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Abstract

We propose a conceptually simple and lightweight framework for improving the
robustness of vision models through the combination of knowledge distillation
and data augmentation. We address the conjecture that larger models do not
make for better teachers by showing strong gains in out-of-distribution robustness
when distilling from pretrained foundation models. Following this finding, we
propose Discrete Adversarial Distillation (DAD), which leverages a robust teacher
to generate adversarial examples and a VQGAN to discretize them, creating more
informative samples than standard data augmentation techniques. We provide a
theoretical framework for the use of a robust teacher in the knowledge distillation
with data augmentation setting and demonstrate strong gains in out-of-distribution
robustness and clean accuracy across different student architectures. Notably, our
method adds minor computational overhead compared to similar techniques and
can be easily combined with other data augmentations for further improvements.

1 Introduction

One of the goals of machine learning is to develop systems that can generalize effectively across
diverse populations and environments, much like human intelligence. Despite the impressive ad-
vancements in neural networks that surpass human performance in various tasks in computer vision,
their generalization capabilities remain inadequate when faced with out-of-distribution data, such as
adversarial perturbations [60], unusual colors and textures [17, 58, 68], or challenging contexts [29].

One major line of research addresses this issue with more sophisticated training strategies [37],
including adversarial training [39], data augmentation [18, 28, 79], or other regularizations [35, 46,
61, 73, 69]. In this paper, we focus on adversarial-training-based data augmentation [75], which can
enhance the quantity and diversity of training data. In addition, theoretical work suggests achieving
high robustness requires significantly more samples than clean accuracy [56]. This has also been
shown empirically [3, 24], most recently with transformers [14] which achieve robustness on a variety
of computer vision tasks. In addition to weak inductive bias, powerful model capacity, and grounding
with language, these models are often trained with large-scale datasets [12, 14, 48, 76], up to billions
of images [57] that encompass many real-world distribution shifts. As a result, these foundation
models [1] exhibit remarkable zero-shot generalization, especially on natural distribution shifts such
as artistic renderings, but require large amounts of compute and heavily parameterized models.

In this paper, we aim to connect these two lines of work. We investigate if it is possible to improve
robustness by introducing a foundation model as a teacher to distill robust representations and help
generate a diverse data augmentation. We conduct our analysis without requiring the teacher’s large-
scale dataset and focus on out-of-distribution robustness by introducing an image-to-image generative
model to discretize optimized perturbations. We aim to leverage in-distribution data to a greater
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extent and conduct our investigation with CLIP [48]. This marks a departure from existing work
in knowledge distillation (KD), which tends to focus on smaller models and datasets. In fact, prior
work [8] has called into question the utility of distilling from stronger teachers over training from
scratch altogether. However, we find that although this model capacity gap can impair improvements
in clean accuracy, distilling from robust teachers improves out-of-distribution robustness, even
when leveraging only in-distribution data. Surprisingly, distilling on clean ImageNet images from
CLIP with the original KD objective [32] results in a more robust ResNet34 than training with
state-of-the-art regularization methods, despite a parameter difference of ∼13.7x.

However, it is currently unclear in what settings a teacher’s robustness can reliably transfer to a
student and how to best combine distillation with data augmentation. We aim to answer this question
both theoretically and empirically. We view adversarial training and data augmentation in the lens
of domain generalization and prove that the diversity of the augmented samples leads to improved
robustness. Our findings further suggest that foundation models make for strong teachers due to their
diverse training distribution.

Building upon these findings, we introduce discrete adversarial distillation (DAD), a KD framework
that further distills the robustness of a teacher model by leveraging the adversarial examples of the
teacher discretized by a VQGAN [15] as data augmentation. Notably, these samples are generated in
an offline fashion, adding minor computational overhead compared to standard adversarial training.
Intuitively, a foundation model will produce more diverse adversarial samples than a teacher trained on
the same distribution, and we provide a theoretical framework using Wasserstein distance to formalize
this proposition. Empirically, when distilling CLIP to a ViT-B, we achieve robust accuracy of 46.1%
on ImageNet-Sketch [68] and 65.1% on ImageNet-Rendition [26], improving on the state of the art
by 17.8% and 11.3% respectively. DAD can also be freely combined with existing regularization
techniques, resulting in improvements in clean accuracy. In summary, our contributions are 1

1. Establishing the KD for out-of-distribution robustness setting and a proposing a novel KD
objective based on data augmentation

2. Providing a theoretical framework in KD for the choice of a teacher based on the diversity
of the data augmentation

3. Proposing a novel data augmentation DAD that outperforms both adversarial training and
distillation techniques on natural distribution shifts

2 Related Work

We define out-of-distribution accuracy/robustness as a model’s performance on non-adversarial
distribution shifts, adversarial accuracy/robustness to the case of robustness of adversarial examples,
and clean accuracy as evaluation on a dataset drawn from the same distribution.

Data augmentation. Data augmentation is frequently used as regularization [75] by expanding the
quantity and diversity of training data. This is often achieved through simple transformations such as
rotations or image crops or more advanced techniques such as image mixing [79, 28], reinforcement
learning [10, 81] or adversarial training [21, 31, 41] to find the optimal transformation.

Adversarial training (AT) was initially introduced to enhance model robustness by training with
adversarial examples [39]. Although effective for defending against adversarial attacks, several
works [64, 78, 70] have indicated a trade-off between adversarial clean accuracy in AT, limiting
its effectiveness as a general data augmentation. Considerable efforts [47, 49] have been made to
minimize this trade-off and directly use adversarial examples as data augmentation [50, 74], but there
is still a considerable gap in out-of-distribution performance compared to foundation models like
CLIP [48].

One line of work has recently been adapted to this issue. The model-based robustness paradigm
[4, 52] leverages the disentangled latent representations of pretrained generative models to improve or
validate out-of-distribution robustness [80], and can be used to improve adversarial examples. Most
similar to our work is [23, 2, 41], which use a GAN or VAE [15, 34, 67] to discretize or discover
adversarial examples. However, we leverage both a pretrained discretizer and foundation model, and
adapt the AT objective to a knowledge distillation setting.

1code at https://github.com/andyz245/DiscreteAdversarialDistillation
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Knowledge distillation. Knowledge Distillation (KD) is a technique for training a student model with
guidance from a stronger teacher model, widely applied in vision and language tasks [6, 32, 55, 71].
Most works focus on improving the KD objective with different knowledge transfer objectives, such
as feature distance [7, 54, 63], attention [77], distribution [45], activation boundary [30], and sample
distance [38, 44, 66]. [8] raises the model capacity gap issue, where training suffers when the size
of the student and teacher models differ, but we find that there is still benefit to distilling from a
robust teacher. Another line of work, defensive distillation, aims to distill adversarial robustness
from an adversarially trained teacher [20, 82, 83]. We have a similar goal, but for out-of-distribution
robustness and propose a loss objective not previously explored in prior works.

3 Method

We consider a standard dataset {(x, y)}Nn=1 ∼ PN where instances and their labels (xn, yn) are
drawn from a distribution P and are used for training the student model θ. We also consider a
discretizer, Q, and a teacher model ϕ and we use ϕ(x) to denote the output of a model given the
sample x. a denotes a function that applies a data augmentation on x, also known as a transformation
function. Additionally, a ∈ A, the class of all such functions.

3.1 Setup

Invariance is a desirable property where the model will have the same representation of an input after
a transformation is applied. A model, θ is said to be invariant if θ(x) = θ(x′) for all x ∈ U , where
U is the set of all images that can be obtained by a transformation of x by a ∈ A, which includes
the identity transformation. a ranges from worst-case imperceivable perturbations to real-world
distribution shifts like artistic sketches [68]. In this paper, we focus on the latter, denoted as â and Â.
We can consider â to represent an individual distribution P and Â to be drawn from the distribution
of distributions P̂ . Our ultimate goal is to train θ to be invariant to transformations in Â. A model
that maintains the same representation under transformations or distribution shifts of x is said to be
robust, which we define as the worst-case expected risk where

rworst(P, ϵ) = max
P ′:w(P ′,P )≤ϵ

E(x,y)∼P ′ l(θ(x), y), (1)

where l is the loss function and r depends on an anchor distribution P , and ϵ, the maximum deviation
allowed under the Wasserstein’s distance metric. Similarly, we can define the expected robustness
and expected risk in terms of an arbitrary distribution, including the training distribution.

r(P, ϵ) = EP ′∼P̂ :w(P ′,P )≤ϵE(x,y)∼P ′ l(θ(x), y), (2)

r(P ) = E(x,y)∼P l(θ(x), y). (3)
The robustness of the resulting model is highly dependent on x′, P , and the choice of data aug-
mentation. It is also susceptible to adversarial attacks, where x′ is a worst-case perturbation of x.
Adversarial robustness can be improved with adversarial training, which couples the outer minimiza-
tion objective from (3) with an inner maximization objective in the following

min E(x,y)∼P [l(θ(x), y) + max l(θ(x′), y)], (4)

where x′ = x + ϵ, ϵ is the perturbation, and l is the cross-entropy loss. This achieves adversarial
robustness, but cannot generalize well to real-world domain shifts in Â. To address this, we consider a
generative model, Q, trained on P and can model Â. Passing an input through Q in the maximization
objective applies a worst-case transformation from Â. This modifies (4) to minimize the empirical
semantic adversarial risk,

min E(x,y)∼P [l(θ(x), y) + max l(θ(Q(x′)), y)]. (5)

3.2 Distillation from a robust teacher

Next, we consider a setting where we also have access to a pretrained ϕ invariant to distribution shifts
in Â. This enables us to leverage knowledge distillation (KD). This modifies (3) in the following

min E(x,y)∼P [l1(θ(x), y) + l2(θ(x), ϕ(x))], (6)
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Figure 1: The overall framework of discrete adversarial distillation (DAD). We leverage a foundation
model to generate and distill adversarial examples after discretization by a VQGAN.

where l1 is the classification loss, the cross-entropy loss, and l2 is a distance loss between θ(x) and
ϕ(x), the KL divergence. (6) can be approximated by the empirical risk where

min l1(θ(x), y) + l2(θ(x), ϕ(x)). (7)

Following theoretical work [43], distilling from a robust teacher with l2 improves generalization
due to minimizing the population risk, which has lower variance. In this formulation, the output of
the teacher acts as a more robust supervisory signal than the label, encompassing the probability
distribution of classes. This allows the student to learn the teacher representations on in-distribution
data, but our experiments show that this is inadequate for out-of-distribution robustness, even when
using a robust teacher. To address this, we combine (5) and (7) to also distill the representations of ϕ
on augmented samples,

min l1(θ(x), y) + l2(θ(x), ϕ(x)) + l2(θ(Q(x′)), ϕ(Q(x′))). (8)

The teacher is more robust, and is able to "solve" the perturbation for the student through distillation.
Like [41] and [72], we train our models with both the original and augmented samples, expanding
the size of the dataset and maintaining the original information path for x. We do not use the cross-
entropy loss or y labels for x′, as these labels may be wrong and could limit the expressiveness of the
data augmentation. This allows us to use adversarial samples of the teacher in a novel maximization
objective and obtain stronger empirical results.

3.3 Discrete Adversarial Distillation

The goal of our method, discrete adversarial distillation (DAD), is to distill from a large-scale vision-
language model using only ImageNet [13] data. In the practical setting, we use approximations of
an ideal discretizer and robust teacher. For ϕ we use CLIP [48], which was trained on a large-scale
dataset and achieves impressive zero-shot generalization on a variety of natural distribution shifts.

For Q, we use a pretrained VQGAN [15], following [41], which also finds minimal improvements
with a stronger discretizer. The VQGAN consists of an encoder, decoder, and quantization, where
the encoder learns a latent representation of the input x, the quantization maps the representation
to a visual codebook entry, and the decoder reconstructs x. We denote this process as Q(x). In the
adversarial training setting, Q discretizes x, a worst-case perturbation ϵ is added by approximating
the maximization objective to obtain x′, and the resulting image is then discretized by Q again. To
improve the transfer of robustness from the teacher, we hypothesize a better augmentation is more
informative and exposes more teacher knowledge. We make this rigorous in the following section.

To generate these examples, we adopt adversarial training and modify the maximization objective
of (5) to use the worst-case transformations of the teacher. We hypothesize a teacher trained on
more diverse data will have more informative adversarial examples. To ensure the correctness of the
perturbation, we only use samples that are still classified correctly by the teacher after generation. We
use the teacher as an "oracle", allowing it to distill correct representations of the transformed image.
Additionally, we generate these samples in an offline manner asynchronously from the pretrained
teacher and add them to the original dataset during the training of the student. These examples
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only need to be generated once for each teacher and be reused as additional data. This adds minor
additional training costs compared to online adversarial training or DAT [41], which has 11x and 3.5x
the cost of standard training, respectively [41]. Our full objective is described as,

min l1(θ(x), y) + l2(θ(x), ϕ(x)) + l2(θ(Q(x′)), ϕ(Q(x′))). (9)

where x′ = max
||x′−x||p≤ϵ

l1(ϕ(x), y), ϕ(Q(x′)) = y.

3.4 Theoretical Investigation

We aim to investigate how to best distill robustness from a robust teacher trained on a large-scale
dataset. We find that robust performance can be connected to the distance between the training and
test distributions. A data augmentation can represent a new distribution, and the robustness of a model
trained on this distribution can be quantified by its diversity and closeness to the test distributions.
Although its representation on in-distribution samples can distill a degree of robustness, we show that
due to being closer to the test distribution, it is more effective to leverage the discretized adversarial
examples of the teacher than the student as our data augmentation of choice.

We begin with some assumptions.

Assumption 1. For an arbitrary data pair (x, y), transformations in Â do not alter the semantics
of the data. We can also say we consider an ideal labeling function where any (x, y) pair can be
correctly mapped, y = f(x)

Assumption 2. Any arbitrary distributions P and P ′ we compare possess smooth probability densities
controlled by two constants c and α depending on the smoothness of P and P ′ where cw(P, P ′)α

and c > 0 and is only dependent on α.

Assumption 3. For function γ(|Θ|, n, β) parameterized by hypothesis space |Θ|, number of samples
n, and the probability when the bound holds β, if the samples are i.i.d, γ(|Θ|, n, β) = 2R(L) +√
(log 1/β)/2n, where R(L) stands for Rademacher complexity and L = {lθ | θ ∈ Θ}, where lθ is

the loss function corresponding to θ. Additionally, if Θ is finite, l(·, ·) is a zero-one loss, and samples
are i.i.d, then γ(|Θ|, n, β) =

√
(log(|Θ|) + log(1/β))/2n

Lemma 3.1. Given Assumptions 1 and 2 and variational divergence tv, for two arbitrary distributions
P and P ′ with corresponding density functions δ and δ′, r(P ′) ≤ r(P ) + w(P ′, P ).

Lemma 3.2. Given Assumption 3, Lemma 3.1, and probability at least 1− Γ,

r
(
P ′) ≤ r

(
(X,Y )P

)
+ w(P ′, P ) + ξ(n(X,Y )P

,Θ,Γ)

where n(X,Y )P
denotes the number of sample sizes in the finite dataset (X,Y )P , and ξ is a vanilla

term that connects n(X,Y )P
and Θ with the generalization error bound.

Proof. We apply conventional generalization analysis through uniform convergence to Lemma 3.1.
We leave the full proof of Lemma 3.1 in Sec. E in the Appendix.

This results in an intuitive conclusion: empirical robustness performances depends on the divergence
between the training and testing distributions, as well as two additional elements. The first is the
empirical error term on the training distribution, which can be quantified, and the second is a technical
term influenced by the sample size and hypothesis space. The exact manner in which ξ depends on
these parameters is contingent on the particular convergence analysis employed.

Therefore, the decisive factor for robustness is the degree of deviation between the training and testing
distributions. Therefore, using diverse data augmentations close to the testing distribution will lead to
the largest gains in robustness. This intuitive understanding suggests that training with distributions
generated from the teacher will be more advantageous, as the teacher, having been trained on a large
dataset, encapsulates more diverse distributions.

There findings are applicable to any arbitrary distributions P ∼ P̂ . Nevertheless, this doesn’t
inherently encapsulate the characteristics of foundation models that trained on data from across the
internet, composed of a variety of semantic distributions from Â.
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Therefore, we use P ∈ Â to denote a set of m distributions, i.e., P = {P1, P2, . . . , Pm}, and we
consider a pretrained foundation model trained with such a set of distributions. To facilitate forthcom-
ing discussions, we extend the notation of w to encompass sets, defining w(P ′,P) as the average
divergence between distributions within the set. Thus, w(P ′,P) :=

∑m
i w(P ′, Pi)/m, ∀Pi ∈ P.

Lemma 3.3. Given a distribution P , we generate a new distribution P ∗ ∈ Â using the discretized
worst-case adversarial samples of a model θ. Training θ with adversarial training is equivalent to
training θ with empirical risk minimzation on P ∗ where w(P, P ∗) ≤ ϵ.

We leave the full proof of Lemma 3.3 in Sec. E of the Appendix. Finally, let’s denote the model
ϕ trained over distribution P as ϕ(P ) and the adversarial data augmentation process that results in
a new semantic data distribution as D. We aim to compare w(D(ϕ(P)), P ′) and w(D(ϕ(P )), P ′).
In this context, P ′ is any arbitrary testing distribution, P is a specific training distribution, and P
represents the set of distributions used for training foundation models.

Lemma 3.4. Assuming P̂ is continuous and has a finite expected value, for two sets of distributions
P1 and P2, assuming there is at least one distribution in the intersection of P1 and P2, for a fixed
testing distribution P ′, we have

EP̂

[∣∣w(D(ϕ(P1)), P
′)− w(D(ϕ(P2)), P

′)
∣∣] ≤ 2EP̂

[
sup
P∈P1

w(P, P ′) + sup
P∈P2

w(P, P ′)
]

We leave the full proof of Lemma 3.4 in Sec. E of the Appendix. Our findings provide a comparison
of the differences in the training mechanisms for various models ϕ, each trained with distinct data
sets (P1 and P2) and subjected to adversarial training. The methodology can easily be simplified to
compare the bounded results between adversarial training based on the teacher model and standalone
adversarial training by setting one of the training datasets to consist of a single distribution.

In the scope of our investigation, we compare DAD and discrete adversarial training based on the
teacher model, referred to as P1, with DAT [41] and the traditional approach of adversarial training
based on the student model, referred to as P2. Our results suggest two key implications:

1. Given a fixed P2, a more diverse P1 potentially results in greater variations in performance.
We show visualizations that support this in Sec. D in the Appendix. In other words, the
use of larger, more diverse pretrained datasets for the teacher model or more diverse data
augmentations for the student model increases the likelihood of creating a robust final model.
This is also been shown empiricially in prior work investigating the source of robustness in
foundation models [16, 62]. However, in practice, the efficacy of distilling from this teacher
depends on a variety of factors, including student-teacher architecture, training objective,
and student capacity.

2. For a fixed P2, the greater the distance between the testing dataset P ′ and P2, the more
likely it is that the performance gains will be realized by distilling the teacher model trained
on a more extensive set of training data. To put it intuitively, if the testing dataset closely
resembles the training dataset (i.e., w(P, P ′) is small), then adversarial training based on
the teacher model might not yield significant performance improvements. However, if the
testing dataset differs considerably from the training dataset, then adversarial training based
on a teacher model that has been trained on a larger dataset is more likely to yield superior
performance gains. This observation aligns with our empirical results.

4 Experimental Results

4.1 Experimental Setup

Models. We focus primarily on ResNet50 [25] and ViT-B/16 [14]. We distill from a frozen pretrained
CLIP-ViT-L/14 [48], trained on 224 x 224 resolution images with a patch size of 14.

Datasets. We train our models on ImageNet-1K [13]. We use several evaluation datasets. For
in-distribution performance, we evaluate on ImageNet and ImageNet-V2 [51], a replication of
ImageNet’s evaluation set. We focus our study on natural distribution shifts and evaluate on ImageNet-
A [29], a set of adversarially filtered natural images misclassified by a ResNet50, ImageNet-Sketch
[68] which contains artistic sketches of objects, and ImageNet-Rendition [26] which contains abstract
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Table 1: Main results on natural distribution shifts and in-distribution ImageNet. Baseline models are
ViT-B/16 (top half) and ResNet50 (bottom half) trained on 224 x 224 images. The CLIP teacher is
ViT-L/14. DAD variants have the best average performance for both types of distributions.

Method Rendition Sketch A Avg

CLIP [48] 87.7 61.6 64.2 71.2

ViT [14] 27.1 17.3 8.0 17.5
Advprop [74] 43.5 31.7 18.5 31.2
Fast Advprop [42] 41.8 29.4 17.9 29.7
Debiased [36] 40.3 29.4 18.3 29.3
AugReg-ViT [59] 39.5 29.2 19.0 29.2
+ Pyramid AT [31] 47.7 36.8 23.0 35.8
+ DAT [41] 47.3 34.8 30.2 37.4
+ DAD (Ours) 65.1 46.1 31.8 47.7
+ DAT + DAD (Ours) 53.2 39.3 28.2 40.2

ResNet50 [25] 36.1 24.0 0.0 20.0
Advprop [74] 38.8 25.5 4.3 22.9
Pyramid AT [31] 38.9 23.8 3.0 21.9
Debiased [36] 40.8 28.4 3.5 24.2
DAT [41] 42.0 27.3 4.4 24.6
DAD (Ours) 51.6 35.8 7.7 31.7
DAT + DAD (Ours) 47.7 33.3 6.1 29.0

Method ImageNet V2 Avg

CLIP [48] 79.9 72.9 76.4

ViT [14] 72.8 58.7 65.8
Advprop [74] 79.5 68.7 74.1
Fast Advprop [42] 79.0 67.0 73.0
Debiased [36] 79.3 67.6 73.5
AugReg-ViT [59] 79.9 67.9 73.9
+ Pyramid AT [31] 81.7 70.3 76.0
+ DAT [41] 81.5 70.8 76.2
+ DAD (Ours) 79.6 69.9 74.8
+ DAT + DAD (Ours) 81.9 71.7 76.8

ResNet50 [25] 76.1 63.2 69.7
Advprop [74] 77.6 65.5 35.6
Pyramid AT [31] 75.5 62.5 71.6
Debiased [36] 76.9 65.0 71.0
DAT [41] 76.5 65.0 70.8
DAD (Ours) 75.7 65.0 70.4
DAT + DAD (Ours) 77.8 66.0 71.9

or rendered objects. To observe performance on distributions that are out-of-distribution for the CLIP
teacher, we evaluate on synthetic distribution shifts ImageNet-C [27] , which applies corruptions
(snow, blur, noise, etc.) to ImageNet, and Stylized-ImageNet [17], which processes ImageNet with
style transfer from a source image.

4.2 Baselines

DAD consists of both a data augmentation and knowledge distillation objective. We compare to both
types of methods in our experiments.

Common data augmentations. For the simplest baseline, we follow [59] and train with common
data augmentations Mixup [79], which combines images and labels, and Randaugment [11], which
learns a policy over common transformations such as brightness or shear.

DAT. We also compare against the state-of-the-art data augmentation, DAT [41], which uses a
VQGAN [15] to discretize adversarial examples in adversarial training. DAT uses the standard
adversarial training objective 5.

Knowledge distillation. We compare against other logit-based knowledge distillation objectives,
which only distill the output logits of the teacher. We consider standard knowledge distillation 7 and
DIST [33], which aims to address the model capacity gap issue by distilling logit class relationships.
Neither method natively supports distillation on augmented samples, so we also compare to defensive
distillation objectives ARD [20] and RSLAD [83]. ARD modifies 7 to use the KL divergence between
the student logits on the augmented sample with the teacher logits on the normal sample. RSLAD
is an extension of ARD that replaces the cross-entropy terms with a KL divergence loss. For a fair
comparison, we use DAD as the data augmentation.

4.3 Main Experimental Results on ViT-B/16 and ResNet50

ImageNet-1K. Tab. 1 shows results on ImageNet-1K and its distribution shifts. We compare
against ViT-B/16 and ResNet50 models without data augmentation and with the state-of-the-art
data augmentation approaches, PyramidAT [31] and DAT [41]. We combine DAD with the data
augmentations used in AugReg [59], MixUp [79] and RandAugment [11]. We find that DAD has
the best average performance across datasets for both models. For ViT-B we find that DAD has
competitive in-distribution performance, but greatly improves performance on natural distributions.
Compared to Pyramid AT and DAT, DAD also generalizes well to ResNet50. This suggests that the
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Table 2: Main results on synthetic distribution shifts, which is out-of-distribution for the CLIP teacher.
Models are ViT-B/16 (left) and ResNet50 (right) trained on 224 x 224 images. The CLIP teacher is
ViT-L/14. Compared to DAT, DAD tends to perform worse on ViT-B but better on ResNet50.

Method C (↓) Stylized

CLIP [48] 60.2 18.5

ViT [14] 74.0 6.4
Advprop [74] 51.5 19.2
Fast Advprop [42] 53.3 18.4
Debiased [36] 49.8 22.4
AugReg-ViT [59] 54.5 16.6
+ Pyramid AT [31] 45.0 19.1
+ DAT [41] 44.7 23.1
+ DAD 53.2 22.4
+ DAT + DAD 47.5 22.6

Method C (↓) Stylized

ResNet50 [25] 76.7 7.4
Advprop [74] 70.5 8.0
Pyramid AT [31] 76.4 10.4
Debiased [36] 67.6 17.4
DAT [41] 74.2 10.8
DAD 67.4 13.1
DAT + DAD 65.2 14.6

Table 3: Comparison to distillation objectives on ImageNet. We use DAD for the data augmentation
of ARD and RSLAD for a fair comparison. All students are ViT-B/16 trained on 224 x 224 images
and all teachers are CLIP-ViT-L/14. We find that our distillation objective is the best at distilling
out-of-distribution robustness from CLIP.

In-distribution Synthetic Natural

Method ImageNet V2 C (↓) Stylized Rendition Sketch A Avg

KD [32] 78.6 67.2 61.5 16.2 51.5 34.7 16.0 43.2
DIST [33] 76.6 63.9 65.8 12.7 40.8 26.9 11.2 38.0
ARD [20] 80.1 70.3 52.1 22.2 55.6 38.6 27.3 48.9
RSLAD [83] 79.9 69.3 55.6 20.8 55.9 39.8 25.5 47.9
DAD (Ours) 79.6 69.9 53.2 22.4 65.1 46.1 31.8 51.7

DAD data augmentation can be used across student architectures and that due to distillation, DAD is
especially effective when training smaller models.

We also demonstrate DAD can be combined with existing approach DAT for stronger in-distribution
performance. We add our distillation objective to the DAT objective and train the student on both
the teacher’s and its own adversarial samples. However, this comes at the cost of lower performance
on natural distribution shifts, although we do observe that DAD + DAT still outperforms the prior
state-of-the-art on ImageNet-Sketch and ImageNet-Rendition.

Synthetic distribution shifts. We also evaluate our models on synthetic distribution shifts composed
of generated transformations in Tab. 2. Since the diverse training distribution of CLIP is mostly
composed of natural distribution shifts, it has weaker zero-shot generalization to synthetic distribution
shifts, and this performance is inherited in the student model. In fact, zero-shot CLIP is already
outperformed by some compared methods on ImageNet-C, and Stylized-ImageNet. However, for
ResNet50 DAD also has the best ImageNet-C performance, likely due to compared methods being
specialized for certain distribution shifts [36, 74] or architectures [31].

Distillation. In Tab. 3 we compare DAD to knowledge distillation objectives. KD [32] and DIST
[33] are vanilla distillation approaches without data augmentation or AT. ARD [20] and RSLAD [83]
are defensive distillation objectives that use a adversarially robust teacher to encourage invariance
to perturbations. For a fair comparison, we use CLIP-ViT-L/14 as the teacher and discretize the
adversarial examples. We find that our distillation objective outperforms vanilla and defensive
distillation objectives. We note that all methods can transfer robustness to the student, even methods
without data augmentation.

ImageNet-21k. In Tab. 4 we show further gains in robustness from applying DAD to a ViT-B/16
pretrained on ImageNet-21K. We fine-tune this model with our method using only our method.
Despite the baseline model performing worse than the variant trained with AugReg, DAD achieves
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Table 4: Main results from pre-training on ImageNet-21K and fine-tuning on ImageNet-1K. All
columns report top-1 accuracy except ImageNet-C which reports mean Corruption Error (mCE)
where lower is better. All models are ViT-B/16 trained on 224 x 224 images. We find that pretraining
on ImageNet-21K results in larger robustness improvements.

In-distribution Synthetic Natural

Method ImageNet V2 C (↓) Stylized Rendition Sketch A Avg

ViT 77.5 65.7 61.9 17.7 41.5 16.4 23.1 40.0
DAT [41] 83.1 73.2 43.6 24.8 55.2 41.7 36.7 53.0
DAD (Ours) 79.8 70.9 52.0 23.4 72.1 51.2 40.3 55.1

Table 5: Results on other student/teacher architectures, on ImageNet-1K. All experiments use DAD
for the knowledge distillation objective and data augmentation. Using the best CLIP model as the
teacher tends to result in the highest overall performance, but some teachers are better for some shifts.

Student Teacher IM A C (↓) V2 Rendition Sketch Stylized Avg

ViT-B CLIP-RN101 [48] 81.2 24.3 49.6 69.3 48.7 34.5 17.3 46.5
ViT-B CLIP-ViT-L [48] 79.6 31.8 53.2 69.9 65.1 46.1 22.4 51.7

RN50 - 76.1 0 76.7 63.2 36.1 24.0 7.4 32.9
RN50 ViT-B + DAT [41] 80.4 10.1 65.6 68.8 40.4 29.6 8.5 38.9
RN50 DrViT-S [40] 78.5 5.5 67.4 66.2 42.0 30.1 11.5 38.1
RN50 CLIP-RN101 [48] 76.4 5.4 70.2 64.5 47.7 32.2 9.6 37.9
RN50 CLIP-ViT-L [48] 75.7 7.7 67.4 65.0 51.6 35.8 13.1 40.2
ViT-S - 77.8 11.9 63.9 66.0 36.9 25.3 12.0 38.0
ViT-S ViT-B + DAT [41] 77.8 11.9 67.1 66.0 36.9 25.3 12.0 37.5
ViT-S CLIP-RN101 [48] 73.4 9.0 65.2 62.1 38.8 23.9 12.0 36.3
ViT-S CLIP-ViT-L [48] 73.8 18.0 63.1 64.0 52.9 35.8 17.3 42.7

RN34 - 66.5 3.0 94.5 54.7 32.4 21.0 5.6 27.0
RN34 RN50 + AugMix [28] 68.9 1.8 82.9 56.2 37.2 24.1 9.9 30.7
RN34 DrViT-S [40] 68.2 2.1 79.5 55.6 37.0 23.0 10.5 31.0
RN34 ViT-B + DAT [41] 69.2 2.2 79.0 56.6 38.7 25.0 11.0 32.0
RN34 CLIP-RN101 [48] 65.4 2.5 85.3 53.5 42.5 26.3 8.5 30.5
RN34 CLIP-ViT-L [48] 63.6 4.5 82.0 53.7 46.0 29.1 11.7 32.4

higher relative and absolute gains in robustness. We hypothesize the larger training distribution
equips the student with useful inductive biases that let it more easily learn the more out-of-distribution
adversarial examples generated from CLIP. We note that the CLIP training set is still ∼28.2x larger
so this does not contradict our theory, but it may also be beneficial to train or pretrain the student on a
more diverse dataset for a smoother distillation process.

4.4 Ablations

Other student and teacher architectures. Although our method and theory is adapted for foundation
models, we investigate its efficacy on other models and teachers in Tab. 5. We consider a different
large-scale teacher, CLIP-RN101, as well as teachers trained on ImageNet-1K that achieve out-of-
distribution robustness through methods besides large-scale training, like Discrete ViT [40] or ViT-B
[14] trained with DAT [41]. We also consider smaller students like ResNet34 [25] and ViT-S.

We find that distilling robustness in our setting depends on several factors, but most crucially, the
robustness of the teacher. Like other distillation techniques, we find that our method can transfer
representations between various student/teacher architectures. We find that our method is also
susceptible to the model capacity gap, with lower clean accuracy on ResNet34 when distilling from
CLIP than training from scratch. However, using CLIP results in the best performance on natural
distribution shifts. Despite the more similar architecture, distilling from CLIP-RN101 across students
is less effective than distilling from the more robust CLIP-ViT-L. We include similar results with
vanilla knowledge distillation in Sec. A of the Appendix.
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Table 6: Comparisons to data augmentation approaches. All columns report top-1 accuracy except
ImageNet-C which reports mean Corruption Error (mCE) where lower is better. All models are
ViT-B/16 trained on 224 x 224 images. We remove the distillation terms and use DAD samples as a
standard data augmentation. All methods are based on AugReg and use Mixup and Randaugment.

Model IM A C (↓) V2 Rendition Sketch Stylized Avg

AugReg-ViT [59] 79.9 19.0 54.5 67.9 39.5 29.2 16.6 42.5
+ Pyramid AT [31] 81.7 23.0 45.0 70.3 47.7 36.8 19.1 47.7
+ DAT [41] 81.5 30.2 44.7 70.8 47.3 34.8 23.1 49.0
+ DAD (Ours) 80.2 24.6 53.0 69.8 51.7 36.9 22.1 47.5

Table 7: Adversarial-training-based data augmentations and their training budget. Cost is based on
training a ResNet50 from scratch for 100 epochs. While still more expensive than standard training,
DAD is significantly cheaper than other techniques due to reusing precomputed adversarial examples.

Method Attack Steps Training Budget

ImageNet 0 1x
Adversarial Training [22] 10 11x
AdvProp [74] 5 7x
Fast AdvProp [42] 1 3x
DAT [41] 1 3.5x
DAD (Ours) 1 2x

Pure data augmentation. We study in Tab. 6 the effect of training on the DAD adversarial examples
purely as a data augmentation technique, without distillation. Although DAD remains competitive,
we find significant drops in performance, suggesting that it is difficult for the student to learn robust
representations of these images on its own. However, we continue to observe improvements on natural
distribution shifts, suggesting these samples are closer to CLIP’s training distribution. However,
training with DAD samples is significantly cheaper than DAT and Pyramid AT, making it more
efficient in practice.

Computational cost analysis. Since DAD uses adversarial examples generated from a frozen teacher,
there is no need to regenerate them during training. This amortizes the otherwise significant cost
of adversarial training. We compare the cost of DAD with other adversarial data augmentation
approaches in Tab. 7. By avoiding the need to continuously generate new adversarial examples, the
only remaining cost for DAD is training on a larger dataset, making it cheaper than similar methods.

Additional ablations on choice of generative model, use of gradients, and transfer to adversarial
robustness can be found in Sec. B in the Appendix.

5 Conclusion and limitations

We conduct the first study on distilling out-of-distribution robustness. We develop a framework for
the use of foundation models in this setting and empirically and theoretically validate their advantages
as a teacher. We propose discrete adversarial distillation (DAD) which uses the discrete adversarial
examples of the teacher as a more diverse data augmentation and directly distill its most diverse
representations. However, we find that DAD tends to be biased towards the performance of the CLIP
teacher, exhibiting improvements mostly on natural distribution shifts. In practice, these shifts tend to
be the most useful, and with the small computational cost of using DAD, we encourage practitioners
to adopt it when training small models. We hope the development and release of improved foundation
models and generative models will further demonstrate the effectiveness of our method.

We encourage further work to understand the limitations of machine vision models in out-of-
distribution settings. More robust models carry the potential risk of automation bias, i.e., an undue
trust in vision models. However, even if models are robust against corruptions in finite out-of-
distribution datasets, they might still quickly fail on the massive space of semantic transformations in
real-world data. Understanding under what conditions model decisions can be deemed reliable is still
an open research question.
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6 Appendix

The appendix is organized as follows. First, in Sec. A, we show additional results on using the
original knowledge distillation objective. In Sec. B we show the results of additional ablations on
the generative model, use of gradients, and transfer to adversarial robustness. In Sec. C we provide
additional hyperparameter and implementation details. In Sec. D we show visualizations of DAD and
the diversity of its data augmentation to support our theory. In Sec. E we provide full proofs from our
theory. Finally, in Sec. F we provide visualizations of generated DAD samples compared to standard
and DAT samples.

A Additional results on vanilla knowledge distillation

Table 8: Knowledge distillation can improve robustness. The teacher is CLIP-ViT-L/14 @ 224px
[48] We use the original knowledge distillation objective [32]. ViT-B [14] and ViT-S [14] are trained
with AugReg [59]. Top half of the table is the original performance. Bottom half is the distilled
performance. We find that distilling from CLIP can transfer robustness, even on in-distribution data.

Model ImageNet A C (↓) V2 Rendition Sketch Stylized

CLIP [48] 79.9 64.2 60.2 72.9 87.7 61.6 18.5
ViT-B [59] 79.9 19.0 54.5 67.9 39.5 29.2 16.6
ViT-S 77.8 11.9 63.9 66.0 36.9 25.3 12.0
ResNet50 76.1 0.0 76.7 63.2 36.1 24.1 7.4
ResNet34 66.5 3.0 94.5 54.7 32.4 21.0 5.6
ViT-B 78.6 16.0 61.5 67.2 51.5 34.7 16.2
ViT-S 79.3 18.1 59.1 68.8 45.9 30.6 14.3
ResNet50 77.8 7.4 69.0 67.6 47.0 32.3 8.7
ResNet34 74.5 3.6 77.1 63.2 41.2 28.5 9.3

Average Change +2.1 +2.8 -5.7 +3.75 +10.2 +6.63 +1.73

Table 9: Results on other student/teacher architectures with the original KD objective, on ImageNet-
1K. Robustness can be distilled from a variety of robust teachers.

Model Teacher IM A C (↓) V2 Rendition Sketch Stylized

RN50 ViT-B + DAT 80.0 8.1 66.3 68.5 40.9 29.4 8.6
RN50 DrViT-S 79.3 8.2 67.4 68.4 41.7 30.0 8.9

RN34 RN50 + AugMix 72.6 1.9 80.2 61.5 37.9 25.6 8.6
RN34 DrViT-S 74.2 2.5 77.4 62.1 38.2 25.4 8.7
RN34 ViT-B + DAT 74.3 2.5 77.1 62.3 37.8 25.4 8.4
RN34 CLIP-RN101 72.4 3.9 79.8 61.2 45.4 29.8 8.5

In Tab. 8 we find that surprisingly, distilling from CLIP on only in-distribution data is able to transfer
robust representations, but is generally outperformed by DAD. This works especially well on smaller
models, like ResNet34. In fact, it can also improve clean accuracy compared to training from scratch,
for all the models we test except ViT-B. In Tab. 9, we find that distilling from CLIP generally results
in the highest average robust performance, especially for natural distribution shifts. However, any
robust teacher can distill robustness in this setting, including a ResNet50 trained with AugMix as the
only robustness intervention. This matches our results for Tab. 5.

B Additional ablations

B.1 Choice of generative model

We use VQGAN [15] as our generative model of choice due to its nature as a image-to-image model,
making it suitable as a discretizer. To justify this, we also experiment with Stable Diffusion [53], a
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Table 10: We ablate the use of VQGAN by using Stable Diffusion with DAD. The results are
significantly worse, indicating the need to use a image-to-image model to discretize adversarial
examples.

ImageNet V2 Rendition Sketch A Avg

Stable-Diffusion 79.1 67.8 45.9 33.4 22.0 49.6
VQGAN 79.6 69.9 65.1 46.1 31.8 69.5

Table 11: VQGAN sampling baseline comparison. To show the importance of using model gradients
to discover a diverse data augmentation, we sample from the VQGAN without optimizing for a
perturbation. The results are significantly worse than DAD.

ImageNet V2 R Sketch A Avg

VQGAN - Sample 80.9 70.1 49.3 34.9 24.0 51.8
VQGAN - Grad 79.6 69.9 65.1 46.1 31.8 69.5

text-to-image generative model. We use the generic prompt "A photo of an object". We observe in
Tab. 10 a significant decrease in performance when trained using DAD compared to VQGAN. This
suggests the importance of using a discretizer for DAD. Perhaps modifying the text prompt for could
boost performance and be an interesting avenue for future work, especially since CLIP also requires
a text prompt.

B.2 Use of gradients

DAD is based on adversarial training and uses gradients to find the most diverse and useful data
augmentations. To show the importance of using teacher gradients to generate adversarial examples,
we implement a sampling-based baseline where we discretize images without the added perturbation.
The results in Tab. 11 are significantly worse than DAD, indicating the need to use gradients to
discover diverse samples. This is also supported by our theoretical analysis that indicates more diverse
adversarial examples are better for robustness. Higher in-distribution performance also suggests the
samples are less diverse.

B.3 Transfer to adversarial robustness

Although we center our study on out-of-distribution robustness, it is natural to examine the effect
of DAD on adversarial robustness due to the use of adversarial training. In Tab. 12 we attack our
trained models with adversarial attacks of various difficulty. We observe a small improvement in
adversarial robustness for simpler attacks, but neither DAT or DAD is robust to AutoAttack. This
is because the perturbation is discretized and no longer represents the original adversarial example.
We observe that DAT is stronger than DAD for ViT-B. Unlike out-of-distribution robustness, since
adversarial robustness is based on perturbations generated with gradients from the base model, DAT
models are trained on images closer to these perturbations than DAD models (which were trained
on perturbations generated with CLIP gradients). However, for ResNet50, DAD is better even for
adversarial robustness as distillation is able to help smaller capacity models learn discrete adversarial
examples. We also observe higher ResNet50 performance in general in Tab. 1.

C Implementation details

We adopt official hyperparameter settings for a fair comparison for our baselines. For knowledge
distillation, we use a temperature of t = 4 for all models and a = 0.5, following [63]. For DAD, we
also weight the second KL-divergence term by a. All ViT models are trained with the AugReg [59]
hyperparameter and data augmentation configurations.
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Table 12: Comparison of adversarial attack methods. We use pretrained models and attack with
FGSM [22], PGD [39], and AutoAttack [9]. Models trained on discretized adversarial examples are
somewhat robust but fail on stronger attacks.

Method FGSM PGD AutoAttack

ResNet50 23.5 1.0 0.0
ResNet50 DAT 33.0 5.9 0.0
ResNet50 DAD 43.5 12.6 0.0

ViT-B 49.4 24.7 0.0
ViT-B - DAT 64.9 26.2 0.0
ViT-B - DAD 47.2 25.0 0.0

Following [41], we use the pretrained VQGAN weights from the official GitHub 2. The VQGAN
with f = 8, d = 4 and K = 16384 is used for main experiments.

We use one iteration for the adversarial attack, and an attack learning rate of 0.1.

For the DAT + DAD variant, we add an additional cross entropy loss term with the student adversarial
example to the overall training objective, and weight by a.

We conduct all of our experiments on 8 32GB NVIDIA V100 GPUs.

D Wasserstein distance comparisons

To justify our theoretical framework and empirical results we investigate the relationship between
Wasserstein distance and model performance. We use a pretrained ResNet50 and calculate Wasserstein
distance from batch norm statistics on different distributions using 1000 mini-batches. These
distributions are data augmentations generated with the respective methods. In 2a we find that DAD
tends to have better performance the larger the distribution shift. This is likely due to the help of
distillation letting the model learn robust representations. Additionally, in 2b, we find that relative to
the Wasserstein distance between clean ImageNet images and a distribution shift and baseline models,
our method has higher performance.

(a) The relationship between Wasserstein distance
and performance. DAD is the only method that im-
proves performance when the generated data aug-
mentation is more diverse.

(b) The relative relationship between Wasserstein dis-
tance and performance to the baseline model. DAD
has stronger performance compared to DAT over the
standard model.

E Proofs

Proof of Lemma 3.1.

2https://github.com/CompVis/taming-transformers
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Proof. Variational divergence tv measures the divergence between distributions, where B is the set
of measurable subsets in P and P ′

tv(P, P ′) = 2 sup
B∈B

∣∣∣Pr
P
[B]− Pr

P ′
[B]

∣∣∣
r(P ′) = r(P ′) + r(P )− r(P )

≤ r(P ) + |r(P ′)− r(P )|

≤ r(P ) +

∫
|δ(x)− δ′(x)| dx

≤ r(P ) + tv(P, P ′).

Following [5] and from Assumption 2, we can bound total variation with Wasserstein’s distance. We
take K : R → R, a kernel satisfying a suitable moment condition, so for any coupling of P and P ′,

∥ K ∗ p−K ∗ p′∥ϵ ≤ sup
s̸=t

∥Ts(K)− Tt(K)∥r
|s− t|

Wϵ(P, P
′).

by the Jensen’s inequality. Assume that p, p′ ∈ Hα
1 (R). Let {ϕm} be the orthonormal system in

L2([−1, 1]) of Legendre polynomials defined by

ϕ0(x) = 2−1/2I(|x| ≤ 1), ϕm(x) =

√
2m+ 1

2

1

2mm!

dm

dxm
[(x2 − 1)m]I(|x| ≤ 1),

for x ∈ R and m ∈ N. Define

K(x) =

α∑
m=0

ϕm(0)ϕm(x).

Then, by Propositions 4.1.5 and 4.1.6 of [19],

∥Kh ∗ p− p∥1 ≼ ∥p∥H
α
1 hα and ∥Kh ∗ p′ − p′∥1 ≼ ∥p′∥H

α
1 hα.

Since maxx∈[−1,1](|ϕm(x)| ∨ |ϕ′
m(x)|) is bounded by a constant depending only on m, where ϕ′

m is
the derivative of ϕm and a ∨ b is the maximum of a and b,

∥Ts(ϕm)− Tt(ϕm)∥1 =

∫
|ϕm(x− s)− ϕm(x− t)|dx

≤
∫

{|x−s|∨|x−t|≤1}

|ϕm(x− s)− ϕm(x− t)|dx+ 2|s− t| max
x∈[−1,1]

|ϕm(x)|

≤ 4|s− t| max
x∈[−1,1]

|ϕ′
m(x)|+ 2|s− t| max

x∈[−1,1]
|ϕm(x)|

≼ |s− t|.

Thus,

∥Ts(Kh)− Tt(Kh)∥1 ≤ 1

h

α∑
m=0

ϕm(0)

∫ ∣∣∣∣ϕm

(
x− s

h

)
− ϕm

(
x− t

h

)∣∣∣∣ dx ≼
|s− t|

h
,

where ϕm(0) and α depends only on α. By the triangle inequality, we have

∥p− p′∥1 ≤ ∥p−Kh ∗ p∥1 + ∥Kh ∗ p−Kh ∗ p′∥1 + ∥Kh ∗ p′ − p′∥1

≼ ∥p∥H
α
1 hα +

W1(P, P
′)

h
+ ∥p′∥H

α
1 hα.

If we take

h =

(
W1(P, P

′)

∥p∥Hα
1 + ∥p′∥Hα

1

)1/(α+1)

,

the proof is complete.
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Proof of Lemma 3.3.

Proof. Let (Z, dZ) be a metric space where Z = X × Y and dZ is defined as:
dZ(z, z0) = dZ((x, y), (x0, y0)) = (dX(x, x0) + dY (y, y0))

where dX and dY represent the metric in the feature space and label space, respectively. Then we can
define the Wasserstein distance between P and P ∗,

Wp(P, P
∗) := inf

M∈Γ(P,P∗)
E(z,z0)∼M [dZ(z, z0)],

where Γ(P, P ∗) denotes the collection of all measures on Z × Z with marginals P and P ∗ on the
first and second factors, respectively.

Following [65], we use the minimax approach, considering the worse-case P ∗ in the Wasserstein ball
Bwp
ε of radius ε centered around P where

Bwp
ε (P ) = {P ∗ : wp(P, P

∗) ≤ ε}

Next we define a transport map T : Z → Z to push P to P ∗ as follows:
z = (x, y) 7→ (x∗, y)

where x∗ = argmaxx0∈P∗ l(θ(x0), y). By the definition of dZ , dZ((x, y), (x∗, y)) = dX(x, x∗).

Finally, let P ∗ = Tθ#P , the pushforward of P by Tθ, then we have R(P, ϵ) = R(P ∗). By the
definition, we have

R(P, ϵ) = E(x,y)∼P [max l(θ(x0), y)]

= E(x,y)∼P [l(θ(x∗), y)]

= E(x,y)∼P∗ [l(θ(x), y)] .

Therefore, r(P, ϵ) = r(P ∗). This lets us establish upper bound on the worst-case in the Wasserstein
ball and bound the adversarial expected risk. Next we define the radius of the adversary constrained
by B as εB := supx∈B dX(x, 0). For any hypothesis h and the corresponding P ∗ = Tθ#P , we
have w(P, P ∗) ≤ εB . By the definition of the Wasserstein distance, we have

w(P, P ∗) ≤ EP [dZ(Z, Tθ(Z))]

= EP [dX(x, x∗)]

≤ (εB),

where the last inequality uses the translation invariant property of dX . Therefore, we have
w(P, P ∗) ≤ εB .

Proof of Lemma 3.4

Proof. We use P to denote the (at least) one distribution in the intersection of P1 and P2.
EP̂

[
w(D(ϕ(P1)), P

′)− w(D(ϕ(P )), P ′)
]

≤ EP̂

[
w(P1, P1) + w(P1, P

′)]− EP̂

[
w(P, P2)− w(P, P ′)]

= EP̂

[
w(P1, P1)− w(P, P2)] + EP̂w(P1, P

′) + w(P, P ′)

= EP̂

[
sup
P∈P

rworst(P, ϵ)− rworst(P, ϵ)] + EP̂w(P, P ′) + w(P, P ′)

≤ sup
P∈P1

rworst(P, ϵ)− rworst(P, ϵ) + EP̂ sup
P∈P

w(P, P ′) + w(P, P ′)

= 2EP̂ sup
P∈P1

w(P, P ′) + c,

where c is a positive constant.

Similarly, we can have
EP̂

[
w(D(ϕ(P2)), P

′)− w(D(ϕ(P )), P ′)
]
≥ c− 2EP̂ sup

P∈P2

w(P, P ′).
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F Visualizations

(a) Clean (b) Pixel AT (c) DAT (d) DAD

Figure 3: Additional visualizations of generated images. To highlight the difference, we use adver-
sarial examples that are classified differently by the base model. Using CLIP in DAD results in a
more diverse adversarial example than a vanilla ResNet50. Adversarial examples in pixel-space are
imperceptible.
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