
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DELAYED ADVERSARIAL ATTACKS ON STOCHASTIC
BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study adversarial attacks on stochastic bandits when, differently from previous
works, the attack of the malicious attacker is delayed and starts after the learning
process begins. We focus on strong attacks and capture the setting in which the
malicious attacker lacks information about the beginning of the learning process,
a limitation that can dramatically affect the effectiveness of the attack. We intro-
duce a more general framework to study adversarial attacks on stochastic bandit
algorithms, providing new definitions of success and profitability of an attack, that
account for variable corruption start time. We then analyze success and profitability
for different families of algorithms such as UCB and ϵ-greedy against an omni-
scient attacker. In particular, we derive upper and lower bounds on the number of
target arm pulls, showing that our bounds are tight up to a sublinear factor. Finally,
we identify an intuitive condition that characterizes when an attack can succeed as
a function of its starting time and evaluate the tightness of our theoretical bounds
on synthetic instances.

1 INTRODUCTION

The adoption of machine learning applications accelerates at an unprecedented pace, impacting
industry and many aspects of humanity. Evaluating how these systems can be damaged is crucial.
Many works address this issue in deep learning and reinforcement learning, trying to understand
how a malicious entity could “attack” machine learning systems to alter their behavior Goodfellow
et al. (2014); Sun et al. (2020); Inkawhich et al. (2019). Other works instead investigate defense
strategies, designing robust techniques Chen et al. (2019); Zhang et al. (2020); Pattanaik et al. (2017)
In optimal decision-making scenarios, the concept of “attack” can be translated as a way to alter the
learner’s behavior, fooling the algorithm into selecting specific actions or dramatically reducing the
performance. Multi-Armed Bandits (MAB) Auer et al. (2002) are popular online decision-making
algorithms whose theoretical guarantees are widely explored. Being a simple yet powerful framework,
they are used in various real-world scenarios Bouneffouf et al. (2020) such as medical trials (Durand
et al., 2018), recommendation systems (Zhou et al., 2017), advertising (Castiglioni et al., 2022), and
finance (Shen et al., 2015; Huo and Fu, 2017).

Adversarial attack framework on multi-armed bandits (MAB) comprises three entities: a learner,
an environment, and an attacker. The learner aims to optimize its policy by interacting with the
environment. The attacker tries to alter the behavior of the learner by corrupting its reward feedback.
The attacker aims to fool the learner into selecting a specific target arm which is sub-optimal. An
attack is considered successful if the learner, upon receiving corrupted observations, selects the target
arm T − o(T ) times. The attacker decides the amount of corruption to inject observing the arm
played by the learner and the reward generated by the environment. This framework, denoted as
strong attack model, became a standard in adversarial attacks on MAB Jun et al. (2018). The strong
attack framework has been shown to be unrecoverable for most of the classical bandit algorithms
Jun et al. (2018); Liu and Shroff (2019) meaning that a learner under attack will always experience
linear regret. To the best of our knowledge, all work about adversarial attacks in stochastic bandits
assumes that the attack starts at tA = 1, at the beginning of the learning process. Previous works
have proved that, under this attack model, every known technique is unrecoverable from attacks,
meaning that an attack is always successful, suggesting that state-of-the-art techniques are not secure.
Assuming that the start of the attack and the beginning of the learning process always coincide is a
strong assumption, which rarely happens in practice, as it implies that the attacker knows when a
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private entity (such as a company) initializes the learning algorithm. Motivated by this observation,
we define a novel attack framework that relaxes this assumption and takes into account a generic time
tA for the attacker to start injecting corruption. We call this new framework delayed attack model and
provide theoretical guarantees about the success of an attack when corruption injection is delayed
with respect to the beginning of the learning process.

1.1 ORIGINAL CONTRIBUTIONS

Our contributions can be formalized as follows.

• We define the delayed attack model, a generalization of the classic adversarial attack
framework, where an attack can start at a generic time tA > 1 providing renewed definition
of a successfulness and profitability of an attack. In our model, the previous definition of
success may be too restrictive, since, for large enough tA, the learner may already have built
strong estimates about arms. In our definition, even if the attacker fools the learner to select
the target arm does not imply that the target arm will be selected a linear number of time. To
see this, consider a tA sufficiently close to T , and the learner may be fooled into believing
that the target arm is optimal, but has already exploited the true optimal arm a linear number
of times. For this reason, we introduce a more granular metric, the profitability, which
quantifies the effectiveness of an attack.

• With a fixed oracle attack algorithm, we analyze the success of different families of algo-
rithms for stochastic bandits under our new attack model. For each technique, we derive an
upper and lower bound on the number of pulls of the target arm as a function of the start of
the attack tA. In particular, we show that for UCB and ϵ-greedy, under an optimal attack,
the number of pulls of the target arm is approximately (T − tA)− ∆o,τ

ϵ tA, where ∆o,τ is
the mean reward gap between the optimal arm and the target arm. Our bounds are tight up
to a sublinear factor. Finally, we discuss arm elimination techniques, which surprisingly
exhibit a natural robustness to attacks under our framework, providing a proof sketch for
active arm elimination (AAE).

• Finally, we provide a condition to characterize whether an attack can be successful depending
on the start time tA. In particular, we identify the threshold value α∗(∆o,τ , ϵ) =

ϵ
ϵ+∆o,τ

that depends on the gap ∆o,τ and the parameter ϵ. We show that if the attack starts at time
tA = αT with α < α∗, then under our attack, the learner plays the target arm a linear
number of times. On the other hand, if the attack starts at time tA = αT with α > α∗, then
under any attack the learner plays the target arm a sublinear number of times. We validate
our analysis empirically via numerical experiments on synthetic instances.

Related Works Concerning attack strategies, the original adversarial attack model for stochastic
bandits was introduced by Jun et al. (2018), proposing different corruption techniques such as oracle
attack and attacks for specific specific techniques such as ϵ-greedy and UCB. Liu and Shroff (2019)
propose the Adaptive attack by Constant Estimation (ACE), which generalizes previous techniques
being not tied to a particular learner’s algorithm. Later, Zuo (2020) improved the cost of the attack
for UCB in the stochastic setting. All these works operate in the strong attack scenario where the
attacker can observe both the played action and the corresponding reward. Works that explore robust
techniques tend to assume a weak attack setting, where the attacker can only observe the reward
vector generated by the environment. In this setting, Xu et al. (2021) propose an attack technique
in which the attacker does not need observations and provides a criterion to characterize families of
bandits that are naturally vulnerable to adversarial attacks. Lykouris et al. (2018) propose a robust
variation of the Active Arm Elimination (AAE) algorithm agnostic to the amount of corruption
injected. Similarly Gupta et al. (2019) proposes a robust algorithm agnostic to corruption. Rangi et al.
(2022) study a defensive strategy against a weak attacker in a stochastic setting where the learner
can access a limited number of samples free of corruption. Guan et al. (2020) propose a robust
algorithm for a different attack model where the attacker can deal with an unbounded attack with a
certain probability. Zhong et al. (2021) proposes Probabilistic Sequential Shrinking (PSS), a robust
technique for best arm identification problem under adversarial corruption. Aside from the stochastic
bandit setting, several works analyze the adversarial attack framework also for adversarial bandits
(Ma and Zhou, 2023; Yang et al., 2021), for Gaussian process bandits (Bogunovic et al., 2020a; Han
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and Scarlett, 2022), contextual bandits (Garcelon et al., 2020; Bogunovic et al., 2020b; Wang et al.,
2022) and combinatorial bandits (Balasubramanian et al., 2024; Dong et al., 2022).

2 PRELIMINARIES

In a Multi-Armed Bandit (MAB) problem Auer et al. (2002) a learner interacts with an environment
for T rounds. The learner has K available arms or actions. Each arm i ∈ [K] 1 is associated with a
σ2-sub-Gaussian reward distribution γi with mean µi unknown to the learner. At each time t ∈ [T ],
the learner selects an arm it ∈ [K] and observes the corresponding reward ri(t) ∼ γit generated
by the environment. We denote the optimal arm as o = argmaxi∈[K] µi. Let I {·} be the indicator
function. Then, we denote by Nj(t) =

∑t
k=1 I {ik = j} the number of times an arm j ∈ [K] has

been pulled until time t ∈ [T ], and with Nj(t1 → t2) =
∑t2

k=t1
I {ik = j} the number of times an

arm j ∈ [K] has been pulled in the interval [t1, t2] with t1 < t2 and t1, t2 ∈ [T ]. Moreover, we
denote by ∆i,j := µi − µj the gap between the means of two different arms i, j ∈ [K]. Finally, we
define as ni(t) = {t′ ≤ t : it = i} the set of rounds in which the arm i is selected up to round t, and
with µ̂i(t) =

∑
t′∈ni(t)

r(t′)/Ni(t) the average reward of arm i up to round t. The objective is to
minimize the regret over the time horizon, where the regret is defined as:

R(T ) = µoT −
T∑

t=1

µit . (1)

2.1 RECAP ON STANDARD ADVERSARIAL ATTACKS MODEL

In the classical adversarial attack framework Jun et al. (2018); Liu and Shroff (2019), an additional
entity, called the attacker, sits between the learner and the environment. The attacker, in each round
t ∈ [T ], upon observing the arm i played by the learner and the reward generated ri(t) may craft a
corruption ct to alter the reward observed by the learner r̃i(t) = ri(t) − ct. The attacker aims to
fool the learner into selecting a target sub-optimal arm τ . We assume that the target arm τ is such
that µτ < µo, otherwise, the learner converges to play the target arm even without the attack. 2 The
aim of the attacker is to craft the minimal amount of corruption ct such that the learner, receiving
corrupted observations, believes the target arm τ optimal. The attacker is evaluated in terms of
successfulness and cost of the attack. An attack is successful if the learner selects the target arm τ
for Nτ (T ) = T − o(T ) rounds in expectation or high-probablity while the attacker pays a sublinear
cost (Jun et al., 2018; Liu and Shroff, 2019). The cost is defined as the total corruption injected in
the time horizon C(T ) =

∑T
t=1 |ct|. In general, there is no fixed budget for the attack. However,

in designing attack techniques we prefer to be stealth, that is, we aim for attacks that minimize the
cost ct inflicted at each round, as dealing too much corruption at once can be suspicious in a realistic
scenario.

2.2 ORACLE ATTACK

An attack strategy is an online algorithm that, upon observing the arm i played by the learner and the
generated reward ri(t), returns a corruption ct. The oracle attack model proposed by Jun et al. (2018)
is an ideal attack model in which the attacker is omniscient, i.e., knows the true means µi for all
i ∈ [K]. Although unrealistic in practice, the oracle attack model is useful for a worst-case analysis.
In the following, we introduce the main components of the attack in (Jun et al., 2018). Suppose that
the attacker knows the true mean of each arm. When the learner selects an arm i different from the
target τ the attacker crafts an attack ct such that:

ct = I{i ̸= τ} [∆τ,i + ϵ]+ (2)

Where, [k]+ = max(0, k) and ϵ is an arbitrary constant strictly greater than 0. Several attack
strategies provide attacks that do not assume an omniscient attacker, such as the attack on UCB in

1In this work, we refer as [A], A ∈ N, to the set {1, . . . , A}.
2We assume that τ is the arm with the lowest average reward i.e., µτ = mini∈[K] µi. This is w.l.o.g. because

all the arms with mean reward lower than the target arm can be eliminated since they are played a sub-linear
number of times even without the attack.
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(Jun et al., 2018) or the more generic adaptive attack by constant estimation (ACE) (Liu and Shroff,
2019). The standard framework of adversarial attacks on stochastic bandits that we describe assumes
that the attacker injects corruption from tA = 1, that is, when the bandit algorithm is instantiated and
has no prior observations. Each known no-regret technique has proven vulnerable under this attack
model. However, such a negative result is based heavily on the tA = 1 assumption.

3 DELAYED-ATTACK FRAMEWORK

L

A

E

i

ri(t)

t ≤ tA

i, ri(t)

t > tA

ri(t)− ct

Figure 1: Delayed adversarial attack framework.
L represent the learner, E the Environment, and A
the attacker.

In the delayed adversarial attack framework we
assume a variable attack start time tA ≥ 1, and
study the success of techniques under adversar-
ial corruption, which as we will discuss later
is highly influenced by tA. Our framework is
a generalization of the standard attack model
proposed by Jun et al. (2018); Liu and Shroff
(2019). In particular, the standard framework
corresponds to the specific case where tA = 1.
For each time t ≤ tA, the learner acts in a
corruption-free scenario, as if the attacker is
absent. For t > tA the attacker starts to inject
corruption ct at each round until the end of the
horizon T to fool the learner into selecting a
sub-optimal target arm τ in place of the optimal
arm. Figure 1 provides a graphical representation of the setting. In the paper, we divide the horizon
T into two phases, specifically, we refer to the pre-corruption phase indicating T1 = tA rounds and
the post-corruption phase of T2 rounds such that T = T1 + T2. In T1 the learner acts as in a classic
bandit problem without corruption. In T2 the problem shifts towards an adversarial attack model. The
challenge for the attacker is that the learner after T1 rounds may already have built good estimates of
each arm.

3.1 SUCCESSFULNESS AND PROFITABILITY ANALYSIS

In a given attack model, attack strategies are evaluated in terms of successfulness. In particular, an
attack is successful if due to corruption, the learner selects the target arm τ a linear number of times
Nτ (t) = T − o(T ) while the attacker pays sublinear cost C(T ) = O(log T ). This condition is too
restrictive for our framework and strongly related to the scenario where tA = 1. Leaving the attack to
start any time tA, we need a weaker notion of successfulness, we define it as the condition in which
the attack forces the learner to pull the target arm a linear number of times. Formally:
Definition 3.1 (Successfulness). An Adversarial Attack starting at time tA to a no-regret learner
with σ2-sub-Gaussian rewards acting over a horizon of T rounds is successful if the target arm τ is
selected at least: Nτ (T ) = Ω(T ) times in high probability or expectation.

Intuitively, this condition is intimately related to fool the learner into “believing” that the target arm
is optimal. Similarly, if the attack is unsuccessful, the learner will not “believe” the target arm is
optimal and injecting corruption may be useless. Starting to attack at time tA = 1, the feasibility of
the attack is almost always possible since, from the very first rounds, the learner receives corrupted
observations. However, in our scenario, every non-corrupted sample fortifies the learner’s estimates,
increasing the corruption required to convince the learner to bet on the target arm. Depending on the
starting time tA, we can have situations where the attack is impossible, i.e., the learner will never
believe the target arm τ optimal.

Successfulness is a binary condition that distinguishes between successful and non-successful attacks
depending on the number of times the target arm is selected. However, this condition is verified in
very different situations, as it only requires a linear number of pulls of the target arm. For this reason,
we will also use a more fine-grained metric of successfulness called profitability. The rationale behind
this metric is to quantify the number of times the attacker induces the learner to pull the target arm τ
given that the attack is successful. Profitability responds to the question: "Given that the attack is
successful, how many times will the learner select the target arm?" Profitability corresponds to the
quantification of how many times the target arm has been pulled. Formally, it is defined as:
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Definition 3.2 (Profitability). The profitability of a successful attack is defined as the number of
times the target arm Nτ (T ) is pulled.

In other words, when an attack is successful, the attacker succeeded in making the learner believe that
the target arm τ is optimal, fooling the learner into selecting τ a linear number of times Ω(T ). Instead,
profitability is the actual measure of the number of times the target arm has been pulled. These two
definitions provide a more fine-grained way to quantify an adversarial attack in the proposed setting.

4 THEORETICAL ANALYSIS

In this section, we consider an oracle attacker which inject corruption according to Eq. (2) after a
variable time tA, and analyzes guarantees about the success and profitability of the attack for different
families, such as UCB and ϵ-greedy. In the end, we discuss why successive elimination techniques
are naturally robust in our setting. We remark that the choice of an oracle attacker not only makes
the analysis more intuitive but also offers a worst-case perspective, being the strongest attack in this
setting. Before moving on to the analysis, we derive the confidence radius bound for the empirical
means of an arm i, for round t. Consider the event:

E = {|µ̂i(t)− µi| ≤ β(Ni(t)) ∀i, ∀t} , (3)

where given a probability δ > 0 we define the confidence radius β(N) as a decreasing function in the
number of pulls, formally:

β(Ni(t)) =

√
log( 2KT

δ )2σ2

Ni(t)
. (4)

Our radius differs from the one proposed by Jun et al. (2018) and Liu and Shroff (2019) because
we consider a fixed horizon T . In the following lemma we prove that the event E holds in high-
probability:

Lemma 4.1. Consider event E, for any δ ∈ (0, 1), P(E) > 1− δ

Although the proof is standard, it is reported in Appendix A for completeness. Thanks to
Lemma 4.1, with probability at least 1 − δ, we can bound the mean µi of arm i in the interval
[µ̂i(t)− β(Ni(t)), µ̂i(t) + β(Ni(t))] .

4.1 SUCCESSFULNESS AND PROFITABILITY ANALYSIS FOR UCB LEARNER

Consider an oracle attacker and an UCB learner, acting according to the following arm selection rule:

it =

{
t, if t ≤ K

argmaxi

{
µ̂i(t− 1) + 3σ

√
log T

Ni(t−1)

}
, o.w.

(5)

To analyze successfulness and profitability, we study the number of pulls of the target arm taking
into account delayed corruption. To this extent, we derive a (i) lower and (ii) upper bound on the
number of pulls of the target arm Nτ (T ), given that the attacker starts injecting corruption at time
tA ≥ 1. Intuitively, to prove (i) we derive an upper bound on the number of pulls of the optimal arm
in Lemma 4.2, and similarly in Lemma 4.3, an upper bound on a generic sub-optimal arm i /∈ {o, τ}.
Then, we use these results to prove a lower bound for Nτ (t

A → t) in Theorem 4.4. In the delayed
scenario, we must distinguish between the optimal o and a generic arm i. Since the learner experience
O(log(T )) regret and has acted free of corruption for T1 rounds, it may already have a robust estimate
of the optimal arm which may be selected a linear number of time in T1. Instead, sub-optimal arms
have been played a logarithmic number of times and have less consolidated estimates. This scenario
is harder for the attacker, since when the attack starts at time tA = 1, the target arm is immediately
recognized as optimal, since corruption will fake the observation from the beginning. In our scenario,
the learner constructs a corruption-free estimate of each arm for t < tA rounds, and upon reaching
round tA the UCB learner will select the optimal arm o approximately No(t

A) ≈ tA times, while
every other arm i will be selected Ni(t

A) ≈ log(tA). After tA, corruption starts. We now provide an
upper bound for the quantities No(t

A → t) and Ni(t
A → t). These bounds represent the number

of pulls of the optimal arm o and generic sub-optimal arm i ̸= τ before corruption fools the learner

5
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believing the target arm to be optimal. We proceed considering the following inequality, which
determines a sufficient condition to ensure that an arm i is not pulled at a given time t:

µ̂c
i (t) + βUCB(Ni(t)) ≤ µ̂τ (t) + βUCB(Nτ (t)), (6)

where µ̂c
i (t) represents the partial corrupt estimator for arm i (corrupt after tA) defined as:

µ̂c
i (t) := µ̂i(t)−

∑t
k=tA ck

Ni(tA → t)
, (7)

with tA < t and with ck being the corruption crafted by the attacker during the corruption interval.
Analyzing Inequality (6), we obtain the following lemma, which formally states the bound for the
optimal arm pulls in the corruption phase:
Lemma 4.2. Suppose a UCB learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with ϵ > 0, for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select the optimal arm in the corruption phase at most:

No(t
A → T ) ≤ (ηo +∆o,τ )T1

ϵ− ηo
. (8)

For ease of presentation, we use the term ηo :=
√

ϵσ2(2 log (2KT/δ)+9 log T )/∆o,τT1 to incorporate
the confidence radius β defined in Eq. (4), and the confidence radius of UCB for the optimal
arm o, the complete proof can be found in Appendix A. Similarly, in the following lemma we
provide an upper bound on the number of pulls for a generic sub-optimal arm i /∈ {o, τ}. Let
ηi :=

√
ϵσ2(2 log (2KT/δ)+9 log T )/∆i,τ log(T1). Equivalently, we use the term ηi for the confidence

radius β and UCB for the specific arm i.
Lemma 4.3. Suppose a UCB learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with ϵ > 0, for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select a generic non-optimal arm i in the corruption phase at most:

Ni(t
A → T ) ≤ (ηi +∆i,τ ) log T1

ϵ− ηi
. (9)

Thanks to Lemma 4.2 and Lemma 4.3, we can state the core theorem to lower bound the number of
target arm pulls of UCB in the corrupted horizon T2.
Theorem 4.4. Suppose a UCB learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption with, ϵ > 0 for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select the target arm τ in the corruption phase at least:

Nτ (t
A → T ) ≥ T2 −

ηo +∆o,τ

ϵ− ηo
T1 −

∑
i∈[K]\{τ,o}

ηi +∆i,τ

ϵ− ηi
log T1.

In the following corollary, we derive an asymptotic definition of Theorem 4.4
Corollary 4.5. Suppose a UCB learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with ϵ > 0, for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select the target arm τ in the corruption phase asymptotically at least:

Nτ (t
A → T ) ≥ T2 −

∆o,τ

ϵ
T1 − o(T ). (10)

Thanks to Corollary 4.5 we can easily recover an asymptotic estimate of the profitability of the
attack, since it expresses the lower bound of Nτ (t

A → T ) in the corruption phase in terms of the
instance-dependent gap ∆o,τ and the corruption parameter of the attacker ϵ.

4.2 ANALYSIS FOR ϵ-GREEDY

Suppose now that the oracle attacker faces a ϵ-greedy learner, a non-adaptive exploration strategy
where the learner has a non-zero probability to explore random action, the rule is as follows:

it =

{
argmaxi∈[K] µ̂i(t), w.p. 1− ϵ′(t)

U(K), o.w.
(11)
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Figure 2: Each figure compares three identical UCB learners, each attacked at a different start time
tA. In particular, we show a comparison of the cumulative regrets in Figure 2a, cumulative rewards in
Figure 2b and the attack cost in Figure 2c with a 95% confidence interval over 10 experiments. Each
learner is attacked at three different times: (i) from the start time (tA = 1) when the learning process
begins, (ii) before the successfulness threshold tA < α∗T and after the successfulness threshold
tA > α∗T . These last two attacks are marked with the two dotted vertical lines, to highlight the
magnitude of changes in the correspondent regret.

Where U(K) is the uniform distribution over [K] and ϵ′(t) is the learning schedule3 of ϵ-greedy,
chosen to be ϵ′(t) = 1/t. To derive a lower bound for Nτ (t

A → T ) when the learner is ϵ-greedy,
we follow a procedure similar to the one used in UCB. First, we derive upper bounds for optimal
No(t

A → T ) and the generic arm number of pulls No(t
A → T ). We consider the following

inequality, which determines a sufficient condition to guarantee that an arm i is not pulled at a given
time t when the learner is ϵ-greedy:

µ̂c
i (t) ≤ µ̂τ (t). (12)

From the above inequality, we can derive the following lemmas:
Lemma 4.6. Suppose a ϵ-greedy learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with ϵ > 0, for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select the optimal arm o in the corruption phase at most:

No(t
A → T ) ≤ (γo +∆i,τ ) log T1

ϵ− γo
. (13)

Lemma 4.7. Suppose a ϵ-greedy learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with ϵ > 0, for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select a generic non-optimal arm i in the corruption phase at most:

Ni(t
A → T ) ≤ (γi +∆i,τ ) log T1

ϵ− γi
. (14)

Similarly to UCB analysis γo and γi refers to sub-constant terms hiding the confidence radius
contribution for the ease of visualization. Finally, thanks to Lemma 4.6 and Lemma 4.7 we derive the
following theorem
Theorem 4.8. Suppose a ϵ-greedy learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption with, ϵ > 0 for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select the target arm τ in the corruption phase at least:

Nτ (t
A → T ) ≥ T2 −

γo +∆o,τ

ϵ− γo
T1 −

∑
i∈[K]\{τ,o}

γi +∆i,τ

ϵ− γi
log T1.

4.3 DISCUSSION ON ARM ELIMINATION TECHNIQUES

With arm elimination algorithms, we refer to techniques that discard sub-optimal arms. Examples
are Explore-Then-Commit (ETC) and Active Arm Elimination (AAE) Slivkins (2024). For instance,
in AAE an arm i is eliminated at t if ∃j ∈ [K] s.t. µ̂i(t) + βUCB(Ni(t)) < µ̂j(t)− βUCB(Nj(t)).
Surprisingly, this family of techniques is naturally robust to adversarial attacks in the delayed attack
model. Intuitively, for sufficiently large T1, the target arm might be eliminated, when this happens,
the attack cannot be successful.

3We use ϵ′ to disambiguate between the oracle attack corruption and ϵ-greedy linear schedule.
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5 SUCCESSFULNESS THRESHOLD

In this section, we show the implications of previous results on the successfulness of an attack. For
simplicity, we will consider an UCB learner, but the results easily extend to ϵ-greedy. To this extent,
note that Lemma 4.2 provides the minimum number of rounds No(t

A → T ), in the corruption phase,
required to change the belief of a UCB learner subject to an oracle attack, to select the target arm.
In other words, before the learner believes that τ is optimal, there will still be many No(t

A → T )
rounds in which the learner will select the optimal arm o. For some start attack time tA, even by
introducing corruption, the learner may never believe the target arm to be optimal, resulting in an
unsuccessful attack. As a trivial example, if the attack starts near the horizon’s end, the attack cannot
select the target arm a linear number of times. A natural question that arises from reasoning about the
above fact is whether there exists a threshold α∗ that identifies the break-even point in the horizon
α∗T where any attack starting after tA > α∗T cannot make the learner pull the target arm τ a linear
number of times. Intuitively, the threshold α∗, given ∆o,τ and fixed a value for ϵ can discriminate for
any starting time tA if the attack is successful. This condition can be derived from Theorem 4.4 and
can be expressed in closed form as a parameter α∗(∆o,τ , ϵ) that depends on the optimal gap ∆o,τ

and the parameter ϵ. Formally:
Corollary 5.1. Fixed a constant corruption ϵ > 0. If the attack starts at αT with α < α∗(∆o,τ , ϵ), a
UCB learner will select the target arm τ at least Ω(T ) times with high probability.

The proof follows from the derivation of the lower bound on Nτ (t
A → T ). Finally, we prove that

our bounds are tight. In particular, with the following theorem, we provide a tight upper bound on the
number of target arm pulls.
Theorem 5.2. Suppose a UCB learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with ϵ > 0, from time αT , with α < α∗. Then, with probability at least −δ, the
learner will select the target arm τ in the corruption phase at most:

Nτ (t
A → T ) ≤ T2 −

∆o,τ

ϵ
T1 + o(T ).

Similarly, as a corollary, we can show that if the attack starts from αT with α > α∗(∆o,τ , ϵ), it is not
successful in high probability.
Corollary 5.3. Fixed a constant corruption ϵ > 0, if the attack starts at αT with α > α∗(∆o,τ , ϵ),
an UCB learner will select the target arm τ at most o(T ) times with high probability.

6 NUMERICAL EXPERIMENTS

We conduct two experiments, one comparing three specific attack times tA before and after the
successfulness threshold defined in Corollary 5.1 and Corollary 5.3. In the second experiment, we
show the learner’s metrics when the attack can start in every possible round of the horizon T . We use
a UCB learner defined in Eq. (5) and an oracle attacker as in Eq. (2).

6.1 COMPARISON BETWEEN SPECIFIC STARTING TIMES

Given the successfulness threshold α∗ = ϵ
ϵ+∆o,τ

, we show how the learner behaves when the attack
starts at three specific times: (i) from time tA = 1 as in the previous attack model Jun et al. (2018),
(ii) from time tA < α∗T where we prove the attack is still successful, and (iii) from time tA > α∗T
where we proved that the attack is not successful. For (ii) and (iii), we set the attack start time to
be tA = 1

2α
∗T and tA = 3

2α
∗T respectively. Consider a two-arm instance, where the optimal and

target arms have a mean reward µo = ∆ and µτ = 0, with ∆ = 0.5. The error tolerance δ is set
to 0.05, and σ is set to 0.1. The Oracle attacker has the parameter ϵ set to 0.05. As environment
parameters, the rewards for each arm i are i.i.d. sampled from a Gaussian distribution N (µi, σ

2). We
perform E = 10 trials with a horizon T = 105 and seed 1234 + k, k ∈ {0, . . . , E}. The results
of the experiments shown in Figure 2 highlight that starting the attack at different times drastically
changes the outcome. In particular, focusing on the cumulative regrets of Figure 2a we notice how
the attack at time tA = 1 and tA < α∗T , although slightly different, results in a linear regret for
the learner, in contrast to the UCB instance attacked at tA > α∗T which is clearly nonlinear. From
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Figure 3: This figure shows the behavior of a UCB learner, victim of an oracle attack, for variable
attack start time tA, with a 95% confidence interval on 15 experiments. On the left, Figure 3a shows
the value of total regrets, total rewards and total cost of the attack for different times tA. While on
the right, Figure 3b shows the average number of pulls of the target arm τ and the optimal arm o
depending on the starting time tA.

a practical perspective, these results highlight how much the framework of adversarial attacks on
stochastic bandits is sensitive to the start of the attack a parameter that is hardly known by an attacker.
Although theoretically these techniques are proven to be weak against adversarial attacks, from a
practical perspective, considering the successfulness threshold in the design phase can be helpful in
making them robust. Intuitively, the threshold α∗ can be used in the design of practical applications
to mitigate attacks, for example, by securely training the algorithm until the threshold is reached
or using verification techniques in initial samples. Furthermore, from the attacker’s point of view,
starting the attack after the successfulness threshold implies the highest cost on the horizon T , as
shown in Figure 2c. For this reason, any attack performed after α∗T is not worth it in terms of cost,
as the attacker pays the highest price without being capable of fooling the learner into selecting the
target arm τ .

6.2 COMPARISON BETWEEN EACH POSSIBLE ATTACK TIMES

In the second experiment, for any time tA ∈ [T ] we run an instance of UCB algorithm attacked by an
oracle attack starting at tA. For each tA, we save the sum of the metrics obtained (regrets, rewards,
and attack cost). The instance and parameter values, such as the mean reward of arms, δ, ϵ, σ are
identical to the previous experiment. We perform E = 15 trials with a horizon T = 103 for each
tA ∈ [1, . . . , 103] setting the seed at 1234 + k, k ∈ {0 . . . E}. Figure 3 shows the results. Given a
particular tA, Figure 3a shows the total regret and the total rewards obtained by the learner, as well as
the total attack of the attacker. Figure 3b shows how the number of pulls for the optimal o and target
arm τ changes depending on the beginning of corruption. As expected, the target arm pulls down
gracefully as the beginning of corruption is delayed.

7 CONCLUSIONS

Current state-of-the-art analysis of adversarial attacks in the multi-armed bandit framework assumes
that the attacker starts to inject corruption at time tA = 1. This assumption is often unrealistic, and
current results show that techniques are unrecoverable from an attack. We provide the delayed attack
model, a more fine-grained generalization of the previous attack model where an attack can start at
any time tA ≥ 1. After characterizing the success of an attack within our framework, we prove for
different families of algorithms that the success of an attack strongly depends on the starting time
tA. In particular, we provide lower and upper bounds on the number of times the target arm has
been selected and define a threshold to discriminate when an attack can be successful depending on
tA. This model offers a new perspective to study adversarial attacks, closer to a realistic scenario,
and opens new possibilities for defending, for instance, by verifying the rewards until reaching the
successfulness threshold.
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A OMITTED PROOFS

Lemma 4.1. Consider event E, for any δ ∈ (0, 1), P(E) > 1− δ

Proof. Proving that P (E) ≥ 1− δ is equivalent to prove that P (Ec) ≤ δ where Ec is the comple-
mentary event. Now let

Ec
i,t = {|µ̂i(t)− µi| ≤ β(Ni(t))} ,

then we have that:

P (Ec) = P

(
K⋃
i=1

T⋃
t=1

Ec
i,t

)

≤
K∑
i=1

T∑
t=1

P
(
Ec

i,t

)
(15)

≤
K∑
i=1

T∑
t=1

2 exp

{
−Ni(t)β(Ni(t))

2

2σ2

}
(16)

≤ δ, (17)

where in Inequality (15) we applied the Union Bound, in Inequality (16) the Hoeffding Bound and
Inequality (17) follows by substituting β(Ni(t)) defined in Equation (4).

A.1 UCB

Lemma 4.2. Suppose a UCB learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with ϵ > 0, for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select the optimal arm in the corruption phase at most:

No(t
A → T ) ≤ (ηo +∆o,τ )T1

ϵ− ηo
. (8)

Proof. Consider a UCB learner, experiencing O(log(t)) regret. Consider an omniscient attacker,
meaning that at each round, given that the optimal arm has been selected, she corrupts the amount
ct = ∆o,τ + ϵ. Let t > tA any round after the corruption has began. If

µ̂c
o (t) + βUCB (No(t)) ≤ µ̂τ (t) + βUCB (Nτ (t)) , (18)

where µc
o(t) is a partial corrupted estimator where the corruption only happens in the interval (tA, t),

holds for the optimal arm o, the learner believes that target arm τ is optimal after a corruption phase
(we distinguish between optimal arm o and a generic arm i with i ̸= τ ). Now, the left hand side of
Inequality (18) can be upper bounded by:

µ̂c
o (t) + βUCB (No(t)) ≤ µ̂o −

cNo(t
A → t)

No(t)
+ βUCB (No(t)) ,

where we have extracted the corruption from the partial corrupted estimator µ̂c
o(t). The extraction is

possible since in the oracle attack, ∀t ∈ [T ] computes a constant, fixed attack ct = c = ∆o,τ + ϵ.
Then we can further upper bounding using the fact that event E holds:

µ̂o(t)−
cNo(t

A → t)

No(t)
+ βUCB (No(t))

≤ µo + β (No(t))−
cNo(t

A → t)

No(t)
+ βUCB (No(t))

= µτ +∆o,τ + β (No(t))−
cNo(t

A → t)

No(t)
+ βUCB (No(t))

≤ µ̂τ (t) + βUCB(Nτ (t)) + ∆o,τ + β (No(t))−
cNo(t

A → t)

No(t)
+ βUCB (No(t)) .

(19)
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Then, if we plug Equation (19) in the Inequality (18) we obtain:

∆o,τ + β (No(t)) + βUCB (No(t))−
cNo(t

A → t)

No(t)
≤ 0. (20)

Now notice that No(t), with t > tA can be rewritten as No(T1) + No(t
A → t). Moreover, since

β(N) is decreasing in the number of arm pulls we can further upper bound Inequality (20) as:

∆o,τ + β (No(t)) + βUCB (No(t))−
cNo(t

A → t)

No(t)

≤ ∆o,τ + β
(
No(t

A → t)
)
+ βUCB

(
No(t

A → t)
)
− cNo(t

A → t)

No(t)

= ∆o,τ +

√
log( 2KT

δ )2σ2

No(tA → t)
+ 3σ

√
ln (t)

No(tA → t)
− cNo(t

A → t)

No(t)

≤ ∆o,τ +

√
σ2
(
2 log

(
2KT
δ

)
+ 9 log t

)
No(tA → t)

− cNo(t
A → t)

No(t)
.

Now assume that:
No(t

A → t) ≥ ∆o,τ

ϵ
T1 (21)

Exploiting Equation (21), we have that:

∆o,τ +

√
σ2
(
2 log

(
2KT
δ

)
+ 9 log t

)
No(tA → t)

− cNo(t
A → t)

No(t)
≤ 0,

if

∆o,τ +

√
ϵσ2

(
2 log

(
2KT
δ

)
+ 9 log T

)
∆o,τT1

− cNo(t
A → t)

No(t)
≤ 0, (22)

where we use t ≤ T . Recalling that

η :=

√
ϵσ2

(
2 log

(
2KT
δ

)
+ 9 log T

)
∆o,τT1

,

and plugging it in Inequality (22) we obtain:

∆o,τ + η − cNo(t
A → t)

No(t)
= ∆o,τ + η − cNo(t

A → t)

No(T1) +No(tA → t)

≤ ∆o,τ + η − cNo(t
A → t)

T1 +No(tA → t)
(23)

= ∆o,τ + η − (∆o,τ + ϵ)No(t
A → t)

T1 +No(tA → t)
,

where in Inequality (23), we upper bound the number of optimal arm pulls to No(T1) ≈ T1. Finally,
solving for No(t

A → t) the following inequality:

∆o,τ + η − (∆o,τ + ϵ)No(t
A → t)

T1 +No(tA → t)
≤ 0,

we obtain the following result:

No(t
A → t) ≥ (η +∆o,τ )T1

ϵ− η
. (24)

However, considering the condition expressed in Inequality (18), if Inequality (24) is true then learner
would not act optimally. Implying that:

No(t
A → t) ≤ (η +∆o,τ )T1

ϵ− η
. (25)
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Lemma 4.3. Suppose a UCB learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with ϵ > 0, for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select a generic non-optimal arm i in the corruption phase at most:

Ni(t
A → T ) ≤ (ηi +∆i,τ ) log T1

ϵ− ηi
. (9)

Proof. This proof follows similar steps of the proof for the Lemma 4.2. However, there are different
assumptions. Again we consider a UCB learner, experiencing O(log(t)) regret. Consider an
omniscient attacker, meaning that at each round, given that a generic arm i has been pulled, she
corrupts the amount ct = ∆i,τ + ϵ. Let t > tA any round after the corruption has began. If the
following Inequality (26) holds for the generic arm i, the learner believes that target arm τ is better
than generic arm i after a corruption phase (here we distinguish between optimal arm o and a generic
arm i with i /∈ {o, τ}).

µ̂c
i (t) + βUCB (Ni(t)) ≤ µ̂τ (t) + βUCB (Nτ (t)) , (26)

where µc
i (t) is a partial corrupted estimator where the corruption only happens in the interval (tA, t).

Now, the left hand side of Inequality (26) can be upper bounded by:

µ̂c
i (t) + βUCB (Ni(t)) ≤ µ̂i −

cNi(t
A → t)

Ni(t)
+ βUCB (Ni(t)) ,

where we have extracted the corruption from the partial corrupted estimator µ̂c
i (t). The extraction

is possible since in the oracle attack, ∀t ∈ [T ] computes a constant, fixed attack ct = c = ∆i,τ + ϵ.
Then we can further upper bounding using the fact that event E holds:

µ̂i(t)−
cNi(t

A → t)

Ni(t)
+ βUCB (Ni(t))

≤ µi + β (Ni(t))−
cNi(t

A → t)

Ni(t)
+ βUCB (Ni(t))

= µτ +∆i,τ + β (Ni(t))−
cNi(t

A → t)

Ni(t)
+ βUCB (Ni(t))

≤ µ̂τ (t) + βUCB(Nτ (t)) + ∆i,τ + β (Ni(t))−
cNi(t

A → t)

Ni(t)
+ βUCB (Ni(t)) .

(27)

Then, if we plug back Equation (27) in the Inequality (26) we obtain:

∆i,τ + β (Ni(t)) + βUCB (Ni(t))−
cNi(t

A → t)

Ni(t)
≤ 0 (28)

Now notice that Ni(t), with t > tA can be rewritten as Ni(T1)+Ni(t
A → t). Moreover, since β(N)

is decreasing in the number of arm pulls we can further upper bound Inequality (28) as:

∆i,τ + β (Ni(t)) + βUCB (Ni(t))−
cNi(t

A → t)

Ni(t)

≤ ∆i,τ + β
(
Ni(t

A → t)
)
+ βUCB

(
Ni(t

A → t)
)
− cNi(t

A → t)

Ni(t)

= ∆i,τ +

√
log( 2KT

δ )2σ2

Ni(tA → t)
+ 3σ

√
ln (t)

Ni(tA → t)
− cNi(t

A → t)

Ni(t)

≤ ∆i,τ +

√
σ2
(
2 log

(
2KT
δ

)
+ 9 log t

)
Ni(tA → t)

− cNi(t
A → t)

Ni(t)
,

Now assume that:

Ni(t
A → t) ≥ ∆i,τ

ϵ
log (T1) (29)
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Exploiting Equation (29), we have that

∆i,τ +

√
σ2
(
2 log

(
2KT
δ

)
+ 9 log t

)
Ni(tA → t)

− cNi(t
A → t)

Ni(t)
≤ 0

if

∆i,τ +

√
ϵσ2

(
2 log

(
2KT
δ

)
+ 9 log T

)
∆i,τ log (T1)

− cNi(t
A → t)

Ni(t)
≤ 0, (30)

where we use t ≤ T . Recalling that

ηi :=

√
ϵσ2

(
2 log

(
2KT
δ

)
+ 9 log T

)
∆i,τ log (T1)

,

and plug it in Inequality (30) we obtain

∆i,τ + ηi −
cNi(t

A → t)

Ni(t)
= ∆i,τ + ηi −

cNi(t
A → t)

Ni(T1) +Ni(tA → t)

≤ ∆i,τ + ηi −
cNi(t

A → t)

log T1 +Ni(tA → t)
(31)

= ∆i,τ + ηi −
(∆i,τ + ϵ)Ni(t

A → t)

log T1 +Ni(tA → t)
,

where in Inequality (31), we upper bound the number of a generic arm pulls to Ni(T1) ≈ log (T1).
Finally, solving the following Inequality for Ni(t

A → t)

∆i,τ + ψ − (∆i,τ + ϵ)Ni(t
A → t)

log T1 +Ni(tA → t)
≤ 0,

we obtain the following result

Ni(t
A → t) ≥ (ηi +∆i,τ )

ϵ− ηi
log T1. (32)

However, considering the condition expressed in Inequality (26), if Inequality (32) is true then learner
would not act optimally. Implying that:

Ni(t
A → t) ≤ (ηi +∆i,τ )

ϵ− ηi
log T1. (33)

Theorem 4.4. Suppose a UCB learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption with, ϵ > 0 for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select the target arm τ in the corruption phase at least:

Nτ (t
A → T ) ≥ T2 −

ηo +∆o,τ

ϵ− ηo
T1 −

∑
i∈[K]\{τ,o}

ηi +∆i,τ

ϵ− ηi
log T1.

Proof. The proof follows from the application of Lemma 4.2 and Lemma 4.3. The number of pulls
of the target arm τ in the corruption phase can be defined as:

Nτ (t
A → T ) = T2 −

∑
i∈[K]\{τ}

Ni(t
A → T )

= T2 −No(t
A → T )−

∑
i∈[K]\{τ,o}

Ni(t
A → T )

≥ T2 −
η +∆o,τ

ϵ− η
T1 −

∑
i∈[K]\{τ,o}

ηi +∆i,τ

ϵ− ηi
log T1 (34)
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Corollary 4.5. Suppose a UCB learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with ϵ > 0, for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select the target arm τ in the corruption phase asymptotically at least:

Nτ (t
A → T ) ≥ T2 −

∆o,τ

ϵ
T1 − o(T ). (10)

Proof. Consider the result from Theorem 4.4

Nτ (t
A → T ) ≥ T2 −

η +∆o,τ

ϵ− η
T1 −

∑
i∈[K]\{τ,o}

ηi +∆i,τ

ϵ− ηi
log T1

≥ T2 −
η +∆o,τ

ϵ− η
T1 − o(T ). (35)

Inequality (35) follows from the fact that the term regarding a generic arm i ∈ [K] \ {o, τ}, will be
selected at most a sub-linear number of times both in pre-corruption and in the corruption phase.
This is due to the UCB learner experiencing O(log T ) regret. Furthermore, the term η+∆o,τ

ϵ−η in

Inequality (35) can be divided in ∆o,τ

ϵ +
η(ϵ−∆o,τ )
ϵ(ϵ+η) to obtain:

T2 −
η +∆o,τ

ϵ− η
T1 − o(T ) = T2 −

(
∆o,τ

ϵ
+
η(ϵ−∆o,τ )

ϵ(ϵ+ η)

)
T1 − o(T )

= T2 −
∆o,τ

ϵ
T1 −

η(ϵ−∆o,τ )

ϵ(ϵ+ η)
T1 − o(T )

≥ T2 −
∆o,τ

ϵ
T1 − o(T ) (36)

Corollary 5.1. Fixed a constant corruption ϵ > 0. If the attack starts at αT with α < α∗(∆o,τ , ϵ), a
UCB learner will select the target arm τ at least Ω(T ) times with high probability.

Proof. From results obtained by Theorem 4.4 and Corollary 4.5 we know that:

Nτ (t
A → T ) ≥ T2 −

∆o,τ

ϵ
T1 − o(T )

= (1− α)T − ∆o,τ

ϵ
αT − o(T ), (37)

where Equation (37) derives from T1 + T2 = αT + (1 − α)T = T . Now let α = α∗ − δ where
α∗ = ϵ

ϵ+∆o,τ
we can rewrite Equation (37) in:

(1− α)T − ∆o,τ

ϵ
αT + o(T ) = (1− α∗ + δ)T − ∆o,τ

ϵ
(α∗ − δ)T − o(T )

= δT + (1− α∗)T − ∆o,τ

ϵ
(α∗ − δ)T − o(T )

= δT + (1− α∗ − ∆o,τ

ϵ
α∗)T +

∆o,τ

ϵ
δT − o(T ) (38)

= δT +
∆o,τ

ϵ
δT − o(T )

=
ϵ+∆o,τ

ϵ
δT − o(T ) (39)

The middle term in Equation (38) is exactly 0 thus we obtain Equation (39) as final result. Finally:

Nτ (t
A → T ) ≥ C

ϵ
δT − o(T )

≥ Ω(T ),

which concludes the proof.
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Theorem 5.2. Suppose a UCB learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with ϵ > 0, from time αT , with α < α∗. Then, with probability at least −δ, the
learner will select the target arm τ in the corruption phase at most:

Nτ (t
A → T ) ≤ T2 −

∆o,τ

ϵ
T1 + o(T ).

Proof. Consider a bandit instance in which we have only two arms, an optimal arm o and the target
arm τ , with true means µo = 1 and µτ = 1 −∆ respectively. Let t > tA a generic round t after
corruption has began. We want to prove that:

Nτ (t
A → T ) ≤ T2 −

∆o,τT1
ϵ

+ γ, (40)

where γ is a sub-linear term. To prove Inequality (40), we proceed by contradiction. Consider
Inequality (40) false, that is

Nτ (t
A → T ) > T2 −

∆o,τT1
ϵ

+ γ. (41)

If Inequality (41) is true, it means that exist a round tA < t′ < t where

Nτ (t
A → t′) ≥ T2 −

∆o,τT1
ϵ

+ γ − 1, (42)

and the learner selected the arm τ , formally:

µc
o + βUCB(No(t

′)) ≤ µτ + βUCB(Nτ (t
′)). (43)

Now, to prove that Inequality (41) is a contradiction we need to prove that Inequality (43) is false.
Proving Inequality (43) false is equivalent to prove true its contrary, formally:

µc
o + βUCB(No(t

′)) ≥ µτ + βUCB(Nτ (t
′)). (44)

Finally, to prove Inequality (40) we now reduced to prove Inequality (44) true. Since the instance is
defined with only two arms:

No(t
A → t′) = T2 −Nτ (t

A → t′)

≤ ∆o,τT1
ϵ

− γ + 1.

Then, we proceed by lower bounding the left hand side of Inequality (44) obtaining:

µc
o + βUCB(No(t)) ≥ µc

o

= µo −
(ϵ+∆o,τ )No(t

A → t′)

No(t′)

= µo −
(ϵ+∆o,τ )

(
∆o,τT1

ϵ − γ + 1
)

T1 +
∆o,τT1

ϵ − γ + 1

≥ µo −
(ϵ+∆o,τ )

(
∆o,τT1

ϵ + 1
)

T1 +
∆o,τT1

ϵ − γ
(45)

Now the right most term in Inequality (45) can be rewritten as:

(ϵ+∆o,τ )
(

∆o,τT1

ϵ + 1
)

T1 +
∆o,τT1

ϵ − γ
= ∆o,τ +

ϵ+∆o,τ +∆o,τγ

T1 +
∆o,τT1

ϵ

,

from which we obtain:

µo −∆o,τ +
ϵ+∆o,τ +∆o,τγ

T1 +
∆o,τT1

ϵ

. (46)
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Then we upper bounding the right hand side of Inequality (41) obtaining:

µτ + βUCB(Nτ (t)) ≤ µτ + 3σ

√
log T

Nτ (T1) +Nτ (tA → t′)

≤ µτ + 3σ

√
log T

Nτ (tA → t′)

≤ µτ + 3σ

√
log T

T2 − ∆o,τT1

ϵ + γ − 1

≤ µτ + 3σ

√
log T

T2 − ∆o,τT1

ϵ − 1
,

Finally, we obtain:

µo −∆o,τ +
ϵ+∆o,τ +∆o,τγ

T1 +
∆o,τT1

ϵ

≥ µτ + 3σ

√
log T

T2 − ∆o,τT1

ϵ − 1
(47)

Thus, Inequality (44) is true for γ ≥ T1

∆o,τ

(
1− ∆

ϵ

)
3σ
√

log T

T2−
∆o,τT1

ϵ −1
− ϵ

∆o,τ
resulting in a contrad-

diction.

A.2 ϵ-GREEDY

Lemma 4.6. Suppose a ϵ-greedy learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with ϵ > 0, for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select the optimal arm o in the corruption phase at most:

No(t
A → T ) ≤ (γo +∆i,τ ) log T1

ϵ− γo
. (13)

Proof. Consider a ϵ-greedy learner, experiencing O(log(t)) regret. Consider an omniscient attacker,
meaning that at each round, given that the optimal arm has been selected, she corrupts the amount
ct = ∆o,τ + ϵ. Let t > tA any round after the corruption has began. If

µ̂c
o (t) ≤ µ̂τ (t), (48)

where µc
o(t) is a partial corrupted estimator where the corruption only happens in the interval (tA, t),

holds for the optimal arm o, the learner believes that target arm τ is optimal after a corruption phase
(we distinguish between optimal arm o and a generic arm i with i ̸= τ ). Now, the left hand side of
Inequality (48) can be upper bounded by:

µ̂c
o(t) ≤ µ̂o(t)−

cNo(t
A → t)

No(t)
,

where we have extracted the corruption from the partial corrupted estimator µ̂c
o(t). The extraction is

possible since in the oracle attack, ∀t ∈ [T ] computes a constant, fixed attack ct = c = ∆o,τ + ϵ.
Then we can further upper bounding using the fact that event E holds:

µ̂o(t)−
cNo(t

A → t)

No(t)
≤ µo + β (No(t))−

cNo(t
A → t)

No(t)

= µτ +∆o,τ + β (No(t))−
cNo(t

A → t)

No(t)

≤ µ̂τ (t) + β(Nτ (t)) + ∆o,τ + β (No(t))−
cNo(t

A → t)

No(t)
. (49)

Then, if we plug Equation (49) in the Inequality (48) we obtain:

β (Nτ (t)) + ∆o,τ + β (No(t))−
cNo(t

A → t)

No(t)
≤ 0. (50)
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Now notice that terms Nx(t), with t > tA can be rewritten as Nx(T1)+Nx(t
A → t). We can further

reduce Inequality (50), by lower bounding the term β(Nτ (t)) as follows:

Nτ (t) = Nτ (T1) +Nτ (t
A → t)

≈ log(T1) +Nτ (t
A → t) (51)

≥ log(T1) +

t∑
s=tA+1

ϵ(t)′

K
(52)

≥ log(T1) + c(log(t)− log(tA))
1

K

Where, in Eq. (51) since the agent is a no-regret learner, in the non-corrupted phase we assume
sublinear pulls Nx(T1) ≈ log(T1) for each non optimal arm x ̸= o. Then, in Inequality (52), we
lower bound number of target pulls Nτ (t

A → t) in corruption phase to be at least the contribution of
ϵ-greedy exploration. Using this lower bound we can further upper bound Inequality (50) as follows:

β (Nτ (t)) + ∆o,τ + β (No(t))−
cNo(t

A → t)

No(t)

= β
(
Nτ (T1) +Nτ (t

A → t)
)
+∆o,τ + β

(
No(T1) +No(t

A → t)
)
− cNo(t

A → t)

No(t)

≤ β
(
Nτ (t

A → t)
)
+∆o,τ + β

(
No(t

A → t)
)
− cNo(t

A → t)

No(t)

≤ β

(
(tA − t)

ϵ′(t)

K

)
+∆o,τ + β

(
No(t

A → t)
)
− cNo(t

A → t)

No(t)

≤ ∆o,τ +

√
log

(
2KT

δ

)
2σ2

(
1

log( t
tA
) c
K

+
1

No(tA → t)

)
− cNo(t

A → t)

No(t)

(53)

Where we assume log( 2KT
δ = o(log(t)). Notice that it is sufficient to take β and δ large enough.

Now assume that:
No(t

A → t) ≥ ∆o,τ

ϵ
T1 (54)

Exploiting Equation (54), we have that:

∆o,τ +

√
log

(
2KT

δ

)
2σ2

(
1

log( t
tA
) c
K

+
1

No(tA → t)

)
− cNo(t

A → t)

No(t)
≤ 0,

if

∆o,τ +

√√√√log

(
2KT

δ

)
2σ2

(
1

log( T
tA
) c
K

+
ϵ

∆o,τT1

)
− cNo(t

A → t)

No(t)
≤ 0, (55)

where we use t ≤ T , and the ϵ-greedy exploration to be the linear schedule ϵ′(t) = 1
t . Now we

denote the constant term to be:

γo :=

√√√√log

(
2KT

δ

)
2σ2

(
1

log( T
tA
) c
K

+
ϵ

∆o,τT1

)
,

and plugging it in Inequality (55) we obtain:

∆o,τ + γo −
cNo(t

A → t)

No(t)
= ∆o,τ + γo −

cNo(t
A → t)

No(T1) +No(tA → t)

≤ ∆o,τ + γo −
cNo(t

A → t)

T1 +No(tA → t)
(56)

= ∆o,τ + γo −
(∆o,τ + ϵ)No(t

A → t)

T1 +No(tA → t)
,
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where in Inequality (56), we upper bound the number of optimal arm pulls to No(T1) ≈ T1. Finally,
solving for No(t

A → t) the following inequality:

∆o,τ + γo −
(∆o,τ + ϵ)No(t

A → t)

T1 +No(tA → t)
≤ 0,

we obtain the following result:

No(t
A → t) ≥ (γo +∆o,τ )T1

ϵ− γo
. (57)

However, considering the condition expressed in Inequality (48), if Inequality (57) is true then learner
would not act optimally. Implying that:

No(t
A → t) ≤ (γo +∆o,τ )T1

ϵ− γo
. (58)

Lemma 4.7. Suppose a ϵ-greedy learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption, with ϵ > 0, for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select a generic non-optimal arm i in the corruption phase at most:

Ni(t
A → T ) ≤ (γi +∆i,τ ) log T1

ϵ− γi
. (14)

Proof. This proof follows the same steps of the proof for the Lemma 4.6. With the only exception
that the term that incorporates the confidence radius is defined as follows:

γi :=

√√√√log

(
2KT

δ

)
2σ2

(
1

log( T
tA
) c
K

+
ϵ

∆o,τ log(T1)

)
,

Theorem 4.8. Suppose a ϵ-greedy learner acts free of corruption for T1 rounds. An oracle attacker
injects corruption with, ϵ > 0 for the remaining T2 rounds. Then, with probability at least 1− δ, the
learner will select the target arm τ in the corruption phase at least:

Nτ (t
A → T ) ≥ T2 −

γo +∆o,τ

ϵ− γo
T1 −

∑
i∈[K]\{τ,o}

γi +∆i,τ

ϵ− γi
log T1.

Proof. The proof follows from the application of Lemma 4.6 and Lemma 4.7. The proof structure
follows the same steps as Theorem 4.4 for UCB.

B EXPERIMENTS

In this section, we provide minor details about the experiments omitted in the main paper.

Experiments details

• Experiment were conducted using python 3.11.6

• CPU: Apple M1

• RAM: 16 GB

• Operating System: macOS 14.2.1

• System Type: 64 bit
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