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Abstract

Finding the optimal solution is often the primary goal in combinatorial optimization (CO).
However, real-world applications frequently require diverse solutions rather than a single
optimum, particularly in two key scenarios. The first scenario occurs in real-world applica-
tions where strictly enforcing every constraint is neither necessary nor desirable. Allowing
minor constraint violations can often lead to more cost-effective solutions. This is typically
achieved by incorporating the constraints as penalty terms in the objective function, which
requires careful tuning of penalty parameters. The second scenario involves cases where
CO formulations tend to oversimplify complex real-world factors, such as domain knowl-
edge, implicit trade-offs, or ethical considerations. To address these challenges, generating
(i) penalty-diversified solutions by varying penalty intensities and (ii) variation-diversified
solutions with distinct structural characteristics provides valuable insights, enabling practi-
tioners to post-select the most suitable solution for their specific needs. However, efficiently
discovering these diverse solutions is more challenging than finding a single optimal one.
This study introduces Continual Parallel Relaxation Annealing1 (CPRA), a computa-
tionally efficient framework for unsupervised-learning (UL)-based CO solvers that generates
diverse solutions within a single training run. CPRA leverages representation learning and
parallelization to automatically discover shared representations, substantially accelerating
the search for these diverse solutions. Numerical experiments demonstrate that CPRA out-
performs existing UL-based solvers in generating these diverse solutions while significantly
reducing computational costs.

1 Introduction

Constrained combinatorial optimization (CO) problems aim to find an optimal solution within a feasible
space, a fundamental problem in various scientific and engineering applications (Papadimitriou & Steiglitz,
1998; Korte et al., 2011). However, real-world applications often require diverse solutions rather than a single
optimal solution, particularly in two key scenarios.

The first scenario arises in real-world applications where strictly enforcing all constraints may neither be
necessary nor desirable. In such cases, solutions that slightly violate certain constraints may be preferred
if they result in significantly better cost performance. For example, soft deadlines in scheduling or minor
rule relaxations in logistics may lead to more cost-effective and practically feasible solutions. A common
approach to handling such flexibility is incorporating the constraints into the cost function as penalty terms,
thereby transforming the original constrained optimization problem into an unconstrained one. While this
formulation broadens the feasible solution space, it introduces the additional challenge of tuning penalty
strengths to balance constraint satisfaction with cost minimization. To address this, a promising strategy

1The code is available at https://github.com/Yuma-Ichikawa/CPRA4CO.
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Figure 1: Overview of CPRA UL-based solver and post-processing for diverse solutions.

is to explore a set of solutions generated under varying penalty configurations, referred to as (i) penalty-
diversified solutions. Such a solution set enables downstream decision-makers to select options based on
contextual priorities, thereby enhancing both the robustness and practical utility of the solver’s output, as
illustrated in Fig. 1.

A second common scenario occurs in real-world settings where the mathematical formulation of a CO problem
provides only a coarse approximation of the true decision-making environment. In practice, critical factors
such as domain expertise, implicit trade-offs, and soft ethical or operational constraints are often too complex,
dynamic, or subjective to be explicitly modeled. As a result, the optimal solution to a simplified formulation
may not be practical or even desirable in real-world deployment. To bridge this gap, generating a diverse
set of high-quality solutions that differ in structure or semantics is valuable, referred to as (ii) variation-
diversified solutions. These solutions allow users to post-select the most suitable option, tailored to real-world
complexities and adaptable to qualitative, contextual, or evolving criteria not captured by the original CO
formulation, as illustrated in Fig. 1. Moreover, efficiently generating such diverse candidates is particularly
important in high-stakes or large-scale domains, such as healthcare logistics, intelligent tutoring systems,
and automated content generation, e.g., game level design (Zhang et al., 2020), where distinct feasible
solutions may reflect differing operational priorities or ethical considerations. However, discovering such
diverse solutions efficiently is considerably more challenging than identifying a single optimal solution.

To address these challenges, we propose the Continuous Parallel Relaxation Annealing (CPRA) method,
designed for unsupervised learning (UL)-based CO solvers (Schuetz et al., 2022a; Karalias & Loukas, 2020).
CPRA enables the efficient discovery of both (i) penalty-diversified and (ii) variation-diversified solutions in a
single training run, requiring only a minimal architectural change: extending the output layer from generating
a single solution to producing multiple diverse solutions, while keeping the intermediate network structure
unchanged. This modification offers substantial practical benefits by leveraging shared representations across
problem instances. The resulting bottleneck structure promotes generalization and scalability, eliminating
the need to train S separate models iteratively. Furthermore, CPRA incorporates a controllable diversity
mechanism for (ii) generating variation-diversified solutions, formulated as a continuous relaxation of the
max-sum Hamming distance. Unlike the max-sum Hamming distance defined in binary space, which incurs
a quadratic computational cost concerning the number of solutions, our approach reduces this to linear
complexity, significantly improving the efficiency of both forward and backward passes.

Numerical experiments demonstrate the effectiveness of our approach on several benchmark CO problems.
CPRA enables the generation of diverse solutions while maintaining comparable model size and runtime to
UL-based solvers that produce only a single solution. Additionally, CPRA improves search performance by
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leveraging shared representations across problem instances, resulting in higher-quality solutions than those
produced by existing UL-based solvers and greedy algorithms.

2 Related work

Although diverse solutions can be generated through various paradigms beyond UL-based CO solvers, exist-
ing methods often differ significantly in their learning frameworks, algorithmic foundations, and architectural
complexity (Grinsztajn et al., 2023; Choo et al., 2022; Li et al., 2023; Kwon et al., 2020; Kim et al., 2021;
Xin et al., 2021; Bunel et al., 2018; Hottung et al., 2021; Chalumeau et al., 2023; Hottung et al., 2024). In
many of these approaches, diversity is introduced as an auxiliary mechanism to support the discovery of a
single optimal solution, rather than being pursued as a goal in its own right. Furthermore, these methods
typically do not aim to generate (i) penalty-diversified solutions. In contrast, our work explicitly targets
the efficient discovery of both (i) penalty-diversified and (ii) variation-diversified solutions, achieved through
minimal modifications to existing UL-based combinatorial optimization solvers such as PI-GNN (Schuetz
et al., 2022a) and CRA-PI-GNN (Ichikawa, 2024). Our primary goal is to demonstrate how a simple ar-
chitectural extension can unlock broader solution diversity while maintaining practical runtime efficiency.
Therefore, an exhaustive empirical comparison with all alternative paradigms falls outside the scope of this
work. Penalty-diversified solutions can be understood as the result of treating cost and constraint viola-
tion as two distinct objectives and combining them through a weighted sum. This perspective naturally
connects our framework with Pareto front learning methods in multi-objective optimization, notably Pareto
hyper networks (Navon et al., 2021), preference-conditioned Pareto set learners (Lin et al., 2022), and the
survey by Chen et al. (2025). Although these studies provide techniques to approximate the entire set of
non-dominated trade-offs, a comprehensive empirical comparison with our approach remains an important
avenue for future work.

Diverse Solution Acquisition Without Neural CO Solvers. For penalty-diversified solutions, a
straightforward baseline is to solve the same problem multiple times with different penalty coefficients,
either in parallel, given sufficient CPU cores, or sequentially. However, both approaches are computationally
intensive and scale poorly to large instance batches or real-time deployment scenarios. Our method over-
comes this limitation by leveraging GPU parallelism to simultaneously generate solutions across multiple
penalty regimes, achieving diversity with a runtime comparable to that of solving a single instance. Obtain-
ing variation-diversified solutions is even more challenging. A common approach is to post-select solutions
that maximize some diversity metric, such as the Hamming distance (Fernau et al., 2019). This line of
research spans graph algorithms (Baste et al., 2019; 2022; Hanaka et al., 2021), constraint programming
(Hebrard et al., 2005; Petit & Trapp, 2015), and mathematical programming (Danna et al., 2007; Danna &
Woodruff, 2009; Petit & Trapp, 2019), and is often categorized into two types: (1) offline approaches that
generate and filter a large pool of solutions, and (2) online approaches that incrementally construct diverse
solutions. However, both methods face significant drawbacks. Offline approaches often produce redundant
solutions and incur high memory and runtime costs. Online approaches, while more targeted, are inher-
ently sequential, difficult to parallelize, and susceptible to local optima. Neither approach naturally scales
to GPU-based parallel environments. In contrast, our method introduces a GPU-accelerated strategy for
producing diverse high-quality solutions in a single forward pass. This capability is especially valuable in
real-world, large-scale, or high-stakes settings such as scheduling, planning, or recommendation, where pre-
senting multiple viable options is more useful than committing to a single solution and where computational
efficiency is critical.

3 Notation.

We use the shorthand expression [N ] = {1, 2, . . . , N}, N ∈ N. IN ∈ RN×N represents an identity matrix
of size N × N . Here, 1N and 0N represent the all-ones vector and all-zeros vector in RN , respectively.
G(V, E) represents an undirected graph, where V is the set of nodes and E ⊆ V × V is the set of edges.
For a graph G(V, E), A denote the adjacency matrix with Aij = 0 if an edge (i, j) does not exist and
Aij > 0 if an edge connects i and j. For a sequence {ak | ak ∈ R}K

k=1, the empirical variance is de-
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fined as VAR[{ak}K
k=1] =

∑K
k=1(ak −

∑K
k′=1

ak′/K)2/K, and the empirical standard deviation is given by
STD[{ak}K

k=1] = (VAR[{ak}K
k=1])1/2. For binary vectors a, b ∈ {0, 1}N , we define the Hamming distance as

dH(a, b) =
∑N

i=1 1[ai ̸= bi] where 1[·] denotes the indicator function.

4 Background

4.1 Combinatorial Optimization (CO)

Constrained CO problems are defined as follows:

min
x∈X (C)

f(x; C), X (C) =
{

x ∈ {0, 1}N

∣∣∣∣ gi(x; C) ≤ 0, ∀i ∈ [I],
hj(x; C) = 0 ∀j ∈ [J ]

}
, I, J ∈ N,

where C ∈ C denotes instance parameters, such as a graph G = (V, E), where C denotes the set of all possible
instances. The binary vector x = (xi)1≤i≤N ∈ {0, 1}N is the decision variable to be optimized, and X (C)
denotes the feasible solution space. f : X × C → R denotes the cost function and, for all i ∈ [I] and j ∈ [J ],
gi : X × C → R and hj : X × C → R denote constraints. In practical scenarios, constrained CO problems are
often converted into unconstrained CO problems using the penalty method:

min
x∈{0,1}N

l(x; C, λ), l(x; C, λ) =∆ f(x; C) +
I+J∑
i=1

λivi(x; C).

where, for all i ∈ [I + J ], vi : {0, 1}N × C → R is the penalty term that increases when constraints are
violated. For example, the penalty term is defined as follows:

∀i ∈ [I], vi(x; C) = max (0, gi(x; C)) , ∀j ∈ [J ], vj(x; C) = (hj(x; C))2

and λ = (λi)1≤i≤I+J ∈ RI+J
+ represents the penalty parameters that balance satisfying the constraints

and optimizing the cost function. Tuning these penalty parameters λ to obtain the desired solutions is a
challenging and time-consuming task. This process often requires solving the problem multiple times while
iteratively adjusting the penalty parameters λ until an acceptable solution is obtained.

4.2 Continuous Relaxation and UL-based Solvers

The continuous relaxation strategy reformulate a CO problem by converting discrete variables into continuous
ones as follows:

min
p∈[0,1]N

l̂(p; C, λ), l̂(p; C, λ) =∆ f̂(p; C) +
I+J∑
i=1

λiv̂i(p; C),

where p = (pi)1≤i≤N ∈ [0, 1]N denotes relaxed continuous variables, i.e., each binary variable xi ∈ {0, 1} is
relaxed to a continuous one pi ∈ [0, 1], and f̂ : [0, 1]N × C → R is the relaxation of f , satisfying f̂(x; C) =
f(x; C) for any x ∈ {0, 1}N . The relation between the constraint vi and its relaxation v̂i is similar for
i ∈ [I + J ], i.e., ∀i ∈ [I + J ], v̂i(x; C) = vi(x; C) for any x ∈ {0, 1}N .

UL-based solvers employ this continuous relaxation strategy for training neural networks (NNs) (Wang et al.,
2022; Schuetz et al., 2022a; Karalias & Loukas, 2020; Ichikawa, 2024). The relaxed continuous variables are
parameterized by θ as pθ ∈ [0, 1]N and optimized by directly minimizing the following loss function:

l̂(θ; C, λ) =∆ f̂(pθ(C); C) +
I+J∑
i=1

λiv̂i(pθ(C); C). (1)

After training, the relaxed solution pθ is converted into discrete variables by rounding pθ using a threshold
(Schuetz et al., 2022a) or by applying a greedy method (Wang et al., 2022). Two types of schemes have been
developed based on this framework.
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(I) Learning Generalized Heuristics from History/Data. One approach, proposed by Karalias &
Loukas (2020), seeks to automatically learn commonly effective heuristics from historical dataset instances
D = {Cµ}P

µ=1 and then apply these learned heuristics to a new instance C∗ via inference. Specifically, given
a set of training instances, independently and identically distributed from a distribution P (C), the objective
is to minimize the average loss function minθ

∑P
µ=1 l(θ; Cµ, λ). However, this method does not guarantee

high-quality performance for a test instance C∗. Even if the training instances D are abundant and the test
instance C is drawn from the same distribution P (C), achieving a low average performance EC∼P (C)[l̂(θ; C)]
does not necessarily guarantee a low l(θ; C) for a specific C. To address this issue, Wang & Li (2023)
introduced a meta-learning approach where NNs aim to provide good initialization for new instances.

(II) Learning Effective Heuristics on Specific Single Instance. Another approach, referred to as
the physics-inspired graph neural networks (PI-GNN) solver (Schuetz et al., 2022a;b), automatically learns
instance-specific heuristics for a given single instance using the instance parameter C by directly employing
Eq. (1). This approach has been applied to CO problems on graphs, i.e., C = G(V, E), using graph neural
networks (GNN) to model the relaxed variables pθ(G). An L-layered GNN is trained to directly minimize
l̂(θ; C, λ) in Eq. (1), taking as input a graph G along with node embedding vectors and producing the relaxed
solution pθ(G) ∈ [0, 1]N . A detailed description of GNNs can be found in Appendix B.1. Note that this
setting is applicable even when the training dataset D is difficult to obtain. However, learning to minimize
Eq. (1) for a single instance can be time-consuming than the inference process. Nonetheless, for large-scale
problems, it has demonstrated superiority over other solvers in terms of both time and solution performance
(Schuetz et al., 2022a;b; Ichikawa, 2024).

UL-based solvers face two practical issues: (I) “optimization issues”, where they tend to get stuck in local
optima, and (II) “rounding issues”, which arise when an artificial post-learning rounding process is needed to
map solutions from the continuous space back to the original discrete space, undermining the robustness of
the results. To address the first issue, Ichikawa (2024); Ichikawa & Arai (2025) proposed annealing schemes
to escape local optima by introducing the following entropy term s(θ; C):

r̂(θ; C, λ, γ) = l̂(pθ(C); C, λ) + γs(pθ(C)), s(pθ(C)) =
N∑

i=1
{(2pθ,i(C) − 1)α − 1} , α ∈ {2n | n ∈ N}, (2)

where γ ∈ R denotes a penalty parameter. They anneal the penalty parameter from positive γ > 0 to γ ≈ 0
to smooth the non-convexity of the objective function l̂(θ; C, λ) similar to simulated annealing (Kirkpatrick
et al., 1983). To address the second issue, Ichikawa (2024) further annealed the entropy term to γ ≤ 0 until
the entropy term approaches zero, i.e., s(θ, C) ≈ 0, enforcing the relaxed variable to take on discrete values
and further smoothing the continuous loss landscape for original discrete solutions. This method is referred
to as Continuous Relaxation Annealing (CRA), and the solver that applies the CRA to the PI-GNN solver
is referred to as CRA-PI-GNN solver.

5 Continuous Parallel Relaxation Annealing for Diverse Solutions

We propose an extension of CRA, termed Continuous Tensor Relaxation (CPRA), which enables UL-
based solvers to efficiently handle multiple problem instances within a single training run. Beyond this core
advancement, we demonstrate how CPRA can be effectively tailored to discover both penalty-diversified
solutions and variation-diversified solutions.

5.1 Continuous Parallel Relaxation (CPRA)

Let us consider solving multiple instances CS = {Cs | Cs ∈ C}1≤s≤S with different penalty parameters
ΛS = {λs}1≤s≤S simultaneously. To handle these instances, we relax a binary vector x ∈ {0, 1}N into an
augmented continual matrix P ∈ [0, 1]N×S that is trained via minimizing the following loss function:

R̂(P ; CS , ΛS , γ) =
S∑

s=1
l̂(P:s; Cs, λs) + γS(P ), S(P ) =∆

N∑
i=1

S∑
s=1

(1 − (2Pis − 1)α),
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where P:s ∈ [0, 1]N denotes s-the column in P , i.e. P = (P:s)1≤s≤S ∈ [0, 1]N×S . Optimizing R̂ drives each
column P:s to minimize its respective objective function l̂(P:s; Cs, λs). Additionally, we also generalize the
entropy term s(p) in Eq. (2) into S(P ) for this augmented higher-order array. Specifically, the following
theorem holds.
Theorem 5.1. Under the assumption that for all s ∈ [S], each objective function l̂(P:s; Cs, λs) remains
bounded on [0, 1]N , each column solutions P ∗

:s such that P ∗ ∈ argminP R̂(P ; CS , ΛS , γ) converges to the corre-
sponding discrete optimal x∗ ∈ argminxl(x; Cs, λs) as γ → +∞. Furthermore, as γ → −∞, the loss function
R̂(P ; CS , ΛS) becomes convex and admits a unique half-integral solution 1N 1⊤

N/2 = argminP R̂(P ; CS , ΛS , γ).

A detailed proof of Theorem 5.1 is available in Appendix A.1. The relaxation approach naturally extends
to higher-order arrays, P ∈ [0, 1]N×S1×···, potentially enabling more powerful GPU-based parallelization. A
comprehensive exploration of such higher-dimensional implementations remains an exciting avenue for future
research. For UL-based solvers, we parameterize the soft higher-order array P as Pθ, leading to

R̂(θ; CS , ΛS , γ) =
S∑

s=1
l̂(Pθ,:s(CS); Cs, λs) + γS(Pθ(CS)), S(Pθ(CS)) =∆

N∑
i=1

S∑
s=1

(1 − (2Pθ,is(CS) − 1)α), (3)

where γ is also annealed from a positive to a negative value as in CRA-PI-GNN solver in Section 4. Following
the UL-based solvers (Karalias & Loukas, 2020; Schuetz et al., 2022b; Ichikawa, 2024), we encode Pθ via a
GNN-based architecture. This study refer to the solver that applies CPRA to PI-GNN solver as CPRA-PI-
GNN solver.

Simple Architectural Modifications for Efficient Learning and Shared Representation Learning.
In this study, we employ a specialized GNN-based architecture that builds upon the core designs of PI-GNN
(Schuetz et al., 2022a) and CRA-PI-GNN (Ichikawa, 2024) to simultaneously address multiple problem
instances, as defined in Eq. (3). Unlike these solvers that generate a single solution per instance, CPRA-PI-
GNN handles S instances in parallel by expanding the final-layer node embedding dimension from 1 to S, as
illustrated in Fig. 1. As a result, the number of parameters increases linearly only in the output layer, while
the rest of the architecture remains unchanged. This design is both memory- and computation-efficient, as
the overall network size and training time remain comparable to solving a single instance.

Furthermore, by keeping the network unchanged apart from the output layer, CPRA-PI-GNN solver natu-
rally encourages the model to learn compact, shared representations across multiple instances, functioning
similarly to a bottleneck in an autoencoder, as illustrated in Fig. 1. This simple architectural choice improves
solution quality by leveraging the learned representations. Indeed, numerical experiments demonstrate that
this shared representation learning strategy yields better results than single-instance solvers such as PI-GNN
and CRA-PI-GNN. Additional results in Appendix D.5 further show that CPRA-PI-GNN solves multiple
similar problems more efficiently and effectively than CRA-PI-GNN. To further reduce computational cost,
we adopt a two-stage learning process that leverages shared representation learning: first training on a
smaller, representative subset S′ ⊂ S, then fine-tuning only the final-layer embeddings when scaling to the
full set S. This approach offers an efficient way to extend the model to larger problem sets.

5.2 CPRA for Finding Penalty-Diversified Solutions

To find penalty-diversified solutions, we aim to minimize the following loss function for a problem instance
C, which is a special case of Eq. (3):

R̂(θ; C, ΛS , γ) =
S∑

s=1
l̂(Pθ,:s(C); C, λs) + γS(Pθ(C)). (4)

By solving this optimization problem, each column Pθ,:s(Cs), for all s ∈ [S], corresponds to the optimal
solution for the penalty parameter λs. For penalty-diversified solutions, the variation in each s is primarily
restricted to the penalty coefficient, leading to a strong correlation among instances.
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5.3 CPRA for Finding Variation-Diversified Solutions

To explore variation-diversified solutions for a single instance C with a penalty parameter λ, we introduce
a diversity penalty into Eq. (3) as follows:

R̂(θ; C, λ, γ, ν) =
S∑

s=1
l̂(Pθ,:s(C); C, λ) + γS(Pθ(C)) + νΨ(Pθ(C)),

Ψ(Pθ(C)) = −S

N∑
i=1

STD [{Pθ,is(C)}1≤s≤S ] , (5)

where Ψ(Pθ(C)) serves as a constraint term that promotes diversity in each column Pθ,:s(C), and ν is the
parameter controlling the strength of this constraints. Setting ν = 0 in Eq. (5) is nearly equivalent to solving
the same CO problem with different initial conditions.

As shown in Proposition 5.2, the diversity term Ψ(Pθ(C)) can be interpreted as a natural relaxation of
the max-sum Hamming distance, a widely used diversity metric in combinatorial optimization (Fomin et al.,
2020; 2023; Baste et al., 2022; 2019). Specifically, for a set of binary sequences {x(s)}S

s=1 with x(s) ∈ {0, 1}N ,
the following holds:
Proposition 5.2. For a set of binary sequences {x(s)}S

s=1, ∀s, x(s) ∈ {0, 1}N , the following equality holds:

S2
N∑

i=1
VAR

[{
x

(s)
i

}
1≤s≤S

]
=
∑
s<l

dH(x(s), x(l)), (6)

where the right-hand side of Eq. (6) represents the max-sum Hamming distance.

The detailed proof can be found in Appendix A.2. This proposition shows that the proposed diversity
penalty corresponds exactly to the max-sum Hamming distance when evaluated at the binary vertices of the
hypercube {0, 1}N , which means the left hand side of Eq. 6 is a natural continuous relaxation of the discrete
diversity measure onto the continuous domain [0, 1]N .

This relaxation yields a significant computational advantage. Directly computing the max-sum Hamming
distance involves evaluating all

(
S
2
)

= O(S2) pairwise distances between solutions, which becomes compu-
tationally expensive as S increases. In contrast, the relaxed diversity term Ψ(·) computes per-coordinate
variance using simple summary statistics, which can be evaluated in O(S) time. This efficiency holds for both
forward and backward passes, approaching well-suited to gradient-based optimization. To ensure consistent
scale and sensitivity with the other loss components in Eq. (5), we normalize the diversity term using the
sample standard deviation.

6 Experiments

This section evaluate the effectiveness of CPRA-PI-GNN solver in discovering penalty-diversified and
variation-diversified solutions across three CO problems: the maximum independent set (MIS), maximum
cut (MaxCut), diverse bipartite matching (DBM) problems. Their objective functions are summarized in
Table 1 in Appendix C.3; For a detailed explanation, refer to Appendix C.3.

6.1 Settings

Baseline. Our baseline include results from executing a greedy algorithms, PI-GNN solver (Schuetz et al.,
2022a) and CRA-PI-GNN solver (Ichikawa, 2024) multiple times. These solvers are executed multiple times
using different penalty parameters for penalty-diversified solutions and different random seeds for variation-
diversified solutions, allowing us to assess the search efficiency for both types of diversified solutions. For the
MIS problem, we employ a random greedy search implemented by NetworkX, and for the MaxCut problem,
we use a random greedy search implemented by Mehta (2019). Although some online heuristics exist for
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MIS (d = 5)
Method {#Runs} #Params Time (s) ApR∗

PI-GNN {20} 5,022,865×20 13,189±60 0.883±0.002
CRA {20} 5,022,865×20 14,400±42 0.961±0.002
CPRA {1} 5,083,076 1,194±8 0.934±0.002

MIS (d = 20)
Method {#Runs} #Params Time (s) ApR∗

PI-GNN {20} 5,022,865×20 15,191±24 0.759±0.007
CRA {20} 5,022,865×20 14,816±40 0.928±0.004
CPRA {1} 5,083,076 1,254±10 0.878±0.011

Figure 2: (Left Table) shows runtime (Time), number of parameters (#Params), and maximum ApR (ApR∗)
for each method. (Right Figure) shows ApRs across different penalty parameters Λs. Error represent the
standard deviations of 5 random seeds. CPRA-PI-GNN solver can find penalty-diversified solutions in a
single run with a comparable #Params and runtime to UL-based solvers that output a single solution.

exploring variation-diversified solutions by generating solutions that are distant from those already obtained,
we do not include these methods as benchmarks due to their inefficient GPU utilization and poor scalability
to large problems. We measure the runtime t of each execution, from model training to the final output.

Implementation. This numerical experiment aims to validate that CPRA can generate penalty-diversified
and variation-diversified solutions while maintaining a comparable number of parameters and runtime to UL-
based solvers, which produce a single solution, as described in Section 5. Therefore, in our experiments, the
CPRA-PI-GNN solver utilizes the same network architecture as the PI-GNN (Schuetz et al., 2022a) and CRA-
PI-GNN (Ichikawa, 2024) solvers, except for the output size of the final layer as discussed in Section 5. We
use GraphSage, implemented with the Deep Graph Library (Wang et al., 2019). The detailed architectures
of these GNNs are provided in Appendix C.1. We employ the AdamW (Kingma & Ba, 2014) optimizer with
a learning rate of η = 10−4 and a weight decay of 10−2. The GNNs are trained for up to 5 × 104 epochs with
early stopping, which monitors the summarized loss function

∑S
s=1 l̂(P:,s) and the entropy term Φ(P ; γ, α),

using a tolerance of 10−5 and patience of 103 epochs. Further details are provided in Appendix C.2. We set
the initial scheduling value to γ(0) = −20 for the MIS and DBM problems and γ(0) = −6 for the MaxCut
problems, using the same scheduling rate ε = 10−3 and curvature rate α = 2 in Eq. (3).

Evaluation Metrics. Following the metric of Wang & Li (2023), we use the approximation rate (ApR)
for all experiments, defined as ApR = f(x;C)/f(x∗;C), where x∗ represents the optimal solutions. For MIS,
these optimal solutions set to the theoretical results (Barbier et al., 2013), for DBM problems, they are
identified using Gurobi 10.0.1 solver with default settings, and for MaxCut problems, they are the best-known
solutions. To evaluate the quality of penalty-diversified solutions, we compute ApR∗ = maxs∈[S](ApR(xs))
as a function of the parallel number S in Eq. (3). To evaluate the quality of variation-diversified solutions,
we compute the average ApR, defined as ¯ApR =

∑S
s=1

ApRs/S, and introduce a diversity score (DScore) for

8



Published in Transactions on Machine Learning Research (08/2025)

DBM instance-1, matching-1
Method {#Runs} #Params Time (s) ApR∗

PI-GNN {121} 12,507,501×121 45,000±5,778 0.883±0.040
CRA {121} 12,507,501×121 213,612±5,132 1.000±0.000
CPRA {1} 13,107,621 1,961±101 0.883±0.011
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1, 2
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26

27

28

29

210
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ApR = 0.8
ApR = 1.0
infeasible

DBM instance-1, matching-2
Method {#Runs} #Params Time (s) ApR∗

PI-GNN {121} 12,507,501×121 28,064±7,105 0.927±0.024
CRA {121} 12,507,501×121 208,141±903 0.990±0.013
CPRA {1} 13,107,621 2,154±164 1.000±0.000

20 21 22 23 24 25 26 27 28 29 210

1, 2

20

21

22

23

24

25

26

27

28

29

210

3,
4

ApR = 0.0
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ApR = 0.8
ApR = 1.0
infeasible

Figure 3: (Left Table) shows runtime (Time), number of parameters (#Params), and maximum ApR (ApR∗)
for each method, with errors representing the standard deviations of 5 random seeds. (Right Figure) shows
ApRs, where each point represents the results from 5 random seed across various penalty parameters ΛS =
{λs = (λa, λa, λb, λb) | λa, λb ∈ {2s | s = 0, . . . , 10}}. CPRA-PI-GNN solver is capable of finding penalty-
diversified solutions in a single run, with a comparable number of parameters and runtime to those of
UL-based solvers.

the bit sequences {xs}S
s=1:

DScore({xs}S
s=1) = 2

NS(S − 1)
∑
s<l

dH(xs, xl)

A higher DScore indicates greater variation among solutions. A desirable variation-diversified solution should
exhibit both high-quality solutions and a diverse set of solutions with distinct characteristics. Thus, solutions
with higher values of both average ApR and DScore are more desirable.

6.2 Finding Penalty-Diversified Solutions

MIS Problems. First, we compare the performacne of CPRA-PI-GNN on MIS problems in RRGs,
G(V, E), with |V | = 10,000 nodes and the node degree of 5 and 20. CPRA-PI-GNN solver run using
Eq. (4), with a set of penalty parameters, ΛS = {2s−3 | s = 1, . . . , 20}. CRA-PI-GNN and PI-GNN solver
run multiple times for each penalty parameter λs ∈ ΛS . Fig. 2 (Right) shows the ApR as a function of penalty
parameters λs ∈ ΛS . Across all penalty parameters, from 2−2 to 216, CPRA-PI-GNN solver performs on
par with or slightly underperforms CRA-PI-GNN solver. Table in Fig. 2 shows the runtime and number of
paramers (#Params) for CPRA-PI-GNN solver at S = 20, compared to the total runtime and #Params
for S runs of PI-GNN and CRA-PI-GNN solvers. These result indicate that CPRA-PI-GNN solver can find
penalty-diversified solutions with a comparable number of parameters and runtime to UL-based solvers that
output a single solution. For a more detailed discussion on the dependence of the runtime and the #params
for number of shot S, refer to Appendix D.1.

DBM Problems. We next demonstrate the effectiveness of CPRA-PI-GNN solver for DBM problems,
which serve as practical CO problems. We focus on the first of the 27 DBM instances; see Appendix

9
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Figure 4: The obtained solutions by CPRA-PI-GNN solver for the MIS problem on a RRG with 30 nodes
and the degree d = 3. Blue nodes represent the independent set.

MIS (d = 20)

Method {#Runs} Time (s) ¯ApR DScore
Greedy {300} 8 0.715 0.239
PI-GNN {300} 13,498 0.712 0.238

CRA {300} 15,136 0.923 0.248
CPRA (ν = 0.0) {1} 95 0.873 0.019
CPRA (ν = 0.2) {1} 154 0.936 0.260
CPRA (ν = 0.4) {1} 154 0.900 0.251
CPRA (ν = 0.6) {1} 149 0.852 0.257

Figure 5: (Left Table) shows runtime (Time), average ApR ( ¯ApR), DScore for each method on MIS problems
with a node degree d = 20. (Right Figure) shows the distribution of solutions in a 2-dimensional space using
PCA with varying ν.

D.6 for the results of the remaining instances. Given that (λ1, λ2) and (λ3, λ4) share similar properties,
CPRA-PI-GNN run with a set of S = 11 × 11 parameters on the a grid, ΛS = {λs = (λa, λa, λb, λb)},
where λa, λb ∈ {2s | s = 0, . . . , 10}. CRA-PI-GNN and PI-GNN solver run multiple times for each penalty
parameter λs ∈ ΛS Fig. 3 (Right) shows that the ApR on the grid ΛS using the CPRA-PI-GNN solver
identifies a desirable region where the ApR is nearly 1.0. Table in Fig. 3 demonstrates that CPRA-PI-
GNN solver can find penalty-diversified solutions with a comparable number of parameters and runtime to
UL-based solvers that output a single solution.

6.3 Finding Variation-Diversified Solutions

We next demonstrate that CPRA-PI-GNN solver can efficiently find variation-diversified solutions. Further-
more, we also show that the CPRA-PI-GNN solver enhances exploration capabilities and achieves higher-
quality solutions.

MIS Problems. We first run CPRA-PI-GNN solver using Eq. (5) to find variation-diversified solutions for
MIS problems on small-scaled RRGs with 30 nodes and the node degree set to 3. We set the parameter ν = 0.5
and the number of shots tp S = 100 in Eq. (5). As shown in Fig. 4, CPRA-PI-GNN solver successfully obtain
6 solutions, each with 13 independent sets, which is the global optimum. We extend the investigation to
large-scale RRG with 10,000 nodes and a node degree d = 20, which is known for its optimization challenges
(Angelini & Ricci-Tersenghi, 2023). These experiments investigate how the quality of variation-diversified
solutions depends on the parameter ν, using a fixed number of shots S = 300. Fig. 5 (Right) shows a low
dimensional visualization of the normalized solutions {P:s}300

s=1 using two-dimensional principal component
analysis (PCA) mapping. The two principal components with the highest contribution rates are selected
for different parameters ν = 0.0, 0.2, 0.4, 0.6. These results indicate that increasing parameter ν leads to
more diverse solutions, with the solution space becoming increasingly separated in the high-contribution
region. Table in Fig. 5 measures the computation time, ¯ApR, and DScore when the parallel execution
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MaxCut G14

Method {#Runs} Time (s) ¯ApR DScore
Greedy {1,000} 87 0.936 0.479
PI-GNN {1,000} 25,871 0.963 0.499

CRA {1,000} 48,639 0.988 0.499
CPRA (ν = 0.0) {1} 144 0.977 0.497
CPRA (ν = 0.4) {1} 138 0.991 0.501
CPRA (ν = 0.8) {1} 141 0.989 0.501
CPRA (ν = 1.2) {1} 147 0.985 0.502

Figure 6: (Left Table) shows runtime (Time), average ApR ( ¯ApR), DScore for each method on MaxCut G14,
with error representing the standard deviations of 5 random seeds. (Right Figure) shows the distribution of
solutions in a 2-dimensional space using PCA with varying ν.

number S = 300 using different random seeds. The results show that although the time of CPRA-PI-GNN
solver takes longer than executing the greedy algorithm multiple times, both ApR and DScore reach their
maximum at ν = 0.2, yielding the highest quality variation-diversified solutions. Furthermore, increasing
parameter ν enhances the exploration capability of GNN, leading to better solutions than those obtained by
conventional PI-GNN and CRA-PI-GNN; see Appendix D.2.

MaxCut Problems. Next, we evaluate the ability to find variation-diversified solutions in the G14 in-
stance of Gset, which primarily has four-clustered solution space. We set the number of shot S = 1,000 in
Eq. (5). Fig. 6 (Right) demonstrates that CPRA-PI-GNN solver can capture four-clustered solutions beyond
a certain value of ν. Table in Fig. 6 measures the computation time, ¯ApR, and DScore when the parallel
execution number S = 1,000 is performed using different random seeds. The results show that although
the runtime of CPRA-PI-GNN solver is slower compared to executing the greedy algorithm multiple times,
ApR and DScore reach their maximum at ν = 0.4 and ν = 1.2, respectively. Additionally, similar to MIS
problems, exploration enhancement is consistent across various instances of Gset. For further details; see
Appendix D.3.

7 Conclusion

This study introduces the CPRA framework for UL-based solvers designed to efficiently find penalty-
diversified and variation-diversified solutions within a single training process. Our numerical experiments
demonstrate that CPRA can produce penalty-diversified and variation-diversified solutions while maintain-
ing a comparable number of parameters and runtime to conventional UL-based solvers that generate only
a single solution. This approach not only enhances the computational efficiency in finding these diversified
solutions but also improves the search capabilities, leading to higher-quality solutions compared to existing
UL-based solvers that find a single solution and greedy algorithms.
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A Derivations

A.1 Proof of Theorem 3.1

Following the proof of Ichikawa (2024), we show Theorem 5.1 based on following three lemmas.
Lemma A.1. For any even natural number α = 2, 4, . . ., the function ϕ(p) = 1 − (2p − 1)α defined on [0, 1]
achieves its maximum value of 1 when p = 1/2 and its minimum value of 0 when p = 0 or p = 1.

Proof. The derivative of ϕ(p) relative to p is ϕ′(p) = −2α(2p−1), which is zero when p = 1/2. This is a point
where the function is maximized because the second derivative ϕ′′(p) = −4α ≤ 0. In addition, this function
is concave and symmetric relative to p = 1/2 because α is an even natural number, i.e., ϕ(p) = ϕ(1 − p),
thereby achieving its minimum value of 0 when p = 0 or p = 1.

Lemma A.2. For any even natural number α = 2, 4, . . . and a matrix P ∈ [0, 1]N×S, if λ → +∞, mini-
mizing the penalty term Φ(P ; γ) = γ

∑S
s=1

∑N
i=1(1 − (2Pis − 1)α) = γ

∑S
s=1

∑N
i=1 ϕ(Pis; α) enforces that the

components of Pis must be either 0 or 1 and, if γ → −∞, the penalty term enforces P = 1N 1⊤
N /2.

Proof. From Lemma A.1, as γ → +∞, the case where ϕ(Pis) becomes minimal occurs when, for each i, s,
pis = 0 or pi = 1. In addition, as γ → −∞, the case where ϕ(p; γ) is minimized occurs when, for each i, Pis

reaches its maximum value with Pis = 1/2.

Lemma A.3. Φ(P ; γ) = γ
∑S

s=1
∑N

i=1(1 − (2pi − 1)α) = γ
∑S

s=1
∑N

i=1 ϕ(pi; α) is concave when λ is positive
and is a convex function when λ is negative.

Proof. Note that Φ(P ; γ) = γ
∑S

s=1
∑N

i=1 ϕ(Pis; α) = γ
∑N

i=1(1 − (2Pis − 1)α) is separable across its com-
ponents Pis. Thus, it is sufficient to prove that each γϕ(Pis; α) is concave or convex in Pis because the
sum of the concave or convex functions is also concave (and vice versa). Therefore, we consider the second
derivative of γϕi(Pis; α) with respect to Pis:

γ
d2ϕi(Pis; α)

dP 2
is

= −4γα

Here, if γ > 0, the second derivative is negative for all pi ∈ [0, 1], and this completes the proof that Φ(P ; γ, α)
is a concave function when γ is positive over the domain p ∈ [0, 1]N

Theorem A.4. Under the assumption that the objective function
∑

s l̂(P:s; Cs, λs) is bounded within the
domain [0, 1]N×S, for any S ∈ N, Cs ∈ CS and λs ∈ ΛS, as γ → +∞, each column P ∗

:s of the soft
solutions P ∗ ∈ argminP R̂(P ; CS , ΛS , γ) converges to the original solutions x∗ ∈ argminxl(x; Cs, λs). In
addition, as γ → −∞, the loss function R̂(P ; CS , ΛS) becomes convex and the soft solution 1N 1⊤

N /2 =
argminP R̂(P ; CS , ΛS , γ) is unique.

Proof. As λ → +∞, the penalty term Φ(P ; λ) dominates the loss function R̂(p; C, λ, γ). According to
Lemma A.2, this penalty term forces the optimal solution P ∗ to have components p∗

is that are either 0 or 1
because any nonbinary value will result in an infinitely large penalty. This effectively restricts the feasible
region to the vertices of the unit hypercube, which correspond to the binary vector in {0, 1}NS . Thus, as λ →
+∞, the solutions to the relaxed problem converge to X = argminX∈{0,1}N×S R(X:s; Cs, λs). Futhermore,
argminX∈{0,1}N×S R(X:s; Cs, λs) is separable as

∑S
s=1 argminx∈{0,1}N l(x; Cs, λs), which indicate that each

columns X∗
:s ∈ argminx∈{0,1}N l(x; Cs, λs). As λ → −∞, the penalty term Φ(p; α) also dominates the loss

function r̂(p; C, λ, γ) and the r̂(p; C, λ) convex function from Lemma A.3. According to Lemma A.2, this
penalty term forces the optimal solution P ∗ = 1N 1N /2.
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A.2 Proof of Proposition 5.2

In this section, we derive the following Proposition.
Proposition A.5. For binary sequences {xs}S

s=1, ∀s, xs ∈ {0, 1}N , following equality holds

S2
N∑

i=1
VAR [{xs,i}1≤s≤S ] =

∑
s<l

dH(xs, xl). (7)

where the right-hand side of Eq. (7) is the max-sum Hamming distance.

Proof. We first note that, for binary vectors xs, xl ∈ {0, 1}N , the Hamming distance is expressed as follows:

dH(xs, xl) =
N∑

i=1

(
x2

s,i + x2
l,i − 2xs,ixl,i

)
.

Based on this expression, the diversity metric
∑

s<l dH(X:s, X:l) can be expanded for a binary matrix X ∈
{0, 1}N×S as follows:

∑
s<l

dH(X:s, X:l) = 1
2

∑
s,l

dH(X:s, X:l) −
∑

s

d2
H(X:s, X:s)


= 1

2

N∑
i=1

∑
s,l

(X2
:s,i + X2

:l,i − 2X:s,iX:l,i)

= S

N∑
i

∑
s

X2
:s,i − 1

S

∑
s,l

X:s,iX:l,i

 .

On the other hand, the variance of each column in a binary matrix X can be expanded as follows:

S2
N∑

i=1
VAR [{Xs,i}1≤s≤S ] = S

N∑
i=1

S∑
s′=1

(
X:s′,i − 1

S

∑
s

X:s,i

)2

= S

N∑
i=1

S∑
s′=1

(
X2

:s′,i − 2X:s′,i

∑
s X:s,i

S
+
∑

s,l X:s,iX:l,i

S2

)

= S

N∑
i=1

(∑
s′

X2
:s′,i −

2
∑

s′,s X:s′,iX:s,i

S
+
∑

s,l X:s,iX:l,i

S

)

= S

N∑
i=1

(∑
s′

X2
:s′,i + 1

S

∑
sl

X:s,iX:l,i

)
=
∑
s<l

dH(X:s, X:l).

By this, we finish the proof.

B Additional Implementation Details

B.1 Graph Neural Networks

A graph neural network (GNN) (Gilmer et al., 2017; Scarselli et al., 2008) is a specialized NN for represen-
tation learning of graph-structured data. GNNs learn a vectorial representation of each node through two
steps. (I) Aggregate step: This step employs a permutation-invariant function to generate an aggregated
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node feature. (II) Combine step: Subsequently, the aggregated node feature is passed through a trainable
layer to generate a node embedding, known as ‘message passing’ or ‘readout phase.’ Formally, for given
graph G = (V, E), where each node feature h0

v ∈ RN0 is attached to each node v ∈ V , the GNN iteratively
updates the following two steps. First, the aggregate step at each k-th layer is defined by

ak
v = Aggregatek

θ

(
{hk−1

u , ∀u ∈ Nv}
)

,

where the neighorhood of v ∈ V is denoted as Nv = {u ∈ V | (v, u) ∈ E}, hk−1
u is the node feature of

neighborhood, and ak
v is the aggregated node feature of the neighborhood. Second, the combined step at

each k-th layer is defined by
hk

v = Combinek
θ(hk−1

v , ak
v),

where hk
v ∈ RNk denotes the node representation at k-th layer. The total number of layers, K, and the

intermediate vector dimension, Nk, are empirically determined hyperparameters. Although numerous im-
plementations for GNN architectures have been proposed, the most basic and widely used GNN architecture
is a graph convolutional network (GCN) (Scarselli et al., 2008) given by

hk
v = σ

W k
∑

u∈N (v)

hk−1
u

|N (v)| + Bkhk−1
v

 ,

where W k and Bk are trainable parameters, |N (v)| serves as normalization factor, and σ : RNk → RNk is
some component-wise nonlinear activation function such as sigmoid or ReLU function.

C Experiment Details

This section describes the details of the experiments .

C.1 Architecture of GNNs

We describe the details of the GNN architectures used in our numerical experiments. For each node v ∈ V ,
the first convolutional layer takes a node embedding vectors, h0

v,θ for each node, yielding feature vectors
h1

v,θ ∈ RH1 . Then, the ReLU function is used as a component-wise nonlinear transformation. The second
convolutional layer takes the feature vector, h1

θ, as input, producing a feature vector h2
v,θ ∈ RS . Finally, a

sigmoid function is applied to the vector h2
θ, producing the higher-order array solutions Pv:,θ ∈ [0, 1]N×S .

Here, for MIS and MaxCut problems, we set |H0| = int(N0.8) as in Schuetz et al. (2022a); Ichikawa (2024),
and for the DBM problems, we set it to 2,500. Across all problems, we set H1 = H0, and H2 = S. We
conducted all experiments by using V100GPU.

C.2 Training setting and post-rounding method

We use the AdamW (Kingma & Ba, 2014) optimizer with a learning rate as η = 10−4 and weight decay as
10−2. The training the GNNs conducted for a duration of up to 5 × 104 epochs with early stopping, which
monitors the summarized loss function

∑S
s=1 l̂(P:,s) and penalty term Φ(P ; γ, α) with tolerance 10−5 and

patience 103. After the training phase, we apply projection heuristics to round the obtained soft solutions
back to discrete solutions using simple projection, where for all i ∈ [N ], s ∈ [S], we map Pθ,i,s to 0 if
Pθ,i,s ≤ 0.5 and Pθ,i,s to 1 if Pθ,i,s > 0.5. Note that due to the annealing, CPRA-PI-GNN solver ensures
that the soft solution are nearly binary for all benchmarks, making them robust against the threshold 0.5 in
our experiments.

C.3 Problem specification

Maximum independent set problems There are some theoretical results for MIS problems on RRGs
with the node degree set to d, where each node is connected to exactly d other nodes. The MIS problem is
a fundamental NP-hard problem (Karp, 2010) defined as follows. Given an undirected graph G(V, E), an
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Table 1: The objective functions for the three problems to be studied.
Objective Function Parameters

MIS l(x; G, λ) = −
∑

i∈V xi + λ
∑

(i,j)∈E xixj |V | = N

MaxCut l(x; G) =
∑

i<j Aij(2xixj − xi − xj) A ∈ RN×N

DBM l(x; C = {A, M}, λ) = −
∑

ij Aijxij +λ1
∑

i ReLU(
∑

j xij −1)
+λ2

∑
j ReLU(

∑
i xij − 1) +λ3ReLU(p

∑
ij xij −

∑
ij Mijxij)

+λ4ReLU(q
∑

ij xij −
∑

ij(1 − Mij)xij)

A ∈ RN1×N2

M ∈ RN1×N2

p, q ∈ R

independent set (IS) is a subset of nodes I ∈ V where any two nodes in the set are not adjacent. The MIS
problem attempts to find the largest IS, which is denoted I∗. In this study, ρ denotes the IS density, where
ρ = |I|/|V |. To formulate the problem, a binary variable xi is assigned to each node i ∈ V . Then the MIS
problem is formulated as follows:

f(x; G, λ) = −
∑
i∈V

xi + λ
∑

(i,j)∈E

xixj ,

where the first term attempts to maximize the number of nodes assigned 1, and the second term penalizes
the adjacent nodes marked 1 according to the penalty parameter λ. In our numerical experiments, we set
λ = 2, following Schuetz et al. (2022a), no violation is observed as in (Schuetz et al., 2022a). First, for every
d, a specific value ρ∗

d, which is dependent on only the degree d, exists such that the independent set density
|I∗|/|V | converges to ρ∗

d with a high probability as N approaches infinity (Bayati et al., 2010). Second, a
statistical mechanical analysis provides the typical MIS density ρTheory

d , and we clarify that for d > 16, the
solution space of I undergoes a clustering transition, which is associated with hardness in sampling (Barbier
et al., 2013) because the clustering is likely to create relevant barriers that affect any algorithm searching for
the MIS I∗. Finally, the hardness is supported by analytical results in a large d limit, which indicates that,
while the maximum independent set density is known to have density ρ∗

d→∞ = 2 log(d)/d, to the best of our
knowledge, there is no known algorithm that can find an independent set density exceeding ρalg

d→∞ = log(d)/d
(Coja-Oghlan & Efthymiou, 2015).

Diverse bipartite matching (DBM) problems We adopt this CO problem from Ferber et al. (2020);
Mulamba et al. (2020); Mandi et al. (2022) as a practical example. The topologies are sourced from the
CORA citation network (Sen et al., 2008), where each node signifying a scientific publication, is characterized
by 1,433 bag-of-words features, and the edges represents represents the likelihood of citation links. Mandi
et al. (2022) focused on disjoint topologies, creating 27 distinct instances. Each instance is composed of 100
nodes, categorised into two group of 50 nodes, labeled N1 and N2. The objective of DBM problems is to
find the maximum matching under diversity constraints for similar and different fields. It is formulated as
follows:

l(x; C, M, λ) = −
∑

ij

Cijxij + λ1

N1∑
i=1

ReLU
( N2∑

j=1
xij − 1

)
+ λ2

N2∑
j=1

ReLU
( N1∑

i=1
xij − 1

)

+ λ3ReLU
(

p
∑

ij

xij −
∑

ij

Mijxij

)
+ λ4ReLU

(
q
∑

ij

xij −
∑

ij

(1 − Mij)xij

)
,

where a reward matrix C ∈ RN1×N2 indicates the likelihood of a link between each node pair, for all i, j,
Mij is assigned 0 if articles i and j belong to the same field, or 1 if they don’t. The parameters p, q ∈ [0, 1]
represent the probability of pairs being in the same field and in different fields, respectively. Following
(Mandi et al., 2022), we examine two variations of this problem: Matching-1 and Matching-2, characterized
by p and q values of 25% and 5%.
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Figure 7: The runtime of the CPRA-PI-GNN solver, compared to S individual runs of the CRA-PI-GNN
solver, as a function of number of shots S. Error bars represent the standard deviations of 5 random seeds.

Maximum cut problems The MaxCut problem, a well-known NP hard problems (Karp, 2010), has
practical application in machine scheduling (Alidaee et al., 1994), image recognition (Neven et al., 2008)
and electronic circuit layout design (Deza & Laurent, 1994). It is defined as follows: In an undirected graph
G = (V, E), a cut set C ∈ E, which is a subset of edges, divides the nodes into two groups (V1, V2 | V1 ∪ V2 =
V, V1 ∩V2 = ∅). The objective the MaxCut problem is to find the largest cut set. To formulate this problem,
each node is assigned a binary variable: xi = 1 signifies that node i is in V1, while xi = 0 indicates node i
is in V2. For an edge (i, j), xi + xj − 2xixj = 1 is true if (i, j) ∈ C; otherwise, it equal 0. This leads to the
following objective function:

l(x; G) =
∑
i<j

Aij(2xixj − xi − xj)

where Aij is the adjacency matrix, where Aij = 0 signifies the absence of an edge, and Aij > 0 indicates a
connecting edge. Following Schuetz et al. (2022a); Ichikawa (2024), this experiments employ seven instances
from Gset dataset (Ye, 2003), recognized as a standard MaxCut benchmark. These seven instances are de-
fined on distinct graphs, including Erdös-Renyi graphs with uniform edge probability, graphs with gradually
decaying connectivity from 1 to N , 4-regular toroidal graphs, and one of the largest instance with 10,000
nodes.

D Additional Experiments

D.1 Runtime and # Params as a function of number of shots

In this section, we investigate the runtime of CPRA-PI-GNN solver as a function of the number of shots,
S, compared to the runtime for S individual runs of CRA-PI-GNN solver. Fig. 7 shows each runtime as a
function of the number of shots S. For this analysis, we incrementally increase the number of shots, further
dividing the range of penalty parameters from 2−2 to 217. The results indicate that CPRA-PI-GNN solver
can find penalty-diversified solutions within a runtime nearly identical to that of a single run of CRA-PI-
GNN solver for shot numbers S from 20 to 210. However, for S > 102, we observe a linear increase in
runtime as the number of shots S grows because of the limitation of memory of GPUs. Fig. 8 (right)
shows the distribution of Hamming distances combination, {dH(P:s, P:l)}1≤s<l≤300, and the count of unique
solutions with different ν = 0.00, 0.05, 0.10, 0.20, whereas Fig. 7 (right) shows the maximum ApR, i.e.,
maxs=1,...,300 ApR(P:,s) as a function of the parameter ν. These results indicate that the CPRA-PI-GNN
solver can find more variation-diversified solutions as the parameter ν increases. Furthermore, This result
indicates that the CPRA-PI-GNN solver can boost the exploration capabilities of the CRA-PI-GNN solver,
leading to the discovery of better solutions.

D.2 Additional results of variation-diversified solutions for MIS

Fig. 8 (right) shows the distribution of Hamming distances combination, {dH(P:s, P:l)}1≤s<l≤300, and the
count of unique solutions with different ν = 0.00, 0.05, 0.10, 0.20, whereas Fig. 8 (right) shows the maximum
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Figure 9: The density of Hamming distance combination of the solution, {dH(P:s, P:l)}1≤s<l≤1000 in MaxCut
G14, with different parameters ν and the count of unique solutions

ApR, i.e., maxs=1,...,300 ApR(P:,s) as a function of the parameter ν. These results indicate that the CPRA-
PI-GNN solver can find more variation-diversified solutions as the parameter ν increases. Furthermore, This
result indicates that the CPRA-PI-GNN solver can boost the exploration capabilities of the CRA-PI-GNN
solver, leading to the discovery of better solutions.

D.3 Additional results of variation-diversified solutions for MaxCut G14.

In this section, to supplement the results of the variation-diversified solutions for MaxCut G14 in Section 6.3,
we present the results of the Hamming distance distribution. Fig. 9 shows the distribution of combinations
of solution Hamming distances under the same settings as in Section 6.1. From these results, it is evident
that the CPRA-PI-GNN solver has acquired solutions in four distinct clusters.

D.4 Additional results for validation of exploration ability

These improvement is consistent across other Gset instances on distict graphs with varying nodes, as shown
in Table. 2. In these experiment, we fix as ν = 6 and evaluate the maximum ApR, maxs=1,...,1000 ApR(P:s).
This result shows that CPRA-PI-GNN solver outperforme CRA-PI-GNN, PI-GNN, and RUN-CSP solvers.
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Table 2: Numerical results for MaxCut on Gset instances

(Nodes, Edges) CSP PI CRA CPRA

G14 (800, 4,694) 0.960 0.988 0.994 0.997
G15 (800, 4,661) 0.960 0.980 0.992 0.995
G22 (2,000, 19,990) 0.975 0.987 0.998 0.999
G49 (3,000, 6,000) 1.000 0.986 1.000 1.000
G50 (3,000, 6,000) 1.000 0.990 1.000 1.000
G55 (5,000, 12,468) 0.982 0.983 0.991 0.994
G70 (10,000, 9,999) − 0.982 0.992 0.997

Figure 10: The ApR of DBM (Matching-1) using CPRA-PI-GNN and CRA-PI-solvers (Ichikawa, 2024).

D.5 CPRA for Multi-instance Solutions

In this section, we numerically demonstrate that the CPRA-PI-GNN solver can efficiently solve multiple
problems with similar structures. The numerical experiments solve all 27 DBM instances using the CPRA-
PI-GNN solver with the following loss function:

R̂(θ; CS , λ, γ) =
S∑

s=1
l̂(θ; Cs, λs) + S(θ; CS , γ, α), S(θ, CS , γ, α) =∆ γ

N∑
i=1

S∑
s=1

(1 − (2Pθ,is(Cs) − 1)α).

where CS = {Cs, Ms}27
s=1 represents the instance parameters, and l̂ is defined as follows:

l(x; C, M, λ) = −
∑
i,j

Cijxij + λ1
∑

i

ReLU
(∑

j

xij − 1
)

+ λ2
∑

j

ReLU
(∑

i

xij − 1
)

+ λ3ReLU
(

p
∑

ij

xij −
∑

ij

Mijxij

)
+ λ4ReLU

(
q
∑

ij

xij −
∑

ij

(1 − Mij)xij

)
,

where λ is fixed as λ = (λ1, λ2, λ3, λ4) = (2, 2, 12, 12). The parameters for the CPRA-PI-GNN solver is set
the same as in Section 6.1. On the other hand, the CRA-PI-GNN solver repeatedly solve the 27 problems
using the same settings as Ichikawa (2024). As a result, the CPRA-PI-GNN solver can explore global
optimal solutions for all problems. Fig. 10 showcases the solutions yielded by both the CRA-PI-GNN
and CPRA-PI-GNN solvers for the 27 Matching-1 instances. Matching-2 is excluded from this comparison,
given that both solvers achieved global solutions for these instances. The CRA-PI-GNN solver, applied
27 times for Matching-1, accumulated a total runtime of 36,925 ± 445 seconds, significantly longer than the
CPRA-PI-GNN’s efficient 5,617±20 seconds. For Matching-2, the CRA-PI-GNN solver required 36,816±149
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Table 3: Runtime and solution quality on the 500-task, 1000-node weighted-MIS benchmark. “Pre” and
“FT” denote warm-up and fine-tune phases of the two-stage schedule. The two-stage variant is not only
faster than scratch training but also yields a markedly higher total weight.

Method Pre [s] FT [s] Total [s] Avg. weight
Two-Stage (200 → 500) 43.5 30.4 73.9 139.87
Scratch-500 — — 83.7 123.87

seconds, whereas the CPRA-PI-GNN solver completed its tasks in just 2,907 ± 19 seconds. The reported
errors correspond to the standard deviation from five random seeds. These findings not only highlight the
CPRA-PI-GNN solver’s superior efficiency in solving a multitude of problems but also its ability to achieve
higher Acceptance Probability Ratios (ApR) compared to the CRA-PI-GNN solver. The consistency of these
advantages across different problem types warrants further investigation.

D.6 Additional Results of penalty-diversified solutions for DBM problems

This section extends our discussion on penalty-diversified solutions for DBM problems, as introduced in
Section 6.2. In these numerical experiments, we used the same ΛS as in Section 6.2 and executed the CPRA-
PI-GNN under the same settings as in Section 6.1. As shown in Fig. 11, the CPRA-PI-GNN can acquire
penalty-diversified solutions for all instances of the DBM.

E Two–Stage Extension Experiment

To validate the claim in Section 5 that a small warm-up subset S′ ⊂ S allows CPRA-PI-GNN to scale
efficiently, we solve 500 weighted-MIS tasks on a fixed 1000-node, d = 5 regular graph. The first 200 weights
form S′ (warm-up); all 500 form S. During warm-up the network has 200 heads and is trained for 8000
epochs with λ annealed −2 → +2, but the update stops once the entropy term falls below 10−4. The encoder
is then frozen, the head is replaced by a fresh 500-way layer, and only that layer is optimised for 2000 epochs
(λ : 0.1→0, same stopping rule). A scratch-trained 500-head model serves as baselines.

As shown in Table 3, two-Stage finishes 11% faster than scratch yet attains 113% of the scratch objective
and 143% of greedy. This confirms that learning a shared encoder on S′ and adapting only the output layer
is both faster and better than training a large head from scratch on all tasks.
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Figure 11: ApR of the DBM problems on th grid ΛS using CPRA-PI-GNN solver. Each point on the
coordinate plane represents the results from five different random seed, with the colors indicating the ApR.
The constraints violation are marked with a cross symbol.
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