
Robust Multi-task Modeling for Bayesian
Optimization via In-Context Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Bayesian optimization is a sample-efficient optimization technique for black-box1

optimization, and leveraging historical information from related tasks can greatly2

improve its performance. Gaussian processes (GPs) are commonly used to model3

this multi-task data; however, they trade off complexity with expressivity. Jointly4

modeling all tasks can be computationally infeasible for GPs, while scalable5

approaches may fail to effectively utilize inter-task relationships. Moreover, these6

methods are often prone to negative transfer, where the inclusion of unrelated tasks7

degrades predictive performance. In this paper, we present Multi-Task Prior-Data8

Fitted Networks (MTPFNs), a multi-task model that efficiently and jointly models9

all tasks and data points. We show that MTPFNs serve as a compelling surrogate10

model that is robust to negative transfer, and their flexibility enables more efficient11

exploration. We demonstrate the effectiveness of our approach across a variety of12

synthetic and real-world benchmarks including hyperparameter optimization.13

1 Introduction14

Black-box optimization is widely used for tuning parameters in scientific settings and industrial15

applications to optimize the outputs of resource-intensive processes that do not have a known16

analytical form and for which gradients are not available. For example, a practitioner may wish to17

tune the hyperparameters of a machine learning model to maximize the log-likelihood on a validation18

set in AutoML [29], a chemist may aim to design a reaction by choosing the concentrations and19

experiment conditions to maximize the resulting product [28], or an engineer may seek to find an20

optimal design for a new automobile that maximizes a safety-fuel economy trade-off [21].21

For these resource-intensive settings, Bayesian optimization (BO) is a sample-efficient method that22

aims to find the global optimum with minimal function evaluations by using probabilistic surrogate23

models to select future evaluations. Transfer learning can be used to further improve sample efficiency24

by extracting information from related tasks. For example, when tuning the hyperparameters for a25

machine learning model, one may have access to previous model evaluations from similar datasets26

or architectures. Existing transfer-learning BO approaches often use a surrogate to jointly model27

the data from different tasks. However, such approaches have limitations. The commonly-used28

Gaussian process (GP) surrogate models often trade off with data efficiency with robustness: the29

models which jointly fit all of the data [4] may make strong assumptions about how different tasks are30

correlated and experience negative transfer, where unrelated tasks hinder performance; meanwhile,31

other approaches which fit separate GPs per task and ensemble their predictions [31] are more robust32

to negative transfer but cannot jointly capture cross-task information. The appropriate model that33

strikes the right balance between efficient, flexible transfer and robustness to negative transfer is hard34

to compute in the classical Gaussian process setup.35

Prior-data Fitted Networks (PFNs) [22] offer an attractive alternative to Gaussian Processes because36

they are capable of approximating the posterior for any prior over functions that can be sampled37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

from. This enables them to mimic the behavior of Gaussian processes, or do Bayesian inference over38

complex bespoke priors. However, PFNs have only been applied to single-task settings.39

In this work, we propose Multi-Task Prior-data Fitted Networks (MTPFNs). By training with a novel40

data generating process (prior) that generates data from both related and unrelated tasks, we build41

MTPFNs that generalize better in classical transfer tasks compared to previous GP-based approaches,42

while being more robust to negative transfer from irrelevant auxiliary sources. We demonstrate43

the efficacy of MTPFNs as a surrogate model in Bayesian optimization on synthetic problems and44

real-world AutoML benchmarks.45

2 Background and Related Work46

2.1 Bayesian Optimization47

Bayesian optimization (BO) [12] is a sample-efficient black-box optimization method. Given a48

function f and a compact search space X ⊂ RD, BO aims to find the global maximum1 x∗ =49

argmaxx∈X f(x) by iteratively selecting points to evaluate, conditional on observations made50

previously. Typically, the observations are corrupted by noise y = f(x) + ϵ(x) where ϵ(x) is a noise51

process. At each step t, a probabilistic model (often a Gaussian process [27]) parameterized by θ52

is fit to the data collected so far Dt = {(xi, yi)}ti=1. An acquisition function a(x; θ) (e.g. expected53

improvement [17]), which balances exploration and exploitation, then uses the model’s posterior54

distribution p(f |Dt, θ) to determine the next point to evaluate xt+1 = argmaxx a(x; θ). Finally,55

we evaluate the function for the selected point xt+1, add the new observation to the set of function56

evaluations Dt+1 = Dt ∪ {(xt+1, yt+1)}, and proceed to the next iteration. The surrogate model is57

the key determinant of how successful BO will be, and therefore improvements in the model typically58

lead to improvements in performance [16].59

In the multi-task setting, we have access to auxiliary data from functions which may be similar to the60

black-box function we wish to optimize. Formally, we aim to find the global optimum of a target task61

(denoted by task ID 0) x∗ = argmaxx∈X f0(x) while having access to evaluations from auxiliary62

tasks {fk}Kk=1, which we assumed are defined over the same search space. Compared to single-task63

BO, each observation consists of an additional task index k, and the dataset is Dt = {(xi, yi, ki)}nt
i=1.64

The acquisition function a(x; θ) is then used to select the next point for the target task 0. Successful65

multi-task BO requires a surrogate model that is able to correctly infer the relationship between the66

tasks and use this information effectively.67

2.2 Multi-Task Surrogate Models68

One approach to model multi-task data for BO is to jointly model the full collection of target and69

auxiliary data using a single GP with a multi-task kernel [4, 30, 35, 26, 18]. We will refer to these70

models as multi-task GPs (MTGPs). While these joint modeling approaches are effective in the71

low-data regime, they become computationally infeasible as we scale the number of tasks and data72

points due to their cubic complexity in the total number of data evaluations.73

The intrinsic coregionalization model ICM, 14 is a common choice of MTGP due to its simplicity
and was proposed in Swersky et al. [30] for multi-task BO. The ICM models the functions with a
kernel that decomposes into two components

k((x, t), (x′, t′)) = kinputs(x, x
′) · ktasks(t, t

′),

where kinputs is a kernel (often RBF or Matérn) that represents the covariance between inputs and ktasks74

captures the covariance between tasks. Because this model assumes a single shared latent function75

across all tasks, it can efficiently transfer knowledge between similar tasks; however, the ICM model76

may perform poorly when this assumption does not hold and the tasks have distinct characteristics,77

e.g., when they should be modelled with different lengthscales.78

There are other multi-task models which require weaker assumptions. For example, the linear model79

of coregionalization LMC, 14 is a generalization of the ICM, which uses multiple latent functions that80

are linearly combined for each task, instead of assuming a single latent function for all tasks. However,81

although this model is more flexible than the ICM, it has increased computational complexity and82

may lead to overfitting.83

1Or equivalently the global minimum. Without loss of generality we consider maximization.

2

Target Task Source Task (Related) MTPFN (Ours) TabPFNv2 TabPFNv2 (Target-Only)

Source Task (Related) Source Task (Unrelated) ICM ScaML GP (Target-Only)

(a) Four-task problem setting

Target Task Source Task (Related) MTPFN (Ours) TabPFNv2 TabPFNv2 (Target-Only)

Source Task (Related) Source Task (Unrelated) ICM ScaML GP (Target-Only)

(b) Model predictions on the target task

Figure 1: MTPFNs effectively transfer information from related tasks while remaining robust to
unrelated tasks. Compared to joint models such as ICM, ScaML, and TabPFNv2 with a categorical
task variable, our MTPFN demonstrates improved robustness to the unrelated source task (red). The
MTPFN is also able to borrow strength from the related source tasks (green) and outperforms models
which only consider the target task. We plot the mean and 95% confidence intervals for each model.

Alternative approaches which focus on scaling to large multi-task datasets have also been proposed.84

Many methods fit separate GPs to each auxiliary task and ensemble their predictions to inform the85

target task [13, 10, 33, 7]. Although these approaches are scalable, they are not able to jointly capture86

information across the related tasks and instead rely on heuristics to determine the relevance of each87

GP. Other methods use the auxiliary data to learn a better prior over GP hyperparameters for the88

target task [32, 9]; however, these methods are unable to utilize the specific information within each89

task. Tighineanu et al. [31] propose a scalable joint modeling approach between the target task and90

auxiliary tasks; however, this does not model the correlations between the auxiliary tasks, thereby not91

taking advantage of the entire dataset. In contrast, we propose a scalable method that jointly models92

the full interaction between all data points and tasks.93

2.3 Bayesian Optimization with Transformers94

For single-task Bayesian optimization, there has been a growing interest in using neural-network95

based approaches. OptFormer [6] leverages a transformer directly trained on data collected from96

BO loops. In this setup the model does not only model y, like in classical BO, but directly predicts97

proposals for the next x. This method requires access to large amounts of domain data during training,98

which may not be possible in many settings.99

Transformer neural processes (TNP) [24] and prior fitted networks (PFNs) [22] are transformers100

trained to approximate the posterior predictive distribution given a data generating function (prior).101

These models approximate posterior predictive distribution for a prior specified over a hypothesis102

space H where each hypothesis h ∈ H defines a relationship between inputs x and outputs y. This103

work builds off of the PFN framework due to PFN’s strong empirical performance in Bayesian104

optimization tasks [23] and prediction for tabular data [15].105

A PFN, denoted by fθ, takes as input a dataset D and test point xtest and outputs a distribution over106

the target variable p(ytest|xtest,D). To train fθ to approximate the posterior predictive distribution, we107

repeatedly sample datasets by first sampling a hypothesis h ∼ p(h) which defines a datasets’ input-108

output relationship, and then sampling a dataset D ∼ p(D|h). The PFN parameters θ are optimized109

by minimizing the negative log-likelihood on held-out test examples across datasets, expressed as110

LNLL = ED∼p(D|h)[− log fθ(ytest|xtest,Dtrain)], where D is split into Dtrain ∪ {(xtest, ytest)}.111

While TNPs and PFNs have successfully applied to Bayesian optimization in the single-task setting112

[23, 25], there has been no prior work which explores the use of in-context transfer of related tasks to113

accelerate optimization. While the PFN’s pre-training can already be interpreted as meta-learning, we114

take it a step further by training them to do Bayesian inference over several related tasks in-context;115

in this sense, the multi-task PFN acts as a meta-meta-learning model.116

3

Feature Encoder

Source 1

x1, y1 xn, yn[TASK] …

Target

x1, y1 xn, yn[TASK] …

Source K

x1, y1 xn, yn[TASK] … x…

Output Layer

Intra-Task Encoder Intra-Task Encoder Intra-Task Encoder

Intra-Task Encoder Intra-Task Encoder Intra-Task Encoder

Inter-Task Encoder

μ, σ2

x N

Figure 2: MTPFNs use hierarchical attention and jointly model data across information sources.

2.4 Long Contexts117

Because of the increased number of tasks and data-points required for multi-task Bayesian optimiza-118

tion, the underlying architecture needs to support significantly longer context windows compared to119

the single-task setting. Various approaches have been proposed to extend the attention mechanisms in120

transformers to longer contexts, such as sparse attention [3, 36], hierarchical attention [34, 5], and121

others [19, 20]. See Zhuang et al. [37] for a survey of efficient methods.122

3 Method123

In this section, we present the Multi-Task Prior-Data Fitted Network (MTPFN), a scalable model that124

transfers relevant knowledge from auxiliary tasks to model a target task via in-context learning.125

3.1 Data Generation Process126

PFNs are trained to approximate the posterior of a data generation process (DGP), and the design of127

this prior has a significant influence on the model’s predictive performance. While various DGPs128

have been proposed in previous works [e.g. 1, 15, 23], the multi-task setting which poses unique129

challenges. For one, multi-task problems can exhibit complex relationships between tasks, where130

information from one task may inform the predictions of another through shared latent structures.131

Additionally, real-world scenarios frequently contain unrelated or noisy tasks which do not provide132

any useful information; in these settings, it is important for the model to not be negatively impacted.133

To address these challenges, we propose a multi-task DGP that enables the model to learn complex134

relationships between relevant tasks while mitigating corruption from irrelevant tasks. We first135

introduce inter-task relationships by sampling from an ICM MTGP, where the ICM’s assumption of a136

shared lengthscale across tasks enables strong transfer when the tasks are related. Specifically, we137

sample an inter-task covariance matrix from an LKJ prior with a concentration of 1.0, which provides138

us with a diverse set of relationships between tasks, and we sample the shared RBF kernel lengthscale139

from a Gamma (3, 6) prior following the default lengthscale prior in BoTorch v1.11 [2]. To prevent140

negative transfer, our DGP explicitly encodes the belief that each source task may be irrelevant to141

the target task by introducing a probability p ∈ [0, 1] that the task is instead modeled independently142

using a separate RBF GP with its own lengthscale. In the following sections, we present results143

4

under a simple and transparent DGP, but different priors and more sophisticated DGPs can easily be144

accommodated within the PFN framework. We present the full algorithm in Algorithm A.1, with145

additional discussion and ablations for alternative DGPs in Appendix A.146

In Figure 1, we demonstrate the performance of various models in a synthetic multi-task setting,147

where three of the tasks share a latent structure and have the same length scale, while the fourth task148

does not contribute relevant information. We see that existing GP models and PFN priors, such as149

those used in TabPFNv2 [15], do not work well in this multi-task setting because these models will150

be influenced by the data from unrelated tasks. In contrast, our MTPFN, trained on our novel data151

generation procedure, is robust to the irrelevant tasks and accurately mirrors the true behavior. This152

underscores the benefit of our robust prior generation process.153

3.2 Task Representation154

For multi-task regression problems, it is important to consider how the task itself should be encoded155

within the model. This encoding can influence how the model integrates information from the various156

sources and impact its ability to learn helpful relationships and differentiate between tasks with157

irrelevant characteristics. In this section, we explore different task encoding strategies and propose a158

novel hierarchical attention mechanism which has many benefits over standard encoding methods.159

Categorical Feature For a data point (xi, yi), its associated task can be represented as a categorical160

feature ti ∈ {1, 2, . . . , T}, where T is the number of distinct tasks. We can represent ti using a161

one-hot encoding 1ti ∈ {0, 1}T , and the final input is formed by concatenating the original feature162

vector with the one-hot encoding x′
i = [xi;1ti]. Although simple, this approach does not provide the163

model with information related to the task itself. Furthermore, the maximum number of tasks must164

be specified at train-time, and the model is also unable to generalize to a larger number of tasks at165

test-time since the categorical feature has a fixed number of dimensions.166

Task Embedding Rather than directly using the one-hot encoding of the task, we can use a task167

encoder to map the task ti to a continuous embedding vector eti ∈ Rd, where d is the embedding168

dimension of the model. This embedding is jointly learned with the model parameters, allowing169

the task representation to adapt to task-specific characteristics. The original input (xi, yi) is first170

transformed into a feature zi = ϕ(xi, yi), and then this feature is combined with the task embedding171

z′i = zi + eti . This approach integrates the task information directly into the feature space; however,172

the representation for the task is still learned independently of the information within each task, and173

the model remains unable to generalize to more tasks at test-time.174

3.2.1 Hierarchical Attention Mechanism175

To address these limitations, we propose a novel scalable attention mechanism for PFNs that ef-176

fectively leverages the natural hierarchical structure of multi-task data, as shown in Figure 2. Our177

approach applies hierarchical attention [34] to the multi-task regression setting and uses specialized178

transformer blocks to separately model intra-task and inter-task relationships.179

For intra-task encoding, we introduce a learnable “[Task]” token to each task that summarizes task-180

specific properties. The intra-task transformer blocks are responsible for learning the relationships of181

the data points within each task, By performing attention over these points, the intra-task block updates182

the embeddings for each data point and also updates the “[Task]” token with a summary embedding183

for the task, requiring O(D2) total compute per task. Then, the inter-task encoders, responsible for184

learning the relationship between tasks, attend to these summary “[Task]” embeddings, with O(T 2)185

complexity. This hierarchical design reduces the overall attention complexity from the naive global186

setting of O(D2T 2) to O(D2T + T 2), enabling significantly longer contexts while still allowing187

for every data point to influence others. We interleave the intra-task and inter-task blocks in our188

architecture, although Chalkidis et al. [5] show that other topologies may also be effective189

Our hierarchical attention directly addresses many of the limitations of other task encoders. First, our190

attention mechanism naturally handles inputs of varying lengths, allowing the model to generalize to191

any number of tasks. This flexibility ensures that even if the model encounters more tasks at test time192

than it did during training, it can still meaningfully integrate new task representations. Furthermore,193

our approach enables the model to dynamically learn task representations which depend on the data194

from the task, and its representation of each task evolves through the many layers of attention. This195

5

0 10 20 30 40
BO Iterations

0.2

0.4

0.6

0.8

1.0
0 Unrelated Tasks

0 10 20 30 40
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

1 Unrelated Task

0 10 20 30 40
BO Iterations

0.4

0.6

0.8

1.0
2 Unrelated Tasks

0 10 20 30 40
BO Iterations

0.4

0.6

0.8

1.0
3 Unrelated Tasks

ScaML ICM GP MTPFN (p=0.0) MTPFN (p=0.1) MTPFN (p=0.2)

Figure 3: MTPFNs are robust to negative transfer from unrelated tasks. We evaluate BO across
four multi-task settings, where the target task is related to {0, ..., 3} out of 3 auxiliary tasks. We
compare the performance of MTPFNs with different p, where p represents the probability that an
auxiliary task was drawn independently from the target task during training. As we increase the
number of unrelated tasks during evaluation, the MTPFNs which were exposed to unrelated tasks
during training (p > 0) outperform the ICM model, which suffers from negative transfer. We plot the
mean and standard error of the mean over 5 trials.

enables tasks with similar patterns to develop similar representations, allowing the model to better196

capture the potentially complex relationships between tasks.197

4 Advantages of MTPFNs through empirical evaluations198

MTPFNs are a compelling surrogate model for multi-task settings: they are capable of efficiently199

scaling to large multi-task datasets, and their flexibility enables them to effectively adapt to diverse200

information sources. In contrast, although multi-task GPs are commonly used for multi-task regres-201

sion, these models often contain strong assumptions. Furthermore, they often trade off efficiency202

and expressiveness: methods which jointly model all tasks capture cross-task interactions, but are203

computationally expensive, while scalable methods may ignore important inter-task interactions. In204

this section, we provide explicit demonstrations of the strengths of MTPFNs for multi-task learning.205

PFNs can be trained off a wide range of data generating processes.206

4.1 MTPFNs are robust to negative transfer207

For GPs, the lengthscales are important hyperparameters that control how sensitive the covariance208

is to changes in the inputs. When modeling multiple tasks, it is often assumed that these tasks all209

share the same lengthscales (implied by the ICM model). However, this behavior may not be true210

in practice, and GPs with the ICM kernel may fail to accurately model the problem and suffer from211

negative transfer, where the inclusion of information from one task hurts the performance on another.212

In contrast, the flexibility of MTPFNs allow us to train them in a way that explicitly reduces the213

impacts of negative transfer, as explained in Section 3.1.214

In Figure 3, we evaluate the performance of MTPFNs trained with varying proportions of unrelated215

tasks. In this evaluation setting, there are three auxiliary tasks, where one, two, or three auxiliary216

tasks are unrelated to the target task. When only one of the auxiliary tasks is unrelated, we find that217

all of the multi-task methods perform similarly. However, as we increase the number of unrelated218

auxiliary tasks to two out of three, we find that the MTPFNs trained on data with a higher proportion219

of corrupted tasks outperform the ICM, which is more sensitive to negative transfer. When we220

increase the number of unrelated auxiliary tasks to three out of three, we find that the MTPFN trained221

with p = 0.2 is comparable to the single-task GP, which is the underlying DGP for this problem.222

4.2 MTPFNs efficiently model inter-task relationships223

Many existing Gaussian process surrogate models trade off modeling inter-task relationships with224

efficiency. To demonstrate the capabilities of MTPFNs, we design a synthetic regression problem225

with multiple auxiliary tasks to highlight the importance of joint modeling. In this setting, all of226

the data points across all source tasks are drawn from the same function, and this function is highly227

correlated with the target task. However, there are regions of the input domain where the relevant228

6

0.00 0.25 0.50 0.75 1.00

2

1

0

1

2

3

4
PFN NLL: 0.18

0.00 0.25 0.50 0.75 1.00

2

1

0

1

2

3

4
Joint (ICM) NLL: -0.20

0.00 0.25 0.50 0.75 1.00

2

1

0

1

2

3

4
Ensemble (ScaML) NLL: 19529.32

Target
Source 1

Source 2
True

± 2
End of Source 1

0 5 10 15 20 25 30 35 40
BO Iterations

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

ICM (NUTS)
ICM
GP
ScaML
MTPFN

Figure 4: MTPFNs jointly model the data from the target and all auxiliary tasks and perform
fully Bayesian inference. (Left): MTPFNs perform similarly to other joint models like ICM and
outperform ensemble-based models like ScaML. (Right): MTPFNs have comparable performance to
fully Bayesian methods like ICM with MCMC (NUTS) sampling.

source tasks do not have any overlap with the target task. Therefore, the model will only be able to229

make accurate predictions if it is able to leverage the relationship between source tasks.230

In Figure 4 (Left), we visualize the predictive distributions of MTPFNs, ICM, and ScaML. We see it231

is necessary to jointly model the target task along with all of the auxiliary tasks, as done by MTPFNs232

and ICM, in order to accurately predict the behavior of the target task across the entire domain.233

In contrast, ensemble methods such as ScaML, which do not model the joint interactions between234

auxiliary tasks, are unable to capture the relevant information to make accurate predictions.235

Although powerful, traditional joint modeling methods like ICM are unable to scale to a large number236

of tasks and data points. In Appendix B, we benchmark the runtimes of multi-task models as we237

increase the number of tasks and the number of data points per task, and we find that this problem238

quickly becomes unmanageable for ICM. In contrast, MTPFNs are able to scale to large amounts of239

data while jointly modeling all interactions.240

4.3 MTPFNs quickly perform fully Bayesian inference241

Müller et al. [22] demonstrate that transformers which are trained to minimize the negative log-242

likelihood over held-out data from a data-generating process naturally perform Bayesian inference243

by implicitly learning the posterior predictive distribution. Specifically, when the model is trained244

to minimize the expected NLL across sufficiently many datasets which are sampled from the data-245

generation prior, the final model outputs a posterior predictive distribution which marginalizes over246

all of the possible samples from the prior which are consistent with the observed data.247

The ability for PFNs to perform fully Bayesian inference also holds in the multi-task setting: we248

train MTPFNs on datasets sampled from the ICM model. In Figure 4 (Right), we use an ICM to249

generate 5 different multi-task datasets with 3 input dimensions, each with 2 samples from the target250

task and 20 samples from each of the 3 auxiliary tasks. The auxiliary tasks have varying amounts of251

correlations with the target task. We then perform 10 runs of Bayesian inference for each multi-task252

dataset and summarize the results. We find that MTPFNs perform comparably to the fully Bayesian253

inference using MCMC sampling through NUTS. This fully Bayesian approach is particularly helpful254

in the setting where there are very few observations per task and thus there should be high uncertainty255

over the true inter-task covariance. The ICM model with MAP estimation does not account for this256

uncertainty and under-performs in this setting. Furthermore, the MTPFN is able to make predictions257

using one forward pass of the model in approximately 0.5 seconds on average, while NUTS takes258

orders of magnitudes longer at 352 seconds per iteration. We showcase further demonstrations of the259

importance of fully Bayesian inference in Appendix B.260

4.4 MTPFNs can leverage domain data261

When making predictions with PFNs, there are various methods to incorporate domain data to262

improve the performance. One approach is fine-tuning, where the parameters of a base model are263

updated to adapt to the specific characteristics of the target domain. This method enables the PFN to264

specialize to the particular domain; however, fine-tuning is computationally expensive and requires265

7

MT FT ST

0.5

0.0

0.5

1.0

1.5

Ne
ga

tiv
e

Lo
g

Lik
el

ih
oo

d

LR (In Domain)

MT FT ST

1

2

3

4

5

6
SVM (Out of Domain)

MT FT ST
3

2

1

0

1

2

3

4

GP Draw (Out of Domain)

MTPFN Fine-Tuned Single-Task Original Single-Task
0 2000 4000 6000 8000 10000

of LR Train Datasets for Fine-Tuning

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ne
ga

tiv
e

Lo
g

Lik
el

ih
oo

d

LR (In Domain)
SVM (Out of Domain)
GP Draw (Out of Domain)

Figure 5: MTPFNs, which use domain data through in-context learning, match the performance
of Fine-Tuned PFNs on in-domain data while generalizing better to other domains. (Left):
MTPFNs have comparable NLLs to Fine-Tuned PFNs on in-domain data (LR) and outperform
Fine-Tuned PFNs on other domains (SVM and GP Draws). (Right): As we fine-tune on more
in-domain data, the NLL for Fine-Tuned PFNs significantly worsens for other domains.

updating the model weights. Furthermore, this method is sensitive to training hyperparameters such266

as the amount of data and learning rate, and it is also possible to overfit and hurt generalization.267

Alternatively, these additional sources of data can be provided in an in-context manner to an MTPFN.268

In this setting, the models are exposed to general multi-task data during training, allowing the model to269

learn patterns across tasks. During inference, the model uses in-context learning to make predictions270

and utilizes the auxiliary information without the need for parameter updates.271

We demonstrate the benefits of providing domain data through in-context learning compared to272

fine-tuning by comparing the two approaches on the HPOBench dataset [8] for Logistic Regression273

(LR), which contains 25 tasks with 4 held out for evaluation. For fine-tuning, we first train a general-274

purpose single-task PFN using draws from a Gaussian process with an RBF kernel (see Appendix C275

for training details). We then fine-tune this model on the domain data. We see in right subplot in276

Figure 5 that as we fine-tune on more samples from the Logistic Regression dataset, the performance277

of the PFN on the Logistic Regression evaluation set does improve; however, the model loses the278

ability to generalize to other types of datasets. Specifically, we evaluate the negative log likelihood279

on another domain from the HPOBench dataset that optimizing SVM parameters rather than logistic280

regression. We see the performance of the fine-tuned model decreases significantly in this setting,281

because it has overfit to LR. Similarly, we test on another domain consisting of data points generated282

from GP draws, and we find similar deterioration in performance.283

In contrast, when we pass auxiliary information into the context of a MTPFN, we are able to achieve284

similar performance to the results after fine-tuning. Furthermore, the in-context approach does not285

deteriorate performance over other datasets such as GP draws and SVM hyperparameters. In-context286

learning is also computationally efficient and does not require any updates to the model parameters.287

5 Optimization benchmarks288

We demonstrate the effectiveness of MTPFNs across various transfer learning tasks for machine289

learning hyper-optimization. We show that the models are able to effectively utilize domain data290

while remaining robust to negative transfer in the context of Bayesian optimization.291

For our empirical results, we use a transformer backbone with 24 attention layers, where twelve292

intra-task attention layers are interwoven between eleven inter-task layers. Each attention layer293

has 4 attention heads with a hidden size of 512. The model is trained on approximately 50 million294

synthetically generated datasets as described in Section 3.1, with a batch size of 16 and AdamW with295

a learning rate of 1e-4 and cosine annealing.296

We compare our method, MTPFN, to several baselines: (1) ICM [14], a joint method which trains a297

multi-task GP on the combined target and auxiliary data; (2) ScaML [31], an ensemble method that298

fits individual GPs to each auxiliary task; and (3) a single-task GP which only uses the target task and299

ignores the auxiliary tasks. Our Bayesian optimization results were implemented using BoTorch [2]300

and GPyTorch [11], and we will provide access to our code upon acceptance.301

8

0 20 40
BO Iterations

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Re

gr
et

SVM

0 20 40
BO Iterations

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

XGB

0 20 40
BO Iterations

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Re

gr
et

RF

0 20 40
BO Iterations

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Re

gr
et

LR

0 20 40
BO Iterations

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

NN
ScaML ICM GP MTPFN

0 10 20 30 40
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

Naval Propulsion

0 10 20 30 40
BO Iterations

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

Parkinson's

0 10 20 30 40
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

Protein Structure

0 10 20 30 40
BO Iterations

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

gr
et

Slice Localization

Figure 6: MTPFNs are competitive across many hyperparameter optimization benchmarks.
Each plot shows the normalized regret for Bayesian optimization loop that was initialized with 3
auxiliary tasks, 20 observations from auxiliary task, and 5 observations from the target task. (Top):
HPOBench benchmarks (Bottom): Tabular FC-Net benchmarks.

5.1 Benchmarks302

We compare the effectiveness of the methods on a set of hyperparameter optimization problems for303

machine learning model through HPOBench [8], a collection of tabular benchmarks with hyperpa-304

rameters and their corresponding loss for models in various settings, as well as the popular FC-Net305

benchmarks from Eggensperger et al. [8].306

Following Tighineanu et al. [31], we consider the hyperparameter optimization for five types of307

models: support vector machines (SVM), logistic regression (LR), XGBoost (XGB), neural networks308

(NN), and random forest (RF). For each setting, we randomly sample one task to be the target function,309

and we sample 3 auxiliary tasks from the meta-data. We randomly sample 5 points from the target310

task and 20 points from each of the auxiliary tasks to use as the initialization for Bayesian inference.311

We measure the normalized regret (f∗ − fbest)/(f
∗ − f0) where f∗ is the optimal value, fbest is the312

best value so far, and f0 is the initial value. We run 100 replicates, each with a different combination313

of target task and auxiliary task initializations, and we plot the mean and one standard error.314

We share the results of our benchmark in the top panel of Figure 6, and MTPFNs are competitive315

across all of the model types. Specifically, we find that in instances where the meta-tasks contain316

helpful information (ScaML and ICM outperform GP), the MTPFNs are also able to effectively317

utilize this data. Furthermore, in cases like XGB where there is negative transfer for the ICM model,318

we find that MTPFNs are more robust and perform similarly to the standard single-task GP.319

We also consider tabular FC-Net benchmarks from: Slice Localization, Protein Structure, Naval320

Propulsion, and Parkinson’s Telemonitoring. For each benchmark, we set the benchmark to be the321

target task, and we use the three other tabular dataset as the auxiliary tasks. For instance, the results322

for Slice Localization use Protein Structure, Naval Propulsion, and Parkinson’s Telemonitoring as323

auxiliary data sources. We initialize our Bayesian optimization problem with a random sample of 5324

points from the target task and 20 points from each auxiliary task. We report the average normalized325

regret over 20 trials in the bottom panel of Figure 6. MTPFNs work well on these tabular datasets,326

often outperforming the other baselines.327

6 Discussion328

In this work, we present MTPFNs, a scalable and robust surrogate model for Bayesian optimization.329

By jointly modeling multiple information sources through in-context learning, MTPFNs are able to330

effectively use historical data. We also introduce a novel data-generation process which enables the331

model to be more robust to negative transfer, and our empirical results demonstrate that our method332

is competitive across a wide range of multi-task benchmarks.333

9

References334

[1] Adriaensen, S., Rakotoarison, H., Müller, S., and Hutter, F. Efficient bayesian learning curve335

extrapolation using prior-data fitted networks, 2023. URL https://arxiv.org/abs/2310.336

20447.337

[2] Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B., Wilson, A. G., and Bakshy, E.338

Botorch: A framework for efficient monte-carlo bayesian optimization. Advances in neural339

information processing systems, 33:21524–21538, 2020.340

[3] Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The long-document transformer. arXiv341

preprint arXiv:2004.05150, 2020.342

[4] Bonilla, E. V., Chai, K., and Williams, C. Multi-task gaussian process prediction. In Platt, J.,343

Koller, D., Singer, Y., and Roweis, S. (eds.), Advances in Neural Information Processing Sys-344

tems, volume 20. Curran Associates, Inc., 2007. URL https://proceedings.neurips.cc/345

paper_files/paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf.346

[5] Chalkidis, I., Dai, X., Fergadiotis, M., Malakasiotis, P., and Elliott, D. An exploration of347

hierarchical attention transformers for efficient long document classification. arXiv preprint348

arXiv:2210.05529, 2022.349

[6] Chen, Y., Song, X., Lee, C., Wang, Z., Zhang, R., Dohan, D., Kawakami, K., Kochanski, G.,350

Doucet, A., Ranzato, M., et al. Towards learning universal hyperparameter optimizers with351

transformers. Advances in Neural Information Processing Systems, 35:32053–32068, 2022.352

[7] Dai, Z., Chen, Y., Yu, H., Low, B. K. H., and Jaillet, P. On provably robust meta-bayesian353

optimization. In Uncertainty in Artificial Intelligence, pp. 475–485. PMLR, 2022.354

[8] Eggensperger, K., Müller, P., Mallik, N., Feurer, M., Sass, R., Klein, A., Awad, N., Lindauer, M.,355

and Hutter, F. HPOBench: A collection of reproducible multi-fidelity benchmark problems for356

HPO. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Bench-357

marks Track (Round 2), 2021. URL https://openreview.net/forum?id=1k4rJYEwda-.358

[9] Fan, Z., Han, X., and Wang, Z. Hyperbo+: Pre-training a universal prior for bayesian optimiza-359

tion with hierarchical gaussian processes. arXiv preprint arXiv:2212.10538, 2022.360

[10] Feurer, M., Letham, B., and Bakshy, E. Scalable meta-learning for bayesian optimization using361

ranking-weighted gaussian process ensembles. In AutoML Workshop at ICML, volume 7, pp. 5,362

2018.363

[11] Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and Wilson, A. G. Gpytorch:364

Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Advances in365

Neural Information Processing Systems, 2018.366

[12] Garnett, R. Bayesian Optimization. Cambridge University Press, 2023.367

[13] Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley, D. Google vizier: A368

service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD international369

conference on knowledge discovery and data mining, pp. 1487–1495, 2017.370

[14] Goovaerts, P. Geostatistics for natural resources evaluation, volume 483. Oxford University371

Press, 1997.372

[15] Hollmann, N., Müller, S., Purucker, L., Krishnakumar, A., Körfer, M., Hoo, S. B., Schirrmeister,373

R. T., and Hutter, F. Accurate predictions on small data with a tabular foundation model. Nature,374

637(8045):319–326, 2025.375

[16] Hvarfner, C., Hellsten, E. O., and Nardi, L. Vanilla Bayesian optimization performs great in376

high dimensions. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett,377

J., and Berkenkamp, F. (eds.), Proceedings of the 41st International Conference on Machine378

Learning, volume 235 of Proceedings of Machine Learning Research, pp. 20793–20817. PMLR,379

21–27 Jul 2024. URL https://proceedings.mlr.press/v235/hvarfner24a.html.380

10

https://arxiv.org/abs/2310.20447
https://arxiv.org/abs/2310.20447
https://arxiv.org/abs/2310.20447
https://proceedings.neurips.cc/paper_files/paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://openreview.net/forum?id=1k4rJYEwda-
https://proceedings.mlr.press/v235/hvarfner24a.html

[17] Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global optimization of expensive381

black-box functions. Journal of Global Optimization, 13:455–492, 1998.382

[18] Joy, T. T., Rana, S., Gupta, S., and Venkatesh, S. A flexible transfer learning framework for383

bayesian optimization with convergence guarantee. Expert Systems with Applications, 115:384

656–672, 2019.385

[19] Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. Transformers are rnns: Fast autoregres-386

sive transformers with linear attention. In International conference on machine learning, pp.387

5156–5165. PMLR, 2020.388

[20] Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The efficient transformer. arXiv preprint389

arXiv:2001.04451, 2020.390

[21] Liao, X., Li, Q., Yang, X., Zhang, W., and Li, W. Multiobjective optimization for crash391

safety design of vehicles using stepwise regression model. Structural and Multidisciplinary392

Optimization, 35:561–569, 06 2008. doi: 10.1007/s00158-007-0163-x.393

[22] Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and Hutter, F. Transformers can do394

bayesian inference. arXiv preprint arXiv:2112.10510, 2021.395

[23] Müller, S., Feurer, M., Hollmann, N., and Hutter, F. Pfns4bo: In-context learning for bayesian396

optimization. In International Conference on Machine Learning, pp. 25444–25470. PMLR,397

2023.398

[24] Nguyen, T. and Grover, A. Transformer neural processes: Uncertainty-aware meta learning399

via sequence modeling. In International Conference on Machine Learning, pp. 16569–16594.400

PMLR, 2022.401

[25] Nguyen, T., Zhang, Q., Yang, B., Lee, C., Bornschein, J., Miao, Y., Perel, S., Chen, Y., and402

Song, X. Predicting from strings: Language model embeddings for bayesian optimization, 2024.403

URL https://arxiv.org/abs/2410.10190.404

[26] Poloczek, M., Wang, J., and Frazier, P. Multi-information source optimization. Advances in405

neural information processing systems, 30, 2017.406

[27] Rasmussen, C. E. Gaussian Processes in Machine Learning, pp. 63–71. Springer Berlin407

Heidelberg, Berlin, Heidelberg, 2004.408

[28] Shields, B. J., Stevens, J., Li, J., Parasram, M., Damani, F., Alvarado, J. I. M., Janey, J. M.,409

Adams, R. P., and Doyle, A. G. Bayesian reaction optimization as a tool for chemical synthesis.410

Nature, 590(7844):89–96, 2021.411

[29] Snoek, J., Larochelle, H., and Adams, R. P. Practical bayesian optimization of machine learning412

algorithms. In Advances in neural information processing systems, pp. 2951–2959, 2012.413

[30] Swersky, K., Snoek, J., and Adams, R. P. Multi-task bayesian optimization. Advances in neural414

information processing systems, 26, 2013.415

[31] Tighineanu, P., Grossberger, L., Baireuther, P., Skubch, K., Falkner, S., Vinogradska, J., and416

Berkenkamp, F. Scalable meta-learning with gaussian processes. In International Conference417

on Artificial Intelligence and Statistics, pp. 1981–1989. PMLR, 2024.418

[32] Wang, Z., Dahl, G. E., Swersky, K., Lee, C., Nado, Z., Gilmer, J., Snoek, J., and Ghahramani,419

Z. Pre-trained gaussian processes for bayesian optimization. Journal of Machine Learning420

Research, 25(212):1–83, 2024.421

[33] Wistuba, M., Schilling, N., and Schmidt-Thieme, L. Scalable gaussian process-based transfer422

surrogates for hyperparameter optimization. Machine Learning, 107(1):43–78, 2018.423

[34] Wu, C., Wu, F., Qi, T., and Huang, Y. Hi-transformer: Hierarchical interactive transformer for424

efficient and effective long document modeling. arXiv preprint arXiv:2106.01040, 2021.425

[35] Yogatama, D. and Mann, G. Efficient transfer learning method for automatic hyperparameter426

tuning. In Artificial intelligence and statistics, pp. 1077–1085. PMLR, 2014.427

11

https://arxiv.org/abs/2410.10190

[36] Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S., Pham, P.,428

Ravula, A., Wang, Q., Yang, L., et al. Big bird: Transformers for longer sequences. Advances429

in neural information processing systems, 33:17283–17297, 2020.430

[37] Zhuang, B., Liu, J., Pan, Z., He, H., Weng, Y., and Shen, C. A survey on efficient training of431

transformers. arXiv preprint arXiv:2302.01107, 2023.432

12

A Data Generation Processes for PFNs433

MTPFNs are flexible and have the capacity to incorporate various data generation processes during434

training. In this section, we explore the impacts of various data generation processes for MTPFNs,435

each designed to capture distinct inductive biases which improve model performance across different436

types of tasks.437

A.1 Robust Isotropic Full-Rank ICM438

Algorithm A.1 Data Generation Using a Robust Isotropic Full-Rank ICM

Require: Sequence length n, number of tasks T , unrelated task probability p
▷ Input Sampling and Task Assignment

1: Sample inputs {xi}ni=1 ∼ Uniform([0, 1]d)
2: Sample task proportions π ∼ Dirichlet(α)
3: for i = 1 to n do
4: Sample task ID ti ∼ Categorical(π)
5: end for

▷ Isotropic ICM Covariance Structure
6: Sample task covariance matrix KT ∼ LKJ(η = 1)
7: Sample input lengthscale ℓ ∼ Gamma(3, 6)
8: Define input covariance KX on {xi}ni=1 as RBF kernel with lengthscale ℓ
9: Compute full ICM kernel K = KT ⊗KX

10: Sample y ∼ N (0,K)
▷ Sampling Unrelated Tasks

11: for each source task j do
12: With probability p:
13: Sample new lengthscale ℓj ∼ Gamma(3, 6)

14: Define RBF kernel K(j)
X on {xi : ti = j} using ℓj

15: Resample y(j) ∼ N (0,K
(j)
X)

16: end for

In the main text, we train PFNs with the data generation process described in Algorithm A.1: we439

sample datapoints across tasks from a full-rank isotropic ICM model. This approach assumes that440

all the input dimensions share identical lengthscales; this assumption imposes a strong prior on the441

relationship between tasks, and enables effective information transfer across related tasks when the442

assumption is met. This data generation process enables us to learn information across related tasks,443

since the full-rank isotropic model makes strong assumptions.444

To improve our model’s robustness to negative transfer, we also incorporate an additional hyperpa-445

rameter p ∈ [0, 1] which dictates the relatedness of the tasks during training. Specifically, p is the446

probability that any given source task is drawn independently from the target task, and thus may have447

completely different behaviors and lengthscales. Our data generation procedure enables the model to448

see a diverse group of datasets which consist of a mix of related and unrelated source tasks.449

This p hyperparameter plays a crucial part in the robustness of the model against negative transfer:450

because the model is able to see many examples of unrelated tasks during training, it becomes more451

robust to seeing unrelated tasks during inference time and is less likely to be negatively impacted452

from irrelevant information.453

In Figure A.1, we study the impact of p on the model’s ability to accurately predict the empirical data454

from HPOBench. Specifically, for each model type (SVM, LR, XGB, NN, and RF), we randomly455

sample one task to be the target task, and we sample 3 auxiliary tasks from the metadata. The target456

task is randomly initialized with 5 samples, and we also sample 20 points for each of the auxiliary457

tasks. We measure the mean squared error (MSE) and the negative log-likelihood (NLL) of each458

surrogate model on heldout examples from the target task, and we repeat this procedure 25 times and459

plot the average MSE and NLL for each trial.460

13

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
SE

RF

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
SE

XGB

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
SE

SVM

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

LR

0.5

1.0

1.5

2.0

M
SE

NN

0

5

10

15

NL
L

RF

0

2

4

6

8

10

12

NL
L

XGB

0

5

10

15

20

NL
L

SVM

5

0

5

10

15

20

25

30

NL
L

LR

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

NL
L

NN

GP ICM ScaML MTPFN p=0.0 MTPFN p=0.1 MTPFN p=0.2

Figure A.1: As we increase p (the probability that each source task is unrelated to the target task
during data generation), the model becomes more robust to negative transfer and achieves better
performance on real-world benchmarks. We visualize the model’s predictive performance on the
HPOBench dataset, where we sample 5 data points from the target task and 20 data points each from
three source tasks. We plot the average MSE and NLL on holdout data from the target task across 25
trials.

We find that increasing p, which increases the diversity of the data that the model sees during training,461

leads to improved model performance on real-world benchmarks. We see that the MTPFN trained462

with p = 0.2 consistently outperforms other MTPFNs trained with lower values of p, and this MTPFN463

also outperforms baselines such as the standard ICM model, which assumes that all tasks share the464

same lengthscale.465

A.2 Full-Rank ICM with Automatic Relevance Determination466

Algorithm A.2 Data Generation Using a Robust ARD Full-Rank ICM

Require: Sequence length n, number of tasks T , unrelated task probability p
▷ Input Sampling and Task Assignment

1: Sample inputs {xi}ni=1 ∼ Uniform([0, 1]d)
2: Sample task proportions π ∼ Dirichlet(α)
3: for i = 1 to n do
4: Sample task ID ti ∼ Categorical(π)
5: end for

▷ ARD ICM Covariance Structure
6: Sample task covariance matrix KT ∼ LKJ(η = 1)
7: Sample independent input lengthscales: ℓ = (ℓ1, . . . , ℓd) ∼ Gamma(3, 6)d

8: Define input covariance KX on {xi}ni=1 as an RBF kernel with ARD lengthscales ℓ
9: Compute full ICM kernel K = KT ⊗KX

10: Sample y ∼ N (0,K)
▷ Sampling Unrelated Tasks

11: for each source task j do
12: With probability p:
13: Sample new lengthscale ℓj ∼ Gamma(3, 6)

14: Define RBF kernel K(j)
X on {xi : ti = j} using ℓj

15: Resample y(j) ∼ N (0,K
(j)
X)

16: end for

We can also relax the assumption that all of the input dimensions share the same lengthscale, and467

instead sample datapoints from an ICM model with Automatic Relevance Determination (ARD),468

where we assume that each input dimensions has an independent lengthscale. This enables the PFNs469

to have more flexibility and fit more complex problems; however, this weaker assumption may reduce470

the model’s ability to effective transfer information compared to the isotropic settings. We describe471

14

0.2

0.4

0.6

0.8

M
SE

RF

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

XGB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

SVM

0.2

0.4

0.6

0.8

1.0

M
SE

LR

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
SE

NN

2

0

2

4

6

NL
L

RF

0

2

4

6

8

NL
L

XGB

2

0

2

4

6

8

10

NL
L

SVM

5

0

5

10

15

20

25

NL
L

LR

2

0

2

4

6

8

10

NL
L

NN

ISO p=0.0 ISO p=0.1 ISO p=0.2 ARD p=0.0 ARD p=0.1 ARD p=0.2

Figure A.2: MTPFNs trained with the ARD data generation process tend to outperform MTPFNs
trained with the isotropic process (ISO) and achieve lower MSE and NLLs on HPOBench problems.

this data generation process in Algorithm A.2 and highlight the differences from the isotropic data472

generation in green.473

In Figure A.2, we compare the performance of the MTPFN trained with isotropic lengthscales (ISO)474

to the performance of the MTPFNs trained with the ARD lengthscales. This experiment follows475

an identical setup to Figure A.1, where we sample 5 points from a target task and 20 points each476

from 3 source tasks, and evaluate the MTPFNs on held-out data from the target task. We plot the477

experiments across 25 trials.478

We find that the improved flexibility of the ARD lengthscale generally enables the model to have479

better performance on the testing data, with the ARD outperforming ISO across many datasets.480

However, in some settings such as SVM, we find that the model performance of the isotropic ICM481

and the ARD ICM are comparable. This similar performance may be because the assumption of the482

shared lengthscale across input dimension is satisfied in this setting, so the additional flexibility of483

the ARD is unnecessary.484

15

B Additional Empirical Results485

MTPFNs are able to do Bayesian inference with a single forward pass. Furthermore, our proposed486

hierarchical attention mechanism enables the MTPFN to scale in O(TD2 + T 2), where D is the487

number of data points per task and T is the number of tasks. We compare the runtime of MTPFNs to488

joint-modeling methods such as ICM and ensemble-based methods such as ScaML in Figure A.3.489

We see that MTPFNs are able to perform inference on an order of magnitude more data points and490

tasks compared to traditional GP methods.491

100 200 300
Number of samples per task

0

2

4

6

8

10

12

Ti
m

e
(s

)

5 Tasks

101 102 103

Number of tasks

0

2

4

6

8

10

12

Ti
m

e
(s

)

50 Samples per Task
Joint (ICM)
Ensemble (ScaML)
MTPFN

Figure A.3: MTPFNs are significantly faster than alternative GP-based methods.

When trained on a data-generation process that draws samples from a multi-task GP with an ICM492

kernel, we see in Figure A.4 that the MTPFN and the MTGP (ICM kernel with MAP estimation)493

have comparable behavior across varying levels of correlations. Furthermore, in low-data settings494

demonstrated by Figure A.5, we find that the MTPFN outperforms the MTGP because it considers495

the uncertainty over the task covariance matrix. This demonstrates that fully Bayesian inference may496

be preferable to MAP estimation.497

0 5 10 15 20 25 30
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
eg

re
t

Features: 3, Tasks: 4, Lengthscale: Sampled
Task Corr: 0.30, Uncorr Tasks: 0
Target Obs: 5, Source Obs: 20

Random
GP
MTGP
PFN (0% Uncorr)

0 5 10 15 20 25 30
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
eg

re
t

Features: 3, Tasks: 4, Lengthscale: Sampled
Task Corr: 0.60, Uncorr Tasks: 0
Target Obs: 5, Source Obs: 20

Random
GP
MTGP
PFN (0% Uncorr)

0 5 10 15 20 25 30
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
eg

re
t
Features: 3, Tasks: 4, Lengthscale: Sampled

Task Corr: 0.90, Uncorr Tasks: 0
Target Obs: 5, Source Obs: 20

Random
GP
MTGP
PFN (0% Uncorr)

Figure A.4: ICM PFNs are comparable to MTGPs across varying levels of correlations between tasks.

0 5 10 15 20 25 30
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
eg

re
t

Features: 3, Tasks: 4, Lengthscale: 0.20
Task Corr: 0.30, Uncorr Tasks: 0
Target Obs: 1, Source Obs: 20

Random
GP
MTGP
PFN (0% Uncorr)

0 5 10 15 20 25 30
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
eg

re
t

Features: 3, Tasks: 4, Lengthscale: 0.20
Task Corr: 0.60, Uncorr Tasks: 0
Target Obs: 1, Source Obs: 20

Random
GP
MTGP
PFN (0% Uncorr)

0 5 10 15 20 25 30
BO Iterations

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
eg

re
t

Features: 3, Tasks: 4, Lengthscale: 0.20
Task Corr: 0.90, Uncorr Tasks: 0
Target Obs: 1, Source Obs: 20

Random
GP
MTGP
PFN (0% Uncorr)

Figure A.5: In low-data settings, ICM PFNs, which approximate fully Bayesian inference, outperform
MTGPs with MAP estimation. ICM PFNs are comparable to MTGPs across varying levels of
correlations between tasks.

16

C Training deails498

C.1 Single-Task PFN Training499

The data generation process for the single-task PFN randomly samples inputs x from the unit cube,500

and then samples the corresponding outputs y by drawing a sample from a GP with an RBF kernel501

with a lengthscale sampled from Gamma(3, 6). For this experiment, we use a fixed feature size of 2.502

We train an 8-layer standard transformer (not hierarchical attention) with an embedding size of 256503

on this data generation process for 4 million sampled datasets, with a batch size of 16, and AdamW504

with a learning rate of 1e-4 and cosine annealing.505

C.2 Fine-tuning Single-Task PFN506

To fine-tune on the LR dataset, we develop a subsampling data-generation procedure: On the 20507

training tasks, we subsample within one task to get 50 x, y. We uniformly select some number of508

them to be used as ICL training, and the remaining to be used as the test.509

We fine-tune our model with a batch size of 16, and AdamW with a learning rate of 1e-4 and cosine510

annealing.511

17

	Introduction
	Background and Related Work
	Bayesian Optimization
	Multi-Task Surrogate Models
	Bayesian Optimization with Transformers
	Long Contexts

	Method
	Data Generation Process
	Task Representation
	Hierarchical Attention Mechanism

	Advantages of MTPFNs through empirical evaluations
	MTPFNs are robust to negative transfer
	MTPFNs efficiently model inter-task relationships
	MTPFNs quickly perform fully Bayesian inference
	MTPFNs can leverage domain data

	Optimization benchmarks
	Benchmarks

	Discussion
	Data Generation Processes for PFNs
	Robust Isotropic Full-Rank ICM
	Full-Rank ICM with Automatic Relevance Determination

	Additional Empirical Results
	Training deails
	Single-Task PFN Training
	Fine-tuning Single-Task PFN

