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ABSTRACT

We study adversarial attacks on stochastic bandits when, differently from previous
works, the attack of the malicious attacker is delayed and starts after the learning
process begins. We focus on strong attacks and capture the setting in which the
malicious attacker lacks information about the beginning of the learning process,
a limitation that can dramatically affect the effectiveness of the attack. We intro-
duce a more general framework to study adversarial attacks on stochastic bandit
algorithms, providing new definitions of success and profitability of an attack, that
account for variable corruption start time. We then analyze success and profitability
for different families of algorithms such as UCB and e-greedy against an omni-
scient attacker. In particular, we derive upper and lower bounds on the number of
target arm pulls, showing that our bounds are tight up to a sublinear factor. Finally,
we identify an intuitive condition that characterizes when an attack can succeed as
a function of its starting time and evaluate the tightness of our theoretical bounds
on synthetic instances.

1 INTRODUCTION

The adoption of machine learning applications accelerates at an unprecedented pace, impacting
industry and many aspects of humanity. Evaluating how these systems can be damaged is crucial.
Many works address this issue in deep learning and reinforcement learning, trying to understand
how a malicious entity could “attack” machine learning systems to alter their behavior|(Goodfellow
et al.| (2014); |Sun et al.| (2020); Inkawhich et al.|(2019). Other works instead investigate defense
strategies, designing robust techniques Chen et al.|(2019); Zhang et al.[(2020); Pattanaik et al. (2017)
In optimal decision-making scenarios, the concept of “attack™ can be translated as a way to alter the
learner’s behavior, fooling the algorithm into selecting specific actions or dramatically reducing the
performance. Multi-Armed Bandits (MAB) |Auer et al.| (2002) are popular online decision-making
algorithms whose theoretical guarantees are widely explored. Being a simple yet powerful framework,
they are used in various real-world scenarios |Bouneffouf et al.|(2020) such as medical trials (Durand
et al.;,2018), recommendation systems (Zhou et al.,|2017), advertising (Castiglioni et al.,|2022), and
finance (Shen et al.| 2015} /Huo and Fu, [2017).

Adversarial attack framework on multi-armed bandits (MAB) comprises three entities: a learner,
an environment, and an attacker. The learner aims to optimize its policy by interacting with the
environment. The attacker tries to alter the behavior of the learner by corrupting its reward feedback.
The attacker aims to fool the learner into selecting a Spec1ﬁc target arm which is sub-optimal. An
attack is considered successful if the learner, upon receiving corrupted observations, selects the target
arm T — o(T) times. The attacker decides the amount of corruption to inject observing the arm
played by the learner and the reward generated by the environment. This framework, denoted as
strong attack model, became a standard in adversarial attacks on MAB Jun et al.|(2018)). The strong
attack framework has been shown to be unrecoverable for most of the classical bandit algorithms
Jun et al.| (2018); |Liu and Shroff| (2019) meaning that a learner under attack will always experience
linear regret. To the best of our knowledge, all work about adversarial attacks in stochastic bandits
assumes that the attack starts at t4 = 1, at the beginning of the learning process. Previous works
have proved that, under this attack model, every known technique is unrecoverable from attacks,
meaning that an attack is always successful, suggesting that state-of-the-art techniques are not secure.
Assuming that the start of the attack and the beginning of the learning process always coincide is a
strong assumption, which rarely happens in practice, as it implies that the attacker knows when a
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private entity (such as a company) initializes the learning algorithm. Motivated by this observation,
we define a novel attack framework that relaxes this assumption and takes into account a generic time
t4 for the attacker to start injecting corruption. We call this new framework delayed attack model and
provide theoretical guarantees about the success of an attack when corruption injection is delayed
with respect to the beginning of the learning process.

1.1 ORIGINAL CONTRIBUTIONS
Our contributions can be formalized as follows.

* We define the delayed attack model, a generalization of the classic adversarial attack
framework, where an attack can start at a generic time t* > 1 providing renewed definition
of a successfulness and profitability of an attack. In our model, the previous definition of
success may be too restrictive, since, for large enough t4 the learner may already have built
strong estimates about arms. In our definition, even if the attacker fools the learner to select
the target arm does not imply that the target arm will be selected a linear number of time. To
see this, consider a t* sufficiently close to 7', and the learner may be fooled into believing
that the target arm is optimal, but has already exploited the true optimal arm a linear number
of times. For this reason, we introduce a more granular metric, the profitability, which
quantifies the effectiveness of an attack.

» With a fixed oracle attack algorithm, we analyze the success of different families of algo-
rithms for stochastic bandits under our new attack model. For each technique, we derive an
upper and lower bound on the number of pulls of the target arm as a function of the start of
the attack ¢“. In particular, we show that for UCB and e-greedy, under an optimal attack,

the number of pulls of the target arm is approximately (7' — t4) — %t“‘, where A, ; is
the mean reward gap between the optimal arm and the target arm. Our bounds are tight up
to a sublinear factor. Finally, we discuss arm elimination techniques, which surprisingly
exhibit a natural robustness to attacks under our framework, providing a proof sketch for
active arm elimination (AAE).

* Finally, we provide a condition to characterize whether an attack can be successful depending
on the start time ¢“. In particular, we identify the threshold value a* (A, ., €) = ﬁ
that depends on the gap A, - and the parameter e. We show that if the attack starts at time
t4 = aT with o < a*, then under our attack, the learner plays the target arm a linear
number of times. On the other hand, if the attack starts at time t4 = o7 with « > a*, then
under any attack the learner plays the target arm a sublinear number of times. We validate
our analysis empirically via numerical experiments on synthetic instances.

Related Works Concerning attack strategies, the original adversarial attack model for stochastic
bandits was introduced by |[Jun et al.| (2018), proposing different corruption techniques such as oracle
attack and attacks for specific specific techniques such as e-greedy and UCB. |[Liu and Shroff] (2019)
propose the Adaptive attack by Constant Estimation (ACE), which generalizes previous techniques
being not tied to a particular learner’s algorithm. Later, Zuo|(2020) improved the cost of the attack
for UCB in the stochastic setting. All these works operate in the strong attack scenario where the
attacker can observe both the played action and the corresponding reward. Works that explore robust
techniques tend to assume a weak attack setting, where the attacker can only observe the reward
vector generated by the environment. In this setting, Xu et al.[(2021) propose an attack technique
in which the attacker does not need observations and provides a criterion to characterize families of
bandits that are naturally vulnerable to adversarial attacks. [Lykouris et al.|(2018)) propose a robust
variation of the Active Arm Elimination (AAE) algorithm agnostic to the amount of corruption
injected. Similarly \Gupta et al.| (2019)) proposes a robust algorithm agnostic to corruption. Rangi et al.
(2022) study a defensive strategy against a weak attacker in a stochastic setting where the learner
can access a limited number of samples free of corruption. |Guan et al.| (2020) propose a robust
algorithm for a different attack model where the attacker can deal with an unbounded attack with a
certain probability. [Zhong et al.|(2021)) proposes Probabilistic Sequential Shrinking (PSS), a robust
technique for best arm identification problem under adversarial corruption. Aside from the stochastic
bandit setting, several works analyze the adversarial attack framework also for adversarial bandits
(Ma and Zhou, |2023; Yang et al., [2021)), for Gaussian process bandits (Bogunovic et al.,[2020a; Han



Under review as a conference paper at ICLR 2026

and Scarlett,2022), contextual bandits (Garcelon et al.| | 2020; Bogunovic et al.,|2020b; Wang et al.,
2022)) and combinatorial bandits (Balasubramanian et al.| 2024; Dong et al., 2022).

2 PRELIMINARIES

In a Multi-Armed Bandit (MAB) problem Auer et al.|(2002)) a learner interacts with an environment
for T rounds. The learner has K available arms or actions. Each arm i € [K] Dis associated with a
o2-sub-Gaussian reward distribution ~; with mean 1; unknown to the learner. At each time ¢ € [T7,
the learner selects an arm i; € [K] and observes the corresponding reward r;(t) ~ ~;, generated
by the environment. We denote the optimal arm as 0 = arg max;¢[x] ;. Let [ {-} be the indicator
function. Then, we denote by N;(t) = >_;_, [{ix = j} the number of times an arm j € [K] has
been pulled until time ¢ € [T, and with N;(t1 — t2) = Zg‘;tl I {ix, = j} the number of times an
arm j € [K] has been pulled in the interval [¢1, t3] with t1 < ¢ and t1,%2 € [T]. Moreover, we
denote by A; ; == u; — 11 the gap between the means of two different arms 4, j € [K]. Finally, we
define as n;(t) = {t’ <t :14; = i} the set of rounds in which the arm ¢ is selected up to round ¢, and
with f1;(t) = 32y c,, 1) T(t)/Ni(t) the average reward of arm 7 up to round ¢. The objective is to
minimize the regret over the time horizon, where the regret is defined as:

T
R(T) = poT = > ps,.- )
t=1

2.1 RECAP ON STANDARD ADVERSARIAL ATTACKS MODEL

In the classical adversarial attack framework Jun et al.| (2018)); Liu and Shroff] (2019)), an additional
entity, called the attacker, sits between the learner and the environment. The attacker, in each round
t € [T, upon observing the arm 7 played by the learner and the reward generated r;(¢) may craft a
corruption ¢; to alter the reward observed by the learner 7;(¢) = r;(¢) — ¢;. The attacker aims to
fool the learner into selecting a target sub-optimal arm 7. We assume that the target arm 7 is such
that . < p,, otherwise, the learner converges to play the target arm even without the attack. E] The
aim of the attacker is to craft the minimal amount of corruption ¢; such that the learner, receiving
corrupted observations, believes the target arm 7 optimal. The attacker is evaluated in terms of
successfulness and cost of the attack. An attack is successful if the learner selects the target arm 7
for N (T) = T — o(T') rounds in expectation or high-probablity while the attacker pays a sublinear
cost (Jun et al.,[2018} |Liu and Shroff} [2019). The cost is defined as the total corruption injected in
the time horizon C(T) = ZtT:l |ct]. In general, there is no fixed budget for the attack. However,
in designing attack techniques we prefer to be stealth, that is, we aim for attacks that minimize the
cost ¢; inflicted at each round, as dealing too much corruption at once can be suspicious in a realistic
scenario.

2.2 ORACLE ATTACK

An attack strategy is an online algorithm that, upon observing the arm ¢ played by the learner and the
generated reward r;(t), returns a corruption ¢;. The oracle attack model proposed by |[Jun et al.[(2018)
is an ideal attack model in which the attacker is omniscient, i.e., knows the true means p; for all
i € [K]. Although unrealistic in practice, the oracle attack model is useful for a worst-case analysis.
In the following, we introduce the main components of the attack in (Jun et al., 2018)). Suppose that
the attacker knows the true mean of each arm. When the learner selects an arm ¢ different from the
target 7 the attacker crafts an attack c; such that:

c=Hi#7}H[Ar+¢€], 2

Where, [k], = max(0,k) and e is an arbitrary constant strictly greater than 0. Several attack
strategies provide attacks that do not assume an omniscient attacker, such as the attack on UCB in

'In this work, we refer as [A], A € N, to the set {1,..., A}.

We assume that 7 is the arm with the lowest average reward i.e., 1, = min;e (k) pi. This is w.l.o.g. because
all the arms with mean reward lower than the target arm can be eliminated since they are played a sub-linear
number of times even without the attack.
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(Jun et al.l 2018)) or the more generic adaptive attack by constant estimation (ACE) (Liu and Shroff,
2019). The standard framework of adversarial attacks on stochastic bandits that we describe assumes
that the attacker injects corruption from ¢t = 1, that is, when the bandit algorithm is instantiated and
has no prior observations. Each known no-regret technique has proven vulnerable under this attack
model. However, such a negative result is based heavily on the t4 = 1 assumption.

3 DELAYED-ATTACK FRAMEWORK

In the delayed adversarial attack framework we
assume a variable attack start time ¢4 > 1, and
study the success of techniques under adversar-

ial corruption, which as we will discuss later 7 (t)
is highly influenced by t*. Our framework is L |« " E
a generalization of the standard attack model t<t

proposed by [Jun et al.| (2018)); [Liu and Shroff]
(2019). In particular, the standard framework
corresponds to the specific case where t4 = 1.
For each time ¢t < t4, the learner acts in a t>t4
. . . . A

corruption-free scenario, as if the attacker is
absent. For t > ¢4 the attacker starts to inject
corruption ¢; at each round until the end of the  Figure 1: Delayed adversarial attack framework.
horizon T to fool the learner into selecting a [ represent the learner, E the Environment, and A
sub-optimal target arm 7 in place of the optimal the attacker.

arm. Figure[T]provides a graphical representation of the setting. In the paper, we divide the horizon
T into two phases, specifically, we refer to the pre-corruption phase indicating 7} = ¢ rounds and
the post-corruption phase of 75 rounds such that 7' = T3 + T5. In T} the learner acts as in a classic
bandit problem without corruption. In 75 the problem shifts towards an adversarial attack model. The
challenge for the attacker is that the learner after 7} rounds may already have built good estimates of
each arm.

3.1 SUCCESSFULNESS AND PROFITABILITY ANALYSIS

In a given attack model, attack strategies are evaluated in terms of successfulness. In particular, an
attack is successful if due to corruption, the learner selects the target arm 7 a linear number of times
N, (t) =T — o(T) while the attacker pays sublinear cost C(T") = O(logT'). This condition is too
restrictive for our framework and strongly related to the scenario where t4 = 1. Leaving the attack to
start any time t4, we need a weaker notion of successfulness, we define it as the condition in which
the attack forces the learner to pull the target arm a linear number of times. Formally:

Definition 3.1 (Successfulness). An Adversarial Attack starting at time ¢ to a no-regret learner
with o2-sub-Gaussian rewards acting over a horizon of 7" rounds is successful if the target arm 7 is
selected at least: N (7") = Q(T) times in high probability or expectation.

Intuitively, this condition is intimately related to fool the learner into “believing” that the target arm
is optimal. Similarly, if the attack is unsuccessful, the learner will not “believe” the target arm is
optimal and injecting corruption may be useless. Starting to attack at time 4 = 1, the feasibility of
the attack is almost always possible since, from the very first rounds, the learner receives corrupted
observations. However, in our scenario, every non-corrupted sample fortifies the learner’s estimates,
increasing the corruption required to convince the learner to bet on the target arm. Depending on the
starting time ¢“, we can have situations where the attack is impossible, i.e., the learner will never
believe the target arm 7 optimal.

Successfulness is a binary condition that distinguishes between successful and non-successful attacks
depending on the number of times the target arm is selected. However, this condition is verified in
very different situations, as it only requires a linear number of pulls of the target arm. For this reason,
we will also use a more fine-grained metric of successfulness called profitability. The rationale behind
this metric is to quantify the number of times the attacker induces the learner to pull the target arm 7
given that the attack is successful. Profitability responds to the question: "Given that the attack is
successful, how many times will the learner select the target arm?" Profitability corresponds to the
quantification of how many times the target arm has been pulled. Formally, it is defined as:
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Definition 3.2 (Profitability). The profitability of a successful attack is defined as the number of
times the target arm N, (7T') is pulled.

In other words, when an attack is successful, the attacker succeeded in making the learner believe that
the target arm 7 is optimal, fooling the learner into selecting 7 a linear number of times (7). Instead,
profitability is the actual measure of the number of times the target arm has been pulled. These two
definitions provide a more fine-grained way to quantify an adversarial attack in the proposed setting.

4 THEORETICAL ANALYSIS

In this section, we consider an oracle attacker which inject corruption according to Eq. () after a
variable time ¢4, and analyzes guarantees about the success and profitability of the attack for different
families, such as UCB and e-greedy. In the end, we discuss why successive elimination techniques
are naturally robust in our setting. We remark that the choice of an oracle attacker not only makes
the analysis more intuitive but also offers a worst-case perspective, being the strongest attack in this
setting. Before moving on to the analysis, we derive the confidence radius bound for the empirical
means of an arm 4, for round ¢. Consider the event:

E={]pi(t) — pa| < B(Ni(t)) Vi, Vi}, &)

where given a probability 6 > 0 we define the confidence radius S(IV) as a decreasing function in the

number of pulls, formally:
log(M)QJQ
Ni(t) = || —2—. 4
BN =\ R @

Our radius differs from the one proposed by Jun et al.|(2018) and [Liu and Shroff| (2019) because
we consider a fixed horizon 7'. In the following lemma we prove that the event E holds in high-
probability:

Lemma 4.1. Consider event E, for any § € (0,1), P(E) >1 -0

Although the proof is standard, it is reported in Appendix [A| for completeness. Thanks to
Lemma with probability at least 1 — §, we can bound the mean y; of arm ¢ in the interval

[f1i(t) — B(Ni(t)), fui(t) + B(Ns(t))] .
4.1 SUCCESSFULNESS AND PROFITABILITY ANALYSIS FOR UCB LEARNER

Consider an oracle attacker and an UCB learner, acting according to the following arm selection rule:

t, ift < K
i = ®)

argmax; {ﬂT(t — 1)+ 304/ Nli(szi) } ,  O.W.

To analyze successfulness and profitability, we study the number of pulls of the target arm taking
into account delayed corruption. To this extent, we derive a (i) lower and (ii) upper bound on the
number of pulls of the target arm N, (T'), given that the attacker starts injecting corruption at time
t4 > 1. Intuitively, to prove (i) we derive an upper bound on the number of pulls of the optimal arm
in Lemma4.2] and similarly in Lemmaf4.3] an upper bound on a generic sub-optimal arm i ¢ {0, 7}.
Then, we use these results to prove a lower bound for N, (t4 — t) in Theorem In the delayed
scenario, we must distinguish between the optimal o and a generic arm ¢. Since the learner experience
O(log(T")) regret and has acted free of corruption for 77 rounds, it may already have a robust estimate
of the optimal arm which may be selected a linear number of time in 7;. Instead, sub-optimal arms
have been played a logarithmic number of times and have less consolidated estimates. This scenario
is harder for the attacker, since when the attack starts at time ¢ = 1, the target arm is immediately
recognized as optimal, since corruption will fake the observation from the beginning. In our scenario,
the learner constructs a corruption-free estimate of each arm for ¢ < ¢4 rounds, and upon reaching
round ¢# the UCB learner will select the optimal arm o approximately N, (t4) ~ ¢4 times, while
every other arm ¢ will be selected N; () =~ log(t?). After t4, corruption starts. We now provide an
upper bound for the quantities N, (t* — t) and N;(t* — t). These bounds represent the number
of pulls of the optimal arm o and generic sub-optimal arm ¢ # 7 before corruption fools the learner
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believing the target arm to be optimal. We proceed considering the following inequality, which
determines a sufficient condition to ensure that an arm ¢ is not pulled at a given time ¢:

f; (t) + Bucs(Ni(t)) < - () + Bucs(N- (1)), (6)
where [i$ (t) represents the partial corrupt estimator for arm ¢ (corrupt after t4) defined as:
_ > et C

N;(t4 = t)’

with t4 < t and with c;, being the corruption crafted by the attacker during the corruption interval.
Analyzing Inequality (6), we obtain the following lemma, which formally states the bound for the
optimal arm pulls in the corruption phase:

i (t) = fui(t) @

Lemma 4.2. Suppose a UCB learner acts free of corruption for Ty rounds. An oracle attacker
injects corruption, with € > 0, for the remaining To rounds. Then, with probability at least 1 — 6, the
learner will select the optimal arm in the corruption phase at most:

< (770 + AO,T) T
= € — 770 .

N,(t* = T) 8)

For ease of presentation, we use the term 7, = \/ co”(2log (2K7/5)+9log T) /A, T, to incorporate
the confidence radius /3 defined in Eq. (), and the confidence radius of UCB for the optimal
arm o, the complete proof can be found in Appendix [A] Similarly, in the following lemma we
provide an upper bound on the number of pulls for a generic sub-optimal arm ¢ ¢ {o,7}. Let
;= \/ co”(2log (2K7/5)+91og T) /A, _log(T1). Equivalently, we use the term 7; for the confidence
radius 8 and UCB for the specific arm .

Lemma 4.3. Suppose a UCB learner acts free of corruption for Ty rounds. An oracle attacker
injects corruption, with € > 0, for the remaining Ty rounds. Then, with probability at least 1 — 9, the
learner will select a generic non-optimal arm i in the corruption phase at most:

ni + Ai ) logTh
€ — 771 ’

Ni(t" - T) < ( )

Thanks to Lemma.2]and Lemma[4.3] we can state the core theorem to lower bound the number of
target arm pulls of UCB in the corrupted horizon T5.

Theorem 4.4. Suppose a UCB learner acts free of corruption for Ty rounds. An oracle attacker
injects corruption with, € > 0 for the remaining Ts rounds. Then, with probability at least 1 — 0, the
learner will select the target arm T in the corruption phase at least:

o Ao T T Az T
Nt 1) > 1y - B ey 5 MRS, gy
e iel&N\{rop <M

In the following corollary, we derive an asymptotic definition of Theorem 4.4

Corollary 4.5. Suppose a UCB learner acts free of corruption for Ty rounds. An oracle attacker
injects corruption, with € > 0, for the remaining T rounds. Then, with probability at least 1 — 9, the
learner will select the target arm T in the corruption phase asymptotically at least:

N,(tA = T)> T, — Bor T, — o(T). (10)
€

Thanks to Corollary we can easily recover an asymptotic estimate of the profitability of the
attack, since it expresses the lower bound of N, (t* — T') in the corruption phase in terms of the
instance-dependent gap A, . and the corruption parameter of the attacker e.

4.2 ANALYSIS FOR ¢-GREEDY

Suppose now that the oracle attacker faces a e-greedy learner, a non-adaptive exploration strategy
where the learner has a non-zero probability to explore random action, the rule is as follows:

- Jargmax;cig i),  w.p.1— €'(t) 1
B {L{(K), 0.W. an
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Figure 2: Each figure compares three identical UCB learners, each attacked at a different start time
4. In particular, we show a comparison of the cumulative regrets in Figure cumulative rewards in
Figure [2b|and the attack cost in Figure 2c| with a 95% confidence interval over 10 experiments. Each
learner is attacked at three different times: (i) from the start time (¢4 = 1) when the learning process
begins, (ii) before the successfulness threshold 4 < o*T and after the successfulness threshold
t4 > a*T. These last two attacks are marked with the two dotted vertical lines, to highlight the
magnitude of changes in the correspondent regret.

Where U(K) is the uniform distribution over [K] and €'(t) is the learning schedulel) of e-greedy,
chosen to be €/(t) = 1/. To derive a lower bound for N, (t* — T') when the learner is e-greedy,
we follow a procedure similar to the one used in UCB. First, we derive upper bounds for optimal
N,(t* — T) and the generic arm number of pulls N,(t* — T). We consider the following
inequality, which determines a sufficient condition to guarantee that an arm ¢ is not pulled at a given
time ¢ when the learner is e-greedy:

i (1) < fur (1) (12)
From the above inequality, we can derive the following lemmas:
Lemma 4.6. Suppose a e-greedy learner acts free of corruption for T rounds. An oracle attacker
injects corruption, with € > 0, for the remaining To rounds. Then, with probability at least 1 — 6, the
learner will select the optimal arm o in the corruption phase at most:

< (Yo + Ai,'r) log Ty
a €— %
Lemma 4.7. Suppose a e-greedy learner acts free of corruption for Ty rounds. An oracle attacker

injects corruption, with € > 0, for the remaining Ty rounds. Then, with probability at least 1 — 0, the
learner will select a generic non-optimal arm 1 in the corruption phase at most:

< (vi + Ay ) log Ty
- €— i .

N,(t* = T) (13)

N;(t* - T) (14)
Similarly to UCB analysis 7, and ~; refers to sub-constant terms hiding the confidence radius

contribution for the ease of visualization. Finally, thanks to Lemma[4.6|and Lemma.7| we derive the
following theorem

Theorem 4.8. Suppose a e-greedy learner acts free of corruption for T1 rounds. An oracle attacker

injects corruption with, ¢ > 0 for the remaining Ty rounds. Then, with probability at least 1 — 6, the
learner will select the target arm T in the corruption phase at least:

o Ao T 1 Ai T
N, (t* - T) ZTQ—%TP 3 %long.
Yo i€[K\{r,0} i

4.3 DISCUSSION ON ARM ELIMINATION TECHNIQUES

With arm elimination algorithms, we refer to techniques that discard sub-optimal arms. Examples
are Explore-Then-Commit (ETC) and Active Arm Elimination (AAE) |Slivkins|(2024). For instance,
in AAE an arm 1 is eliminated at ¢ if 3j € [K] s.t. {1;(t) + Bucs(Ni(t)) < f1;(t) — Bucs(N;(t)).
Surprisingly, this family of techniques is naturally robust to adversarial attacks in the delayed attack
model. Intuitively, for sufficiently large 7}, the target arm might be eliminated, when this happens,
the attack cannot be successful.

3We use €’ to disambiguate between the oracle attack corruption and e-greedy linear schedule.
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5 SUCCESSFULNESS THRESHOLD

In this section, we show the implications of previous results on the successfulness of an attack. For
simplicity, we will consider an UCB learner, but the results easily extend to e-greedy. To this extent,
note that Lemmaprovides the minimum number of rounds N, (t* — T), in the corruption phase,
required to change the belief of a UCB learner subject to an oracle attack, to select the target arm.
In other words, before the learner believes that 7 is optimal, there will still be many N, (tA —T)
rounds in which the learner will select the optimal arm o. For some start attack time t“, even by
introducing corruption, the learner may never believe the target arm to be optimal, resulting in an
unsuccessful attack. As a trivial example, if the attack starts near the horizon’s end, the attack cannot
select the target arm a linear number of times. A natural question that arises from reasoning about the
above fact is whether there exists a threshold o* that identifies the break-even point in the horizon
o*T where any attack starting after 4 > o*T cannot make the learner pull the target arm 7 a linear
number of times. Intuitively, the threshold a*, given A,, , and fixed a value for € can discriminate for
any starting time ¢ if the attack is successful. This condition can be derived from Theorem 4.4|and
can be expressed in closed form as a parameter a* (A, ;, €) that depends on the optimal gap A, ,
and the parameter e. Formally:

Corollary 5.1. Fixed a constant corruption € > 0. If the attack starts at oT with o < o*(Ay 7,€), a
UCB learner will select the target arm 7 at least Q(T) times with high probability.

The proof follows from the derivation of the lower bound on N, (t4 — T). Finally, we prove that
our bounds are tight. In particular, with the following theorem, we provide a tight upper bound on the
number of target arm pulls.

Theorem 5.2. Suppose a UCB learner acts free of corruption for Ty rounds. An oracle attacker
injects corruption, with € > 0, from time o/T, with o < «*. Then, with probability at least —9, the
learner will select the target arm T in the corruption phase at most:

Aor
N, (t* = T) < Ty — =2IT) + o(T).
€

Similarly, as a corollary, we can show that if the attack starts from 7" with o > a*(A, , €), it is not
successful in high probability.

Corollary 5.3. Fixed a constant corruption € > 0, if the attack starts at T with o > o* (A, -, €),
an UCB learner will select the target arm T at most o(T') times with high probability.

6 NUMERICAL EXPERIMENTS

We conduct two experiments, one comparing three specific attack times ¢t before and after the
successfulness threshold defined in Corollary [5.T]and Corollary[5.3] In the second experiment, we
show the learner’s metrics when the attack can start in every possible round of the horizon 7". We use
a UCB learner defined in Eq. (5) and an oracle attacker as in Eq. (2).

6.1 COMPARISON BETWEEN SPECIFIC STARTING TIMES

Given the successfulness threshold o™ = , we show how the learner behaves when the attack

€
e+Ao, -
starts at three specific times: (i) from time t4 =1 asin the previous attack model |Jun et al.| (2018)),
(i) from time t* < o*T where we prove the attack is still successful, and (iii) from time t* > o*T
where we proved that the attack is not successful. For (ii) and (iii), we set the attack start time to
be t4 = %a*T and t4 = %a*T respectively. Consider a two-arm instance, where the optimal and
target arms have a mean reward p, = A and pu, = 0, with A = 0.5. The error tolerance d is set
to 0.05, and o is set to 0.1. The Oracle attacker has the parameter € set to 0.05. As environment
parameters, the rewards for each arm 4 are i.i.d. sampled from a Gaussian distribution A'(j1;, 0%). We
perform E = 10 trials with a horizon 7' = 10° and seed 1234 + k, k € {0,..., E}. The results
of the experiments shown in Figure 2] highlight that starting the attack at different times drastically
changes the outcome. In particular, focusing on the cumulative regrets of Figure [2a] we notice how
the attack at time ¢4 = 1 and t* < o*T, although slightly different, results in a linear regret for
the learner, in contrast to the UCB instance attacked at t* > o*T which is clearly nonlinear. From
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Figure 3: This figure shows the behavior of a UCB learner, victim of an oracle attack, for variable
attack start time ¢, with a 95% confidence interval on 15 experiments. On the left, Figure shows
the value of total regrets, total rewards and total cost of the attack for different times . While on
the right, Figure 3b] shows the average number of pulls of the target arm 7 and the optimal arm o
depending on the starting time 4.

a practical perspective, these results highlight how much the framework of adversarial attacks on
stochastic bandits is sensitive to the start of the attack a parameter that is hardly known by an attacker.
Although theoretically these techniques are proven to be weak against adversarial attacks, from a
practical perspective, considering the successfulness threshold in the design phase can be helpful in
making them robust. Intuitively, the threshold a* can be used in the design of practical applications
to mitigate attacks, for example, by securely training the algorithm until the threshold is reached
or using verification techniques in initial samples. Furthermore, from the attacker’s point of view,
starting the attack after the successfulness threshold implies the highest cost on the horizon 7', as
shown in Figure[2c| For this reason, any attack performed after o*T is not worth it in terms of cost,
as the attacker pays the highest price without being capable of fooling the learner into selecting the
target arm 7.

6.2 COMPARISON BETWEEN EACH POSSIBLE ATTACK TIMES

In the second experiment, for any time ¢4 € [T'] we run an instance of UCB algorithm attacked by an
oracle attack starting at t4. For each t4, we save the sum of the metrics obtained (regrets, rewards,
and attack cost). The instance and parameter values, such as the mean reward of arms, ¢, €, o are
identical to the previous experiment. We perform E = 15 trials with a horizon T' = 10? for each
t4 € [1,...,107] setting the seed at 1234 + k, k € {0... E'}. Figure[3|shows the results. Given a
particular ¢4, Figure shows the total regret and the total rewards obtained by the learner, as well as
the total attack of the attacker. Figure [3b]shows how the number of pulls for the optimal o and target
arm 7 changes depending on the beginning of corruption. As expected, the target arm pulls down
gracefully as the beginning of corruption is delayed.

7 CONCLUSIONS

Current state-of-the-art analysis of adversarial attacks in the multi-armed bandit framework assumes
that the attacker starts to inject corruption at time t* = 1. This assumption is often unrealistic, and
current results show that techniques are unrecoverable from an attack. We provide the delayed attack
model, a more fine-grained generalization of the previous attack model where an attack can start at
any time ¢ > 1. After characterizing the success of an attack within our framework, we prove for
different families of algorithms that the success of an attack strongly depends on the starting time
t4. In particular, we provide lower and upper bounds on the number of times the target arm has
been selected and define a threshold to discriminate when an attack can be successful depending on
t4. This model offers a new perspective to study adversarial attacks, closer to a realistic scenario,
and opens new possibilities for defending, for instance, by verifying the rewards until reaching the
successfulness threshold.
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A OMITTED PROOFS
Lemma 4.1. Consider event E, forany ¢ € (0,1), P(E) >1—§

Proof. Proving that P(E) > 1 — 0 is equivalent to prove that P(E¢) < § where E€ is the comple-

mentary event. Now let
Efy = {lii(t) — il < B(N:i(t))}

then we have that:

K T
< ZZP(E&) (15)

K T
<ZZQexp{—Ni(t)ﬁ(Ni(t))2} (16)

202
17

where in Inequality (15)) we applied the Union Bound, in Inequality the Hoeffding Bound and
Inequality (17) follows by substituting 3(NN;(t)) defined in Equation O

A.1 UCB

Lemma 4.2. Suppose a UCB learner acts free of corruption for Ty rounds. An oracle attacker
injects corruption, with € > 0, for the remaining Ty rounds. Then, with probability at least 1 — 0, the
learner will select the optimal arm in the corruption phase at most:

(no + A0,‘1') Tl

N,(t* = T) <
€ —1To

®)

Proof. Consider a UCB learner, experiencing O(log(t)) regret. Consider an omniscient attacker,
meaning that at each round, given that the optimal arm has been selected, she corrupts the amount
ct = A, - + €. Lett > t4 any round after the corruption has began. If

fig (t) + Bues (No(t)) < fir(t) + Buen (N- (1)), (18)

where & (t) is a partial corrupted estimator where the corruption only happens in the interval (¢4, 1),
holds for the optimal arm o, the learner believes that target arm 7 is optimal after a corruption phase
(we distinguish between optimal arm o and a generic arm ¢ with i # 7). Now, the left hand side of
Inequality (I8) can be upper bounded by:

eN,(t4 — t)
No(t)
where we have extracted the corruption from the partial corrupted estimator /i< (¢). The extraction is

possible since in the oracle attack, V¢ € [T] computes a constant, fixed attack ¢; = ¢ = A, . + €.
Then we can further upper bounding using the fact that event £ holds:

eN,(t4
ﬂo(t)_ N](\Z(tT t)

fio (t) + Bucs (No(t)) < fio — + Bucs (No(t)),

+ Bues (No(t))

c A
< o+ BN (1)) — P2l

“(tjt) T Bues (No(®))

cN,(t4 — 1)
No(t)

< ﬂr(t) +/8UCB(NT(t)) + A0,7’ + 6 (No(t)) -

= pir 4 Dor + BN, (1)) — + Buce (No(t))

cN,(t4 = t)

12
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Then, if we plug Equation (I9) in the Inequality (I8) we obtain:

cN,(t4 = t)
T(t) S O (20)

Now notice that N,(t), with t > t* can be rewritten as N, (T}) + N,(t* — t). Moreover, since
B(N) is decreasing in the number of arm pulls we can further upper bound Inequality as:

Ao + B (No(t)) + Bucs (No(t)) —

eNy(t4 — t
Do+ B(No(8)) + Bocn (No(t) — el 21
No(t)
eN,(th — t
S A0,7' + 6 (No(t + BUC'B _> t)) ](\/v())
g(25L 202 In(t)  cNo tA —>t)
tA — 1) A —=t)
“A 4 02 2log QKT) +91ogt _ N, o(
- T N, (tA — t) Na(t)
Now assume that: A
No(th = 1) > =271y 1)
€
Exploiting Equation (21)), we have that:
AL 02 (2log (251) + 9logt)  eN,(t* —t) <0
o N, (tA — t) N,(t)y — 7
if
A eo? (2log (L) +9logT) cNO(tA — 1) <0 22)
or AO,TT1 No(t) — 7
where we use ¢ < T'. Recalling that
. |eo? (2 log( L) +91ogT)
= AO,TTl ’
and plugging it in Inequality we obtain:
cN,(t4 — t) eN,(t4 = t)
Ao T Tt N — Ao T
T TN TN T + N, (8 o 1)
cN,(t4 = t)
<Agrtm— 23
=B TN T RN A S 1) @3)
Apr+€) No(th — t
as o Bur O N )

Ty + N,(tA —t)

where in Inequality (23)), we upper bound the number of optimal arm pulls to N,(73) ~ T;. Finally,
solving for N, (t4 — t) ‘the following inequality:

(Aor + ) No(th = 8) _
Ty + N,(tA —t)  — 7

AO,T + n—-

we obtain the following result:

(77 + AO,T)TI

e—n
However, considering the condition expressed in Inequality (I8), if Inequality (24) is true then learner
would not act optimally. Implying that:

No(th = t) > 24)

(n+ AO,T)Tl

No(th = t) <
€—1)

(25)

O
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Lemma 4.3. Suppose a UCB learner acts free of corruption for Ty rounds. An oracle attacker
injects corruption, with € > 0, for the remaining Ty rounds. Then, with probability at least 1 — 0, the
learner will select a generic non-optimal arm i in the corruption phase at most:

ni + Ai ) logTh

€—1MN;

€))

Proof. This proof follows similar steps of the proof for the Lemma[.2] However, there are different
assumptions. Again we consider a UCB learner, experiencing O(log(t)) regret. Consider an
omniscient attacker, meaning that at each round, given that a generic arm ¢ has been pulled, she
corrupts the amount ¢; = A; - + €. Lett > A any round after the corruption has began. If the
following Inequality (26) holds for the generic arm ¢, the learner believes that target arm 7 is better
than generic arm ¢ after a corruption phase (here we distinguish between optimal arm o and a generic
arm ¢ with ¢ ¢ {0, 7}).

i8 (1) + Bucs (Ni() < fir () + Buos (N- (1)), (26)

where 1¢(t) is a partial corrupted estimator where the corruption only happens in the interval (t4,¢).
Now, the left hand side of Inequality (26) can be upper bounded by:

eN;(th — t)

fi5 (t) + Bucs (Ni(1)) < i — N; ()

+ Bues (Ni(t)),

where we have extracted the corruption from the partial corrupted estimator 1$(¢). The extraction
is possible since in the oracle attack, V¢ € [T'] computes a constant, fixed attack ¢; = ¢ = A; ; + .
Then we can further upper bounding using the fact that event £ holds:

N, (t4
jlt) = N s (Vi)
(4A
< pi + B (Ni(t) — W + Buce (Ni(t))
(A
— et A+ BO) — T 4 B (Ni(0)
(4A
< fr(t) + Bues(N- (1) + A + B (Ni(t)) — CNZ](\t[(t)_)t) + Buce (Ni(t)).
27
Then, if we plug back Equation in the Inequality (26) we obtain:
cN; (tA — t)
Air+ B (Ni(t) + Puos (Ni(t)) — NG S (28)

Now notice that N;(¢), with ¢ > t4 can be rewritten as N;(T}) + N;(t4 — t). Moreover, since 3(V)
is decreasing in the number of arm pulls we can further upper bound Inequality (28) as:

N;(t4 — ¢
Air + B(Ni(t)) + Bues (Ni(t)) - Cz(v@s)_>)
(1A
< Dir + B (Ni(t" = 1)) + Bues (Ni(t" — 1) — W
_ log (24720 () _ eNult? 1)
B A a b Iz Yy R )
02 (2log (25L) + 9logt)  eNi(t* — 1)
< Ai,T + \/ Ni(tA N t) N Nl(t> ’
Now assume that: A
Ni(t* = t) > TT log (T1) 29
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Exploiting Equation (29), we have that

\/02 (2log (QKTT) +9logt) N (t* —t)

AV - <0
ot Nt = 1) IO
if
KT
A, eo? (2log (25L) +91og T) B eN;(tA = t) <o, (30)
’ A; 7 log (Th) Ni(t)
where we use ¢ < T'. Recalling that
_|eo? (210g (%) + 910gT)
771 o Ai,T lOg (Tl) ’
and plug it in Inequality (30) we obtain
eN;(t4 — t) eN;(tA — t)
Ai T i = A1 T i
7 Ni(t) T Ni(Th) + Ni(t4 — 1)
eN;(t4 — t)
<Aj,4m— 3]
= Bir 0 log Ty + N;(t4 — ¢) 6D
A, N;(t4 — t
ap ey B I N

logT1 + Ni(tA — t) ’

where in Inequality (31), we upper bound the number of a generic arm pulls to N;(T) ~ log (T1).
Finally, solving the following Inequality for N;(t4 — t)

(Aiﬂ- + 6) NZ(tA — t)

logTy + N;(tA —t) — 7

Ai,T +/¢) -

we obtain the following result

(ni + A7)
€=

However, considering the condition expressed in Inequality (26), if Inequality (32) is true then learner

would not act optimally. Implying that:

N;(t* = t) > log T} (32)

(77i + Ai,‘r)

Ni(th = t) <
€=

log T7. (33)

O

Theorem 4.4. Suppose a UCB learner acts free of corruption for Ty rounds. An oracle attacker
injects corruption with, € > 0 for the remaining T rounds. Then, with probability at least 1 — 0, the
learner will select the target arm T in the corruption phase at least:

o Ao T i Az T
No(tA 5Ty > — 2 B0y 5 B Sir gy
€— 1o ) €=M
i€[KI\(7.0}

Proof. The proof follows from the application of Lemma[4.2|and Lemma[.3] The number of pulls
of the target arm 7 in the corruption phase can be defined as:

Nt =>T)=Ty— > N(t*—>T)

ie[K\{}
=T, —N,(t" - T)— > N({t*—=T)
1€[K|\{7,0}
> Ty — %Tl _ Z M log Ty (34)
€ — €E—1;
N i€[K|\{7,0}
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Corollary 4.5. Suppose a UCB learner acts free of corruption for Ty rounds. An oracle attacker
injects corruption, with € > 0, for the remaining Ty rounds. Then, with probability at least 1 — 0, the
learner will select the target arm T in the corruption phase asymptotically at least:

A
N,(t* = T)> Ty — =2ITy — o(T). (10)
€

Proof. Consider the result from Theorem {.4]

A0 T 7 Az T
No(tA S T)> Ty — %Tl -y A Sy
N ie[K\{r,0} *
A0 T
> T, — %Tl —o(T). (35)

Inequality follows from the fact that the term regarding a generic arm i € [K] \ {o, 7}, will be

selected at most a sub-linear number of times both in pre-corruption and in the corruption phase.
77+Ao T

This is due to the UCB learner experlencmg O(logT') regret. Furthermore, the term - in
Inequality can be divided in 227 + % to obtain:
77+A0'r AOT n(E_AOT)
Ty — ——T1 —o(T) =T, — : S Ty —o(T
2 e—n olf) =T <e+e(e+n) 1= o)
A0 T - A0 T
_qy - Berq M= Bor) iy
‘ ele+n)
A0.7'
> T2 — 6’ T1 — O(T) (36)
O

Corollary 5.1. Fixed a constant corruption € > 0. If the attack starts at oT with oo < o*(A, -, €), a
UCB learner will select the target arm 7 at least Q(T) times with high probability.

Proof. From results obtained by Theorem d.4]and Corollary .5] we know that:

N (th = T)> T, — Bor T, — o(T)
€
Ao T
=(1-a)T- T’aT—o(T), (37)

where Equat10n (37) derives from Tt + 15 = o + (1 — &)T = T. Now let & = a* — § where
a* we can rewrite Equation in:

6+A

(1—a)T—%QT—I—O(T):(l—a*—I—(S)T—%(a*—(S)T—O(T)
€ €

=0T+ (1—a")T — Bor (o = )T — o(T)

€

A A
=T+ (1—a* — 227"+ =276T — o(T)  (38)
€

€
— 67 + Dot 5 _ o(1)
€

_ T Ror s o1y (39)

€

The middle term in Equation (38) is exactly 0 thus we obtain Equation (39) as final result. Finally:
C
N, (t* = T) > =0T — o(T)
€
= Q(T),

which concludes the proof. O
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Theorem 5.2. Suppose a UCB learner acts free of corruption for Ty rounds. An oracle attacker
injects corruption, with € > 0, from time T, with a < «*. Then, with probability at least —§, the
learner will select the target arm T in the corruption phase at most:

A07'
N, (t* = T) < Ty — =227 + o(T).
€

Proof. Consider a bandit instance in which we have only two arms, an optimal arm o and the target
arm 7, with true means j, = 1 and 1, = 1 — A respectively. Let t > ¢t a generic round ¢ after
corruption has began. We want to prove that:

A, T
N,(t" 5> T)< Ty — =271
€

+7 (40)

where +y is a sub-linear term. To prove Inequality (#0), we proceed by contradiction. Consider
Inequality ([@0) false, that is

+7. (41)

A, T
N (A = T) > Ty — =271
€

If Inequality is true, it means that exist a round t4 < ' < t where

AO,TTl

N-(th =) > T, - +v-1, (42)

and the learner selected the arm 7, formally:

wo + Bucs(No(t)) < pr + Bucs(N-(t)). 43)

Now, to prove that Inequality (41) is a contradiction we need to prove that Inequality (43) is false.
Proving Inequality (43) false is equivalent to prove true its contrary, formally:

pig + Buce(No(t') > pr + Bucs(N-(t)). (44)
Finally, to prove Inequality (40) we now reduced to prove Inequality (#4) true. Since the instance is
defined with only two arms:
N,(t* =) =T, — N.(t* = t)
Ao TTl
< ZoT7 1

-v+1

Then, we proceed by lower bounding the left hand side of Inequality (4] obtaining:

o + Bues(No(t)) > pg
(e AN, (N = t)
= Mo No(t’)

(€4 Aor) (ﬁ — v+ 1)

= ,LLO —_
T+ 2ol g1
(6 + Ao,‘r) (# + 1)
2 o — (45)
Ty+ Serth —y
Now the right most term in Inequality can be rewritten as:
A, T
(4800 (22 +1) €+ Do + Ao ry
A Tl - AOVT + A Tl )
T+ == -y Ty + ===
from which we obtain:
€+ Ao r+ Ao T
Mo — AO,T + . : ,y (46)

Ay T

€

Ty +

17



Under review as a conference paper at ICLR 2026

Then we upper bounding the right hand side of Inequality (41)) obtaining:

logT
- N:(1) <pr+3
pir + oo (W) < gt "\/M(Tl) N 1)
logT'
<+ 304 2t
= B SO N A S
logT
S /’L‘r + 30’ A %1
T2 _ o,er 1 + ,y _ 1
logT
<pr+30, | ———1,
T2 _ Ao,ele _ 1
Finally, we obtain:
€+ Do r+ Ao sy logT
fo — Dor + : A Y e L E— 47)
Tl + Ay, T T2 _ Ao,eﬂ'Tl 1
Thus, Inequality lb is true for y > ATI (1 — %) 30 % — x— resulting in a contrad-
0,7 T, SerTi o7
diction. O

A.2 ¢-GREEDY

Lemma 4.6. Suppose a e-greedy learner acts free of corruption for Ty rounds. An oracle attacker
injects corruption, with € > 0, for the remaining T rounds. Then, with probability at least 1 — 9, the
learner will select the optimal arm o in the corruption phase at most:

('70 + Ai,T) 10g Tl
€~ % .

N,(t* - T) < (13)

Proof. Consider a e-greedy learner, experiencing O(log(t)) regret. Consider an omniscient attacker,
meaning that at each round, given that the optimal arm has been selected, she corrupts the amount
¢t =0 +e Lett > A4 any round after the corruption has began. If

fig () < fir(2), (48)
where ¢ (t) is a partial corrupted estimator where the corruption only happens in the interval (¢4, ),
holds for the optimal arm o, the learner believes that target arm 7 is optimal after a corruption phase
(we distinguish between optimal arm o and a generic arm i with i # 7). Now, the left hand side of
Inequality (@8) can be upper bounded by:

cN,(t4 = t)
No(t)
where we have extracted the corruption from the partial corrupted estimator /i< (¢). The extraction is

possible since in the oracle attack, V¢ € [T computes a constant, fixed attack ¢; = ¢ = A, - + €.
Then we can further upper bounding using the fact that event £ holds:

fig(t) < fo(t) —

. eN,(t4 — t) cN,(t4 — t)
No(t) — T(t) < Wo + 5 (No(t)) — T(t)
_ cN,(t4 = t)
= pir + Do r + B (No(t)) — TN
A
< )+ BOVA0) + Ao+ 5(No(0) - SAEZD @)
Then, if we plug Equation (#9) in the Inequality (48) we obtain:
cN,(t4 = t)
B(N-(t)) + Ao r + B (No(t)) — TN < (50)
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Now notice that terms N, (t), with ¢ > ¢ can be rewritten as N, (T}) + N, (t* — t). We can further
reduce Inequality (50), by lower bounding the term 3(N-(t)) as follows:

N,(t) = N.(Ty) + N.(t* — t)
~ log(T1) + N, (t* = t) (51)

t ’
>log(Th) + Y eg? (52)

s=tA+1
1
> log(T3) + e(log(t) — log(t*)) -

Where, in Eq. (51)) since the agent is a no-regret learner, in the non- corrupted phase we assume
sublinear pulls N, (7}) ~ log(T}) for each non optimal arm = # o. Then, in Inequality (52), we
lower bound number of target pulls N, (t* — t) in corruption phase to be at least the contrlbutlon of
e-greedy exploration. Using this lower bound we can further upper bound Inequality (50) as follows:

cN,(t* — t
BN 0) + Ao+ 5 () = S
No(th — t
=B (N (T1) + N-(t* = 1)) + Ao r + B (No(Th) + No(t* — t)) — CZ(\7(7f_>)
N, (t4
< BN = 1) + Do + 8 (No(t! 1) = = ](V’f (; 2
! N, (t4 — t)
<A _pn€l A e,
<B ((t D | + 80 + B (No(t" = 1)) A
2KT 1 1 eN,(t4 — t)
< log [ 222 ) 202 -
_AO,T+\/Og( S )20' (k)g(t';)f(—i_No(tA*)t) No(t)
(53)
Where we assume log(25L = o(log(t)). Notice that it is sufficient to take 3 and § large enough.
Now assume that: A
No(t* —t) > =271, (54)
€

Exploiting Equation (54)), we have that:

2KT 1 1 cN,(t4 — 1)
AOT 1 2 2 - < ’
’ +\/Og< 5 ) ? (1og<t>;;+zvo<tut>) N

2KT 1 € eN,(t4 — 1)
Apr+ o |log [ 52 ) 202 + - <0, 55
-y () <1og<£>;< Ao,m) No(D o

where we use t < T, and the e-greedy exploration to be the linear schedule €' (t) = % Now we
denote the constant term to be:

. (2KT> - N
o = < a )
7 '\ og(Z) < A, T

and plugging it in Inequality (53) we obtain:

eN,(t4 = t) eN,(t4 — t)
Ao T o T AT N — Ao T o —
S No(t) S No(Ty) + No(t4 — 1)
A
< Dy 4o — Nl” D) (56)

Ty + No(tA — t)
(Apr +€) No(tA — 1)

:AOT o ;
Lt Ty + N,(t4 — t)
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where in Inequality (56, we upper bound the number of optimal arm pulls to N,(77) ~ T3. Finally,
solving for N, (t** — ) the following inequality:
(Dor + ) No(th = 8) _

Ty + N,(tA —t) — 7

AO,T + Yo —

we obtain the following result:
(’Yo + AOJ)TI
€— Y '

However, considering the condition expressed in Inequality (48), if Inequality (57) is true then learner
would not act optimally. Implying that:

No(t* = t) > (57)

(fYO + AOJ)TI
€— Y '

No(th = t) < (58)

O

Lemma 4.7. Suppose a e-greedy learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with € > 0, for the remaining To rounds. Then, with probability at least 1 — 6, the
learner will select a generic non-optimal arm i in the corruption phase at most:
< it Air)logTh

B €=

N;(t* = T) (14)

Proof. This proof follows the same steps of the proof for the Lemma.6] With the only exception
that the term that incorporates the confidence radius is defined as follows:

1 <2KT) 902 1 n €
i =, |log | —— | 20 )
L 8\ 75 log(Z) & | A, log(Th)

Theorem 4.8. Suppose a e-greedy learner acts free of corruption for T rounds. An oracle attacker
injects corruption with, ¢ > 0 for the remaining Ty rounds. Then, with probability at least 1 — 6, the
learner will select the target arm T in the corruption phase at least:

O

° AO T % Ai T
N, (t* > T) 2T2—7i7’:r1— 3 Llong.
Yo i€[K\{r,0} ¢

Proof. The proof follows from the application of Lemma.6|and Lemmaf.7} The proof structure
follows the same steps as Theorem [4.4] for UCB. O

B EXPERIMENTS
In this section, we provide minor details about the experiments omitted in the main paper.

Experiments details

» Experiment were conducted using python 3.11.6
* CPU: Apple M1

* RAM: 16 GB

e Operating System: macOS 14.2.1

» System Type: 64 bit

20



	Introduction
	Original Contributions

	Preliminaries
	Recap on Standard Adversarial Attacks Model
	Oracle Attack

	Delayed-Attack Framework
	Successfulness and Profitability Analysis

	Theoretical Analysis
	Successfulness and Profitability Analysis for UCB learner
	Analysis for -Greedy
	Discussion on Arm Elimination Techniques

	Successfulness threshold
	Numerical Experiments
	Comparison between specific starting times
	Comparison between each possible attack times

	Conclusions
	Omitted Proofs
	UCB
	-Greedy

	Experiments

