuang, J Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and
Wayne Zhang. Towards impartial multi-task learning. iclr, 2021.

[77] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[78] John D Hunter. Matplotlib: A 2D graphics environment. IEEE Annals of the History of
Computing, 9(03):90–95, 2007.

[79] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array
programming with numpy. Nature, 585(7825):357–362, 2020.

[80] Hanxu Zhou, Zhou Qixuan, Tao Luo, Yaoyu Zhang, and Zhi-Qin Xu. Towards understanding the
condensation of neural networks at initial training. Advances in Neural Information Processing
Systems, 35:2184–2196, 2022.

[81] Zheng-an Chen and Tao Luo. On the dynamics of three-layer neural networks: initial condensa-
tion. arXiv preprint arXiv:2402.15958, 2024.

[82] Anas Barakat and Pascal Bianchi. Convergence and dynamical behavior of the adam algorithm
for nonconvex stochastic optimization. SIAM Journal on Optimization, 31(1):244–274, 2021.

[83] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of
stochastic gradients. In International Conference on Machine Learning, pages 404–413. PMLR,
2018.

[84] Adepu Ravi Sankar, Yash Khasbage, Rahul Vigneswaran, and Vineeth N Balasubramanian.
A deeper look at the hessian eigenspectrum of deep neural networks and its applications to
regularization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 9481–9488, 2021.

[85] Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal,
Punit Singh Koura, Sharan Narang, Andrew Poulton, Ruan Silva, et al. A theory on adam
instability in large-scale machine learning. arXiv preprint arXiv:2304.09871, 2023.

15

[86] Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach, Sham Kakade, and Lucas Janson. A
new perspective on shampoo’s preconditioner. arXiv preprint arXiv:2406.17748, 2024.

[87] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second
order optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

[88] Sokratis J Anagnostopoulos, Juan Diego Toscano, Nikolaos Stergiopulos, and George Em
Karniadakis. Residual-based attention and connection to information bottleneck theory in pinns.
arXiv preprint arXiv:2307.00379, 2023.

[89] Xenofon Karakonstantis, Diego Caviedes-Nozal, Antoine Richard, and Efren Fernandez-Grande.
Room impulse response reconstruction with physics-informed deep learning. The Journal of
the Acoustical Society of America, 155(2):1048–1059, 2024.

[90] Jiaming Zhang, David Dalton, Hao Gao, and Dirk Husmeier. Physics-informed deep learning
based on the finite difference method for efficient and accurate numerical solution of partial
differential equations.

[91] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimensional domains. arXiv preprint
arXiv:2006.10739, 2020.

[92] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[93] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. Advances in neural information processing systems,
29, 2016.

[94] Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide, 2014.

[95] Syver Døving Agdestein, Simone Ciarella, and Benjamin Sanderse. IncompressibleNavier-
Stokes.jl, November 2024.

[96] Levi McClenny and Ulisses Braga-Neto. Self-adaptive physics-informed neural networks using
a soft attention mechanism. arXiv preprint arXiv:2009.04544, 2020.

[97] Revanth Mattey and Susanta Ghosh. A novel sequential method to train physics informed neural
networks for allen cahn and cahn hilliard equations. Computer Methods in Applied Mechanics
and Engineering, 390:114474, 2022.

[98] Vasiliy A Es’ kin, Danil V Davydov, Ekaterina D Egorova, Alexey O Malkhanov, Mikhail A
Akhukov, and Mikhail E Smorkalov. About optimal loss function for training physics-informed
neural networks under respecting causality. arXiv preprint arXiv:2304.02282, 2023.

[99] Norman J Zabusky and Martin D Kruskal. Interaction of" solitons" in a collisionless plasma
and the recurrence of initial states. Physical review letters, 15(6):240, 1965.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions,
including: introducing a gradient alignment score to quantify directional conflicts (Sec.
1-2), demonstrating how second-order optimizers enhance gradient alignment (Sec. 3),
establishing SOAP’s connection to Newton’s method (Sec. 4), and showing improved
performance across 10 PDE benchmarks (Sec. 5).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses computational costs in Section 5 (paragraph "Computa-
tional costs"), noting that SOAP requires approximately 2x longer training time compared
to baselines, though it achieves better convergence. The conclusion also acknowledges the
need for "more efficient preconditioned algorithms that maintain their effectiveness with
reduced computational cost.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best

17

judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes theoretical results with clear assumptions and proofs.
Proposition 1 in Section 3 establishes the connection between alignment score and cosine
similarity. Proposition 2 analyzes gradient alignment at initialization. Proposition 3 connects
preconditioned gradient descent to Newton’s method. Complete proofs are provided in the
appendix (referenced throughout Section 3-4).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient information to reproduce the main experimental
results. Section 5 describes the baseline setup, and the appendices (referenced in Sec-
tion 5) contain complete information on experimental settings, hyperparameters, and data
generation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

18

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: We will release the code once the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies training and test details in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]
Justification: The paper includes multiple performance comparisons across different PDEs
and optimizers, with ablation studies in Figure 4 showing the impact of different hyper-
parameter settings. The consistent performance improvements across diverse benchmarks
(Table 2) and multiple experimental configurations support the statistical significance of the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides information about computational resources in Appendix
G.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms to the NeurIPS Code of Ethics. It focuses on funda-
mental advances in scientific machine learning with no apparent ethical concerns. The work
acknowledges all related research properly and presents results transparently.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

20

https://neurips.cc/public/EthicsGuidelines

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The conclusion discusses broader positive impacts, noting that the principles
of gradient alignment could benefit applications involving competing objectives beyond
scientific computing. The research enables more accurate simulation of complex physical
systems, which has positive societal impact for scientific and engineering applications. As
with any tool that furthers our understanding and ability to predict the outcomes of complex
systems, there may be ill-intentioned use cases, but we do not expect any specific negative
impact from this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper focuses on optimization techniques for solving PDEs and does
not involve models or data with high risk for misuse. The methods presented are used for
scientific computing applications without foreseeable harmful applications.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

21

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly cites existing work and acknowledges software used
(JAX, Matplotlib, Chebfun, and NumPy) in the Acknowledgments section. The baseline
implementation builds on prior work that is appropriately cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release code implementing the methods described in this paper upon
acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects. It
focuses on algorithmic improvements and numerical experiments for solving PDEs.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

22

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human subjects, so IRB approval is not applica-
ble.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not indicate the use of LLMs as part of the core methods or
research.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

A Nomenclature

Table 4: Notation used throughout the paper. We use uppercase letters for matrices and lowercase
letters for their vectorized forms. All gradients and Hessians are with respect to the loss function L.

Symbol Description

L Loss function

Lics Initial condition losses

Lres PDE residual losses

θ Neural network parameters

W Weight matrix for a given layer

w Vectorized weight matrix, w = Vec(W)

G Gradient matrix, G = ∇WL
g Vectorized gradient, g = Vec(G)

F Fisher information matrix

H Hessian matrix, H = ∇2
θL

HAda Full Adagrad preconditioner matrix

HGN Gauss-Newton approximation of the Hessian

A Gradient alignment score between loss components

B Analysis of Intra-step Gradient Alignment

We present some preliminary analysis to understand intra-step gradient conflicts in training PINNs via
standard gradient descent, Adam [71], and Shampoo algorithms [66], and how SOAP can effectively
resolve them during training. For simplicity, we consider the simplest case of using PINNs with
the two-layer NN to solve the one-dimensional Laplace equation and focus on the analysis of the
intra-step gradient alignment (3.3) with small initialization. The analysis can be easily extended to
other types of PDEs. Following the general setup in Section 2, without loss of generality, we consider
1D Laplace equation as follows {

∆u = u′′ = 0 on [−1, 1],
u(±1) = g±1.

(B.1)

We approximate the solution u(x) by a two-layer network with width N :

u(x, θ) =

N∑
i=1

aiσ(wix) = a · σ(wx) , (B.2)

where a = (a1, . . . , aN),w = (w1, . . . , wN) ∈ RN , and θ = (a,w) ∈ R2N . Moreover, we limit
ourselves to the activation function σ(x) = tanh(x). In this case, the loss (2.5) reduces to

min
θ=(a,w)

L(θ) = 1

Nr

Nr∑
p=1

|u′′(xp, θ)|2︸ ︷︷ ︸
Lr(θ)

+
1

2

∑
s=±1

|u(s, θ)− gs|2︸ ︷︷ ︸
Lbc(θ)

. (B.3)

To analyze the gradient conflict phenomenon in training PINNs, we consider the small initialization
regime.
Assumption 1. The weights ai, wi are initialized by i.i.d. Gaussian N (0, ε2) with small ε = o(1).

This allows us to introduce the normalized parameters:
ā = ε−1a , w̄ = ε−1w ,

initialized as standard Gaussian.

24

Figure 5: Gradient alignment scores and test errors obtained by training PINNs with different optimizers across
different PDEs. From left to right: ground truth PDE solution, intra-step gradient alignment scores (Eq. (3.3)),
inter-step gradient alignment scores (Eq. (3.4)), and test error convergence during training.

Lemma 1. Under small initialization, the gradients of the residual and boundary loss terms can be
approximated as:

∇θLr(θ) = ε7Gr(ā, w̄) +O(ε9), (B.4)

∇θLbc(θ) = εGbc(ā, w̄) +O(ε3), (B.5)
where

Gr(sa, sw) = crsa · sw⊙3
(

sw⊙3, 3sa⊙ sw⊙2
)
, (B.6)

Gbc(sa, sw) = (g−1 − g1) (sw, sa) . (B.7)

Here ā = ε−1a, w̄ = ε−1w are the normalized parameters, and Gr, Gbc are the effective gradient
terms.

We remark that these elementary computations also provide insights into the gradient magnitude
imbalance discussed in Section 3, noting ∥∇θLr(θ)∥ = O(ε7) while ∥∇θLbc(θ)∥ = O(ε).

Proof. We recall the Taylor expansions of the activation function σ(x) = tanh(x) and its derivatives
for later use:

σ(x) = x− x3

3
+O(x5) , σ′(x) = 1− x2 +O(x4) ,

σ′′(x) = −2x+
8x3

3
+O(x5) , σ′′′(x) = −2 + 8x2 +O(x4) .

(B.8)

25

The gradient of loss function L(θ) consists of two parts computed as follows:

∇θ=(a,w)Lr(θ) =
2

Nr

Nr∑
p=1

uxx(xp, θ)∇θ=(a,w)uxx(xp , θ) ,

and
∇θ=(a,w)Lbc(θ) =

∑
s=±1

(u(s, θ)− g(s))∇θ=(a,w)u(s, θ) ,

with, thanks to (4.2) and (B.8),

∇au(x, θ) = σ(wx) = εswx+O(ε3) ,

∇wiu(x, θ) = aiσ
′(wix)x = εsaix− ε3 saiĎwi

2x3 +O(ε4) ,

and

∇ai
uxx(x, θ) = σ′′(wix)|wi|2 = −2ε3Ďwi

3x+O(ε5) ,

∇wiuxx(x, θ) = aiσ
′′′(wix)|wi|2x+ 2aiσ

′′(wix)wi

= −6ε3 saiĎwi
2x+O(ε5) .

We also compute

u(x, θ) = ε2sa · swx+O(ε4) ,

and
uxx(x, θ) =

∑
i

aiσ
′′(wix)|wi|2 = −2ε4

∑
i

saiĎwi
3x+O(ε6) .

For convenience, we define the componentwise power x⊙k = (xk
1 , . . . , x

k
N) and product x⊙ y =

(x1y1, . . . , xNyN) for x,y ∈ RN . By the above computation, it follows that at the initialization,
there hold

∇θ=(a,w)Lr(θ) =
2

Nr

Nr∑
p=1

(
−2ε4sa · sw⊙3xp

) (
−2ε3 sw⊙3xp,−6ε3sa⊙ sw⊙2xp

)
+O(ε9)

= ε7
8

Nr

Nr∑
p=1

sa · sw⊙3
(

sw⊙3, 3sa⊙ sw⊙2
)
x2
p +O(ε9) ,

and

∇θ=(a,w)Lbc(θ) =
∑
s=±1

(
ε2sa · sws+O(ε4)− g(s)

) (
εsws+O(ε3), εsas− ε3sa⊙ sw⊙2s3 +O(ε4)

)
= −ε

∑
s=±1

sg(s) (sw, sa) +O(ε3) = ε(g−1 − g1) (sw, sa) +O(ε3) .

We then define constant cr = 8N−1
r

∑Nr

p=1 x
2
p > 0 and the effective gradients

Gr(sa, sw) = (Gr
a(sa, sw), Gr

w(sa, sw)) = crsa · sw⊙3
(

sw⊙3, 3sa⊙ sw⊙2
)
, (B.9)

and

Gbc(sa, sw) =
(
Gbc

a (sa, sw), Gbc
w (sa, sw)

)
= (g−1 − g1) (sw, sa) , (B.10)

enabling us to write

∇θLr(θ) = ε7Gr(sa, sw) +O(ε9) , ∇θLbc(θ) = εGbc(sa, sw) +O(ε3) . (B.11)

We are now ready to understand the gradient conflict for various optimizers applied to the residual
and boundary loss terms separately.

26

Proposition 3 At initialization, the alignment score converges to a binary random variable in the
infinite width limit:

lim
N→∞

A(□(∇Lb),□(∇Lr)) = O(ε2) + C□

{
sgn (g−1 − g1) with prob. 1

2 ,

− sgn (g−1 − g1) with prob. 1
2 .

(B.12)

where □ = GD,Adam,Shampoo, or Soap denotes the optimizer update rule, and C□ is a constant
depending on the optimizer.

We can see that these optimizers fail to resolve intra-step gradient conflicts in the initialization,
aligning with the near-zero initial intra-step gradient scores shown in Figure 5.

Proof. Gradient descent. We start with the standard continuous-time gradient descent:

dθ

dt
= −∇θL(θ) . (B.13)

Motivated by [80, 81], under small initialization Assumption 1, in the initial stage of training
dynamics where the leading-order expansion (B.11) holds for the weights a,w, the gradients∇θLr(θ)
and ∇θLbc(θ) can be effectively described by Gr(sa, sw) and Gbc(sa, sw), respectively, up to some
scaling factors, then the gradient flow (B.13) can be approximated by the effective dynamics for the
normalized parameter sθ = (sa, sw):

ε
dsθ

dt
= −

(
ε7Gr(sθ) + εGbc(sθ)

)
. (B.14)

Recalling Definition 1, under our assumptions, we have the intra alignment score:

A (∇θLr(θ),∇θLbc(θ)) = A
(
Gr(sθ), Gbc(sθ)

)
+O(ε2) ,

where

A
(
Gr(sθ), Gbc(sθ)

)
= sgn(sa · sw⊙3) sgn(g−1 − g1)

∑
i Ďwi

4 + 3
∑

i sai
2
Ďwi

2√∑
i Ďwi

6 + 9sai2Ďwi
4
√∑

i Ďwi
2 + sai2

.

Then we find that at the initialization, by sai, Ďwi ∼ N (0, 1) from Assumption 1 and the law of large
numbers,

1
N

∑
i Ďwi

4 + 3 1
N

∑
i sai

2
Ďwi

2√
1
N

∑
i Ďwi

6 + 9sai2Ďwi
4
√

1
N

∑
i Ďwi

2 + sai2
−→ 6

√
15 + 27

√
2
=

3√
21

, almost surely.

Also, by the symmetry of Gaussian, there holds P(
∑

i saiĎwi
3 > 0) = 1

2 . It follows that the alignment
score A(Gr(sθ), Gbc(sθ))t=0 converges to a binary random variable with expectation zero in the
infinite width limit:

A
(
Gr(sθ), Gbc(sθ)

)
t=0
−→ A =

{
sgn(g−1 − g1)

3√
21

with prob. 1
2 ,

− sgn(g−1 − g1)
3√
21

with prob. 1
2 .

Adam. We now consider the deterministic version of the Adam optimizer [71], recalled below for
completeness. Let f(x) be a differentiable objective function on Rd. The Adam iteration is defined
by zn = Tγ,α,β(n, zn−1) for zn = (xn,mn, vn) ∈ Rd × Rd × Rd with z0 = (x0, 0, 0), where

Tγ,α,β(n, z) =

x− γ(1−αn)−1(αm+(1−α)∇f(x))

ϵ+(1−βn)−1/2
√

βv+(1−β)∇f(x)⊙2

αm+ (1− α)∇f(x)
βv + (1− β)∇f(x)⊙2

 .

We still consider the gradient conflict at the initialization, since the Adam dynamics is more compli-
cated than the gradient flow one. From [82], we have that starting from (x0, 0, 0) ∈ R3d, the Adam
dynamics at t = 0 satisfies ṁ(0) ∝ ∇f(x0), v̇(0) ∝ ∇f(x0)

⊙2, and

ẋ(0) = − ∇f(x0)

ϵ+
√
∇f(x0)⊙2

≈
ϵ=o(1)

− ∇f(x0)√
∇f(x0)⊙2

,

27

indicating that at early iterations of Adam, the algorithm performance would be similar to the sign
gradient descent [83]. Back to our problem (4.3), by the above discussion, if we apply Adam to the
loss functions Lr(θ) and Lbc(θ), respectively, at the initialization, the normalized weights sθ = ε−1θ
will be updated along the directions:

∇Lr(θ)√
∇Lr(θ)⊙2

=
Gr(sθ)√
Gr(sθ)⊙2

+O(ε2) ,
∇Lbc(θ)√
∇Lbc(θ)⊙2

=
Gbc(sθ)√
Gbc(sθ)⊙2

+O(ε2) .

Then, by (B.6) and (B.7), one can compute

Gr
Adam(

sθ) =
Gr(sθ)√
Gr(sθ)⊙2

= sgn(sa · sw⊙3) (sgn(sw), sgn(sa)) ,

and

Gbc
Adam(

sθ) =
Gbc(sθ)√
Gbc(sθ)⊙2

= sgn(g−1 − g1) (sgn(sw), sgn(sa)) .

It follows that the alignment score is

A
(
Gr

Adam(
sθ), Gbc

Adam(
sθ)
)
= sgn(sa · sw⊙3) sgn(g−1 − g1) =

{
sgn(g−1 − g1) with prob. 1

2 ,

− sgn(g−1 − g1) with prob. 1
2 ,

which holds for any two-layer NN with width N .

Shampoo and SOAP. We proceed to consider Shampoo [66], which is a second-order optimizer with
Kronecker product preconditioners. For the reader’s convenience, we recall the Shampoo iterations
for training neural networks. Following the notation in Section D, let Wt, Gt ∈ Rm×n be the weight
matrix and gradient matrix for a layer at time step t, respectively. Shampoo generates left and right
preconditioners:

Lt = Lt−1 +GtG
T
t , Rt = Rt−1 +GT

t Gt ,

and then updates the weight matrix by

Wt+1 = Wt − ηL
−1/4
t GtR

−1/4
t ,

with step size η > 0. If we disable the accumulation in the preconditioners and set Lt = GtG
T
t and

Rt = GT
t Gt, then the Shampoo optimizer is simplified to

Wt+1 = Wt − η Shampoo(Gt) , Shampoo(Gt) := (GtG
T
t)

−1/4Gt(G
T
t Gt)

−1/4 ,

with Shampoo(Gt) = UtV
T
t , where Ut and Vt are from the reduced singular value decomposition

of Gt = UtΣtV
T
t . It is clear that if we apply Shampoo to Lr(θ) or Lbc(θ) with the two-layer NN

(4.2), then under small initialization Assumption 1, at the initialization, the updates of the normalized
weights sθ = (sa, sw) = ε−1θ would be

sa← sa− η Shampoo
(
Gr or bc

a (sa, sw)
)
, sw← sw − η Shampoo

(
Gr or bc

w (sa, sw)
)
.

Here Gr or bc
a , Gr or bc

w ∈ RN are given in (B.6) and (B.7). Moreover, note that for any vector x ∈ Rd,
Shampoo(x) is simply x/∥x∥. Therefore, we can compute the (effective) initial Shampoo gradient
directions for Lr(θ) and Lbc(θ):

Gr
Shampoo(

sθ) :=
(
Shampoo

(
Gr

a(
sθ)
)
,Shampoo

(
Gr

a(
sθ)
))

= sgn(sa · sw⊙3)

(
sw⊙3

∥sw⊙3∥
,

sa⊙ sw⊙2

∥sa⊙ sw⊙2∥

)
.

and

Gbc
Shampoo(

sθ) :=
(
Shampoo

(
Gbc

a (sθ)
)
,Shampoo

(
Gbc

a (sθ)
))

= sgn(g−1 − g1)

(
sw

∥sw∥
,

sa

∥sa∥

)
.

It follows that the alignment score is, as N →∞,

A
(
Gr

Shampoo(
sθ), Gbc

Shampoo(
sθ)
)
−→ CShampoo

{
sgn(g−1 − g1) with prob. 1

2 ,

− sgn(g−1 − g1) with prob. 1
2 .

We finally consider SOAP. Following the notations in Appendix D, if Gt is a vector, then G̃t =

[1, 0, · · · , 0]⊤ and Adam(G̃t) = G̃t. We transform this gradient back and obtain Gt/∥Gt∥. It means
that at initialization,

Shampoo
(
Gr or bc

a (sa, sw)
)
= SOAP

(
Gr or bc

a (sa, sw)
)
.

Therefore, the initial gradient conflict of SOAP follows from the case of Shampoo.

28

C Inter-step gradient alignment of preconditioned gradient descent

Proposition 4 Let L(θ) be a twice differentiable loss function with Hessian H(θ), and let P (θ) be a
positive definite preconditioner with uniformly bounded inverse P−1(θ). Consider the preconditioned
gradient descent update with exponent 0 ≤ s ≤ 1 and learning rate η > 0:

θt+1 = θt − ηP−s(θt)∇L(θt) (C.1)

For consecutive gradient vectors gt = ∇L(θt) and gt+1 = ∇L(θt+1), the alignment score

A(gt, gt+1) =
gT
t gt+1

∥gt∥∥gt+1∥ satisfies:

A(gt, gt+1) = 1− η2

2

∥HP−sgt∥2

∥gt∥2
+O(η3) (C.2)

Furthermore, to ensure gradient alignment A(gt, gt+1) ≥ 1 − ϵ for some ϵ > 0, the learning rate
must satisfy:

η ≤

√
2ϵ∥gt∥2
∥HP−sgt∥2

(C.3)

This bound specializes to the following cases:

1. Vanilla Gradient Descent (P = I): ηmax =
√

2ϵ
λ2
max(H)

2. Newton’s Method (P = H, s = 1): ηmax =
√
2ϵ

Proof. Let P (θ) be a positive definite preconditioner with uniformly bounded inverse P−1(θ). For
learning rate η > 0 and exponent 0 < s ≤ 1, the parameter update is:

θt+1 = θt − ηP−s (θt) gt (C.4)

where gt = ∇L (θt).
We are interested in the behavior of the alignment between successive gradients under this update.
To study this, we expand gt+1 = ∇L(θt+1) via a second-order Taylor series around θt, using the
Hessian H(θt) = ∇2L(θt):

gt+1 = gt +H (θt)∆θt +
1

2
D3L (θt) [∆θt,∆θt] +O

(
∥∆θt∥3

)
(C.5)

Substituting ∆θt:

gt+1 = gt − ηHP−sgt +
η2

2
D3L (θt)

[
P−sgt, P

−sgt
]
+O

(
η3
∥∥P−sgt

∥∥3) . (C.6)

Assuming η is small, we retain only the first-order term:

gt+1 = gt − ηHP−sgt +O
(
η2
∥∥P−sgt

∥∥2) (C.7)

We compute the inner product between the current and next gradient:

g⊤t gt+1 = ∥gt∥2 − ηg⊤t HP−sgt +O
(
η2
∥∥P−sgt

∥∥2 ∥gt∥) . (C.8)

We also expand the norm of the new gradient:

∥gt+1∥2 = ∥gt∥2 − 2ηg⊤t HP−sgt + η2
∥∥HP−sgt

∥∥2 +O
(
η3
)
. (C.9)

Taking the square root and using the approximation
√
1− x ≈ 1− x

2 for small x, we get:

∥gt+1∥ = ∥gt∥

(
1− η

g⊤t HP−sgt

∥gt∥2
+

η2

2

∥HP−sgt∥
2

∥gt∥2

)
+O

(
η3
)
. (C.10)

29

The cosine similarity (alignment score) between gt and gt+1 is defined as:

A (gt, gt+1) =
g⊤t gt+1

∥gt∥ ∥gt+1∥
(C.11)

Substituting the approximations above:

A (gt, gt+1) =
∥gt∥2 − ηg⊤t HP−sgt +O

(
η2
)

∥gt∥2
(
1− η

g⊤
t HP−sgt
∥gt∥2 + η2

2
∥HP−sgt∥2

∥gt∥2 +O (η3)
) . (C.12)

Factor ∥gt∥22 in denominator:

A (gt, gt+1) =
1− η

g⊤
t HP−sgt
∥gt∥2 +O

(
η2
)

1− η
g⊤
t HP−sgt
∥gt∥2 + η2

2
∥HPP−sgt∥2

∥gt∥2 +O (η3)
. (C.13)

Using (1− a+ b)−1 = 1 + a− b+O
(
a2 + b2

)
for small a, b :

A (gt, gt+1) =

(
1− η

g⊤t HP−sgt

∥gt∥2

)(
1 + η

g⊤t HP−sgt

∥gt∥2
− η2

2

∥HP−sgt∥
2

∥gt∥2

)
+O

(
η3
)
.

(C.14)

Multiplying and simplifying to O
(
η2
)

:

A (gt, gt+1) = 1− η2

2

∥HP−sgt∥
2

∥gt∥2
+O

(
η3
)

(C.15)

Thus, the alignment between gradients remains close to 1 if the second-order term is small. To ensure
the gradients stay well-aligned, i.e., A(gt, gt+1) ≥ 1− ϵ for a given tolerance ϵ > 0, we require:

η2

2

∥HP−sgt∥
2

∥gt∥2
≤ ϵ (C.16)

Solving for the maximum permissible learning rate η yields:

η ≤

√
2ϵ ∥gt∥2

∥HP−sgt∥2
(C.17)

We now examine this upper bound in a few special cases of interest:

1. Vanilla GD (P = I) :

ηmax =

√
2ϵ

λ2
max(H)

(C.18)

where λmax(H) is the largest eigenvalue of H .

2. Newton’s Method (P = H, s = 1):

HP−1 = I =⇒ σmax

(
HP−1

)
= 1 =⇒ ηmax =

√
2ϵ (C.19)

D Connection between SOAP and Newton’s method

SOAP [1] enhances Shampoo’s efficiency by performing optimization in a transformed space aligned
with the preconditioner’s principal directions. For each layer’s weight matrix and gradient Gt ∈
Rm×n, SOAP maintains two covariance matrices using exponential moving averages:

Lt = β2Lt−1 + (1− β2)GtG
T
t , (D.1)

Rt = β2Rt−1 + (1− β2)G
T
t Gt . (D.2)

These matrices are then eigendecomposed as Lt = QLΛLQ
T
L and Rt = QRΛRQ

T
R, where ΛL and

ΛR contain the eigenvalues that capture the principal curvature directions of the loss landscape.

At each iteration t, SOAP updates each layer’s weight matrix Wt using its corresponding gradient Gt

as follows:

30

1. Project the weight and gradient into the eigenspace:
W̃t = QT

LWtQR, G̃t = QT
LGtQR.

2. Apply the Adam update in the rotated space:
W̃t+1 = W̃t − η Adam(G̃t).

3. Transform back to the original parameter space:
Wt+1 = QLW̃t+1Q

T
R.

To reduce computational overhead, the preconditioners Lt and Rt are updated with frequency f in
practice. We will analyze the impact of update frequency and momentum parameters through ablation
studies in Section 6.

Before diving into the formal analysis, let us build some intuition for why SOAP is particularly
effective at resolving gradient conflicts. The key insight comes from understanding how second-order
information captures interactions between different loss terms. When gradients conflict, it typically
indicates that improving one objective requires coordinated changes across multiple parameters –
information that is encoded in the Hessian matrix’s off-diagonal elements.

SOAP approximates this second-order information in two complementary ways: (i) Its block-
diagonal structure naturally captures parameter interactions within each network layer; (ii) Its
adaptive preconditioner accumulates information about gradient correlations across training steps.
This allows SOAP to implicitly identify and exploit parameter update directions that simultaneously
improve multiple objectives. Rather than simply following the average gradient, SOAP can utilize
the local loss landscape geometry to find more direct paths to good solutions. The following sections
make this intuition precise through formal analysis of SOAP’s convergence properties and gradient
alignment characteristics.

To establish SOAP’s connection to Newton’s method, we begin by examining how the Hessian
matrix can be approximated in neural networks. We limit our analysis with networks trained with
cross-entropy loss. Here the Gauss-Newton approximation takes the form:

HGN = E
[
∂f

∂W

∂2L
∂f2

∂fT

∂W

]
= E

[
ggT

]
, (D.3)

where L denotes the loss function, f represents network outputs, and G = ∂L
∂W is the gradient matrix

with vectorization g = vec(G). Empirical evidence from [84] supports a key simplifying assumption:
Assumption 2. The Gauss-Newton component provides a good approximation to the true Hessian:
HGN ≈ H .

For our purpose, we begin by noting that there exists a one-to-one correspondence between the
original parameter space and the rotated space that preserves the matrix-vector multiplication.
Lemma 2. Let QL ∈ Rm×m and QR ∈ Rn×n be two orthogonal matrices. For any matrix
A ∈ Rmn×mn and vector v ∈ Rmn, define ṽ := (QL ⊗QR)v and Ã := (QL ⊗QR)A(QT

L ⊗QT
R).

Then there holds
Ãv = (QL ⊗QR)Av = Ãṽ .

The proof follows directly by applying the transformation QL ⊗QR to Av and the definitions of Ã
and ṽ. Building on the above lemma, one can easily transform the preconditioned gradient descent in
the original space to the rotated one and vice versa.

we can now establish the equivalence between the preconditioned gradient descent in the original and
rotated spaces.
Corollary 1. Let Wt, Gt ∈ Rm×n be the weight matrix and gradient matrix for a layer at iteration
t, respectively, with vectorizations wt = vec(Wt) and gt = vec(Gt). The preconditioned gradient
descent update:

wt+1 = wt − ηP−1gt , (D.4)

is equivalent to performing preconditioning in the rotated space:

w̃t+1 = w̃t − ηP̃−1g̃t , (D.5)

where P ∈ Rmn×mn is the preconditioner, and w̃, g̃, and P̃ are the rotated weight, gradient, and
preconditioner defined by the transformations in Lemma 2.

31

Proposition 5. Let Lt = E
[
GtG

T
t

]
and Rt = E

[
GT

t Gt

]
have eigendecompositions Lt =

QLΛLQ
T
L and Rt = QRΛRQ

T
R. Under the assumption of Lemma 4, the equivalent preconditioner

in the rotated space is diagonal, i.e., H̃GN = diag(H̃GN).

Proof. The proof follows from the combination of Lemma 2 and Lemma 4. First, we express HGN
using the Kronecker approximation:

HGN = L
1/2
t ⊗R

1/2
t /Tr

(
E
[
GGT

])
. (D.6)

Then, we derive the rotated preconditioner:

H̃GN = (QL ⊗QR)HGN
(
QT

L ⊗QT
R

)
= (QL ⊗QR) (L

1/2
t ⊗R

1/2
t)

(
QT

L ⊗QT
R

)
/Tr

(
E
[
GGT

])
= (QLL

1/2
t QT

L)⊗ (QRR
1/2
t QT

R)/Tr (E [ΛL])

= Λ
1/2
L ⊗ Λ

1/2
R /Tr (E [ΛL]) .

The final expression shows that H̃GN is diagonal, as it is the Kronecker product of diagonal matrices
scaled by a scalar factor.

Finally, we connect our analysis to Adam’s update rule by adapting the following result from Molybog
et al [85]:

Proposition 6 (Adapt from [85]). Suppose that θ∗ is a local minimum and assume that θ − θ∗ ∼
N (0, σ2I). For Adam update rule denoted by θt+1 = θt − ηAdam(gt), we have

Adam(gt) ≈ diag (H)
−1

gt. (D.7)

Proof. The Adam optimizer follows the update rule:

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)gt ⊙ gt,

m̂t = mt/(1− βt
1),

v̂t = vt/(1− βt
2),

θt = θt− 1− ηm̂t/(
√
v̂t + ϵ).

Taking a first-order Taylor expansion of the gradient around a local minimum θ∗:

gθ ≈ gθ∗ +Hθ∗ (θ − θ∗) ≈ Hθ∗ (θ − θ∗) .

This yields

gθg
⊤
θ ≈ Hθ∗ (θ − θ∗) (θ − θ∗)

⊤
H⊤

θ∗ .

Under our assumption that θ − θ∗ ∼ N (0, σ2I),

E
[
gθg

⊤
θ

]
≈ HθE

[
(θ − θ∗) (θ − θ∗)

⊤
]
H⊤

θ∗ = σ2Hθ∗H⊤
θ∗ .

By construction, vt approximates the diagonal of Eθ∼θτ [gθg
T
θ], where θτ represents the distribution

of model weights over the past O(1/(1− β2)) steps:

vt ≈ diag
(
Eθ∼θτ

[
gθg

T
θ

])
≈ σ2diag(H2

θ∗).

Finally, assuming mt ≈ gt:

Adam (gt) ≈
mt√
vt + ε

≈ mt√
vt
≈ diag(H)−1gt.

32

Theorem 1. Under assumption of Proposition 6, SOAP’s update approximates Newton’s method:

wt+1 = wt − η Soap(gt) ≈ wt − ηH−1gt. (D.8)

Proof. Combining Propositions 5 and 6, we obtain

Adam(G̃t) ≈ diag(H̃)−1g̃t ≈ diag(H̃GN)
−1g̃t = H̃−1

GN g̃t ≈ H̃−1g̃t. (D.9)

By Corollary 1, this is equivalent to the Newton update in the original space:

wt+1 = wt −H−1gt. (D.10)

As a direction implication, the Hessian matrix is approximately diagonal in the rotated space.

The key insight is that SOAP effectively approximates the block-diagonal Gaussian Newton com-
ponent of Hessian in a rotated space, with each block corresponding to a layer-wise Kronecker
factorization. This structure naturally promotes gradient alignment across optimization steps, as we
demonstrated theoretically in Proposition 4 and observed empirically in Figure 5.

Remark 1. While SOAP effectively approximates Newton’s method through its block-diagonal struc-
ture, other optimizers make different compromises in their approximations. Adam can approximate
Newton’s method, but requires the highly restrictive assumption that the Hessian matrix is diago-
nal. Similarly, Shampoo takes a different approach by using the square root of the Gauss-Newton
component as its preconditioner [86]:

Shampoo(gt) ≈ H
−1/2
GN gt ≈ H−1/2gt. (D.11)

These structural differences help explain why SOAP achieves better gradient alignment than both
Adam and Shampoo.

E Connection of Shampoo and Muon to Quasi-second-order Methods

We review the connections between Shampoo, Muon, and quasi-second-order optimization methods,
building upon results from [87] and [86]. This section aims to provide a self-contained exposition of
these relationships.

Adagrad. Adagrad is a preconditioned online learning algorithm that leverages the accumulated
covariance of gradients as a preconditioner. Let θt ∈ Rp denote the parameters at time t and gt ∈ Rp

denote the corresponding gradient. Adagrad maintains a preconditioner HAda =
∑T

t=1 gtg
⊤
t . The

parameter update with learning rate η is given by:

θT+1 = θT − ηH
−1/2
Ada gT (E.1)

Shampoo. Shampoo tracks two statistical matrices throughout training, Lt ∈ Rm×m and Rt ∈
Rn×n, defined as:

Lt = ϵIm +

t∑
s=1

GsG
⊤
s ; Rt = ϵIn +

t∑
s=1

G⊤
s Gs (E.2)

where Gs ∈ Rm×n is the gradient matrix at step s, and ϵ > 0 is a small constant for numerical
stability.

The full matrix Adagrad preconditioner Ht can be approximated as (Lt ⊗Rt)
1/2. This approximation

transforms the Adagrad update rule wt+1 = wt − ηH
−1/2
t gt into the Shampoo update rule for

parameter matrix W :

Wt+1 = Wt − ηL
−1/4
t GtR

−1/4
t (E.3)

The theoretical foundation for this approximation is provided by the following lemma:

33

Lemma 3 ([87], Lemma 1). Let G1, . . . , Gt ∈ Rm×n be matrices of rank at most r. Let gs =

vec (Gs) and define Ĥt = ϵImn +
∑t

s=1 gsg
⊤
s . Define Lt, Rt as above: Lt = ϵIm +

∑t
s=1 GsG

⊤
s ,

Rt = ϵIn +
∑t

s=1 G
⊤
s Gs. Then for any p, q > 0 such that 1/p + 1/q = 1, we have Ĥt ≤

rL
1/p
t ⊗R

1/q
t .

It follows from this lemma that for any p, q > 0 with 1/p+1/q = 1, the full Adagrad preconditioned
gradient H−1/2

Ada gt can be approximated by (L
1/p
t ⊗ R

1/q
t)−1/2gt = vec(L−1/2p

t GtR
−1/2q
t). The

case where p = q = 2 yields the standard Shampoo update.

Moreover, [86] explored the Hessian approximation perspective of Shampoo, demonstrating that the
preconditioner in Shampoo is a Kronecker product approximation of the Gauss-Newton component
of the layerwise Hessian (see Remark 1).

Muon. The Muon optimizer [62] was recently proposed for optimizing neural network weights
representable as matrices. At iteration t, given current weight Wt−1, momentum µ, learning rate ηt,
and objective Lt, the update rule of the Muon optimizer is:

Mt = µMt−1 +∇Lt (Wt−1) , (E.4)
Ot = Newton-Schulz (Mt) , (E.5)
Wt = Wt−1 − ηtOt. (E.6)

Here, Mt is the momentum of gradient at iteration t, initialized as a zero matrix when t = 0. The
Newton-Schulz iteration process is adopted to approximately compute (MtM

T
t)

−1/2Mt.

When preconditioner accumulation is removed, we can observe that the update simplifies to [62]:

Wt+1 = Wt − η(GtG
⊤
t)

−1/4Gt(G
⊤
t Gt)

−1/4 (E.7)

= Wt − η(US2U⊤)−1/4(USV ⊤)(V S2V ⊤)−1/4 (E.8)

= Wt − η(US−1/2U⊤)(USV ⊤)(V S−1/2V ⊤) (E.9)

= Wt − ηUS−1/2SS−1/2V ⊤ (E.10)

= Wt − ηUV ⊤ (E.11)

From this derivation, Muon can be viewed as approximating the use of H−1/2
Ada as a preconditioner,

with additional orthogonalization benefits.

F Additional Lemma and Proof

Lemma 4 ([86], Corollary 2). Under the assumption that the reshaping of the Hessian tensor HGN

is rank-1,
ĤGN =

(
E
[
GG⊤]⊗ E

[
G⊤G

])
/Tr

(
E
[
GG⊤]) .

F.1 Proof of Proposition 1

Proof. When n = 2, we note

A(v1, v2) = 2

∥∥∥∥∥
v1

∥v1∥ + v2
∥v2∥

2

∥∥∥∥∥
2

− 1

=
1

2

(∥∥∥∥ v1
∥v1∥

∥∥∥∥2 + 2
v1 · v2
∥v1∥∥v2∥

+

∣∣∣∣ v2
∥v2∥

∣∣∣∣2
)
− 1

=
1

2
(1 + 2 cos(v1, v2) + 1)− 1 = cos(v1, v2) .

F.2 Proof of Proposition 2

Proof. (i) Single-step drop. By L-smoothness (descent lemma),

L(θt+1) ≤ L(θt) + ⟨gt, θt+1 − θt⟩+ L
2 ∥θt+1 − θt∥2.

34

With θt+1 − θt = −ηht,

∆t = L(θt)− L(θt+1) ≥ η⟨gt, ht⟩ − Lη2

2 ∥ht∥2.

Since ht = Ptgt and P−1
t ⪰ 1

M I , we have

⟨gt, ht⟩ = h⊤
t P

−1
t ht ≥ 1

M ∥ht∥2,

hence
∆t ≥

(
η
M −

Lη2

2

)
∥ht∥2.

Under the equal-norm assumption ∥hi
t∥ = λ, let ui

t := hi
t/λ. By the chosen definition of Aintra

t ,∥∥∥ n∑
i=1

ui
t

∥∥∥2 = n2

2

(
Aintra

t + 1
)
.

Since ht =
∑

i h
i
t = λ

∑
i u

i
t and

∑
i ∥hi

t∥2 = nλ2, we obtain the displayed equal-norm formulas
and the refined bound.

(ii) Two-step cumulative drop. Apply L-smoothness with θ = θt−1, ϕ = θt+1:

L(θt+1) ≤ L(θt−1) + ⟨gt−1, θt+1 − θt−1⟩+ L
2 ∥θt+1 − θt−1∥2.

Since θt+1 − θt−1 = −η(ht−1 + ht), we get

∆t−1 +∆t ≥ η⟨gt−1, ht−1 + ht⟩ − Lη2

2 ∥ht−1 + ht∥2.

For the linear term, using P−1
t−1 ⪰ 1

M I ,

⟨gt−1, ht−1⟩ = h⊤
t−1P

−1
t−1ht−1 ≥ 1

M ∥ht−1∥2,

and
⟨gt−1, ht⟩ = h⊤

t−1P
−1
t−1ht ≥ 1

M ⟨ht−1, ht⟩.

Let a := ∥ht−1∥, b := ∥ht∥, and Ainter
t := ⟨ht−1,ht⟩

ab . Then

η⟨gt−1, ht−1 + ht⟩ ≥ η
M

(
a2 + abAinter

t

)
.

For the quadratic term, ∥ht−1 + ht∥2 = a2 + 2abAinter
t + b2. Putting the bounds together,

∆t−1 +∆t ≥ η
M

(
a2 + abAinter

t

)
− Lη2

2

(
a2 + 2abAinter

t + b2
)
,

which rearranges to the stated inequality. The coefficient of Ainter
t equals η

M (1 − LηM) ≥ 0 for
η ≤ 1/(LM), hence monotonicity.

G Experimental Details

G.1 Architectures

This section outlines the network architectures employed in our work, along with the enhancements
introduced to improve their performance.

Modified MLP. The modified MLP architecture is proposed by [21], which has been extensively
used in the literature [35, 73, 88, 54, 89, 90] due to its improved capability in learning complex PDE
solutions. The network processes input coordinates through two parallel encoders:

U = σ (W1x+ b1) , V = σ (W2x+ b2) . (G.1)

Then, for l = 1, 2, . . . , L, the forward pass is defined as:

f (l)(x) = W(l) · g(l−1)(x) + b(l), (G.2)

g(l)(x) = σ
(
f
(l)
θ (x)

)
⊙U+

(
1− σ

(
f
(l)
θ (x)

))
⊙V (G.3)

35

The final network output is given by

fθ(x) = W(L+1) · g(L)(x) + b(L+1). (G.4)

where σ is a nonlinear activation function, ⊙ denotes element-wise multiplication, and the trainable
parameters are:

θ =

{
W1,b1,W2,b2,

(
W(l),b(l)

)L+1

l=1

}
. (G.5)

This architecture extends the standard MLP by incorporating dual input encoders and merging
their features through point-wise multiplication at each hidden layer. While computationally more
demanding, this modification demonstrates superior performance in minimizing PDE residuals
compared to standard MLPs.

PirateNet. PirateNet is proposed by [27], which aims to enable stable and efficient training of deep
PINN models. The architecture first transforms input coordinates x into a high-dimensional feature
space using random Fourier features [91]:

Φ(x) =

[
cos(Bx)
sin(Bx)

]
,

where B ∈ Rm×d has entries sampled i.i.d. fromN (0, s2) with user-specified s > 0. This embedding
mitigates spectral bias in PINNs by improving the eigenfunction frequency of the Neural Tangent
Kernel, enabling better learning of high-frequency components and multiscale features [30].

The embedded coordinates are processed through two dense layers that act as gates:

U = σ(W1Φ(x) + b1), V = σ(W2Φ(x) + b2),

where σ is a point-wise activation function. This gating mechanism is essentially the same as in
modified MLP.

Let x(1) = Φ(x) and x(l) be the input to the l-th block (1 ≤ l ≤ L). Each block performs:

f (l) = σ
(
W

(l)
1 x(l) + b

(l)
1

)
, (G.6)

z
(l)
1 = f (l) ⊙U+ (1− f (l))⊙V , (G.7)

g(l) = σ
(
W

(l)
2 z

(l)
1 + b

(l)
2

)
, (G.8)

z
(l)
2 = g(l) ⊙U+ (1− g(l))⊙V , (G.9)

h(l) = σ
(
W

(l)
3 z

(l)
2 + b

(l)
3

)
, (G.10)

x(l+1) = α(l)h(l) + (1− α(l))x(l) , (G.11)

Each block comprises three dense layers with dual gating operations and an adaptive residual
connection. The trainable α(l) parameters control block nonlinearity: α(l) = 0 yields an identity
mapping, while α(l) = 1 produces fully nonlinear transformation.

The final output of a PirateNet of L residual blocks is given by

uθ = W(L+1)x(L) . (G.12)

Importantly, we initialize α(l) = 0, making the initial output a linear combination of first-layer
embeddings. This initialization strategy mitigates training difficulties in deep networks by starting
with effectively shallow architecture and gradually increasing depth through learned α values. Addi-
tionally, the linear structure at initialization enables direct integration of prior solution data through
least squares fitting:

min
W
∥WΦ−Y∥22 , (G.13)

where Y represents available measurements. This approach provides an optimal initial guess based
on various data sources, including experimental measurements, boundary conditions, or linearized
PDE solutions.

36

Exact imposition of periodic boundary conditions. We adopt the approach of [70] to enforce
periodic boundary conditions as hard constraints, improving both training convergence and accuracy.
Consider a one-dimensional periodic function with period P satisfying:

u(l)(a) = u(l)(a+ P), l = 0, 1, 2, (G.14)

We construct a Fourier feature embedding:

v(x) = (cos(ωx), sin(ωx)) , (G.15)

where ω = 2π
L . Any network uθ(v(x)) using this embedding inherently satisfies the periodic

boundary condition.

The same idea can be directly extended to higher-dimensional domains. For two-dimensional domains,
the periodicity constraints are:

∂l

∂xl
u (a, y) =

∂l

∂xl
u (a+ Px, y) , y ∈ [b, b+ Py] , (G.16)

∂l

∂yl
u (x, a) =

∂l

∂yl
u (x, b+ Py) , x ∈ [a, a+ Px] , (G.17)

for l = 0, 1, 2, . . . , where Px and Py are the periods in the x and y directions, respectively. Similarly,
these constraints are encoded using the embedding:

v(x, y) = [cos (ωxx) , sin (ωxx) , cos (ωyy) , sin (ωyy)] (G.18)

with wx = 2π
Px

, wy = 2π
Py

.

For time-dependent problems, we concatenate time coordinates t with spatial embeddings:
uθ([t,v(x)]) or uθ([t,v(x, y)]).

Random weight factorization. We implement random weight factorization (RWF) [69] to enhance
PINN performance. RWF decomposes each neuron’s weight vector as:

w(k,l) = s(k,l) · v(k,l), (G.19)

where k = 1, . . . , dl, l = 1, . . . , L + 1, w(k,l) ∈ Rdl−1 is the k-th row of weight matrix W(l),
s(k,l) ∈ R is a trainable scale factor, and v(k,l) ∈ Rdi−1 . This factorization can be expressed in
matrix form as:

W(l) = diag
(
s(l)
)
·V(l), l = 1, 2, . . . , L+ 1 (G.20)

with s(l) ∈ Rdt .

Implementation involves: (1) initializing MLP parameters using the Glorot scheme [92], (2)
initializing scale vectors exp(s) where s ∼ N (µ, σI), (3) factorizing each weight matrix as
W = diag(exp(s)) · V, and (4) optimizing parameters s,V directly. We employ exponential
parameterization following Weight Normalization [93] to ensure non-zero scale factors across varied
magnitudes. We recommend µ = 0.5 or 1 and σ = 0.1, as these values consistently improve
convergence and accuracy while avoiding the instability of larger values or the diminished effect of
smaller ones.

G.2 Training pipeline

This section details the methodologies and strategies used to train PINN models.

Causal training. Recent work by [73] shows that PINNs may violate temporal causality when
solving time-dependent PDEs, as they tend to minimize residuals at later times before correctly
solving earlier times. To address this, we introduce a causality-aware training approach. We partition
the temporal domain into M equal segments and denote the PDE residual loss within the i-th segment
as Li

r. The modified residual loss becomes:

Lr(θ) =
1

M

M∑
i=1

wiLi
r(θ). (G.21)

37

We compute the temporal weights as

wi = exp

(
−ϵ

i−1∑
k=1

Lk
r (θ)

)
, for i = 2, 3, . . . ,M. (G.22)

Then,

Lr(θ) =
1

M

M∑
i=1

exp

(
−ϵ

i−1∑
k=1

Lk
r (θ)

)
Li
r(θ). (G.23)

The weight wi decreases exponentially with the cumulative residual loss from previous time steps.
This ensures that Li

r(θ) is minimized only after previous residuals {Lk
r (θ)}i−1

k=1 become sufficiently
small, enforcing temporal causality in the optimization process.

The causality parameter ϵ requires careful tuning: small values may insufficiently enforce causality,
while large values can create optimization difficulties by requiring extremely small early-time
residuals before later times are considered. We recommend selecting a moderate ϵ that allows all
temporal weights to converge to 1 by training completion, reducing it if necessary.

Learning rate annealing. Another key challenge in training PINNs is balancing loss components,
as they often exhibit multi-scale behaviors, resulting in unbalanced gradients and training failures.

We implement a self-adaptive learning rate annealing algorithm [21] that automatically balances the
weighted loss:

L(θ) = λicLic(θ) + λbcLbc(θ) + λrLr(θ), (G.24)

The global weights are dynamically computed to equalize the gradient norms of each loss component:

λ̂ic =
∥∇θLic(θ)∥+ ∥∇θLbc(θ)∥+ ∥∇θLr(θ)∥

∥∇θLic(θ)∥
, (G.25)

λ̂bc =
∥∇θLic(θ)∥+ ∥∇θLbc(θ)∥+ ∥∇θLr(θ)∥

∥∇θLbc(θ)∥
, (G.26)

λ̂r =
∥∇θLic(θ)∥+ ∥∇θLbc(θ)∥+ ∥∇θLr(θ)∥

∥∇θLr(θ)∥
, (G.27)

where ∥ · ∥ denotes the L2 norm. Then we obtain

∥λ̂ic∇θLic(θ)∥ = ∥λ̂bc∇θLic(θ)∥ = ∥λ̂r∇θLic(θ)∥ = ∥∇θLic(θ)∥+ ∥∇θLbc(θ)∥+ ∥∇θLr(θ)∥.
(G.28)

This formulation equalizes the gradient norms of weighted losses, preventing bias toward any
particular term during training. The weights are updated as running averages of their previous values,
stabilizing stochastic gradient descent. These updates occur at user-specified intervals (typically
every 100-1000 iterations), incurring minimal computational overhead.

Curriculum training and time-marching. Despite the improvements described above, PINNs
still face challenges in complex domains requiring high accuracy, such as chaotic systems like high
Reynolds number Navier-Stokes equations where error accumulation can cause trajectory divergence.
We address these challenges using curriculum training [42], which decomposes the optimization into
more manageable sub-tasks.

An effective approach we employ is the curriculum training strategy introduced by [42]. The core idea
involves decomposing the entire optimization task for PINNs into a sequence of more manageable
sub-tasks. In this work, we mainly focus on integrating this strategy into our training pipeline for
solving time-dependent PDEs and singular perturbation problems.

For time-dependent PDEs, we implement temporal domain decomposition: the time domain is
divided into smaller intervals. After the first window, initial conditions for subsequent windows are
set using predictions from the final step of the previous window. This approach reduces the difficulty
of the optimization task of learning full system dynamics, though at an increased computational cost
due to per-window model retraining.

38

Table 5: Parameter settings and numerical configurations for generating the reference solution across
PDE benchmarks.

PDE Parameter Package Resolution

Wave c = 4 N/A 200× 128

Burgers ν = 0.01 π Chebfun 200× 512

AC ϵ = 10−4, a = 5 Chebfun 200× 512

KdV η = 1, µ = 0.022 Chebfun 200× 512

KS α = 100/16, β = 100/162, γ = 100/164 Chebfun 250× 512

GS ϵ1 = 0.2, ϵ2 = 0.1, b1 = 40, b2 = 100, c1 = c2 = 1, 000 Chebfun 100× 200× 200

GL ϵ = 0.004, µ = 10, γ = 10 + 15i Chebfun 100× 200× 200

LDC Re=5×103 IncompressibleNavierStokes 128× 128

KF Re=104 IncompressibleNavierStokes 50× 512× 512

RT Ra=106,Pr = 0.71 IncompressibleNavierStokes 40× 100× 200

While we also partition the temporal domain to compute causal weights within each window, this
differs from the time-marching strategy. Both techniques promote learning solutions sequentially
along the time axis to respect causality, but causal weighting complements rather than replaces
time-marching, as causality violations may still occur within individual time windows.

G.3 Data Generation

We generate our reference dataset using two numerical packages: Chebfun [94] in MATLAB and
IncompressibleNavierStokes [95] in Julia. The data generation process employs a time step of
dt = 10−4, followed by temporal downsampling to construct the final dataset. Table 5 summarizes
the PDE parameters and dataset details.

G.4 Hyper-parameters

Unless otherwise specified, we adopt the following hyperparameter configuration for our experiments.

Architecture. We employ PirateNet [27] as our backbone architecture, configured with three
residual blocks (9 layers in total), a hidden dimension of 256, and Tanh activation functions. All
weight matrices are initialized using random weight factorization (RWF) [69] with parameters
µ = 1.0 and σ = 0.1. When applicable, we strictly enforce exact periodic boundary conditions
following [70].

Training Protocol. We train our models using mini-batch gradient descent with 8,192 randomly
sampled collocation points per iteration. The learning rate schedule comprises an initial linear
warm-up phase over the first 5,000 steps (from 0 to 10−3), followed by exponential decay with a
factor of 0.9. To enhance training stability and convergence, we implement learning rate annealing for
loss balancing [21, 72], updating the loss weights every 1,000 iterations with a moving average. For
time-dependent PDEs, we apply causal training [73, 72] with a causal tolerance of 1.0. Additionally,
we leverage time-marching and curriculum learning strategies [42] for particularly challenging
benchmarks.

Optimizers. We evaluate several optimizers with the following configurations:

• Adam: We use the Adam optimizer [71] with standard hyperparameters β1 = 0.9 and
β2 = 0.999, which has become the de facto standard for training PINNs due to its robust
performance and computational efficiency.

• SOAP [1]: Based on our ablation studies presented in Figure 4, we select β1 = 0.99 and
β2 = 0.999 for SOAP, which yield optimal performance across our experimental tasks.

• Muon [62]: For Muon, we adopt momentum hyperparameters matching those of Adam:
β1 = 0.9 and β2 = 0.999. Notably, we employ more accurate Newton-Schulz coefficients
(2,−1.5, 0.5) and implement 10 Newton-Schulz matrix iterations to ensure convergence of
the orthogonalization procedure.

39

Table 6: Hyperparameter configurations for benchmark PDEs. Hyperparameter settings used to
reproduce our experimental results. The backbone architecture is PirateNet, where Depth indicates
the number of adaptive residual blocks, and Width denotes the number of neurons per hidden layer.
RFF and RWF represent Random Fourier Features and Random Weight Factorization, respectively.

Parameter Wave Burgers AC KdV KS GS GL LDC KF RT

Architecture

Depth 3 3 3 3 3 3 3 4 3 3
Width 256 256 256 256 256 256 256 256 384 384
Activation Tanh Tanh Tanh Tanh Tanh Swish Swish Tanh Tanh Tanh
RFF scale 10.0 2.0 2.0 2.0 2.0 2.0 2.0 10.0 2.0 2.0
RWF µ=1.0, σ=0.1

Learning rate schedule

Initial learning rate 10−3

Decay rate 0.9
Decay steps 2× 103 2× 103 5× 103 2× 103 2× 103 2× 103 2× 103 2× 103 2× 103 2× 103

Warmup steps 5× 103

Training

Iters (per time window) 105 105 3×105 105 105 105 105 2×105 2×104 105

Batch size 8,192
Time windows 1 1 1 1 10 10 5 N / A 25 4

Weighting Scheme Grad Norm

Causal weighting

Tolerance 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N / A 1.0 1.0
Chunks 16 16 16 16 16 16 16 N / A 16 16

• Kron [63]: For Kronecker-factored optimization, we use the same momentum hyperparam-
eters as Adam: β1 = 0.9 and β2 = 0.999.

The complete set of hyperparameters is detailed in Table 6, largely following the configurations
established in [72] and [27]. The decay step is tailored for each benchmark to ensure the learning
rate reaches a sufficiently small value (approximately 10−7) by the end of training. The number of
time windows is determined empirically based on problem complexity, with fine-tuning guided by
the loss convergence behavior observed during preliminary experiments.

G.5 Computational Cost

Our implementation is based on JAX-PI [72] and we conducted all experiments on a single NVIDIA
A6000 GPU, with detailed runtime benchmarks reported in Table 7.

G.6 Benchmarks

Wave equation. We consider a one-dimensional wave equation in the domain Ω = [0, 1]× [0, 1]
taking the form

utt(x, t)− 4uxx(x, t) = 0, (x, t) ∈ (0, 1)× (0, 1),

u(0, t) = u(1, t) = 0, t ∈ [0, 1],

u(x, 0) = sin(πx) +
1

2
sin(4πx), x ∈ [0, 1],

ut(x, 0) = 0, x ∈ [0, 1].

where u represents the wave amplitude, and c is the wave propagation speed, determined by the
medium’s physical properties.

By d’Alembert’s formula, the solution u(x, t) is given by

u(x, t) = sin(πx) cos(2πt) +
1

2
sin(4πx) cos(8πt).

40

Table 7: Computational runtime (in hours) comparison of different methods across various PDEs.
All experiments are performed on an Nvidia A6000 GPU, reporting the total training time needed to
achieve convergence using PINNs with Adam and SOAP, respectively

Benchmark Adam SOAP

Wave 2.80 4.35

Burgers 1.18 4.05

Allen-Cahn 1.48 5.83

Korteweg–De Vries 1.61 3.90

Kuramoto-Sivashinsky 19.51 34.16

Grey-Scott 19.52 40.01

Ginzburg-Landau 15.98 23.75

Lid-driven cavity (Re = 5× 103) 5.67 8.25

Kolmogorov flow (Re = 104) 9.56 11.00

Rayleigh-Taylor instability (Pr = 0.71,Ra = 106) 20.23 21.73

Figure 6: Wave equation. Top: Comparison between the reference solution and the model predictions.
Bottom: Training loss and test error trajectories for the Adam and SOAP optimizers.

Burgers equation. The 1D Burgers equation is defined as:

ut + uux = νuxx,

where u represents the velocity field, and ν is the kinematic viscosity coefficient controlling the
diffusion strength. Here we set (x, t) ∈ Ω = [−1, 1]× [0, 1], with initial and boundary conditions:

u(x, 0) = − sin(πx),

u(−1, t) = u(1, t) = 0,

and viscosity parameter ν = 0.01/π.

Allen-Cahn equation. We investigate the one-dimensional Allen-Cahn equation with periodic
boundary conditions:

ut − 0.0001uxx + 5u3 − 5u = 0 , t ∈ [0, 1] , x ∈ [−1, 1] ,
u(0, x) = x2 cos(πx) ,

u(t,−1) = u(t, 1) , ux(t,−1) = ux(t, 1) .

41

Figure 7: Burgers’ equation. Top: Comparison between the reference solution and model predictions.
Bottom: Training loss and test error trajectories for the Adam and SOAP optimizers.

Figure 8: Allen-Cahn equation. Top: Comparison between the reference solution and model
predictions. Bottom: Training loss and test error trajectories for the Adam and SOAP optimizers.

where u represents the order parameter (e.g., concentration difference between two phases), ϵ controls
the interfacial width, a is the reaction rate coefficient, and the term (u − u3) drives the phase
separation.

It is worth noting that this benchmark has been extensively used to validate the effectiveness of
PINNs methodologies. In Table 8, we compare the test errors across different PINNs advancements,
demonstrating that our approach achieves state-of-the-art performance with an improvement of up to
one order of magnitude in accuracy.

Korteweg–De Vries equation. The one-dimensional KdV equation is expressed as follows:

ut + ηuux + µ2uxxx = 0 , t ∈ (0, 1), x ∈ (−1, 1) ,
u(x, 0) = cos(πx) ,

u(t,−1) = u(t, 1) ,

where u represents the wave amplitude or water surface elevation, and η governs the strength of the
nonlinearity, while µ controls the dispersion level. Under the KdV dynamics, this initial wave evolves
into a series of solitary-type waves.

42

Table 8: Allen-Cahn equation: Relative L2 test errors obtained by different PINNs variants.
Method Relative L2 error
Original formulation of Raissi et al. [60] 4.98× 10−1

Adaptive time sampling [41] 2.33× 10−2

Self-attention [96] 2.10× 10−2

Time marching [97] 1.68× 10−2

Causal training [73] 1.39× 10−4

Dirac delta function causal training [98] 6.29× 10−5

JAX-PI [72] 5.37× 10−5

RBA-PINNs [88] 4.55× 10−5

PirateNet [27] 2.24× 10−5

BRDR-PINNs [54] 1.45× 10−5

Ours 3.48× 10−6

Figure 9: Korteweg–De Vries equation. Top: Comparison between the reference solution and model
predictions. Bottom: Training loss and test error trajectories for the Adam and SOAP optimizers.

For our study, we adopt the classical parameters of the KdV equation, setting η = 1 and µ = 0.022
[99].

Kuramoto-Sivashinsky equation. The one-dimensional equation takes the form:

ut + αuux + βuxx + γuxxxx = 0, t ∈ [0, T], x ∈ [0, 2π],

u(0, x) = u0(x),

where u represents the height of a thin film or flame front. This equation arises in various physical
contexts, including flame front propagation, thin film flows, and plasma instabilities.

In this example, we take T = 0.8, α = 100/16, β = 100/162, γ = 100/164 and u0(x) =
cos(x)(1 + sin(x)).

Grey-Scott equation. The system is described by the following coupled PDEs:

ut = ϵ1∆u+ b1(1− u)− c1uv
2, t ∈ (0, 2) , (x, y) ∈ (−1, 1)2 ,

vt = ϵ2∆v − b2v + c2uv
2 , t ∈ (0, 2) , (x, y) ∈ (−1, 1)2 ,

43

Figure 10: Kuramoto-Sivashinsky equation. Training loss and test error trajectories for the Adam and
SOAP optimizers.

Figure 11: Grey-Scott equation. Comparison between reference solution and model predictions.

With periodic boundary conditions, the initial conditions are:

u0(x, y) = 1− exp(−10((x+ 0.05)2 + (y + 0.02)2)) ,

v0(x, y) = 1− exp(−10((x− 0.05)2 + (y − 0.02)2)) .

where u and v represent activator and inhibitor concentrations respectively, ε1 and ε2 are diffusion
coefficients, and (b1, b2, c1, c2) control reaction kinetics. This system generates diverse spatial
patterns including spots and stripes.

We set parameters ϵ1 = 0.2, ϵ2 = 0.1, b1 = 40, b2 = 100, and c1 = c2 = 1, 000, which generates
characteristic pattern formations. Due to the similar behavior of u and v, we report only the relative
L2 error of u in Table 3.

44

10 6

10 4

10 2

100 Rel. L2 Error u

Adam
SOAP

0.0 0.2 0.4 0.6 0.8 1.0
Step ×106

10 5

10 3

10 1

101 Rel. L2 Error v

Figure 12: Grey-Scott equation. Test error trajectories for the Adam and SOAP optimizers.

10 13

10 9

10 5

10 1 Inital Condition Loss u
Adam
SOAP

10 13

10 9

10 5

10 1 Inital Condition Loss v

10 8

10 3

102 PDE Loss u

0.0 0.2 0.4 0.6 0.8 1.0
Step ×106

10 8

10 3

102 PDE Loss v

Figure 13: Grey-Scott equation. Training loss and test error trajectories for the Adam and SOAP
optimizers.

Ginzburg-Landau equation. The complex Ginzburg-Landau equation in 2D takes the form

∂A

∂t
= ϵ∆A+ µA− γA|A|2 , t ∈ (0, 1) , (x, y) ∈ (−1, 1)2 ,

with periodic boundary conditions, an initial condition

A0(x, y) = (10y + 10ix) exp
(
−0.01(2500x2 + 2500y2)

)
,

where A is the complex amplitude representing the envelope of oscillations, ϵ represents the diffusion
coefficient, µ is the linear growth rate, and γ controls the nonlinear saturation. For this example, we
set ϵ = 0.004, µ = 10 and γ = 10 + 15i.

By denoting A = u + iv, we can decompose the equation into real and imaginary components,
resulting in the following system of PDEs,

∂u

∂t
= ϵ∆u+ µ(u− (u− 1.5v)(u2 + v2)) ,

∂v

∂t
= ϵ∆v + µ(v − (v + 1.5u)(u2 + v2)) .

Given the coupled dynamics of u and v, we present the relative L2 error of u in Table 3.

45

Figure 14: Ginzburg-Landau equation. Comparison between the reference solution and model
predictions.

10 5

10 3

10 1

101 Rel. L2 Error u

Adam
SOAP

0 1 2 3 4 5
Step ×105

10 5

10 3

10 1

101 Rel. L2 Error v

Figure 15: Ginzburg-Landau equation. Test error trajectories for the Adam and SOAP optimizers.

10 12

10 8

10 4

100 Inital Condition Loss u
Adam
SOAP

10 12

10 8

10 4

100 Inital Condition Loss v

10 9

10 6

10 3

100 PDE Loss u

0 1 2 3 4 5
Step ×105

10 9

10 6

10 3

100 PDE Loss v

Figure 16: Ginzburg-Landau equation. Training loss trajectories for the Adam and SOAP optimizers.

46

Figure 17: Lid-driven Cavity. Training loss and test error trajectories for the Adam and SOAP
optimizers.

Lid-driven Cavity. We study the incompressible Navier-Stokes equations in non-dimensional form
for a two-dimensional domain:

u · ∇u+∇p− 1

Re
∆u = 0 , (x, y) ∈ (0, 1)2 ,

∇ · u = 0 , (x, y) ∈ (0, 1)2 ,

where u = (u, v) represents the steady-state velocity field, p is the pressure field, and Re is the
Reynolds number which characterizes the ratio of inertial to viscous forces. This system models the
equilibrium state of the flow, which is driven by the top boundary moving at a constant velocity while
the other walls are stationary, leading to the formation of characteristic vortical structures whose
complexity increases with the Reynolds number.

To ensure continuity at the corner boundaries, we implement a smoothed top-lid boundary condition:

u(x, y) = 1− cosh (C0(x− 0.5))

cosh (0.5C0)
, v(x, y) = 0 , (G.29)

where x ∈ [0, 1], y = 1, C0 = 50. For the other three walls, we enforce a no-slip boundary condition.
Our goal is to obtain the velocity and pressure field corresponding to a Reynolds number of 5, 000.
The accuracy of our method is evaluated using the velocity magnitude

√
u2 + v2, with results

presented in Table 3.

Kolmogorov flow. We study the two-dimensional Kolmogorov flow governed by the incompressible
Navier-Stokes equations:

ut + u · ∇u = −∇p+ 1

Re
∆u+ f ,

∇ · u = 0,

on the unit square domain (x, y) ∈ [0, 1]2.

Here u = (u, v) represents the time-varying velocity field, and f denotes the external forcing term
that maintains the flow structure. The system evolves from a random initial state and develops

47

Figure 18: Kolmogorov flow. Comparison between reference solution and model predictions.

10 4

101 Rel. L2 Error u

Adam
SOAP

10 4

101 Rel. L2 Error v

0 1 2 3 4 5
Step ×105

10 3

10 1

101 Rel. L2 Error w

Figure 19: Kolmogorov flow. Test error trajectories for the Adam and SOAP optimizers.

characteristic flow patterns, where energy transfers between different spatial scales through nonlinear
interactions and viscous dissipation.

For our study, the system is driven by a sinusoidal forcing f = (2 sin(4πy), 0). The numerical
experiment initializes with a random initial condition and evolves until T = 2. The model’s
performance is quantified by the relative L2 error of vorticity (Table 3).

Rayleigh-Taylor instability. We investigate a coupled flow-temperature system that models
buoyancy-driven instability in a rectangular domain (x, y) ∈ [0, 1]× [0, 2]:

ut + u · ∇u = −∇p+
√

Pr

Ra
∆u+ Tey, (G.30)

∇ · u = 0, (G.31)

Tt +∇ · (uT) =
1√

PrRa
Ttt (G.32)

where T is the temperature field (acting as a density proxy through the Boussinesq approximation),
Pr is the Prandtl number (ratio of momentum to thermal diffusivity), and Ra is the Rayleigh number
(measuring buoyancy-driven flow strength). This system captures the characteristic mushroom-shaped
plumes that develop as the heavier fluid penetrates into the lighter fluid below.

48

10 9

101 Inital Condition Loss u
Adam
SOAP

10 9

101 Inital Condition Loss v

10 5

10 1

103 PDE Momentum Loss u

10 5

10 1

103 PDE Momentum Loss v

0 1 2 3 4 5
Step ×105

10 5

102 PDE Continuity Loss

Figure 20: Kolmogorov flow. Training loss trajectories for the Adam and SOAP optimizers.

We set the Prandtl number Pr = 0.71 and Rayleigh number Ra = 106. The boundary conditions are
periodic in the horizontal direction for both u and T , with Dirichlet conditions u = T = 0 imposed
on the top and bottom boundaries. The accuracy of our method is evaluated using the temperature
field, with results presented in Table 3.

49

Figure 21: Rayleigh-Taylor instability. Comparison between reference solution and model predictions.

10 3

100

103 Rel. L2 Error u

Adam
SOAP

10 3

10 1

101

103 Rel. L2 Error v

0.0 0.5 1.0 1.5 2.0
Step ×105

10 4

10 2

100

102 Rel. L2 Error T

Figure 22: Rayleigh-Taylor instability. Test error trajectories for the Adam and SOAP optimizers.

50

10 11

10 7

10 3

101 Initial Condition Loss u
Adam
SOAP

10 11

10 7

10 3

101 Initial Condition Loss v

10 11

10 7

10 3

101 Boundary Condition Loss u

10 11

10 7

10 3

101 Boundary Condition Loss v

10 8

10 5

10 2

101 PDE Momentum Loss u

10 9

10 4

101 PDE Momentum Loss v

0.0 0.5 1.0 1.5 2.0
Step ×105

10 8

10 5

10 2

101 PDE Continuity Loss

0.0 0.5 1.0 1.5 2.0
Step ×105

10 9

10 4

101 PDE Energy Loss

Figure 23: Rayleigh-Taylor instability. Training loss trajectories for the Adam and SOAP optimizers.

51

	Introduction
	Overview of PINNs
	Gradient Alignment in PINNs
	Intra-step Gradient Alignment of PINNs at Initialization
	Gradient Alignment in Quasi Second-Order Optimization
	Experiments
	Conclusion
	Nomenclature
	Analysis of Intra-step Gradient Alignment
	Inter-step gradient alignment of preconditioned gradient descent
	Connection between SOAP and Newton's method
	Connection of Shampoo and Muon to Quasi-second-order Methods
	Additional Lemma and Proof
	Proof of prop1
	Proof of propalignment

	Experimental Details
	Architectures
	Training pipeline
	Data Generation
	Hyper-parameters
	Computational Cost
	Benchmarks

