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Abstract

The single-hidden-layer Randomly Weighted Feature Net-
work (RWFN) introduced by Hong and Pavlic (2021) was
developed as an alternative to neural tensor network ap-
proaches for relational learning tasks. Its relatively small
footprint combined with the use of two randomized input pro-
jections – an insect-brain–inspired input representation and
random Fourier features – allow it to achieve rich expres-
siveness for relational learning with relatively low training
cost. In particular, when Hong and Pavlic compared RWFN
to Logic Tensor Networks (LTNs) for Semantic Image Inter-
pretation (SII) tasks to extract structured semantic descrip-
tions from images, they showed that the RWFN integration
of the two hidden, randomized representations better cap-
tures relationships among inputs with a faster training process
even though it uses far fewer learnable parameters. In this
paper, we use RWFNs to perform Visual Relationship De-
tection (VRD) tasks, which are more challenging SII tasks.
A zero-shot learning approach is used with RWFN that can
exploit similarities with other seen relationships and back-
ground knowledge – expressed with logical constraints be-
tween subjects, relations, and objects – to achieve the abil-
ity to predict triples that do not appear in the training set.
The experiments on the Visual Relationship Dataset to com-
pare the performance between RWFNs and LTNs, one of the
leading Statistical Relational Learning frameworks, show that
RWFNs outperform LTNs for the predicate-detection task
while using fewer number of adaptable parameters (1 : 56
ratio). Furthermore, background knowledge represented by
RWFNs can be used to alleviate the incompleteness of train-
ing sets even though the space complexity of RWFNs is much
smaller than LTNs (1 : 27 ratio).

Introduction
Semantic Image Interpretation (SII) (Neumann and Möller
2008) is a task of automatically extracting high-level infor-
mation about the content of a visual scene. This information
consists of the objects in the scene, their attributes, and the
relations among them. Formally, the result of applying SII
on an image is called a scene graph (Krishna et al. 2017):
the labeled nodes are regarded as objects in the scene and
their attributes, the labeled edges indicate the relations be-
tween the corresponding nodes. The resulting scene graphs
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can be applied to many application domains, such as visual
question answering, image captioning, image querying, and
robot interaction.

Visual Relationship Detection (VRD) tasks are a special
case of scene-graph construction, and a visual relationship
can be readily represented as a triple of the form ⟨s, p, o⟩
where s and o indicate the subject and the object, respec-
tively, that are the semantic classes or labels of two bounding
boxes in the image. The predicate p is the label representing
the relationship between the two bounding boxes. Therefore,
constructing a scene graph in a visual scene is the task of cor-
rectly labeling subjects and objects nodes in the graph and
labeling edges connected from subject to object.

In VRD tasks, visual relationships are mainly detected in
a supervised fashion, but there are some challenges. For one,
due to the enormous human effort of the annotators, a com-
prehensive and detailed annotation is not achievable. Fur-
thermore, even when a training set covers a variety of differ-
ent relationships, a new type of relationship may appear only
in the test set. We use zero-shot learning (Lampert, Nick-
isch, and Harmeling 2013) to address these VRD issues. The
zero-shot approach can be achieved by exploiting the simi-
larity with the triples in the training set or a high-level de-
scription of the relationship. This is closer to human learning
for supervised learning. Indeed, humans can both general-
ize from seen or similar examples and use their background
knowledge to identify never seen relationships (Lampert,
Nickisch, and Harmeling 2013).

A zero-shot training approach using Logic Tensor Net-
works (LTN) (Donadello and Serafini 2019) has been pro-
posed as one of the state-of-the-art methods for detecting in-
visible visual relationships. The LTN (Serafini and Garcez
2016) is a Statistical Relational Learning framework that
learns from relational data in the presence of additional logi-
cal constraints. So, Donadello and Serafini (2019) leveraged
LTNs to exploit the similarities with already seen triples.
They showed that the results on the Visual Relationship
Dataset jointly using logical knowledge and data outperform
the state-of-the-art approaches based on data or linguistic
knowledge and that logical knowledge can compensate for
the incompleteness of the datasets due to the high annotation
effort.

Recently, a more economical approach for represent-
ing background knowledge has been proposed that is in-



spired by the neural architecture of the insect brain. Insect
neuroscience has shown that insects express sophisticated
and complex behaviors although they possess central ner-
vous systems far smaller than the human brain (Avarguès-
Weber, Deisig, and Giurfa 2011). Specifically, it has been
shown that the honey bee brain includes high levels of cog-
nitive sophistication to learn relational concepts such as
“same,” “different,” “larger than,” “better than,” among oth-
ers (Avarguès-Weber and Giurfa 2013). Based on those ob-
servations, Hong and Pavlic (2021) proposed a novel insect-
brain–inspired neural network, Randomly Weighted Feature
Network (RWFN), for relational embedding that incorpo-
rates randomly drawn, untrained weights in its encoder with
a trained linear model as a decoder. Their approach mim-
ics the randomized, mostly feedforward architecture of the
insect brain that projects olfactory features from the anten-
nal lobe (AL) randomly to the mushroom body (MB), the
main center of higher-order learning, that are then decoded
by downstream neuropils that translate information process-
ing into action. In addition to the insect-inspired architec-
ture, RWFN also leverages random Fourier feature (Rahimi
and Recht 2007), a kernel approximation method that over-
comes the issues of conventional kernel machines or ker-
nel methods (Smola and Schölkopf 1998) to concisely and
efficiently compute linear interactions among inputs. When
RWFNs were applied to one of the SII tasks defined by Don-
adello, Serafini, and Garcez (2017) to demonstrate the per-
formance of LTNs, the RWFNs were able to effectively learn
the part-of relation among inputs better than the neural ten-
sor network in LTNs. In addition, Hong and Pavlic (2021)
used an ablation study to show that the two randomized rep-
resentations in RWFNs can be compensated for each other
to achieve balanced performance among different kinds of
dataset.

In this paper, we extend RWFNs to address zero-
shot learning for the detection of unseen visual relation-
ships. We perform experiments on the Visual Relationship
Dataset (VRD) (Lu et al. 2016), a complex dataset contain-
ing 100 unary relationships and 70 binary relationships, and
compare the performance between RWFNs and LTNs.

Related Work
Methods for Visual Relationship Detection
In order to extract a scene graph from images, several works
that utilize axioms using fuzzy logic (Hájek 2013) have been
proposed because fuzzy logic can handle the intrinsic noise
from the object detector. Specifically, there are algorithms
for building SII graphs with a fuzzy logic ontology of spatial
relations (Atif, Hudelot, and Bloch 2013; Hudelot, Atif, and
Bloch 2008), an iterative message passing algorithm where
the information about the objects maximizes the likelihood
of the relationships (Xu et al. 2017), and the combination
with Long Short-Term Memories (LSTMs) for encoding the
context given by the detected bounding boxes (Zellers et al.
2018). However, some of them are limited to only the spa-
tial relationships and based on the implausible assumptions
in real-work applications, for example, predicates must be
mutually exclusive.

There are several methods using a Conditional Random
Field (CRF) that encodes a fully connected graph and that
labels or discards then nodes and edges by minimizing an
energy function (e.g., Kulkarni et al. 2013; Chen, Zhou, and
Prasanna 2012; Chen et al. 2014). However, some of them do
not consider logical knowledge or use hand-crafted logical
constraints, which are difficult to extend to other types of
constraints.

Deep learning methods are also exploited for the task.
Specifically, the detection of visual relationships using a
Deep Relational Network (Dai, Zhang, and Lin 2017), a
deep reinforcement learning model for detecting relation-
ships and attributes (Liang, Lee, and Xing 2017), a mes-
sage passing algorithm for sharing subject–object–predicate
information among neural networks (Li et al. 2017), and
an end-to-end system that can exploit the interaction of vi-
sual and geometric features of the subject, object and pred-
icate (Yin et al. 2018). However, the above systems cannot
utilize the visual/geometric features of the subject/object and
additional background knowledge together.

A joint embedding with visual knowledge can exploit
background knowledge. Implication, mutual exclusivity, and
type-of are exploited as logical constraints by Ramanathan
et al. (2015), whereas a word embedding of the subject/ob-
ject labels is used as background knowledge by Lu et al.
(2016). Yu et al. (2017) use background knowledge in the
form of a probability distribution of a relationship given the
subject/object. However, the above methods do not exploit
any type of logical constraints.

LTN can compensate for the shortcomings of all the stud-
ies mentioned above. LTNs allow multiple edges between
nodes and can exploit the integration of the visual/geomet-
ric features of the subject/object with additional background
knowledge encoded by logical constraints, which none of
the above works can include. Therefore, we mainly compare
the performance of RWFN to LTN, which we describe in
detail next.

Logic Tensor Networks
Here, we describe basic concepts underlying Logic Ten-
sor Networks (LTNs) (Serafini and Garcez 2016). Although
their structure is fundamentally different, RWFNs and LTNs
use the same approach for mapping logical symbols to
numerical values and learning reasoning relations among
real-valued vectors using the logical formulas. However,
LTNs combine reasoning with first-order logic with (in
contrast to WRFN) learning based on Neural Tensor Ne-
towrks (NTNs) (Socher et al. 2013). Consequently, the LTN
framework can be implemented in TensorFlow (Badreddine
et al. 2021).

We first define a First-Order-Logic (FOL) language L
and its signature as containing three disjoint sets: i) C (con-
stants), ii) F (functions), and iii) P (predicate). However,
we will not specify the function symbols F in detail be-
cause they are not used in the tasks. For specifying an ar-
ity for a predicate symbol s, we use the notation as α(s).
The logical formulas in L are used to describe relational
knowledge. The objects in FOL are mapped to an interpreta-
tion domain ⊆ Rn so that every object is associated with an



n-dimensional vector of real numbers and is reasoned over
FOL. Intuitively, this n-tuple symbolizes n numerical fea-
tures of an object, and predicates are represented as fuzzy re-
lationships on real vectors. With this numerical background,
we can now establish the numerical grounding of FOL with
the following semantics. The term grounding is used as a
synonym of logical interpretation in a real world and needs
to capture the latent correlation between the features of ob-
jects and their categorical or relational properties.

Let n ∈ N. An n-grounding, or simply grounding, G for a
FOL L is a function defined on the signature of L satisfying
the following conditions:

• G(c) ∈ Rn for every constant symbol c ∈ C
• G(P ) ∈ Rn·α(f) → [0, 1] for predicate sym. P ∈ P

Given a grounding G, we can define the semantics of closed
terms and atomic formulas as follows:

G(P (t1, . . . , tm)) ≜ G(P )(G(t1), . . . ,G(tm))

The semantics for connectives, such as G(¬ϕ),G(ϕ ∧
ψ),G(ϕ∨ψ), and G(ϕ→ ψ), can be computed by following
the fuzzy logic such as the Lukasiewicz t-norm (Bergmann
2008).

The grounding of an m-ary predicate P , namely G(P ), is
defined as a generalization of the NTN (Socher et al. 2013),
as a function from Rmn to [0, 1], as follows:

GLTN(P )(v) = σ(u⊤Pf(v
⊤W

[1:k]
P v + VP v + bP )) (1)

where v = ⟨v⊤1 , . . . , v⊤
m⟩⊤ is the mn-ary vector obtained

by concatenating each vi. σ is the sigmoidal logistic func-
tion, and f is the hyperbolic tangent (tanh). The parame-
ters for P are: W [1:k]

P , a 3-D tensor in Rk×mn×mn, VP ∈
Rk×mn, bP ∈ Rk and uP ∈ Rk. Because the RWFN model
is a novel way of grounding a predicate as GRWFN(P ), we
can directly compare the performance of RWFNs for the vi-
sual relationship detection tasks with LTNs.

The optimization of the truth values of the formulas in a
LTN’s knowledge base is directly involved with learning the
groundings, i.e. grounded theory. A partial grounding Ĝ is
a grounding that can be defined on a subset of the signature
of L. A grounding G is said to be a completion of Ĝ if G is a
grounding for L and coincides with Ĝ on the symbols where
Ĝ is defined. Let GT be a grounded theory which is a pair
⟨K, Ĝ⟩ with a set K of closed formulas and a partial ground-
ing Ĝ. A grounding G satisfies a GT ⟨K, Ĝ⟩ if G completes
Ĝ and G(ϕ) = 1 for all ϕ ∈ K. A GT ⟨K, Ĝ⟩ is satisfiable if
there exists a grounding G that satisfies ⟨K, Ĝ⟩. That is, de-
ciding the satisfiability of ⟨K, Ĝ⟩ amounts to searching for a
grounding G such that all the formulas of K are mapped to
1. If a GT is not satisfiable, the best possible satisfaction that
we can reach with a grounding is of our interest.

Therefore, the best-satisfiability problem is an opti-
mization problem on the set of LTN parameters Θ ≜
{WP , VP , bP , uP |P ∈ P} from Eq. (1) to be learned.
We use notation G(·|Θ) to indicate the grounding with
grounding-function parameters equal to Θ. Then, we define

the best-satisfiability problem as finding the best parameter
set:

Θ∗ ≜ argmax
Θ

G(∧ϕ∈Kϕ|Θ)− λ∥Θ∥22, (2)

where λ∥Θ∥22 is a regularization term.

Randomly Weighted Feature Networks
The Randomly Weighted Feature Network (RWFN) (Hong
and Pavlic 2021) is a single-hidden-layer neural network that
incorporates randomly drawn, untrained weights in an en-
coder that uses an adapted linear model as a decoder. A key
characteristic of RWFN is the generation of unique hidden
representations through the integration of two randomized
methods for projecting from the input space to a higher-
order space. Consequently, RWFNs can efficiently learn the
degree of relationship among inputs by training only a lin-
ear decoder model. In addition, because all the weights of an
encoder in the model are randomly drawn, the encoder can
be shared with other classifiers that allow training only a de-
coder, which drastically reduces the space complexity of the
model.

Unique Hidden Representation in RWFN
Insect-brain–inspired Representation. In the insect
brain, processed olfactory, visual, and mechanosensory
stimuli are conveyed to the Mushroom Body (MB) (Mobbs
1982), which can be viewed as the critical region responsi-
ble for multimodal associative learning (Menzel 2001). In
the fruit-fly brain, each of thousands of Kenyon Cells (KCs)
in the MB takes input from a random set of ∼7 inputs from
Input Neurons (INs) (Caron et al. 2013; Inada, Tsuchimoto,
and Kazama 2017). Thus, a simplified neural circuit model-
ing the MB is a neural network with three layers consist-
ing of: i) INs that provide extracted features from olfac-
tory, visual, and mechanosensory inputs, ii) KCs generating
the sparse-encoding of sensory stimuli, and iii) mushroom
body Extrinsic Neurons (ENs) for activating several differ-
ent behavioral responses (Cope et al. 2018). Hong and Pavlic
(2021) focused on the olfactory pathway between features
extracted and coded by the AL and KCs in the MB (Cope
et al. 2018; Peng and Chittka 2017); their RWFN architec-
ture mimics the input transformation of odorant representa-
tion in the AL to the higher-order representation across the
KCs in the MB.

Random Fourier Features. Kernel machines have at-
tracted significant interest due to their capability of approx-
imating functions with excellent performance for detect-
ing decision boundaries given enough training data. These
methods leverage transformations, via a lifting function ϕ,
that allows better discrimination among different inputs.
Given dataset vector inputs x, y ∈ Rd, the kernel function
k(x, y) = ⟨ϕ(x), ϕ(y)⟩ represents the similarity (i.e., inner
product) between x and y in the ϕ-transformed space. How-
ever, because of the potential complexity of the transforma-
tion ϕ, learning the kernel function k may suffer significant
inefficiency of computational and storage costs.

To mitigate these kernel-machine costs, random Fourier
features (Rahimi and Recht 2007) provide a data transfor-



Figure 1: Visualization of the structure of the Randomly
Weighted Feature Network. In the depicted case, the input
vector v constitutes of two entities, e1, e2 ∈ R3 and it shows
to learn a binary relation between them (e1, R, e2), such as
(Cat, hasPart, Tail) (Hong and Pavlic 2021)

mation that permits a far less expensive approximation of the
kernel function. For each vector input x ∈ Rd, the method
applies a randomized feature function z : Rd → RD (gener-
ally,D ≫ dwith sample sizeN ≫ D) that maps x to evalu-
ations ofD random Fourier bases from the Fourier transform
of kernel k. In this transformed space, linear operations can
be used to approximate kernel evaluations, as in:

k(x, y) = ⟨ϕ(x), ϕ(y)⟩ ≈ z(x)⊤z(y) (3)

Therefore, by transforming the input with z, fast linear learn-
ing can be used to approximate the evaluations of nonlin-
ear kernel machines. Hong and Pavlic (2021) used random
Fourier features as latent representations that reduce the
complexity of learning relations among real-valued entities.

Model Architecture
Let the input vector v = [v⊤1 , . . . , v⊤m]⊤ be the mn-ary vec-
tor where m is arity and n is the input dimension, and con-
sider a hidden node j ∈ {1, ..., B}. To mimic the random
AL–MB connections in the insect brain (Hong and Pavlic
2021), hidden node j is associated with a random subset
Sj ⊂ {1, ...,mn} of Nin = 7 of the mn inputs (i.e.,
|Sj | = Nin = 7). Furthermore, hidden node j takes as in-
put a binary-weighted combination of input nodes so that
wj,i = 1 if i ∈ Sj and wj,i = 0 otherwise. So, the input
nodes are effectively gated by the weights on each hidden
node, and the weight matrix W ∈ Rmn×B in this computa-
tion is random, binary, and sparse. For the jth hidden node,
v̄j represents the corresponding binary-weighted sum.

Next, for each hidden node j, a post-processing step pro-
duces the jth intermediate output v̂j by subtracting the aver-
age of the binary-weighted sums, as in:

v̂j = v̄j −
1

B

B∑
i=1

v̄i (4)

Figure 2: Visualization of the structure of the Randomly
Weighted Feature Network with weight sharing. In the case
of learning each classifier from the class C1 to the class Ci,
RWFNs allow us to use the same encoder to extract features
from each data from the class C1 to the class Ci (Hong and
Pavlic 2021)

whereB is the number of hidden units. Therefore, the sparse
output of the j-th KC node can be defined as h(1)j = g(v̂j)
where g is the ReLU function (Glorot, Bordes, and Ben-
gio 2011) that allows the model to produce sparse hid-
den output. By doing so, the output vector is defined as
h1 = [h

(1)
1 , . . . , h

(1)
B ]⊤.

On the other hand, to generate random Fourier features,
the randomized feature function z(·) (Rahimi and Recht
2007; Sutherland and Schneider 2015) was used so the in-
puts are projected as follows:

h2 = z(v) = (
√
2/
√
B) cos(R⊤v + b) (5)

where R ∼ Nmn×B(0, 1) and b ∼ UB(0, 2π), which is
Gaussian kernel approximation. Consequently, the output
vector h2 can be considered as another latent representation
of relationship among input.

Finally, using the above two latent representations, the
RWFNs can be defined as a function from Rmn to [0, 1]:

GRWFN(P )(v) = σ
(
β⊤h

)
= σ

(
β⊤f

([
h1

h2

]))
(6)

where h is the final hidden representation obtained by
applying (for numerical stabilization) the hyperbolic tan-
gent (tanh) function f to the concatenation of h1 and h2,
and σ is the sigmoidal logistic function. Because RWFN re-
quires to adapt only β ∈ R2B , it possess a faster learning
process with fewer parameters compared to LTNs. Fig. 1
shows a visualization of the model structure.

RWFNs with Weight Sharing
Because of the above characteristics of the model, the ran-
domized encoder of an RWFN can serve as a shared re-
source for multiple relatively simple (i.e., linear) down-
stream decoders trained for different classifiers. Hong and



Pavlic (2021) called this property as weight sharing. Fig. 2
shows a visualization of the structure of RWFN applied with
weight sharing to the learning of i different classifiers. Hong
and Pavlic show that RWFN with weight sharing allows
RWFN to drastically reduce space complexity because the
most costly components of the RWFN (i.e., the input and
hidden layers) can be reused across multiple classifiers in-
stead of being implemented (and trained) in parallel.

RWFN for Visual Relationship Detection
Donadello and Serafini (2019) defined how to encode the
problem of detecting visual relationship with LTNs. Because
RWFNs can be readily applied using the same problem en-
codings of LTNs, we re-use the formalization of the problem
from Donadello and Serafini for visual relationship detection
in RWFNs. In this section, we briefly introduce that formal-
ization.

The Knowledge base KSII. Given a dataset of images,
let B(p) be the corresponding set of bounding boxes of an
image p in the dataset. Each bounding box in B(p) has
its annotations about a set of labels that describe the con-
tained physical object, and pairs of bounding boxes have
their annotations about the semantic relations between the
contained physical objects. Let ΣSII = ⟨P, C⟩ be the signa-
ture where P = P1 ∪ P2 is the set of predicates. P1 is a
set of unary predicates indicating the object types or seman-
tic classes for the label of bounding boxes. P2 includes bi-
nary predicates for the label of pairs of bounding boxes. Let
C ≜

⋃
pB(p) be the set of constants of all bounding boxes

in the given dataset. A grounded theory can be defined as
TSII ≜ ⟨KSII, ĜSII⟩.

The knowledge base KSII is for encoding the bounding
box annotations in the dataset and some background knowl-
edge about the domain so that it contains positive and nega-
tive examples (used for learning the grounding of the pred-
icates in P) and the background knowledge. The positive
examples for a semantic class C are the atomic formulas
C(b) for every bounding box b labelled with class C. Re-
garding the negative examples, for a semantic class C, we
consider the atomic formulas ¬C(b) for every bounding box
b not labelled with C. Regarding the background knowl-
edge, Donadello and Serafini (2019) manually defined the
logical constraints, such as negative domain and range con-
straints, by referring to on-line linguistic resources such
as FrameNet (Baker, Fillmore, and Lowe 1998) and Verb-
Net (Schuler 2005) that provide the range and domain of
binary relations through the so-called frames data structure.

Definition of New Features. On top of the features for
grounding constants from Donadello, Serafini, and Garcez
(2017), an extra set of features are added for representing
constants in the knowledge base, called joint features. Joint
features include quantities such as: the inclusion ration of
two bounding boxes, the area of intersection of two bound-
ing boxes, the Euclidean distance between the centroids of
two bounding boxes, and others that allow for better captur-
ing the geometric interactions between two bounding boxes.

New Optimization for Knowledge Base. Equation (2)
defines how to learn the LTN parameters by maximizing
the grounding of the conjunctions of the formulas in the
knowledge base. However, there is a need to mitigate the is-
sues that many t-norms have, such as leading the knowledge
base satisfiability to zero, getting stuck in local optima, and
underflow problems (Donadello and Serafini 2019). Conse-
quently, a mean operator was added to Eq. (2) to return a
global satisfiability of the knowledge base KSII as follows:

Θ∗ = argmax
Θ

meanp(ĜSII(ϕ|Θ)|ϕ ∈ KSII)− λ∥Θ∥22 (7)

with p ∈ Z.

Post Processing. After a grounded theory TSII is learned,
the set of groundings ĜSII(r(b, b

′))r∈P2
with a new pair of

bounding boxes ⟨b, b′⟩ are computed. Then, every resulting
grounding ĜSII(r(b, b

′)) is multiplied with the frequency of
the predicate in the training set. Furthermore, equivalences
between the binary predicates are exploited in order to nor-
malize the groundings.

Experiments
In our experiments1, we use the Visual Relationship
Dataset (VRD) (Lu et al. 2016), including 4000 images for
the training set and 1000 for the testing set annotated with vi-
sual relationships. Bounding boxes are annotated with labels
containing 100 unary predicates. These labels are for indi-
cating animals, vehicles, clothes, and generic objects. Pairs
of bounding boxes are annotated with labels including 70 bi-
nary predicates. These labels represent actions, prepositions,
spatial relations, comparatives, or preposition phrases. The
dataset contains 37993 instances of visual relationships and
6672 types of relationships. 1877 relationships occur only
in the test set and are used to evaluate the zero-shot learning
scenario.

Methods
VRD Tasks. The performances of both RWFNs and LTNs
are tested on the following VRD standard tasks.
• Phrase detection. This task predicts a correct triple
⟨s, p, o⟩ and its location in a single bounding box that
contains both the subject and the object. If the labels
are the same as the ground truth triple and the predicted
bounding box has at least 50% overlap with a corre-
sponding bounding box in the ground truth, the triple is a
true positive. The ground truth bounding box means the
union of the ground truth bounding boxes of the subject
and the object.

• Relationship detection. This task predicts a correct
triple/relationship and the bounding boxes that include
the subject and the object of their relationship. If both
bounding boxes overlap at least 50% of the correspond-
ing ones in the ground truth, the triple is a true positive.
In addition, the labels for the predicted triple must match
with the corresponding ones in the ground truth.
1All the source codes, models, and figures are available

on https://github.com/PavlicLab/AAAI2022-CLeaR2022-Visual
Relationship Detection-RWFN.



• Predicate detection. For a given set of bounding boxes,
this task predicts a set of correct binary predicates be-
tween them. Because the prediction does not depend on
the performance of an object detector, the performances
of LTNs/RWFNs are determined by their abilities to pre-
dict binary predicates, which is our interest.

Comparison of RWFNs and LTNs. The task is to com-
plete the partial knowledge in the dataset by finding a
grounding G∗

SII. Therefore, for LTNs, it extends ĜLTN using
Eq. (1) such that:

G∗
SII(C(b)) → [0, 1] and G∗

SII(R(b1, b2)) → [0, 1]

for every unary predicate C and binary predicate R and every
(pair of) bounding box in the dataset. Because for RWFNs
ĜRWFN using Eq. (6) is instead used for grounding unary and
binary predicates, we can directly compare the performances
between LTNs and RWFNs.

Donadello and Serafini (2019) test the performance of
LTNs with two grounded theories, LT N expl and LT N prior.
The first one indicates LT N expl = ⟨Kexpl, ĜLTN⟩ where
Kexpl includes only positive and negative examples for
predicates predictions. The second grounded theory means
LT N prior = ⟨Kprior, ĜLTN⟩ where Kprior contains exam-
ples as well as logical constraints. Therefore, we can check
the contribution of using logical constraints. By referring
to the above setting of LTNs, the performance of RWFNs
can also be evaluated by creating two grounded theo-
ries, RWFN expl and RWFN prior. Furthermore, we tested
RWFNs with weight sharing by building two grounded the-
ories, RWFNWS

expl and RWFNWS
prior. In the setting for

RWFNs, all predicates have their own encoders whereas in
the setting for RWFNs with weight sharing, we created one
predefined encoder for unary predicate and another for bi-
nary predicate in advance, and those encoders were used
as the shared encoders for grounding predicates. Thus, we
can readily confirm how the shareable encoders contribute
to achieve the performance.

We first train all the models – RWFNs, RWFNs with
weight sharing, and LTNs – on the VRD training set, and
then we test them on the VRD test set. All the models have
been evaluated their abilities to generalize to the 1877 rela-
tionships never seen in the training phase.

Evaluation Metric. Following Donadello and Serafini
(2019), for each image in the test set, we use the grounded
theories for each model to compute the ranked set of ground-
ings with a pair of bounding boxes computed with an object
detector (the R-CNN model from Lu et al. (2016)) or taken
from the ground truth (for the predicate detection). We then
use the recall@100/50 (Lu et al. 2016) as evaluation metrics
because the annotation is not complete, and precision would
wrongly penalize true positives. In addition, every pair of
bounding boxes with all the binary predicates are classified
as many predicates can occur between two objects, and it
is not always possible to define a preference between predi-
cates. This choice is counterbalanced by predicting the cor-
rect relationships within the top 100 and 50 positions.

Hyperparameter Setting. For hyperparameter setting of
LTNs, we followed the setting of Donadello and Serafini
(2019). In equation (7), p was set to −1 (harmonic mean).
The chosen t-norm is the Lukasiewicz one. The number of
tensor layers in Eq. (1) is set as k = 5 and λ = 10−10

in Eq. (7). In order to mimic the results from Donadello
and Serafini, the optimization is performed separately on
LT N expl and LT N prior with 10000 training epochs of the
RMSProp optimizer (Tieleman and Hinton 2012) in Tensor-
Flow (Abadi et al. 2016).

For hyperparameter setting of RWFNs and RWFNs with
weight sharing, the value of p for harmonic mean, t-norm,
λ and the number of training epochs are set as above. In
Eq. (6), the size of B is set to 500 for unary predicate
whereas it is set to 1000 for binary predicate. In contrast
with Hong and Pavlic (2021), in order to train RWFNs
and RWFNs with weight sharing, we use the Follow-The-
Regularized-Leader (FTRL) optimizer (McMahan et al.
2013) instead of the RMSProp optimizer. It has been known
that the FTRL optimizer is suitable for shallow models with
large and sparse feature spaces, and this is properly applica-
ble to optimize RWFNs because the feature representations
in RWFNs can be sparse due to the insect-brain–inspired
representation. For the hyperparameters of the FTRL opti-
mizer, the learning rate is set to 1, and g, λ1 and λ2 are set
to the standard values that TensorFlow provides, where are
−0.5, 0, and 0, respectively. See the Appendix for additional
experimental details.

Results
Table 1 shows the results of comparison between LTNs,
RWFNs, and RWFNs with weight sharing. We performed
the training 5 times obtaining 5 models for (·)expl and (·)prior,
respectively. For each task and each grounded theory, we re-
port 95% confidence intervals (CIs) on the means for the
sample results given by these models.

Most differences in performance between RWFN variants
(with and without weight sharing) and LTNs are marginal.
Across all tasks, whenever LTNs were shown to have higher
sample mean performance, LTN CIs overlapped with CIs of
both RWFNs variants, indicating no clear significant differ-
ence in performance. For predicate detection, RWFNs vari-
ants did show significantly better performance than LTNs.
In particular, without the use of logical constraints, RWFNs
and RWFNs with weight sharing achieved better perfor-
mance for detecting predicates than LTNs with logical con-
straints. This indicates the randomized projections of inputs
in RWFNs effectively capture and learn the visual relation-
ships among inputs. Furthermore, RWFNs with weight shar-
ing do not suffer a deterioriation in performance. In fact,
making use logical constraints in RWFNs with weight shar-
ing may be more beneficial than in RWFNs because the gap
of the performance of the model with and without logical
constraints is larger than the original RWFNs.

Relative Complexity of RWFNs and LTNs. We compare
the number of parameters for grounding a unary predicate
for each model to comprehend the relative performance of
RWFNs and LTNs. The input dimension in the dataset for



Task: Phrase Det. Phrase Det. Relation Det. Relation Det. Predicate Det. Predicate Det.

Evaluation: R@100 R@50 R@100 R@50 R@100 R@50

LT N expl 14.99 ± 1.2 10.52 ± 0.59 13.42 ± 1.1 9.39 ± 0.39 68.59 ± 0.93 50.61 ± 1.7
LT N prior 16.15 ± 0.75 11.82 ± 0.37 14.81 ± 0.81 10.69 ± 0.32 74.66 ± 1.6 54.9 ± 2.1

RWFN expl 15.48 ± 0.51 10.7 ± 0.74 14.13 ± 0.51 9.61 ± 0.61 76.97 ± 0.08 56.17 ± 0.61
RWFN prior 15.93 ± 0.39 10.78 ± 0.81 14.44 ± 0.47 9.89 ± 0.65 77.3 ± 0.6 57.01 ± 1.3

RWFNWS
expl 15.19 ± 0.31 10.45 ± 0.84 14.03 ± 0.36 9.49 ± 0.99 77.11 ± 1.4 55.62 ± 0.91

RWFNWS
prior 15.67 ± 0.75 11.1 ± 0.99 14.4 ± 0.49 10.08 ± 0.85 77.33 ± 0.32 56.89 ± 0.91

Table 1: Results on Visual Relationship Dataset (R@N: Recall at N) for LTN, RWFN, and RWFN with weight sharing. 95%
CIs (i.e., MEAN ± 2× SD) shown for all models. Best-mean CIs shown in bold; CIs that overlap with best-mean CI in italic.

both RWFNs and LTNs is n = 105 for grounding a unary
predicate. As shown in Eq. (1), the parameters to learn in
LTNs are {uP ∈ Rk,W

[1:k]
P ∈ Rn×n×k, VP ∈ Rk×n, bP ∈

Rk}, where k = 5 in the setting of the LTNs. Therefore,
the number of parameters in LTNs is (n2 + n + 2) · k =
(1052 +105+ 2) · 5 = 55660. On the other hand, in Eq. (4)
and Eq. (5), the number of parameters in RWFNs are {W ∈
Rn×B ,R ∈ Rn×B ,b ∈ RB ,β ∈ R2B}, where B = 500 in
the setting of the RWFNs. Thus, the number of parameters
in RWFNs is (2n+ 3) ·B = (2 · 105 + 3) · 500 = 106500.
Although RWFNs require more space complexity compared
to LTNs, the parameters {W,R,b} in RWFNs are randomly
drawn weights. Thus, it is necessary to compare the number
of learnable parameters across the two models as well.

All of the above parameters of LTNs have to be learnable
whereas the parameters to learn in RWFNs for object type
classification are only β ∈ R2B . Thus, the number of learn-
able parameters is 1000, which is much smaller than that of
LTNs. It means that the ratio of the two numbers of parame-
ters to learn is about 1000 : 55660 ≈ 1 : 56. Consequently,
non-learnable parameters in RWFNs can have significant
potential to represent the latent relationship among objects
and efficiently extract relational knowledge even though us-
ing fewer adaptable parameters. Furthermore, the number of
LTN parameters heavily depends on the number of features,
whereas RWFNs are independent of features.

Space Complexity of RWFNs with Weight Sharing.
The unique property of RWFNs, weight sharing, allows re-
ducing space complexity greatly when multiple classifiers
are used simultaneously. By referring to the depicted case
of learning i classifiers in Fig. 2, we compute the space
complexity for RWFNs with and without weight sharing
for the detection of unary predicates in the tasks. Hong and
Pavlic (2021) show that the space complexity for the origi-
nal RWFNs is (2 ·n+3) ·B · i = (2 · 105+3) · 500 · 100 =
1.065×107 because the number of classifiers i is 100. How-
ever, with weight sharing, RWFNs can achieve much better
space complexity, which is 2 ·n ·B+B+2 ·B · i = 2 ·105 ·
500 + 500 + 2 · 500 · 100 = 205500 and this complexity is
much smaller than one of the original RWFNs. Furthermore,
because the LTNs require 55660 parameters for grounding
a single unary predicate, the space complexity of LTNs for

grounding all unary predicates is 55660 × 100 = 5566000,
which is much larger than the space complexity of RWFNs
with weight sharing. It indicates that the ratio of the two
space complexities between RWFNs with weight sharing
and LTNs is 205500 : 5566000 ≈ 1 : 27 and that the weight
sharing property allows RWFNs to be more cost efficient
and economical than LTNs even though the performance of
RWFNs with weight sharing for predicate detection is better
than LTNs.

Conclusion
We showed that Randomly Weighted Feature Networks can
be extended to a zero-shot approach that learns the similarity
with other seen triples in the presence of logical background
knowledge. The results on the Visual Relationship Dataset
show that RWFNs outperform LTNs with far fewer param-
eters to train. The proposed method addresses not only an
emerging problem in AI datasets due to the high annota-
tion effort and their consequent incompleteness but also a
critical problem in the neuro-symbolic domain – the reduc-
tion of the number of training parameters – which could al-
low for online training of the neuro-symbolic models with
real-time performance possible in the future. In addition, the
combination of bio-inspired neural models with logical prior
knowledge shows how biologically inspired neural networks
plus knowledge can learn with few parameters with respect
to artificial neural networks and can be applied to even more
complex computer vision tasks.

The proposed method can be improved in various ways.
For one, RWFNs can be employed in tasks that should
extract structural knowledge from images as well as text,
such as visual question answering using Visual Genome
dataset (Krishna et al. 2016). Moreover, other perspectives
from neuroscience may lead to biologically plausible learn-
ing algorithms that might apply to further optimizations of
RWFNs (Krotov and Hopfield 2019; Kasai et al. 2021; Kap-
pel et al. 2018). Furthermore, RWFNs may be able to in-
corporate a recurrent component for representing dynamic
features of time-series data, similar to reservoir comput-
ing (Ferreira and Ludermir 2009; Sun et al. 2017; Wang,
Jin, and Hao 2019); this approach may allow for extracting
time-varying relational knowledge necessary for developing
a framework for data-driven reasoning over temporal logic.



Appendix: Details of Experiments
Hyperparameter Searching for RWFNs We used the
Optuna framework (Akiba et al. 2019) with 500 iterations in
the range of [64, 1024] to determine the best number of hid-
den nodes β in Eq. (6). Because in the Optuna framework,
we can formalize hyperparameter optimization as the max-
imization or minimization process of an objective function
that takes a set of hyperparameters as input and returns a val-
idation score, we can easily construct the parameter search
space dynamically. In addition, the framework provides ef-
ficient sampling methods, such as relational sampling that
exploits the correlations among the parameters.

Hardware specification of the server. The hardware
specification of the server that we used to experiment is as
follows:

• CPU: Intel® CoreTM i7-6950X CPU @ 3.00GHz (up to
3.50 GHz)

• RAM: 128 GB (DDR4 2400MHz)
• GPU: NVIDIA GeForce Titan Xp GP102 (Pascal ar-

chitecture, 3840 CUDA Cores @ 1.6 GHz, 384 bit bus
width, 12 GB GDDR G5X memory)
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