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Abstract

Galaxies are theorized to form and co-evolve with
their dark matter halos, such that their stellar
masses and halo masses should be well-correlated.
However, it is not known whether other observ-
able galaxy features, such as their morpholo-
gies or large-scale environments, can be used
to tighten the correlation between galaxy prop-
erties and halo masses. In this work, we train
a baseline random forest model to predict halo
mass using galaxy features from the Illustris
TNG50 hydrodynamical simulation, and com-
pare with convolutional neural networks (CNNs)
and graph neural networks (GNNs) trained re-
spectively using galaxy image cutouts and galaxy
point clouds. The best baseline model has a
root mean squared error (RMSE) of 0.310 and
mean absolute error (MAE) of 0.220, compared
to the CNN (RSME = 0.359, MAE = 0.238),
GNN (RMSE = 0.248, MAE = 0.158), and a
novel combined CNN+GNN (RMSE = 0.248,
MAE = 0.144). The CNN is likely limited by
our small data set, and we anticipate that the CNN
and CNN+GNN would benefit from training on
larger cosmological simulations. We conclude
that deep learning models can leverage informa-
tion from galaxy appearances and environment,
beyond commonly used summary statistics, in
order to better predict the halo mass.

1. Introduction
Galaxies are theorized to form inside and co-evolve with
dark matter halos (Wechsler & Tinker, 2018). The close
relationship between galaxies and their halos has led to a
tight relationship between galaxy stellar mass (M⋆) and
dark matter halo mass (Mhalo), which is known as the stel-
lar mass–halo mass relation (SMHMR). The SMHMR can
be calibrated by galaxy and halo properties derived from
cosmological hydrodynamic simulations, or from other ap-
proaches such as semi-analytic models or empirical models
(e.g., Somerville & Davé, 2015; Behroozi et al., 2019).

While galaxies are observable in the real Universe, dark
matter properties are often determined through indirect mea-
surements. For example, dark matter halo mass distributions
can be inferred from the galaxy and galaxy cluster kinemat-
ics (e.g., Zwicky, 1933; Rubin et al., 1980) or through rare
instances of gravitational lensing (e.g., Clowe et al., 2006).
However, these constraints rely on detailed observations that
are not widely available; in those cases, Mhalo can only be
assumed by using the SMHMR to assign a halo mass given
a galaxy stellar mass.

However, it is likely that Mhalo depends on galaxy prop-
erties other than M⋆. We present an exploration of how
Mhalo might be predicted from not just the stellar mass,
but also galaxy morphology and large-scale environment.
Using a galaxy sample from the Illustris TNG50-1 cosmo-
logical simulation (hereafter TNG50; Nelson et al., 2019b;a;
Pillepich et al., 2019), we test whether galaxy morphology
and large-scale environment contains information that can
improve (lower) the scatter in the SMHMR.

A machine learning (ML) model such as a random forest can
easily learn to predict Mhalo from M⋆ (e.g., Kamdar et al.,
2016). We gauge the level of improvement in predicting
Mhalo after we include galaxy morphology (i.e., commonly
used summary statistics) and/or environmental overdensity
as features in ML models. We train deep neural networks to
learn the morphological information directly from synthetic
galaxy imaging, and to learn the environmental information
directly from galaxy point clouds. In all these experiments,
we rely on the simulated galaxy sample from TNG50 to
calibrate Mhalo against other galaxy properties.

1.1. Some notes on nomenclature

Before we proceed, we define some terminology used in this
paper. The terms galaxies and halos are used interchange-
ably, since every TNG50 galaxy studied here resides in a
dark matter halo. Halos can be satellites (also known as
subhalos) of a more massive halo, or they can be centrals.
The latter means that they gravitationally dominate their
surroundings.

We test several ML models that take galaxy features as in-
puts. All features are derived from the TNG50 data (see
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Section 2). For the baseline models (described in Sec-
tion 3.3), we employ morphological summary statistics,
i.e., scalar features commonly computed by astronomers
from galaxy images that describe the appearances of galax-
ies. Environmental overdensity can also be described with
summary statistics. Crucially, these summary statistics are
lossy descriptions of the underlying data, i.e., morphological
summary statistics do not fully describe the information in
galaxy images, and the overdensity summary statistic does
not fully describe the information in galaxy environments.

We compare baseline models against more sophisticated
neural network models. To quantify these comparisons, we
introduce several evaluation metrics (see Section 3.2). Some
metrics penalize large errors (i.e., outliers) more severely,
while other metrics are insensitive to outliers. For most met-
rics presented here (with the exception of the R2 correlation
coefficient), lower values are better. We optimize all models
using the mean squared error (MSE) loss function, which
also serves as a metric for comparison.

1.2. Our contributions

We present two findings that represent novel contributions
to our field:

• Simple parameterizations of galaxy morphology and
environmental overdensity are informative for predict-
ing galaxy halo masses. Combining these two sets of
information yields even better predictions.

• Deep neural networks can learn additional information
not contained in the simple features. Although our
convolutional neural network requires a larger training
sample to optimally and flexibly learn all the informa-
tion within synthetic galaxy images, we find that our
graph neural network dramatically lowers the Mhalo

prediction error by learning environmental relation-
ships from the galaxy point cloud.

2. TNG50 Simulated Data
2.1. Galaxy catalogs

We used simulated galaxy data from TNG50, the highest
resolution hydrodynamical simulation in the IllustrisTNG
Project. The high spatial resolution of TNG50 is necessary
for adequately resolving galaxy morphologies and internal
structures, but as a result, the simulation volume is small
by cosmological standards (a box with ∼ 50 Mpc per side).
Pillepich et al. (2019) provide an overview of results from
TNG50, and Engler et al. (2021) characterize the SMHMR
in the TNG simulations in detail.

We downloaded subhalo catalogs from snapshot 99 (z = 0),
and we include both central and satellite galaxies in our

sample. Every dark matter halo in our sample contains a
galaxy. Mhalo is defined as the total mass of gravitationally
bound dark matter particles, and M⋆ is defined as the total
mass of gravitationally bound star particles in the simulation.
After administering quality flag cuts, we select galaxies
with stellar mass log (M⋆/M⊙) > 9.5. Our parent sample
comprises 1,666 galaxies in the TNG50 volume.

2.2. Image cutouts

Rodriguez-Gomez et al. (2019) generate gri-band synthetic
image cutouts for all galaxies with log (Mhalo/M⊙) > 9
by using SKIRT radiative transfer code (Baes et al., 2011;
Camps & Baes, 2015) and Bruzual & Charlot (2003) stellar
population synthesis models designed to match observations
from the Pan-STARRS 3π Steradian Survey (Chambers
et al., 2016).

We crop or zero-pad the image cutouts to ensure that they
are all the same size 3 × 224 × 224, which is a common
image size used in machine learning (Krizhevsky et al.,
2012). Each image must be further processed to add realistic
observational effects. Following recommendations from
Rodriguez-Gomez et al. (2019), we convolve the images
with an azimuthally symmetric Gaussian profile to match
the Pan-STARRS survey imaging. We adopt a point spread
function with 1.11, 1.21, and 1.31 arcsec full width at half-
maximum (FWHM) in i, r, and g bands, respectively.

2.3. Morphological features

In addition to generating synthetic galaxy images,
Rodriguez-Gomez et al. (2019) provide morphological sum-
mary statistics derived from the image cutouts using the
statmorph library. These morphological features include
the radii at 20%, 50%, and 80% of the galaxy light in cir-
cular apertures (r20, r50, r80); Petrosian, Sersic, and half-
light radii using best-fit elliptical apertures (rPetro, rSersic,
rhalf ); Sersic index (nSersic); Gini and M20 statistics (Lotz
et al., 2004); concentration, asymmetry, and smoothness
(CAS) statistics (Conselice, 2003); and multimode, inten-
sity, and deviation (MID) statistics (Freeman et al., 2013).
We refer the reader to the original works for details on
these morphological measurements (see also Section 4 of
Rodriguez-Gomez et al., 2019). We remove 117 galaxies
that have unreliable morphological features based on a flag
in the catalog, leaving 1549 galaxies in our sample.

2.4. Galaxy overdensity

We compute a summary statistic for environmental overden-
sity, ∆G, by counting the number of galaxies within some
Rmax:

∆G = |{H : d (G,H) < Rmax}| (1)
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We choose Rmax = 3 Mpc, a scale that is most informa-
tive for describing the large-scale environment for the Illus-
trisTNG galaxy-halo connection (Wu et al., 2024). After we
apply our selection criteria, the average galaxy density in
the TNG50 catalogs is 2.8× 10−3 Mpc−3.

3. Experimental Design
We aim to estimate the halo mass using progressively more
complex techniques. For each experiment, we split the data
into the same train, validation, and test split (Section 3.1).
We minimize the validation loss in order to select optimiza-
tion hyperparameters. After we choose these hyperparam-
eters and train our models, we “unblind” the test set and
report the results. In Section 3.2, we define our evaluation
metrics.

In Section 3.3, we describe the procedure for training base-
line models to predict Mhalo using galaxy properties such
as M⋆, morphological features, and overdensity parame-
ter. These morphological and overdensity baseline models
inform us whether there is extra information (beyond the
simple baseline model) that is helpful for predicting halo
mass.

We further test whether morphological information can be
learned empirically using CNNs (Section 3.4), and whether
galaxy environmental information can be learned empiri-
cally using GNNs (Section 3.5). Finally, we present a novel
combined CNN and GNN model that predicts Mhalo from
the pixel-level image cutouts and galaxy point cloud (Sec-
tion 3.6).

3.1. Data Split

As is typical in ML problems, the available data are divided
into training, validation and testing splits. In many cases,
this is sampled randomly to reduce biases, but such a di-
vision is not appropriate for spatially correlated data such
as graphs; GNNs use information from adjacent galaxies.
Thus, a random split of the galaxy sample would cause in-
formation from the validation and testing sets to leak into
the training set.

To completely separate these subsets of data, all galaxies
(i.e., graph nodes) in the training, validation, and testing sets
must be well-separated (i.e., they cannot be connected by
graph edges). We set a constant linking length (Rmax) of
3 Mpc during graph creation. We split the data into three
contiguous sub-volumes, with a 6 Mpc partition in between
each set to guarantee that the training, validation, and testing
sets are independent. Figure 1a shows this data split in a
two-dimensional projection. The resulting split leaves 1,011
galaxies for training, 112 galaxies for validation and 259
galaxies reserved for testing.

Table 1. Summary of TNG50 features used in our baseline models.

BASELINE MODEL M⋆ RPetro S A ∆G

SIMPLE
√

MORPHOLOGICAL
√ √ √ √

OVERDENSITY
√ √

COMBINED
√ √ √ √ √

Due to our data set split, there is an increased risk that
different subsets probe different cosmic environments. In
other words, it is possible that the validation (or testing)
sets comprise galaxies in a non-representative region of
the Universe. This risk is exacerbated by the relatively
small cosmic volume in the TNG50 simulation. To mitigate
this risk, we check for differences between the halo mass
distributions for the three data subsets. In Figure 1b, we
show that the Mhalo distributions for each data set are quite
similar. Thus, we proceed with this split and discuss the
potential issue further in Section 5.

3.2. Evaluation Metrics

All models are trained to minimize Mean Squared Error
(MSE). The test sets are evaluated on MSE, along with
Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), linear correlation coefficient (R2), Normalized
Median Absolute Deviation (NMAD), bias, and outlier frac-
tion (foutlier).

NMAD is an outlier-insensitive metric for the prediction er-
ror (or scatter), normalized so that the NMAD of a Gaussian
distribution is equal to a standard deviation.

NMAD ≈ 1.4826× Median (|y − ŷ − Median (y − ŷ)|) .
(2)

Bias is defined as the mean offset, and describes whether
the parameter is generally overestimated or underestimated.

bias =

N∑
i=1

(ŷi − yi) (3)

The Outlier Fraction is the ratio of predictions with residu-
als > 3× NMAD. This metric determines the rate of catas-
trophic outliers.

foutlier =
1

N
·
∣∣{yi : |ŷ − y| > 3 ∗ NMAD

}∣∣ (4)

3.3. Baseline Models

We train several baseline models to facilitate comparisons
with deep neural networks; these baseline are not meant to
achieve the best possible performance. Instead, they predict
halo mass from commonly used galaxy features, such as stel-
lar mass (M⋆), morphological parameters (RPetro, A, S),
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(b) Distributions of galaxy halo masses for data split.

Figure 1. Training, validation, and testing data split figures.

and overdensity (∆G). For each baseline model, we train a
random forest with 100 estimators using the input features
described below. Table 1 summarizes how different baseline
models employ the features described in Section 2.

3.3.1. SIMPLE BASELINE MODEL

The simple baseline model is trained using stellar mass
as the only feature. The galaxy-halo connection is often
expressed as a one-to-one map between galaxy M⋆ and
Mhalo, so we expect that our simple baseline model should
have some predictive power. However, there are secondary
correlations between galaxy and dark matter halo properties
(Wechsler & Tinker, 2018), and the simple baseline model
will fail to capture those dependencies.

3.3.2. MORPHOLOGICAL BASELINE MODEL

The morphological baseline model is trained using several
galaxy morphology features in conjunction with stellar mass.
We use k = 5-fold cross-validation to evaluate which mor-
phological features are most critical to incorporate in our
baseline model. Although we consider random forest mod-
els with the many morphological features described in Sec-
tion 2.3, we find no substantial improvement after including
Petrosian radius, Smoothness, and Asymmetry. Therefore,
we elect to use those three morphological parameters in ad-
dition to stellar mass for our morphological baseline model.

3.3.3. OVERDENSITY BASELINE MODEL

There is evidence that galaxy overdensity can tighten the
scatter in the SMHMR (e.g., Blanton et al., 2006). Our
overdensity model is a random forest that predicts Mhalo

from M⋆ and ∆G.

3.3.4. COMBINED BASELINE MODEL

We construct a combined baseline model using all features
described above: M⋆, RPetro, A, S, and ∆G. Any im-
provement in prediction for this model, relative to the other
baseline models, can be interpreted as evidence that the
galaxy morphology and large-scale environment contribute
distinct information for estimating the halo mass.

3.4. CNN

3.4.1. MODEL ARCHITECTURE

The backbone of the CNN is a ResNet18 (He et al., 2015)
pretrained on ImageNet data (Paszke et al., 2019), with the
final prediction layer replaced with 100 output features. The
CNN output is concatenated with the galaxy’s stellar mass,
which is input into a 3 layer network to output the Mhalo

estimate. All layers are trainable.

This CNN is trained for 1000 epochs with the AdamW
optimizer (Kingma & Ba, 2014; Loshchilov & Hutter, 2019)
at a learning rate of γ = 5 × 10−4, a weight decay of
λ = 1× 10−3, and a batch size of 64.
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3.4.2. IMAGE DATA

We apply point-wise Gaussian noise necessary to model
sky background noise, with σ values of 1/15, 1/19, and
1/25 e−s−1pixel−1 for the i, r, and g band images. To re-
duce overfitting of the model, multiple simple augmentation
techniques are used during model training: horizontal flip,
vertical flip, rotation up to 90◦. The image is padded by 5
pixels in every direction and randomly cropped, resulting
in a random jitter. While a rigorous ablation study on data
augmentation choices is outside the scope of our work, we
ran simple validation experiments to determine that these
augmentation techniques are helpful for efficiently training
our model and reducing overfitting. We finally rescale the
pixel values to take on a mean of 0 and standard deviation of
1 in each channel based on our (post-processed) image statis-
tics; the same rescaling is applied to the training, validation,
and testing data.

3.5. GNN

3.5.1. GRAPH CONSTRUCTION

Graphs are well-suited for modeling galaxies in cosmolog-
ical volumes. Each node in the graph represents a galaxy,
with stellar mass as the only node feature. We create edges
between two galaxies if they are separated by less than the
Rmax = 3 used in the overdensity estimate; this is defined
as the linking length of the graph. The Euclidean distance
between connected nodes is used as the only edge feature.

After splitting the data into training, validation, and testing
sets (see Section 3.1), we batch the training data set into
24 clusters using the METIS algorithm to reduce memory
usage (see, e.g., the ClusterLoader class in Pytorch-
geometric Chiang et al., 2019; Fey & Lenssen, 2019).

3.5.2. MODEL ARCHITECTURE

We use a GNN that can pass messages between edges from
neighboring nodes, which enables node and edge states to
be updated. This architecture permits the GNN to process
information from each pair of neighboring nodes as well
as the edge. A pooling layer then aggregates all of the
information back to each node in order to simultaneously
make predictions for every node in the batch.

Our GNN is based on the architecture described in Wu
& Jespersen (2023). Our GNN uses 4 parallel networks
of fully-connected layers with 16 latent channels and 16
hidden channels, followed by max pooling. Each node’s
output is then concatenated with the original node feature
(stellar mass), which is fed into a final three-layer neural
network to predict Mhalo.

We train the GNN for 500 epochs using the AdamW opti-
mizer with a learning rate of γ = 1×10−3 and weight decay

λ = 1 × 10−4. The entire validation and testing sets can
each fit into a single batch, so we make predictions using
the entire galaxy subgraph.

3.6. CNN + GNN

One final model combines the learnable parameters from
both the CNN and the GNN. We construct the model using
the (initially) frozen pretrained GNN backbone as the GNN
component for this combined network. We also initialize
the ImageNet-pretrained ResNet18 model for the CNN com-
ponent, and attach a linear layer with 64 neurons. The GNN
and CNN outputs are then concatenated with the stellar
mass, which are passed through the same set of final linear
layers used for the GNN.1

We batch examples using the same clustering algorithm that
was used for the GNN model, which requires collating the
same image examples for the CNN portion for model. This
combined CNN+GNN is trained for 500 epochs using the
AdamW optimizer with a learning rate of γ = 5×10−4 and
λ = 1×10−3, but because the CNN and GNN are initialized
to pretrained weights, we use an early stopping criterion to
refine the optimization procedure. If the validation MSE loss
rises 0.005 above the minimum validation loss five times
without finding a new minimum validation loss, then we
re-enable learning on (i.e., unfreeze) the GNN backbone and
reduce the learning rate by a factor of 5. If a new minimum
validation loss is achieved, then the counter is reset to 0,
and we proceed with training just the CNN. Unfreezing
the GNN and reducing the learning rate only occurs once;
afterwards, we continue training for the remainder of the
500 epochs.

4. Results
Our test set results are summarized in Figure 2 and Table 2.
The figure shows predicted versus true halo masses (colored
by the stellar mass) for all models. The table compares the
evaluation metrics (described in Section 3.2) for all models.
Additional details about the neural network training and
validation loss curves are presented in Appendix A.

4.1. Baseline Models

The simple baseline—a Random Forest using only stellar
mass—performed the worst (RMSE = 0.455), as expected.
The morphological baseline model performs significantly
better, with RMSE = 0.345. There is clearly information
encoded in these morphological features that cannot be cap-
tured by stellar mass alone. The overdensity baseline model

1The CNN outputs are not passed in as graph node features, as
this was too computationally prohibitive for our experiments. Such
a model may permit such a model to learn “interactions” between
neighboring galaxies’ image features.
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(b) Morphological baseline
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(c) Overdensity baseline
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Figure 2. True vs. predicted Mhalo plots for all models, with color scale for M⋆.

performs better than the simple baseline (RMSE = 0.374),
but worse than the morphological baseline model. From Fig-
ure 2c, we can see that it overpredicts the halo mass for most
lower-mass systems, i.e., at true log(Mhalo/M⊙) < 10.5.
Finally, including both overdensity and the morphological
features in the combined baseline model further reduces
losses (RMSE = 0.310).

4.2. CNN

Surprisingly, we find that the CNN results in a poor RMSE
(0.359) compared to the morphological baseline model
(0.345), and suffers from a very high outlier fraction
(foutlier = 6.18%). These outliers are visually apparent
in Figure 2e, wherein the CNN fails to predict Mhalo for a
few galaxies in the test set (and fails spectacularly for two
galaxies in particular). However, the MAE and NMAD is
lower for the CNN than than for the morphological baseline
model, suggesting that the non-outlier predictions by the
CNN are still reasonably accurate.

4.3. GNN

The GNN predicts with much higher accuracy than the over-
density baseline, as evident in the metrics. This is likely the
highest performing model in this experiment, even though
ResNet18 has hundreds of times more trainable parameters
than the GNN. Relative to the previous models, the GNN
has very few outliers and a low bias, indicating that the data
it received does not differ largely from the training set.

4.4. CNN + GNN

The combined CNN+GNN model performs better than ei-
ther the CNN and GNN separately, although the RMSE and
R2 values are very similar to those from the GNN. Again,
we see the same two strong outliers (Figure 2g) as we did
in the CNN-only model. However, the CNN+GNN still
manages to achieve the best foutlier, indicating that most of
its predictions are very accurate. This is also supported by
its low MAE and NMAD.

5. Discussion
5.1. Comparing neural networks against baseline

models

Results from our baseline models demonstrate that galaxy
morphology and environment are valuable for improving
Mhalo predictions for TNG50 galaxies. Moreover, these
features can be combined to achieve even btter results. The
baseline models use “handcrafted” features that are com-
monly used in astronomy (e.g., Conselice 2004), but these
features may not summarize all the information in galaxy
images or environments that are relevant for constraining
Mhalo. The successes of deep learning offers a hint that
CNNs and GNNs may be able to extract more useful infor-
mation directly from images and point clouds. Here, we
interpret our results from more sophisticated CNNs and
GNNs.
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Table 2. Test results from baseline and neural network models as characterized by the evaluation metrics described in Section 3.2. The
best metrics are underlined.

MODEL NAME MSE MAE RMSE R2 BIAS NMAD foutlier

SIMPLE BASELINE 0.207 0.328 0.455 0.524 +0.009 0.313 2.27%
MORPHOLOGICAL BASELINE 0.119 0.246 0.345 0.726 −0.023 0.234 2.43%
OVERDENSITY BASLINE 0.140 0.260 0.374 0.680 −0.008 0.261 2.09%
COMBINED BASELINE 0.096 0.220 0.310 0.779 −0.034 0.220 2.26%

CNN 0.129 0.238 0.359 0.705 +0.062 0.218 6.18%
GNN 0.062 0.158 0.248 0.858 +0.007 0.146 1.78%
CNN + GNN 0.062 0.144 0.248 0.859 +0.020 0.123 1.77%

We find that the neural network models generally perform
better than the baseline models (Table 2), confirming our
previous hypothesis. This is despite the fact that highly
overparameterized neural networks can struggle to learn
from small data sets (see Section 5.3 for more discussion).
Nonetheless, the CNN still performs better than the mor-
phological baseline model in terms of outlier-insensitive
metrics such as the MAE and NMAD. The GNN learns
far more environmental information than is encoded in the
simple overdensity parameter ∆G, leading to far lower pre-
diction errors.2 The CNN+GNN model achieves the best
performance metrics across the board—but it could proba-
bly perform even better if not for the CNN’s catastrophic
failures.

5.2. Successes and failures of neural networks

The CNN primarily fails in two different ways. First, the
halo masses of high-mass (M⋆ > 1012.5M⊙) galaxies are
consistently underpredicted. The latter failure mode can
be explained by small TNG50 volume, which inhibits the
CNN—with its O(107) trainable parameters—from ade-
quately learning how to handle these rare massive galaxies.
Second, there are two galaxy samples in the test set that
have dramatically underpredicted halo masses (see, e.g.,
Fig 2e). We have visually inspected these galaxy images,
and found that one of them is a pair of interacting galaxies.
As we note in Appendix A (see Figure 3), the validation loss
achieves a minimum value after only 116 epochs of training,
which suggests that the CNN is undertrained. The valida-
tion loss of MSE = 0.0894 is much better than test loss
MSE = 0.129; thus we surmise that the CNN did not fully
converge, and would benefit from more training examples.

It is interesting that the GNN demonstrates such strong per-
formance in predicting Mhalo. One interpretation of this
result is that the large-scale environment is more informative
for predicting Mhalo than the detailed galaxy appearances.

2We also note that the overdensity baseline model performs
very poorly for low-mass galaxies, which may indicate challenges
with predicting Mhalo for satellite galaxies residing in high-density
environments.

However, the morphological baseline model does outper-
form the overdensity baseline model, which may imply that
our overdensity parameter ∆G is too simplistic to describe
the overall environment. Indeed, Wu et al. (2024) find that
GNNs are better suited than overdensity for describing envi-
ronmental dependence on the relationship between galaxies
and their dark matter halos, which reinforces the idea that
GNNs are better equipped to extract environmental informa-
tion from galaxy point cloud data.

5.3. The challenge of small data sets

We have mentioned that our data split reduces the galaxy
data set to only a about a thousand examples for training,
few hundred examples each for validation and testing. The
limited data sets raise several challenges. First, neural net-
works typically benefit from more training data, so it is
likely that our deep learning models are not fully converged.
Second, the small subsets of data for validation or testing
can increase the variance in prediction results; it is conceiv-
able that a nested cross-validation can help ameliorate this
issue. Third, due to our choice to separate galaxies into
contiguous subvolumes, the validation or testing data sets
can exhibit different galaxy properties on average than the
ones seen in the training data set.

We anticipate that our neural networks would perform even
better or larger data volumes. However, increasing the sim-
ulation box size often comes at the cost of lowering the
resolution, which can have an adverse effect on simulating
realistic galaxy appearances at all.

5.4. Application to real data and domain adaptation

Our successful experiments indicate that we may be able to
better predict galaxy properties by leveraging galaxy imag-
ing and their cosmic surroundings. Can we immediately
apply this to real observations? Unfortunately, the answer
is likely not. Our models have learned the very specific
characteristics of simulated data from TNG50, which differs
from the real Universe in myriad ways. In general, this
problem is known as “domain shift” or “data set shift” and it
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applies to any kind of shift in the high-dimensional inputs to
deep learning models. Not only does domain shift prevent
us from successfully applying a model trained on TNG50
to the real Universe, but it also prevents us from applying
this model trained on TNG50 to another simulation. There
exist proposed solutions for mitigating this effect (“domain
adaptation”, see e.g., Csurka, 2017), which have been ap-
plied to astronomical data (Ćiprijanović et al., 2023), but the
problem is far from solved. Therefore, we caution against
naively using these ML models to predict Mhalo for real
galaxies.

6. Conclusions
We have estimated the dark matter halo mass, Mhalo, us-
ing galaxy data from the Illustris TNG50-1 hydrodynamic
simulations. We split our sample of well-resolved galax-
ies with reliable morphological measurements into spatially
separated regions for the training (N = 1011), validation
(N = 112), and testing (N = 259) data subsets. All results
are presented using metrics from the testing data set.

We first train baseline random forest models that use stel-
lar mass (M⋆), morphological features (Petrosian radius,
asymmetry, and smoothness), and galaxy overdensity (∆G)
over 3 Mpc scales. From our baseline model investigation,
we find that galaxy morphology and overdensity are useful
features for accurately estimating Mhalo. Moreover, the
combined set of features produces an even more performant
model (Table 2).

After we confirm that morphology and overdensity are im-
portant for predicting dark matter halo mass, we use syn-
thetic galaxy image cutouts and galaxy 3d point cloud as
inputs to neural network models. In other words, we eschew
summary statistics in favor of directly learning from the
pixel-level and point cloud data (in addition to the stellar
mass). Our conclusions for the neural network models are
listed below:

1. While a deep convolutional neural network (CNN) can
achieve strong performance on the training and vali-
dation set (RMSE = 0.299), its performance on the
test set suggests that it has been overfit to the small
data set (RMSE = 0.359, which is worse than the mor-
phological baseline model result—RMSE = 0.345).
This interpretation is also supported by its extremely
poor performance on two dramatic outliers in the
test set (see Figure 2e) and its large outlier fraction
(foutlier = 6.18%). Nevertheless, the CNN outper-
forms the morphological baseline well in terms of
outlier-insensitive metrics like mean absolute error
(MAE = 0.238) and normalized median absolute devi-
ation (NMAD = 0.218).

2. The graph neural network (GNN), trained on cosmic

graphs connected by a 3 Mpc linking length, achieves
very low prediction error (RMSE = 0.248) relative to
the overdensity baseline model (RMSE = 0.374) and
combined baseline model (RMSE = 0.310), which
suggests that galaxy environment is particularly impor-
tant for constraining the halo mass.

3. We have trained a novel CNN+GNN joint model that
achieves the best performance overall. Because the
CNN component of the model suffers from the over-
fitting issue described above (see also Figure 2g), the
CNN+GNN model is comparable to the GNN model in
terms of RMSE and R2; however, its outlier-insensitive
metrics (MAE = 0.144, NMAD = 0.123) are far su-
perior to any other models’ performance.

Our results demonstrate that a CNN+GNN model is capable
of jointly extracting detailed information from galaxy ap-
pearances and large-scale environments. These results are
promising for future data-driven approaches to predicting
dark matter properties from galaxies, particularly if they can
be trained on much larger galaxy samples spanning larger
cosmic volumes (see Section 5.3). However, we also caution
against applying these models trained on simulation data to
real observations without first accounting for domain shift
(Section 5.4).
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A. Training and validation loss curves
In Figure 3, we show the training and validation loss curves from optimizing the CNN, GNN, and CNN+GNN models
via the training procedures described in Section 3. To make predictions, we save the model checkpoints that achieve
lowest validation losses, but here we show the entire loss curves (out to 500 epochs) in order to gauge the level of over- or
under-fitting.
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(a) CNN: minimum validation loss during epoch 116.
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(b) GNN: minimum validation loss during epoch 416.
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(c) CNN+GNN: After epoch 144, we unfroze the GNN component and lowered the CNN learning
rate (see description of optimization procedure in Section 3.6). Minimum validation loss during
epoch 466.

Figure 3. Training and validation loss curves for our deep learning models. The subfigure caption indicates which epoch minimized the
validation loss; that checkpointed model is then used to make final test set predictions.

Figure 3a shows that the CNN validation loss curve begins to increase shortly after the minimum validation epoch (116)
while the training loss continues to decrease. The validation loss is quite noisy, which suggests that it may not be a reliable
indicator of model convergence. Thus, the CNN’s modest results are unsurprising (e.g., Section 5.2).

The GNN and CNN+GNN loss curves (in panels b and c) seem to indicate that there is a substantial gap between training
and validation losses. However, when optimizing GNNs, it is common to find that the training and validation loss curves
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plateau rather than diverge—which would signify a problem with overfitting. This is likely because GNNs have far fewer
trainable parameters than CNNs, and are therefore less susceptible to overfitting.
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