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Abstract

Recent advancements in deep neural networks
have significantly enhanced the performance of se-
mantic segmentation. However, class imbalance
and instance imbalance remain persistent chal-
lenges, where smaller instances and thin bound-
aries are often overshadowed by larger struc-
tures. To address the multiscale nature of seg-
mented objects, various models have incorpo-
rated mechanisms such as spatial attention and
feature pyramid networks. Despite these ad-
vancements, most loss functions are still pri-
marily pixel-wise, while regional and boundary-
focused loss functions often incur high compu-
tational costs or are restricted to small-scale re-
gions. To address this limitation, we propose
the complex wavelet mutual information (CWMI)
loss, a novel loss function that leverages mutual
information from subband images decomposed
by a complex steerable pyramid. The complex
steerable pyramid captures features across multi-
ple orientations and preserves structural similarity
across scales. Meanwhile, mutual information is
well-suited to capturing high-dimensional direc-
tional features and offers greater noise robustness.
Extensive experiments on diverse segmentation
datasets demonstrate that CWMI loss achieves
significant improvements in both pixel-wise ac-
curacy and topological metrics compared to state-
of-the-art methods, while introducing minimal
computational overhead. Our code is available at
https://github.com/lurenhaothu/CWMI
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1. Introduction
Semantic segmentation, the process of partitioning an image
into regions associated with semantic labels, plays a crucial
role in applications ranging from autonomous driving to
biomedical imaging. Despite significant progress driven by
deep neural networks such as U-Net (Ronneberger et al.,
2015) and fully convolutional networks (Long et al., 2015),
challenges persist. Class imbalance, where dominant classes
overshadow smaller ones, and instance imbalance, where
small-scale structures are frequently ignored, remain major
obstacles (Jiang et al., 2024; Kofler et al., 2023). Addressing
these imbalances requires not only pixel-wise accuracy, but
also the preservation of structural similarity, a property vital
for ensuring spatial coherence and topological integrity in
segmented outputs (Wang et al., 2004).

Although the advancements in feature extraction, such as
feature pyramid networks (Lin et al., 2017) and attention
mechanisms (Woo et al., 2018; Chen et al., 2021; Islam
et al., 2020), have enabled models to capture multiscale
contextual information, most loss functions still focus on
pixel-wise optimization (Azad et al., 2023). Region-based
loss functions, such as Dice loss (Milletari et al., 2016)
and Tversky loss (Salehi et al., 2017), are not subject to
class imbalance, but smaller instances within the same class
are still easy to be overshadowed, which can be critical
for preserving regional and boundary details. Zhao et al.
developed Regional Mutual Information (RMI) loss, which
captures statistical relationships over regions. However,
RMI is constrained within a relatively small region (3× 3
pixels) to avoid high computational overhead (Zhao et al.,
2019). Thus, a loss function that balances computational
efficiency with the ability to model structural and regional
dependencies at larger scales is highly desirable.

Addressing these challenges from a frequency-domain per-
spective provides an innovative pathway. Patterns of vary-
ing scales in images are inherently tied to their frequency
components: large-scale structures correspond to low fre-
quencies, while finer details correspond to high frequencies.
Wavelet transforms are uniquely suited for this multiscale
decomposition, as they preserve both spatial and frequency
information (Mallat, 1989). Among these, the steerable
pyramid, proposed by (Simoncelli et al., 1992), leverages

1

https://github.com/lurenhaothu/CWMI


Complex Wavelet Mutual Information Loss: A Multi-Scale Loss Function for Semantic Segmentation

steerable filters for redundant wavelet decomposition, en-
abling multiscale and multi-orientation feature extraction.
Its extension, the complex steerable pyramid, further en-
hances this framework by using complex numbers to explic-
itly represent local phase information, allowing for robust
extraction of structural details across scales and orienta-
tions (Portilla & Simoncelli, 2000). These properties make
it a powerful tool for segmentation tasks where structural
similarity is paramount.

In this paper, we introduce Complex Wavelet Mutual Infor-
mation (CWMI) loss, a novel loss function that leverages the
complex steerable pyramid for efficient multiscale structural
information extraction. By combining the robust multi-
scale decomposition capabilities of the complex steerable
pyramid with the statistical power of mutual information,
CWMI loss explicitly incorporates local phase, orientation,
and structural features into the loss calculation. This ap-
proach ensures structural coherence and boundary preserva-
tion while maintaining computational efficiency, making it
well-suited for segmentation tasks with significant class and
instance imbalances.

Our contributions are summarized as follows:

• We propose CWMI loss, which can maximize the mu-
tual information in the domain of complex steerable
pyramid decompositions. Such a strategy can enhance
multiscale structural features for semantic segmenta-
tion, especially for tasks with significant class and
instance imbalances.

• We demonstrated the superiority of CWMI with
extensive experiments on four public segmentation
datasets: SNEMI3D (neurite segmentation in electron
microscopy slices), GlaS (gland segmentation in H&E
slices), DRIVE (retinal vessel segmentation in fundus
images), and MASS ROAD (road segmentation from
aerial imagery). Compared with 11 state-of-art (SOTA)
loss functions, CWMI showed better performance on
both pixel-wise metrics and topological metrics, while
introducing minimal computational overhead.

2. Related Work
Semantic segmentation has seen tremendous advancements
through deep learning architectures, with U-Net and its vari-
ants becoming a cornerstone of this field. The U-Net model,
proposed by (Ronneberger et al., 2015), utilizes a symmet-
ric encoder-decoder architecture with skip connections to
preserve spatial details while capturing global context. Its
success has inspired numerous adaptations in its convolu-
tional blocks (Huang et al., 2019; Diakogiannis et al., 2020)
and skip connections (Zhou et al., 2018; Chen et al., 2021).
Inspired by the transformer model, the attention mechanism
has also been incorporated into the U-Net structure, which

has shown significant performance enhancement, as in At-
tention U-Net (Islam et al., 2020), TransUNet (Chen et al.,
2021), Vision Mamba UNet (Ruan et al., 2024), etc. In this
study, we compare our proposed CWMI loss using U-Net
and Attention U-Net to test the generalization and superior-
ity of CWMI, while the general idea is adaptable to other
architectures as well.

2.1. Loss Functions for Semantic Segmentation

While the architectural advancements in segmentation mod-
els have been significant, the performance of these networks
is highly influenced by the design of the loss functions.
Pixel-wise cross entropy loss (CE) minimizes the log like-
lihood of the prediction error but is significantly prone to
class imbalance. To address this issue, class balanced cross
entropy (BCE), proposed by (Long et al., 2015), employs
higher weights for classes with fewer pixels. Focal loss as-
signs higher weights to misclassified pixels with high proba-
bilities (Ross & Dollár, 2017). Region-based losses, includ-
ing Dice loss (Milletari et al., 2016), Tversky loss (Salehi
et al., 2017), and Jaccard loss (Rahman & Wang, 2016), in-
herently handle class imbalance but fail to address instance
imbalance within the same class, such as thin boundaries
and small objects.

To tackle instance imbalance, weighted loss functions have
been proposed. In the original U-Net paper (Ronneberger
et al., 2015), the weighted cross entropy (WCE) was in-
troduced, employing a distance-based weight map to em-
phasize thin boundaries between objects. However, WCE
assigns weights only to boundary pixels, neglecting object
pixels. The adaptive boundary weighted (ABW) loss (Liu
et al., 2022) extends this approach by applying distance-
based weights to both boundary and object pixels, while the
Skea-Topo loss further improved the weight map based on
boundary and object skeletons (Liu et al., 2024). Despite
their contributions, weighted losses suffer from two major
limitations: (1) the weight maps are precomputed and fixed,
failing to adapt to errors during training, and (2) they often
generate thicker boundaries, which preserve topology but
compromise metrics like Dice score and mIoU, as observed
in our qualitative results.

Several methods address instance imbalance dynamically
during training, but at the cost of computational efficiency.
Topology-based approaches, such as persistent homology
methods (Stucki et al., 2023; Oner et al., 2023), describe
image topologies and identify critical pixels but are compu-
tationally expensive, with cubic complexity to image size.
The clDice loss (Shit et al., 2021) employs a soft skele-
tonization algorithm to detect topological errors, primarily
focusing on thin-boundary objects like retinal blood ves-
sels. Similarly, Boundary Loss (Kervadec et al., 2019) and
Hausdorff Distance Loss (Karimi & Salcudean, 2019) refine
boundaries but incur significant computational overhead.
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Figure 1. Illustration of the proposed Complex Wavelet Mutual Information (CWMI) Loss. The prediction and label images are
decomposed using a complex steerable pyramid, which generates subbands at different scales and orientations. Mutual information
is calculated for each corresponding pair of subbands, and the CWMI is computed as the sum of these mutual information values.
YBn ,PBn : complex steerable decomposition of label and prediction image at level n; I(YBn ,YBn): mutual information between
YBn and PBn

Region Mutual Information (RMI) loss (Zhao et al., 2019)
captures pixel interdependencies over regions, but struggles
with scalability for large-scale regional analysis due to the
high computation cost. These losses either prioritize small
regions at the expense of global accuracy or require exten-
sive computational resources, necessitating more efficient
and balanced approaches.

2.2. Wavelet-Based Loss Functions

Wavelet-based metrics were first introduced as Complex
Wavelet Structural Similarity (CW-SSIM) (Sampat et al.,
2009), known for their robustness to small translations and
rotations. In the deep learning era, wavelet-based methods
have been employed in loss functions, leveraging their abil-
ity to analyze multiscale and multiresolution features. These
methods have shown promise in tasks like sketch-to-image
translation (Kim & Cho, 2023), image super-resolution (Ko-
rkmaz & Tekalp, 2024), image dehazing (Yang et al., 2020),
and material analysis (Prantl et al., 2022). However, to the
best of our knowledge, wavelet-based loss functions have
yet to be explored in semantic segmentation.

Existing wavelet-based loss functions typically rely on L1

(Zhu et al., 2021; Korkmaz & Tekalp, 2024; Prantl et al.,
2022) or L2 distances (Kim & Cho, 2023), or structural simi-
larity (SSIM) (Yang et al., 2020) in the decomposed domain.
While effective, these methods are less suited for handling
high-dimensional data with complex directional features,
as in wavelet transforms, and may be vulnerable to noise.
The proposed CWMI loss leverages mutual information be-
tween wavelet-based subband images, effectively capturing
multiscale dependencies. As demonstrated in later ablation
tests, CWMI outperforms traditional metrics like L1, L2,

and SSIM, offering superior segmentation performance and
robustness.

3. Methods
To compute the proposed Complex Wavelet Mutual Infor-
mation (CWMI) loss, the prediction and ground truth label
matrices are first decomposed into subbands using the com-
plex steerable pyramid. Mutual information (MI) is then
calculated for each subband. The CWMI loss is defined as
the sum of the MI values across all subbands, as illustrated
in Figure 1.

3.1. Complex Wavelet Decomposition

Wavelet Transform Wavelet transforms are widely used
for multiscale analysis, enabling decomposition of an image
into frequency subbands while preserving spatial informa-
tion. Unlike traditional Fourier transforms, which analyze
global frequency components, wavelet transforms provide
a localized frequency representation, making them well-
suited for tasks involving spatially-varying structures such
as semantic segmentation. For an image I(x, y), the wavelet
transform is defined as:

Wψ(s, t) =

∫ ∫
I(x, y)ψs,t(x, y) dx dy (1)

where ψs,t(x, y) is a scaled and translated version of the
mother wavelet function ψ(x, y), with s controlling the
scale and t the translation.

For discrete signals, the Discrete Wavelet Transform (DWT)
decomposes an image into progressively lower resolution
subbands using filter banks. However, traditional wavelet
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decompositions suffer from limited orientation selectivity,
capturing only fixed horizontal, vertical, and diagonal direc-
tions.
Steerable Pyramid To overcome these limitations, steer-
able pyramid extends the wavelet framework by introducing
orientation-sensitive band-pass filters, significantly enhanc-
ing orientation selectivity. Unlike DWT, which provides a
non-redundant representation, the steerable pyramid offers
a flexible, redundant image representation, facilitating im-
proved multiscale analysis. This decomposition is achieved
through the iterative application of steerable band-pass fil-
ters followed by downsampling. In the frequency domain,
the band-pass filter for the kth orientation is expressed in
polar coordinates (r, θ) as:

Bk(r, θ) = H(r)Gk(θ), k ∈ [1,K], (2)

where H(r) and Gk(θ) represent the radial and angular
components, respectively:

H(r) =


cos

(
π
2 log2

(
2r
π

))
, π

4 < r < π
2 ,

1, r ≤ π
2 ,

0, r ≥ π
4 .

(3)

Gk(θ) = αk

∣∣∣∣cos(θ − πk

K

)∣∣∣∣K−1

, (4)

where K is the number of orientations and αk =
2k−1 (K−1)!√

K[2(K−1)]!
. Figure 2A provides an illustration of

the band filter with K = 4.

With total recursive levels N , an image I can be decom-
posed as:

I →

∣∣∣∣∣∣∣∣∣∣∣∣

IH0
∈ RH0×W0 ,

IB1
∈ RK×H0×W0 ,

IB2 ∈ RK×H1×W1 ,
. . .
IBN

∈ RK×HN−1×WN−1 ,
IL0 ∈ RHN−1×WN−1 ,

(5)

where IH0
and IL0

are high-frequency and low-frequency
residues, and IBn represents subband images at level n with
k-th direction concatenated in the first dimension. Figure
2B shows an example of the decomposed output of an input
image I.
Complex Steerable Pyramid Although the steerable
pyramid effectively captures amplitude information across
multiple orientations, it lacks the ability to extract local
phase information, which is crucial for encoding structural
features such as edges and corners (Canny, 1986). To ad-
dress this limitation, (Portilla & Simoncelli, 2000) intro-
duced the complex steerable pyramid, which extends the
conventional steerable pyramid by converting its decom-
posed images into their analytic signal representation. In

Figure 2. Steerable pyramid and complex steerable pyramid. (A)
Orientation-selective band-pass filters of the steerable pyramid.
(B) Example decomposition using a steerable pyramid with N=3,
K=4. (C) Band-pass filters of the complex steerable pyramid,
where negative frequency components are discarded. (D) Phase
representation of the complex steerable pyramid output, with the
real part identical to that of the steerable pyramid.

this formulation, the real part remains unchanged, while the
imaginary part is obtained via the Hilbert transform of the
real component. In the Fourier domain, this transformation
is equivalent to discarding negative frequency components,
as illustrated in Figure 2C.

For the complex steerable pyramid, the angular component
Gk(θ) is modified as:

G̃k(θ) =

{
2αk

[
cos

(
θ − πk

K

)]K−1
,

∣∣θ − πk
K

∣∣ < π
2 ,

0, otherwise.
(6)

This modification enables image decomposition into com-
plex subbands, where phase information encodes critical
structural features such as edges and corners (Figure 2D),
while amplitude represents feature strength.
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3.2. Mutual Information in Complex Wavelet Domain

According to Equation 5, the ground truth Y and the
prediction P are decomposed into subbands YBn

and
PBn

∈ RK×Hn−1×Wn−1 for each level n ∈ [1, N ]. For
each pixel (x, y) at level n, the K-directional features are
treated as K-dimensional random variables.

For mutual information approximation, several studies, such
as MINE (Belghazi et al., 2018) and Deep InfoMax (Hjelm
et al., 2018), employ neural network-based estimators to
produce tight lower bounds. While these methods are the-
oretically well-founded, they introduce additional training
overhead, which increases algorithmic complexity and may
hinder the efficiency of the loss function. Therefore, in this
work, we adopt the mutual information estimation approach
proposed by (Zhao et al., 2019):

Il(YBn ;PBn) ≈ −1

2
log det(Mn), (7)

Mn = ΣYBn
−Cov(YBn ,PBn)(Σ

−1
PBn

)TCov(YBn ,PBn)
T

(8)
where ΣYBn

and ΣPBn
are covariance matrices, and

Cov(YBn
,PBn

) is the cross-covariance.

When the ground truth and predictions are decomposed into
complex subbands, this equation is extended with Hermitian
transpose H:

M̃n = ΣYBn
−Cov(YBn

,PBn
)(Σ−1

PBn
)HCov(YBn

,PBn
)H

(9)
where the covariance and cross-covariance are calculated
as:

ΣYBn
= E[(YBn

− E[YBn
])(YBn

− E[YBn
])H ] (10)

ΣPBn
= E[(PBn − E[PBn ])(PBn − E[PBn ])

H ] (11)

Cov(YBn
,PBn

) = E[(YBn
−E[YBn

])(PBn
−E[PBn

])H ]
(12)

Finally, the CWMI loss is computed as the sum of MI across
all levels, which combines with cross entropy loss to inte-
grate pixel-wise loss:

CWMI(Y,P) = (1−λ)
N∑
n=1

−Il(YBn ;PBn)+λLce(Y,P).

(13)

4. Experiment
4.1. Experimental Setup

Base Models To evaluate the effectiveness of the CWMI
loss, we employed U-Net (Ronneberger et al., 2015) and At-
tention U-Net (Oktay et al., 2018) as baseline architectures.

This selection enables an assessment of CWMI’s general-
ization ability across both fully convolutional and attention-
enhanced models. Additionally, to examine CWMI’s com-
patibility with recently proposed Mamba-based architec-
tures (Yue & Li, 2024), we incorporated the Vision Mamba
U-Net (VMUNet) (Ruan et al., 2024) into our experiments.

Datasets We tested CWMI on three public segmentation
datasets, all characterized by class and instance imbalance:
(1) SNEMI3D, a neurite segmentation dataset containing
100 1024×1024 grayscale images from electron microscopy
slices (Arganda-Carreras et al., 2013); (2) GlaS, a gland seg-
mentation dataset with 165 RGB images of varying sizes
from histological images of colorectal cancer samples (Sir-
inukunwattana et al., 2017); (3) DRIVE, a retinal vessel
segmentation dataset comprising 40 584×565 RGB images
from fundus photographs (Staal et al., 2004); and (4) the
Massachusetts Roads dataset (MASS ROAD), a road seg-
mentation dataset with 1171 1500×1500 RGB images from
aerial imagery (Mnih, 2013). We choose a subset of 120 im-
ages (ignoring images without a network of roads). For all
datasets, at least two repeated three-fold cross-validations
were used to ensure robust evaluation.

Baselines and Implementation Details We compared
CWMI against 11 state-of-the-art (SOTA) loss functions,
including pixel-wise loss functions (e.g., cross entropy, BCE
(Long et al., 2015), Focal loss (Ross & Dollár, 2017)), Sensi-
tive loss (Tang et al., 2025), region-based loss functions (e.g.,
Dice loss (Milletari et al., 2016), Tversky loss (Salehi et al.,
2017), Jaccard loss (Rahman & Wang, 2016)), and struc-
tural/topological loss functions (e.g., WCE (Ronneberger
et al., 2015), ABW loss (Liu et al., 2022), Skea-topo loss
(Liu et al., 2024), RMI loss (Zhao et al., 2019), clDice loss
(Shit et al., 2021)). Hyperparameters for each baseline were
tuned via grid search, with Tversky loss (α = .5, β = .5)
and Focal loss (γ = 2.5) as examples.

We utilized steerable pyramids with four decomposition lev-
els and four orientations in all experiments. N = 4 and
K = 4 of the steerable pyramid decomposition and a reg-
ularization parameter of λ = 0.1 were determined by the
ablation experiments, and applied in all CWMI experiments.
For the implementation of Equation 9, although PyTorch
supports complex matrix calculations, our experiments indi-
cated that its efficiency remains suboptimal. Consequently,
we computed using their real representations, which are
mathematically equivalent (Golub & Van Loan, 2013). To
assess the significance of the complex steerable pyramid, we
compared CWMI with a real-number-only variant (CWMI-
Real), implemented according to Equations 4 and 8. Adam
optimizer with a StepLR scheduler (initial learning rate
1 × 10−4, decay rate 0.8, step size 10) was used. U-Net
and Attention U-Net models were trained for 50 epochs;
VMUNet models were trained for 100 epochs due to their
slower convergence. All models were trained with a batch
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SENMI3D
UNet AttenUNet

Methods mIoU↑ mDice↑ VI↓ ARI↑ HD↓ mIoU↑ mDice↑ VI↓ ARI↑ HD↓
CE .753±.005 .851±.004 2.082±.270 .500±.039 1.143±.176 .751±.009 .850±.007 1.914±.361 .525±.056 1.178±.261

BCE .736±.006 .841±.004 1.756±.156 .561±.020 1.413±.088 .735±.010 .840±.007 1.835±.150 .553±.023 1.417±.224

Dice .767±.004 .862±.003 1.406±.085 .604±.017 .919±.154 .768±.005 .862±.004 1.507±.086 .583±.016 .804±.072

Focal .728±.007 .835±.005 1.751±.078 .556±.016 1.725±.225 .725±.005 .833±.003 1.911±.189 .540±.019 1.803±.107

Jaccard .766±.004 .861±.003 1.357±.114 .614±.019 .904±.087 .762±.003 .858±.002 1.360±.079 .609±.007 1.000±.125

Tversky .765±.004 .861±.003 1.328±.077 .617±.017 .990±.183 .765±.003 .860±.002 1.303±.057 .621±.009 .969±.101

WCE .714±.005 .825±.003 1.987±.398 .525±.042 1.575±.250 .713±.005 .825±.004 1.818±.034 .543±.009 1.613±.192

ABW .605±.066 .739±.057 3.637±1.703 .299±.187 4.605±2.926 .616±.072 .749±.063 3.077±1.303 .366±.142 4.045±3.220

Skea-topo .572±.149 .671±.197 3.822±2.560 .300±.259 1.618±.207 .602±.095 .729±.096 3.759±2.324 .306±.243 4.889±5.928

RMI .764±.006 .859±.005 1.443±.207 .587±.037 .943±.130 .764±.008 .859±.006 1.404±.124 .585±.028 .958±.170

clDice .706±.014 .819±.011 2.049±.351 .502±.052 1.489±.218 .701±.022 .815±.016 1.887±.161 .518±.034 1.720±.244

Sensitive .763±.006 .858±.005 1.543±.069 .576±.023 .948±.143 .757±.006 .854±.004 1.822±.313 .527±.049 1.016±.139

CWMI-Real .776±.004
∗∗ .867±.003

∗∗ 1.205±.059
∗∗ .634±.013

∗ .807±.117
∗ .775±.004

∗∗ .867±.003
∗∗ 1.193±.070

∗∗ .634±.014
∗ .824±.103

CWMI .778±.004
∗∗∗ .869±.003

∗∗∗ 1.162±.068
∗∗∗ .638±.015

∗ .739±.095
∗∗ .777±.006

∗∗ .868±.005
∗∗ 1.162±.085

∗∗ .639±.019
∗ .807±.069

GlaS
UNet AttenUNet

Methods mIoU↑ mDice↑ VI↓ ARI↑ HD↓ mIoU↑ mDice↑ VI↓ ARI↑ HD↓
CE .637±.204 .724±.192 .933±.043 .400±.333 6.633±4.654 .640±.209 .725±.195 .906±.107 .406±.327 7.914±6.637

BCE .614±.226 .702±.213 1.032±.152 .355±.355 4.165±1.929 .619±.222 .708±.208 .986±.139 .365±.358 4.354±1.869

Dice .632±.201 .719±.189 .887±.080 .396±.322 7.004±4.670 .636±.197 .723±.187 .954±.056 .396±.322 7.335±4.843

Focal .581±.253 .672±.241 1.093±.103 .330±.356 4.447±2.023 .581±.252 .672±.240 1.043±.109 .336±.369 5.040±2.802

Jaccard .637±.205 .723±.193 .947±.076 .397±.335 6.979±4.511 .638±.202 .725±.190 .888±.076 .406±.331 6.758±4.431

Tversky .634±.205 .722±.193 .953±.031 .394±.332 6.705±4.398 .627±.195 .717±.186 .924±.102 .384±.314 7.521±4.493

WCE .829±.010 .902±.007 .832±.075 .721±.008 2.264±.210 .823±.016 .898±.011 .873±.097 .705±.023 2.590±.602

ABW .760±.012 .857±.008 1.468±.079 .619±.027 3.527±.508 .762±.019 .858±.013 1.472±.103 .614±.037 3.623±.887

Skea-topo .788±.008 .876±.005 1.259±.042 .658±.002 2.985±.765 .784±.016 .873±.010 1.299±.086 .645±.022 3.363±.609

RMI .839±.011 .907±.007 .820±.082 .726±.024 2.644±.372 .835±.015 .905±.010 .822±.083 .720±.039 2.701±.366

clDice .816±.017 .894±.012 .920±.107 .698±.026 2.809±.476 .800±.013 .884±.009 1.004±.113 .684±.026 3.146±.286

Sensitive .821±.014 .897±.009 .941±.101 .694±.033 2.916±.394 .824±.018 .899±.011 .880±.108 .702±.041 2.757±.398

CWMI-Real .838±.014 .907±.010 .798±.068 .727±.027 2.813±.653 .842±.022 .909±.015 .788±.063 .724±.038 2.758±.764

CWMI .843±.016 .910±.011 .761±.081
∗ .735±.026 2.569±.466 .844±.007 .911±.005 .755±.106 .737±.015 2.569±.547

DRIVE
UNet AttenUNet

Methods mIoU↑ mDice↑ VI↓ ARI↑ HD↓ mIoU↑ mDice↑ VI↓ ARI↑ HD↓
CE .770±.014 .856±.011 1.379±.136 .406±.059 2.344±.398 .757±.017 .845±.014 1.436±.126 .372±.059 2.932±.875

BCE .742±.004 .835±.003 1.501±.175 .399±.088 2.355±.434 .746±.012 .838±.010 1.443±.106 .427±.033 2.169±.264

Dice .779±.018 .863±.014 1.293±.116 .471±.045 1.696±.275 .776±.015 .861±.012 1.335±.136 .445±.079 2.146±.832

Focal .737±.008 .832±.006 1.404±.168 .471±.113 2.147±.331 .745±.011 .837±.009 1.410±.139 .450±.075 2.141±.400

Jaccard .761±.013 .850±.011 1.289±.181 .502±.088 1.988±.641 .766±.020 .854±.015 1.271±.145 .521±.051 1.623±.313

Tversky .752±.020 .843±.016 1.309±.086 .517±.052 1.638±.369 .768±.014 .856±.011 1.265±.129 .521±.048 1.702±.298

WCE .741±.013 .835±.011 1.417±.069 .462±.019 2.100±.498 .733±.009 .828±.007 1.441±.031 .444±.039 2.326±.848

ABW − − − − − − − − − −
Skea-topo − − − − − .599±.121 .674±.169 1.602±.113 .265±.250 5.791±4.492

RMI .787±.012 .869±.010 1.282±.127 .449±.064 1.797±.489 .785±.009 .867±.007 1.279±.096 .448±.047 1.884±.340

clDice .482±.094 .598±.085 2.010±.119 .207±.129 9.813±8.153 .509±.063 .617±.066 1.912±.157 .238±.161 15.704±11.080

Sensitive .763±.008 .850±.007 1.440±.060 .376±.039 2.824±.562 .757±.018 .846±.015 1.444±.040 .380±.028 3.134±.782

CWMI-Real .788±.016 .870±.012 1.104±.175
∗ .582±.075 1.309±.299

∗ .787±.026 .870±.019 1.072±.113
∗∗ .594±.057

∗ 1.398±.468

CWMI .798±.012
∗ .878±.009

∗ 1.032±.176
∗ .613±.082

∗ 1.079±.382
∗ .795±.015

∗ .875±.012
∗ 1.007±.162

∗∗ .622±.062
∗∗ 1.219±.410

∗

MASS ROAD
UNet AttenUNet

Methods mIoU↑ mDice↑ VI↓ ARI↑ HD↓ mIoU↑ mDice↑ VI↓ ARI↑ HD↓
CE .733±.015 .826±.013 3.473±.608 .194±.083 1.927±3.301 .640±.209 .725±.195 .906±.107 .406±.327 7.914±6.637

BCE .689±.011 .794±.009 1.708±.265 .560±.059 12.792±3.684 .619±.222 .708±.208 .986±.139 .365±.358 4.354±1.869

Dice .761±.011 .849±.009 1.601±.138 .558±.042 11.189±4.532 .636±.197 .723±.187 .954±.056 .396±.322 7.335±4.843

Focal .671±.015 .780±.013 1.717±.150 .556±.042 11.576±1.950 .581±.252 .672±.240 1.043±.109 .336±.369 5.040±2.802

Jaccard .759±.008 .848±.006 1.332±.041 .630±.008 11.274±2.805 .638±.202 .725±.190 .888±.076 .406±.331 6.758±4.431

Tversky .755±.009 .845±.007 1.379±.196 .618±.061 11.501±4.470 .627±.195 .717±.186 .924±.102 .384±.314 7.521±4.493

WCE .650±.016 .762±.014 1.726±.103 .556±.004 1.845±.470 .823±.016 .898±.011 .873±.097 .705±.023 2.590±.602

ABW .685±.014 .791±.012 1.678±.124 .566±.030 11.654±4.661 .762±.019 .858±.013 1.472±.103 .614±.037 3.623±.887

Skea-topo .620±.095 .734±.085 2.236±.824 .463±.159 11.653±5.620 .784±.016 .873±.010 1.299±.086 .645±.022 3.363±.609

RMI .766±.008 .852±.006 1.824±.263 .499±.065 11.632±3.918 .839±.013 .908±.008 .819±.071 .727±.032 2.587±.435

clDice .645±.051 .755±.045 2.162±.467 .476±.081 15.461±4.999 .800±.013 .884±.009 1.004±.113 .684±.026 3.146±.286

Sensitive .734±.022 .827±.018 2.933±.982 .305±.159 11.292±3.828 .824±.018 .899±.011 .880±.108 .702±.041 2.757±.398

CWMI-Real .765±.010 .853±.008 1.231±.183 .650±.050 1.836±4.994 .846±.012 .913±.008 .766±.067
∗∗ .736±.021

∗ 2.504±.528

CWMI .767±.010 .854±.008 1.148±.166
∗ .667±.047

∗ 1.326±4.109 .839±.015 .908±.010 .762±.084
∗∗∗ .728±.035

∗∗ 2.747±.680

Table 1. Quantitative results of different loss functions across the four datasets and two neural network models. The bold numbers indicate
the best performance for each metric, while the underlined numbers denote the second-best performance. A hyphen (”-”) indicates cases
where the model did not converge. For the loss metrics CWMI and CWMI-real, the statistical significance is marked with asterisks:
*p < .05, **p < .01, and ***p < .001, where p is the maximum p-value of the student’s t tests against all the baseline loss functions.
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size of 10. Early stopping based on mIoU was employed
to select the best model. Training was conducted on an
NVIDIA A100 GPU using the Google Colab runtime.

Data Augmentation and Evaluation Metrics Random
flips and rotations were applied to all datasets to improve
generalization. For SNEMI3D and MASS ROAD, images
were randomly cropped to 512× 512, while for GlaS, im-
ages were cropped to 448× 576 to standardize input sizes.
No cropping was performed for DRIVE due to its uniform
image dimensions.

Performance was evaluated using five metrics: mIoU and
mDice for regional precision, variation of information (VI)
(Nunez-Iglesias et al., 2013) and adjusted Rand index (ARI)
(Vinh et al., 2009) for clustering precision, and Hausdorff
distance (HD) for boundary and topological accuracy. These
metrics provide a comprehensive assessment of both re-
gional overlap and structural fidelity.

SNEMI3D VMUNet
Methods mIoU↑ mDice↑ VI↓ ARI↑ HD↓
CE .723±.026 .829±.020 2.577±1.211 .414±.173 1.709±.235

BCE .739±.004 .843±.002 1.499±.057 .594±.010 1.274±.231

Dice .725±.029 .831±.021 2.735±1.213 .402±.165 1.767±.720

Focal .725±.010 .833±.007 1.677±.141 .563±.025 1.699±.372

Jaccard .725±.019 .831±.014 1.953±.541 .499±.075 1.716±.566

Tversky .737±.016 .840±.012 1.619±.324 .555±.045 1.560±.408

WCE .714±.005 .826±.004 1.743±.026 .552±.006 1.432±.169

ABW .678±.003 .800±.003 2.076±.030 .490±.005 1.572±.021

RMI .762±.010 .857±.007 1.419±.183 .588±.030 1.071±.306

clDice .714±.002 .824±.001 1.754±.062 .542±.003 1.990±.262

sensitive − − − − −
CWMI .783±.004

∗ .872±.003
∗ .982±.106

∗ .660±.022
∗ .629±.073

Table 2. Quantitative results of different loss functions on
SNEMI3D dataset and VMUNet model. The bold numbers indi-
cate the best performance for each metric, while the underlined
numbers denote the second-best performance. A hyphen (”-”)
indicates cases where the model did not converge. For the loss
metrics CWMI, the statistical significance is marked with asterisks:
*p < .05, where p is the maximum p-value of the student’s t tests
against all the baseline loss functions.

4.2. Quantitative and qualitative results

As shown in Table 1, the proposed CWMI loss outperforms
other loss functions across the majority of evaluation met-
rics for all datasets using both U-Net and Attention U-Net
architectures. Statistically, CWMI achieves significantly
superior performance on all metrics for the SNEMI3D and
DRIVE datasets, as well as on clustering-based metrics (VI
and ARI) for the GlaS and MASS ROAD datasets. More-
over, CWMI consistently outperforms its real-valued variant,
underscoring the importance of incorporating phase infor-
mation within the steerable pyramid decomposition. For the
Mamba-based architecture, VMUNet, CWMI also signifi-
cantly outperforms baseline loss functions on the SNEMI3D
dataset (Table 2). Qualitative results from SNEMI3D (Fig-
ure 3), GlaS (Figure 4), DRIVE (Figure 5), and MASS
ROAD (Figure 6) further illustrate CWMI’s effectiveness

Figure 3. Qualitative results of different loss functions on the
SNEMI3D dataset. Red: false positive regions; Blue: false nega-
tive regions. Green arrow: challenging false positive and Orange
arrow: challenging false negative that are successfully addressed
by CWMI.

Figure 4. Qualitative results of different loss functions on the GlaS
dataset.

Figure 5. Qualitative results of different loss functions on the
DRIVE dataset.

in mitigating challenging false positive and false negative
segmentation errors that persist with other state-of-the-art
loss functions.
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Figure 6. Qualitative results of different loss functions on the
MASS ROAD dataset.

4.3. Ablation studies
In this section, all ablation experiments were performed on
the SNEMI3D dataset with U-Net model.

Mutual Information (MI) vs L1, L2 Distance and Struc-
tural Similarity (SSIM) As previously discussed, various
metrics based on wavelet transforms have been developed
for evaluating image similarity and guiding loss functions.
To assess the advantages of mutual information (MI) over
commonly used metrics such as L1, L2, and SSIM, we con-
ducted a comparative analysis. The experimental results,
summarized in Table 3, demonstrate that MI consistently
outperforms L1, L2 distance, and SSIM across multiple
evaluation metrics. Unlike L1 and L2, which focus on pixel-
wise intensity differences, and SSIM, which emphasizes
structural similarity, MI captures joint statistical dependen-
cies between features in each direction. This ability pro-
vides a more robust representation of structural differences
between predictions and labels, particularly in complex seg-
mentation tasks.

Methods mIoU↑ mDice↑ VI↓ ARI↑ HD↓
L1 .773±.002 .866±.001 1.22±.05 .632±.007 .70±.08

L2 .774±.003 .867±.002 1.23±.06 .633±.011 .76±.13

SSIM .468±.032 .613±.020 5.96±.96 .081±.030 9.31±1.64

CWMI .779±.004 .870±.003 1.16±.09 .640±.005 .69±.04

Table 3. Quantitative results comparing mutual information (MI),
L1, L2 distance, and structural similarity (SSIM) based on U-Net
with SNEMI3D. The bold numbers indicate the best performance
for each metric.

Contribution of different components of complex steer-
able pyramid To better understand the role of individ-
ual components in the CWMI loss, we conducted an ab-
lation experiment evaluating the performance of variants
based on the mutual information loss of magnitude-only,
phase-only, and real-only representations, as shown in Table
4. The CWMI-Phase variant consistently underperformed
across all metrics, suggesting that phase information alone

is insufficient for reliable segmentation. The CWMI-Mag
variant, by contrast, achieved the best performance on clus-
tering metrics (VI and ARI), indicating its strong capacity
to capture regional structures. The full CWMI, combin-
ing both magnitude and phase via the complex representa-
tion, yielded the best results on pixel-wise accuracy metrics
(mIoU and mDice) and topological metric (HD), while rank-
ing second on VI and ARI, demonstrating a well-rounded
performance across different dimensions of segmentation
quality. The CWMI-Real variant performed worse than both
CWMI and CWMI-Mag on most metrics, although it outper-
formed CWMI-Phase, further supporting the necessity of
incorporating both magnitude and phase components. These
results highlight the critical role of magnitude in structural
segmentation, while also demonstrating that the full com-
plex formulation of CWMI achieves superior generalization
across diverse evaluation criteria.

Methods mIoU↑ mDice↑ VI↓ ARI↑ HD↓
CWMI-Real .776±.004 .868±.003 1.211±.048 .635±.011 .774±.065

CWMI-Mag .775±.004 .867±.003 .908±.051 .660±.009 .735±.065

CWMI-Phase .694±.008 .810±.006 2.487±.534 .458±.061 2.000±.258

CWMI .778±.004 .869±.003 1.164±.079 .638±.016 .720±.066

Table 4. Quantitative comparison of mutual information loss across
different components of the complex steerable pyramid decom-
position. CWMI-Real: real component; CWMI-Mag: magnitude
component; CWMI-Phase: phase component; CWMI: full com-
plex representation (combining real and imaginary components).
Results are based on a U-Net model trained on the SNEMI3D
dataset. Bold values indicate the best performance, and underlined
values denote the second-best for each evaluation metric.

Impact of Regularization Parameter λ To evaluate the
sensitivity of CWMI to the regularization weight λ, we ex-
perimented with λ = 0.1, 0.5, 0.9. As shown in Table 5,
performance across all evaluation metrics remained largely
stable, with only marginal variations. This robustness sug-
gests that CWMI provides complementary information to
the cross-entropy term and is not overly sensitive to the reg-
ularization strength. Additionally, we found the inclusion of
the cross-entropy term to be crucial for directional learning,
as mutual information is inherently symmetric and cannot
distinguish between correct and inverted label assignments.
Impact of Decomposition Level N and Number of Ori-
entations K Theoretically, the steerable pyramid can de-
compose an image into very high levels with an infinite
number of orientations, provided the input image is suffi-
ciently large. However, does deeper decomposition or a
higher number of orientations improve feature extraction
and loss computation? To address this, we analyzed the
impact of N (decomposition level) and K (number of ori-
entations) on the performance of CWMI, as shown in Table
3. Interestingly, both N and K achieved optimal perfor-
mance at relatively low values, suggesting that the critical
information for segmentation is concentrated in relatively
high-frequency regions. This observation supports the idea
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that emphasizing high-frequency subbands refines small
instances and narrow boundaries, while lower-frequency
components from deeper decompositions contribute less
informative features compared to higher-frequency ones.

Knowing that the first four layers of decomposition are
crucial, we further performed a layer ablation experiment
(Table 3, Layer Ablation), where only selected layers were
used to compute mutual information while discarding the
remaining layers. Our results show that the third layer
outperforms other layers in region-based (mIoU, mDice)
and cluster-based metrics (VI, ARI), while the fourth layer
achieves the best performance in topological metrics (HD).
These findings suggest that features extracted from multiple
layers are essential for achieving high performance across
all evaluation metrics, highlighting the importance of incor-
porating information from both mid- and high-frequency
subbands in the segmentation task.

λ ablation
mIoU↑ mDice↑ VI↓ ARI↑ HD↓

λ=0.1 .778±.004 .869±.003 1.188±.075 .636±.008 .703±.034

λ=0.5 .778±.006 .869±.004 1.176±.076 .639±.014 .729±.078

λ=0.9 .777±.003 .869±.002 1.219±.073 .636±.013 .740±.061

K ablation
mIoU↑ mDice↑ VI↓ ARI↑ HD↓

K=2 .777±.006 .868±.004 1.18±.10 .637±.028 .79±.02

K=4 .779±.004 .870±.003 1.16±.09 .640±.005 .69±.04

K=8 .776±.003 .868±.002 1.20±.06 .635±.009 .76±.08

K=12 .772±.005 .865±.003 1.33±.05 .621±.004 .81±.08

N ablation
mIoU↑ mDice↑ VI↓ ARI↑ HD↓

N=2 .760±.002 .857±.001 1.30±.04 .618±.009 1.20±.12

N=4 .777±.002 .869±.001 1.21±.10 .634±.017 .79±.190

N=6 .768±.003 .862±.002 1.29±.05 .618±.004 .88±.18

Layer ablation
mIoU↑ mDice↑ VI↓ ARI↑ HD↓

1st layer .738±.008 .843±.006 1.61±.07 .576±.015 1.38±.14

2nd layer .762±.008 .858±.006 1.25±.08 .624±.016 1.12±.19

3rd layer .774±.003 .867±.002 1.23±.10 .638±.020 .82±.12

4th layer .766±.004 .861±.003 1.39±.09 .614±.012 .76±.04

Table 5. The impact of regularization parameter λ, decomposition
level N, and orientation number K on CWMI performance on U-
Net with SNEMI3D. In the layer ablation test, only the selected
layer is computed for mutual information and all other layers are
discard. The bold numbers indicate the best performance for each
metric.

Computational complexity analysis For an input image
of size H × W with K orientation decompositions, the
computational complexity of the CWMI loss function is
analyzed as follows.

First, the forward Fourier transform has a time complexity
of O(HW log(HW )). For the first layer of decomposition,
the operations include: Band-pass filtering: O(HWK);
Inverse Fourier transform: O(HW log(HW )K); and mu-
tual information computation: O(HWK2). Summing
these terms, the total complexity for the first decompo-
sition layer is: O(HW (K log(HW ) + K2)) For subse-
quent decomposition layers, the image size reduces by a
factor of four at each step, meaning the second layer pro-

cesses an image of size HW/4, and the third layer pro-
cesses HW/16, and so on. Thus, the total computational
complexity follows a geometric series with a superior bound
O
(
4
3HW (K log(HW ) +K2)

)
From our ablation experiments, the optimal number of ori-
entations is K = 4, which is relatively small. Hence the
complexity of CWMI is linear toO(HW log(HW )), which
remains scalable for high-resolution images. Compared to
topology-aware losses such as RMI, clDice, or Hausdorff
Distance Loss, CWMI achieves better structural and bound-
ary preservation with lower computational overhead, as
shown in Table 4.

Epoch Time (s) ∆t to CE (s)
CE 2.04 .00
BCE 2.02 -0.02
Dice 2.01 -0.03
Focal 2.01 -0.03
Jaccard 2.02 -0.02
Tversky 2.01 -0.03
WCE 2.15 0.12
ABW 2.33 0.30
Skea-topo 2.72 0.69
RMI 2.28 0.25
clDice 2.37 0.34
CWMI-Real 2.18 0.15
CWMI 2.27 0.23

Table 6. Training time per epoch and relative change to CE baseline
for various loss functions on U-Net model with SNEMI3D dataset.

5. Conclusion
In this study, we introduced Complex Wavelet Mutual In-
formation (CWMI) loss, a novel loss function for semantic
segmentation that leverages the multiscale, multi-orientation
decomposition capabilities of the complex steerable pyra-
mid. By integrating mutual information across wavelet sub-
bands, CWMI effectively captures high-dimensional depen-
dencies and local structural features, including critical phase
information, which are essential for accurate segmentation.
Extensive experiments on four challenging datasets demon-
strate that CWMI consistently outperforms state-of-the-art
loss functions across most evaluation metrics, particularly
in segmenting small instances and narrow boundaries, while
introducing minimal computational overhead. These results
highlight CWMI as a robust and versatile loss function that
effectively addresses key challenges in segmentation, such
as class and instance imbalance, boundary precision, and
topological consistency.

Beyond semantic segmentation, the core principles of
CWMI—multiscale feature extraction and structural con-
sistency—suggest its potential applicability to a broader
range of computer vision and machine learning tasks, such
as image-to-image translation and super-resolution, which
we leave for future exploration.

Although extensively studied on 2D images, extending it
to multi-class and 3D segmentation is theoretically feasible
but necessitates further validation in future research.
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The proposed Complex Wavelet Mutual Information
(CWMI) loss introduces a novel approach to structural-
aware learning in deep neural networks. By leveraging
multiscale decomposition through the complex steerable
pyramid and mutual information across frequency subbands,
CWMI enables improved segmentation performance, partic-
ularly for small-scale structures and thin boundaries. Our
empirical results demonstrate significant improvements in
both pixel-wise and topological accuracy across multiple
datasets. Beyond segmentation, CWMI has the potential to
generalize to a wide range of real-world applications, includ-
ing medical imaging, autonomous driving, satellite-based
environmental monitoring, and industrial defect detection.

Overall, CWMI provides a computationally efficient,
structure-aware loss function that enhances segmentation
performance while maintaining practical scalability. By
extending its application beyond segmentation, we aim to
contribute to the broader field of generative modeling, ob-
ject detection, and self-supervised learning in deep neural
networks.
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