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ABSTRACT

Many explainable AI (XAI) methods have been proposed to interpret neural net-
work’s decisions on why they predict what they predict locally through gradient
information. Yet, existing works mainly for local explanation lack a global knowl-
edge to show class-wise explanations in the whole training procedure. To fill this
gap, we proposed to visualize global explanation in the input space for every class
learned in the training procedure. Specifically, our solution finds a representation
set that could demonstrate the learned knowledge for each class. To achieve this
goal, we optimize the representation set by imitating the model training procedure
over the full dataset. Experimental results show that our method could generate
class-wise explanations with high quality in a series of image classification datasets.
Using our global explanation, we further analyze the model knowledge in differ-
ent training procedures, including adversarial training, and noisy label learning.
Moreover, we illustrate that the generated explanations could lend insights into
diagnosing model failures, such as revealing triggers in a backdoored model.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved unprecedented success over various tasks across
different domains. However, there is still limited understanding of how to interpret their decisions
due to their black-box nature. In other words, current DNNs lack the desirable transparency ability to
explain why they predict what they predict. "Correct" prediction without reasonable explanation from
DNNs may bring a huge concern on their prediction’s reliability, especially in security-sensitive tasks
such as medical image analysis (Nwadike et al., 2020), auto-pilot in the self-driving system (Wang
et al., 2021) etc.

To acquire a better understanding of model prediction, many attempts have been made to interpret
DNNs from different perspectives. A major focus have been put on the local explanations, either
through the saliency map (Simonyan et al., 2013; Smilkov et al., 2017; Adebayo et al., 2018) and
unique identification factors (Zhou et al., 2016; Selvaraju et al., 2017), or extracting explainable
attributions on models’ decision for each input example (Ribeiro et al., 2016; Hinton et al., 2015;
Frosst & Hinton, 2017). These techniques have a good ability to visualize feature representation
utilized for debugging trained DNNs in a local manner. Yet, local explanations can only interpret
resulting model decisions for a particular input sample, being unable to visualize any intermediate
attributions or model knowledge learned in a whole training procedure. Thus, a global explanation
for viewing overall training logic is desirable, i.e., visualizing intermediate explanations for verifying
commonly-used hypotheses in different training steps. Apart from that, with respect to diagnosing
model prediction, local explanations are further challenged by the recent progress in backdoor
attacks (Zhao et al., 2021). DNNs have been shown vulnerable to backdoor attacks. However, local
explanations fail to provide helpful (intermediate) explanations for analyzing backdoor patterns given
a target label. To our best knowledge, no prior work can reveal complex backdoor patterns when
visualizing a whole training process for DNNs.

Existing global explanations methods focus on extracting rules from DNN models (Hara & Hayashi,
2018; Lakkaraju et al., 2017) or distilling black-box models into small and easy-to-explained substitute
models (Tan et al., 2019; Bastani et al., 2017). However, the quality of generated explanations
highly depends on the complexity of the designed rules and the substitute model. Besides, the
substitute model is a approximation of the explained model, which could also introduce extra biases
to explanations.
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Our solution. This paper gives a generic method for the global visual explanation, given an inputting
class-wise dataset and training procedure only, without requiring any additional hypotheses. Our
global explanation can be applied to visualize the whole training process of any DNNs, finally
providing much richer visual explanations and knowledge than local explanations. Unlike prior
global explanations, our method requires neither extracting rules from a black-box model nor distill
knowledge to a simpler model. Instead, it visualizes learned knowledge directly over representative
data to attain more comprehensive explanations, rather than processing a simplified model summarized
from original data. Representative data, in the pixel space rather than feature space, enables debugging
a model and studying hidden mechanisms more easily in a training procedure. Intrinsically, our
superior results benefit from shortening the route of generating visual explanation, saying, distilling
knowledge directly from data instead of from a model derived from data.

To be specific, given a training dataset and corresponding training procedure, we optimize represen-
tative data points so that the learned model over representative data could approach the same one
trained with the full dataset. By adding more reference snapshots in the training trajectory of model
parameters, our method supports extracting a high-quality visualization to reveal global class-wise
patterns learned by specifying various training manners. Empirical results on datasets show desirable
class-wise explanations with high fidelity in Sec. 4. Besides, Sec. 5 analyzes debugging model failure
(i.e.,inserted backdoor) that exists in the training procedure. To demonstrate generality, we utilize our
class-wise explanation to analyze feature representation learned by various training procedures in
Sec. 6, including training dynamics, adversarial training, and noisy label learning.

Our contributions are summarized below:

• We propose a global visual explanation method in the input space to reveal the key rep-
resentation points learned with respect to different classes. Our method could generate a
class-discriminative, natural-looking, and high-quality visual explanation.

• We show the proposed method could help in diagnosing several model failures, including
backdoor attacks where the local explanation is completely failed.

• We show a proof-of-concept of how to understand the model knowledge in different training
phases and different training methods. This is critical for understanding the generalization
of deep learning and sheds light on how to design a better training algorithm.

2 RELATED WORK

2.1 LOCAL EXPLANATION METHODS

Local explanation methods aim to help understand the decision procedure for a specific sample. At
the pixel-level, saliency map (Simonyan et al., 2013) is the first to identify the sensitivity of each
pixel towards the final prediction by highlighting the largest score in the calculated gradients. The
vanilla gradient method is later improved via smoothed gradient (Smilkov et al., 2017), and guided
back-propagation (Adebayo et al., 2018). Class Activation Mapping (CAM) (Zhou et al., 2016)
visualizes discriminative regions by simplifying the model into one without any fully-connected layer.
Later, Grad-CAM (Selvaraju et al., 2017) then makes CAM without altering model architecture by
incorporating the gradient information. Other than directly pixel-level explanation, LIME (Ribeiro
et al., 2016) approximates the model with a linear model locally, which relies on instances randomly
generated in the neighborhood of the sample to be explained. After deriving the model, interpretable
features are then projected back into the original feature space to get a final explanation. SHAP (Lund-
berg & Lee, 2017) re-formalizes additive feature attribution problem into a cooperative game and
use Shapley value to assign each feature an important score for a particular prediction. Recently, a
class-wise local explanation method has been proposed to visualize a sparse representation of model
knowledge (Zhao et al., 2021). However, the method heavily depends on the given canvas (example).
Although our method also focuses on the class-wise pattern, our global explanation method neither
depends on a specific sample nor requires sparse constraints for generating representations in the
input space.

2.2 GLOBAL EXPLANATION METHODS

Different from local explanation methods, global explanation aims to describe the overall logic of
the black box, including how the model parameter affects the resulting prediction on average, and
what and how the model has been learned in the training procedure. The global explanation is first
to be formalized as extracting some rules from the black-box model to interpret the model (Bastani
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et al., 2017). As neural networks become more complex and deep, it is then very hard to extract rules
directly from the model. Model distillation (Hinton et al., 2015) is then applied to simplify complex
black-box models to a smaller yet interpretable one with a similar performance to the original model.
Neural networks have been distilled into trees structure model (Craven & Shavlik, 1995; Frosst &
Hinton, 2017) and an additive model for the global explanation (Tan et al., 2018).

By selecting the prototypes or representative samples, example-based explanation methods (Kim et al.,
2016; Gurumoorthy et al., 2019) could provide a condensed view of the whole training dataset and
also select a subset of the whole training set as global explanations. However, the selected prototype
set is always very large, containing thousands of samples. It’s hard for users to directly obtain clear
and concise explanations.Besides, example-based methods can only select existing samples from the
training dataset. Therefore, those method are unable to represent the knowledge learned in various
training paradigms like adversarial training. However, our method that only need a dozen examples to
consist the global explanations could reflect knowledge from various training paradigms by directly
generating explanations from trained models.

Activation maximization (AM) method (Olah et al., 2017; Yosinski et al., 2015; Nguyen et al., 2017;
2019) visualize the learned feature of various neurons of DNN models in the input space. It could
also be used as a global explanation to visualize learned class-wise patterns of DNN models by
maximizing output neuron of each class. However, directly taking maximization always generates less
coherent and high-frequency local patterns. To generate the global coherent and natural visualizations,
they need to be combined with hand-designed regularization like Gaussian blur, dropout, mean
initialization, and deep generative models (Nguyen et al., 2019). Compared with AM method, our
method can generate high-quality, global coherent, and diverse class-wise explanations without any
prior regularization.

3 METHODOLOGY

Suppose θR is the model trained using the dataset R with n samples, our goal is to find a global
explanation set S that contains class-discriminative explanation for every class Si, for i = 0, . . . , C−
1. In the meantime, the explanation set should be much smaller than the original set i.e |S| ≪ n.
In this section, unlike the previous works extracting the set from the model directly (Bastani et al.,
2017), we propose a new method by synthesizing S such that the model trained on S should be equal
to θR, since the model could be expressed as a function of representation samples for every class.
Intuitively, this representation could be thought of as extracting critical points around the model’s
decision boundary. Let’s take the support vector machine (SVM) as an example. The support vectors,
whose size is much smaller than the size of the whole training set, that determine the SVM model
could be thought of as the representation set we aim to extract 1.

3.1 SEARCHING CLASS-WISE EXPLANATION SET

For simplicity, we consider a classification model fθ : X (m) → YC which maps input x in the
input space Xwith m dimension input to a label y at the label space Y with C class and the model
parameter is θ. Given a training set R consists of n instances (x1,y1), . . . , (xn,yn). Consider a
non-negative real-valued loss function L that penalize the difference between the prediction fθ(x)
and true label y from an unknown data distribution P , (x,y) ∼ P , we aim to find the model θR as:

θR = argmin
θ
R(θ) =

∫
L(fθ(x),y)dP (x,y) ≈ 1

n

n∑
i=1

L(fθ(xi),yi) (1)

We formulate searching the class-wise explanation set S as the below bi-level optimization problem:

min
S
D(θS ,θR) s.t θS = argmin

θ
LS(θ) :=

1

|S|

|S|∑
i=1

L(fθ(xi),yi) (2)

where D(·) is a distance metric to measure the distance between the model trained by the dataset
R and representation set S. We use the sum of the MSE loss and the cosine similarity in the
implementation. In other words, we aim to find a set of critical representation for each class that let

1In Soudry et al. (2018), the authors theoretically proved that SGD implicitly converges to solutions that
maximally separate the dataset. This also implies that some samples are more relevant than others to decision
boundary learned by the model.
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the model θS be trained on S is close to the original. By imitating model parameters θR, we could
then extract class-discriminative features from the dataset R into S.

Since the above problem (Eq.2) is a bi-level optimization problem, we can solve it using alternative
minimization. Specifically, for each iteration of outer loop, we utilize gradient descent algorithm with
a fixed number of iterations M to solve inner problem:

θS = θS
M = OPT(θS

0 ,S,M), the update: θS
t+1 ← θS

t − ηθ∇θLS(θS
t ) (3)

where OPT means optimization process (gradient descent) with M iteration updates. θS
0 is initialized

with same initial point of θR. After obtaining θS
M , we solve the outer problem by taking one step

gradient descent:
St+1 ← St − ηS∇SD(θS ,θR) (4)

After obtaining S , we will project it into the same image pixel value range as samples in the dataset
R to make the explanation directly interpretable in the input space. At the same time, we limit the
the size of explanation set S to be 10 images per class at most. To make our global explanations
independent of the sampling dataset distribution P and reflect the true model decision, S is always
initialized from the standard Gaussian Noise.

However, the above bi-level optimization is rather hard to solve directly. If the inner loops are
unrolled too many times, the computation and memory occupation will increase exponentially and the
problem becomes infeasible. At the same time, since the model parameter space is highly non-convex,
it becomes extremely difficult to accurately approach θR with limited inner iterations when starting
from a random initialized θS0 .

3.2 IMITATING TRAINING TRAJECTORIES

To address the aforementioned challenges, recent works about data condensation (Zhao et al., 2021;
Cazenavette et al., 2022) have proposed to imitate short ranges of original model training process
rather than imitating the final model parameter θR directly. Inspired by those works, we propose to
imitate short intervals of the whole training process for each iteration of the outer loop. Specifically,
after each epoch of training model on R, we save the model checkpoint θR

k as well as the random
initialization point θR

0 . We then get a whole training trajectory as {θR
0 ,θ

R
1 , . . . ,θ

R
k , . . . ,θ

R
T } and

each checkpoint in the training trajectory could act as a reference point. For each iteration in outer
loop, we uniformly and randomly choose a reference point as starting point θR

k , and choose the
reference point after N epochs θR

k+N as the end point. With the model θS initialized as θR
k , in the

inner loop, we use M step gradient descent to obtain the θS
M and then make it approach θR

k+N . We
then update the S according to the distance loss between θS

M and θR
k+N . To sum, instead of directly

imitating the final parameter θR, we choose to imitate the short range training dynamics to obtain the
S. Therefore, we turn the original problem into the following optimization problem:

min
S

Ek∼[0,...,T ]D(θS
M ,θR

k+N ) s.t θS
M = argmin

θ
LS(θ) :=

1

|S|

|S|∑
i=1

L(fθ(xi),yi) (5)

where T is the difference of the whole training trajectory. To avoid affect from randomness about
initialization of θR, we also optimize the above problem on multiple training trajectories obtained by
training θR with different initializations.

Furthermore, to make the global set independent of the sampling dataset distribution P and reflect
the true model decision, during the optimization, S is initialized from the standard Gaussian Noise.

Fidelity: It is necessary for the explanation method to have a high fidelity. In other words, the
prediction produced by an explanation should agree with the original model as much as possible. By
approaching the θS with θR, the model trained θS on S would have achieve a similar generalization
ability on both distribution P and other distributions as well. Here, we show the final MSE loss,
∥θR

k+N−θS
M∥2 obtained by our method. We also take the original trajectory difference ∥θR

k −θR
k+N∥2

as the reference. We compute their average values over multiple trajectories starting from different
starting point θR

k . Following experimental settings in Sec. 4, the average values of ∥θR
k+N − θS

M∥2
and ∥θR

k − θR
k+N∥2 are 0.35 and 0.76 respectively. We can observe that the MSE between the

obtained θS
M and end point θR

k+N is significantly reduced compared with the original trajectory so
that the θS

M is close enough to the reference point θR
k+N after the update.
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Side benefits: Since we have multiple reference points of the training trajectory rather than only the
final parameter θR, we could also investigate the feature representation learned during the training
dynamics, which has been a open question in the deep learning field and several hypothesis have
already been proposed to study this problem. By selecting the reference model parameter in different
stage, we now provide a way to visualize the feature characteristic of different training stage. We
defer the discussion later in Sec. 6.1.

Although the proposed trajectory matching is used in data condensation (Cazenavette et al., 2022), the
goal of our work is totally different from data condensation which aims to improve the data efficiency
of the training procedure by limiting the number of training samples. With the different objectives,
data condensation doesn’t require generating a highly interpretable explanation, so directly applying
the data condensation method is not applicable. For example, tricks like ZCA transformation are
widely used in data condensation (Cazenavette et al., 2022) however cause the generated samples hard
to interpret. Also, there is no constraint on pixel range for generated samples in the data condensation
as well. Besides, we also utilize our method for different applications such as backdoor detection in
Sec. 5, and visualizing knowledge of various training paradigms in Sec. 6, where data condensation
methods haven’t explored.

4 CLASSWISE EXPLANATION

In this section, we conduct experiments to show that the proposed method could generate high-quality,
class-discriminative global explanation. And we also take comparisons between our method and
Activation maximization (AM) method.

Datasets and model architecture: We use four popular datasets: SVHN (Netzer et al., 2011),
GTSRB (Stallkamp et al., 2012), CIFAR-10 (Krizhevsky et al., 2009) and Tiny ImageNet (Chrabaszcz
et al., 2017). For the model architecture, we choose the simple ConvNet architecture (Gidaris &
Komodakis, 2018), AlexNet (Krizhevsky et al., 2012), and VGG-11 (Simonyan & Zisserman, 2015)
for illustration. The ConvNet has 3 duplicate convolution blocks followed by a linear classifier. Each
block consists of 128 filters, average pooling, ReLU activation and instance normalization. For the
large scale dataset, Tiny ImageNet, we use the ConvNet with 4 duplicate convolution blocks. Due to
the page limit, we show the experimental results of AlexNet and VGG in Sec. B.1 of Appendix.

Implementation details: We set inner loop iterations M and N to be 60 and 2 for all datasets to
generate the visual explanations. For selecting reference point as the starting point, we uniformly and
randomly select from 0-20 epoch checkpoints for SVHN, GTSRB, and CIFAR-10 and 0-40 epoch
checkpoints for Tiny ImageNet. The learning rate ηθ is set to be 0.02 for updating the θS

t in the inner
loop, while ηS is 1000 for updating S in the outer loop. And the number of outer loop iteration is
5000. We use standard Gaussian noise to initialize our class-wise explanations S. For Activation
maximization (AM) method, we directly maximize the final output of each class before softmax
layer. We also add the Gaussian blur regularization in AM method to have better visual quality on the
explanations. To have a fair comparison, we limit the the size of explanation set S to be 10 images
per class and initialize S with Gaussian noise. The implementation details are shown in Appendix.

Table 1: The discriminative power of class-
wise explanations obtained on ConvNet for
different models.

dataset
model ConvNet ResNet50 WideResNet28-10 DenseNet121

CIFAR-10 100.0 100.0 100.0 100.0
GTSRB 100 97.7 98.1 97.9
SVHN 100.0 100.0 100.0 100.0

Tiny ImageNet 100.0 100.0 100.0 100.0

As shown in Figure 1, for each class of each dataset, our
method could generate high-quality class-discriminative
explanations, while AM method generate a visually
unidentifiable explanation with a lot of high-frequency
noise and irregular color background. At the same time,
our generated explanation shows a great diversity, while
AM method keeps generating very similar patterns. For
example, the model trained on GTSRB would learn the
shape and color of traffic signs (circle, triangle, blue, red) and the content inside the sign (number,
light, arrow). Moreover, it could be observed that the generated explanation has an apparent num-
ber pattern although numbers in SVHN dataset are collected from different sources with different
backgrounds. Our class-wise explanations reveal that the model has learned to extract and combine
important features from the background information.

To further evaluate whether the generated explanation is highly class-discriminative, we put the
explanations back into the original ConvNet model to see the classification results. For example, for
the generated explanation of Cat class, we test if the original ConvNet and other models would classify
them as Cat. The higher the classification accuracy, the highly class-discriminative the generated
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Figure 1: The comparison of our class-wise explanations and those from AM method on four datasets:
CIFAR-10, GTSRB, SVHN, and Tiny ImageNet. For the first three datasets, the left column is ours
and the right corresponds to AM. Each row denotes the explanation set for a class. For the final
dataset, Tiny ImageNet, we generate one explanation for each class and the left is ours. Full results
could be found in Appendix.

explanation of each class. Apart from the original ConvNet, we also utilize other pretrained models
with different architectures containing ResNet50 (He et al., 2016), WideResNet28-10 (Zagoruyko &
Komodakis, 2016), and DenseNet121 (Huang et al., 2017). The classification results are shown in
Table 1.

5 DIAGNOSING MODEL FAILURES: BACKDOOR ATTACK DETECTION

It has been shown recently that the current state-of-art deep neural networks are vulnerable to
backdoor attacks (Gu et al., 2019; Chen et al., 2017). Backdoor attacks aim to embed a hidden
pattern in the training so that the trained model would still perform normally when the backdoor is
not activated; otherwise, the prediction would be manipulated to the attack designated label. The
backdoor trigger could be a sparse and simple pattern (Gu et al., 2019) or be a more sophisticated
designed pattern like Blended attack (’Hello-Kitty’ trigger) (Chen et al., 2017), SIG attack (vertical
stripe trigger) (Barni et al., 2019). A lot of detection and defense methods have thus been proposed to
detect whether the model is backdoored (Wang et al., 2019). One of the major requirement of the
defenses is to use the find&patch strategy, where the defense method first find the exact trigger and
then filter that trigger in the datasets. However, the existing defenses all depend on the assumption
that the backdoor trigger has to be sparse and simple, which is unable to defend against some complex
triggers such as Hello-Kitty or vertical stripe. We show the proposed method could recover both
simple and complex backdoor triggers accurately. Here we apply our method and AM method to
reveal the trigger learned by the ConvNet model in the CIFAR-10 dataset. Specifically, we choose
three different kinds of backdoor attacks: 1) the Blended attack (’Hello-Kitty’ trigger) (Chen et al.,
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Figure 2: The comparison between our class-wise explanations of the model trained on CIFAR-10
with different backdoor attacks and explanations from AM method. The targeted class is the Dog.
We choose three different kinds of backdoor attacks: 1) the Blended attack (’Hello-Kitty’ trigger);
2) SIG attack; 3) Badnet attack (grid trigger). We visualize poisoned examples on CIFAR-10 with
the above attacks in the right part of the first three rows. In the left part, the first three rows show
the visualizations generated from our method of Dog class for the model trained with three kinds of
attacks. The middle parts are the visualization generated by AM. The fourth row shows visualizations
of non-targeted classes Car. The right part is the visualization of the class-wise explanation of Dog
on the clean model, regarded as reference.

2017); 2) the SIG attack (vertical stripe trigger) (Barni et al., 2019); 3) the Badnet attack (grid trigger)
(Gu et al., 2019). For all backdoor attacks, we select Dog as our targeted class. For attack setups,
we follow the previous works (Li et al., 2021b;a) and set the poison rate to be 0.05. Please refer
to Appendix for more details of backdoor attacks. For visual explanation of the model trained on
CIFAR-10 with backdoor attacks, we fix the starting point with the first checkpoint in the expert
trajectory and set the N as 1. The other parameters for visual explanation are the same in Sec.4.

As shown in left parts of Figure 2, our method could successfully reveal all kinds of inserted triggers
with high quality, even when the poisoning rate is very low. Simultaneously, our explanation keeps
the other classes natural and clean. On the other hand, AM fails to extract clear triggers from poisoned
models and the reserved triggers have a clear difference with the ground truth. Moreover, our method
could quickly recover the backdoor trigger as we only need one reference point i.e N = 1. By only
poisoning a small number of examples, all explanations in the Dog class are consistently carrying the
exact trigger with the same shape and location. We could easily notice whether a model has been
backdoored through the proposed explanation, thus finding the corresponding trigger. Our method
could then be used to filter out those examples with the revealed trigger and purify the model.

6 VISUALIZING MODEL KNOWLEDGE

In this section, we further demonstrate that the proposed method could be used to analyze the feature
representation learned by different training methods and phases.

6.1 TRAINING DYNAMICS

DNNs have shown great success on a variety of tasks. However, it is still a great challenge to
understand why a model could generalize well on the test set. It is thus important to know what
model has learned intrinsically in the whole training procedure. In this section, we show the proposed
method could be used as a tool to visualize model knowledge in different stages of the training
procedure. We use the ConvNet model trained on the CIFAR-10 dataset as an example. To reveal
the difference among knowledge in different stages in the whole training process, we choose the
starting point of the trajectory sequentially and set the N = 1. That means we make S imitate the
training dynamics for only one epoch. The other parameters are the same in Sec.4. The knowledge
learned in different stages are shown in Figure 3. We set the start point sequentially: (a) random
initialization point; (b) the checkpoint saved after 2 epochs; (c) the checkpoint saved after 5 epochs;
(d) the checkpoint saved after 10 epochs; (e) the checkpoint saved after 20 epochs; (f) the checkpoint
saved after 30 epochs.
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Figure 3: Our class-wise explanation on model knowledge in different stage of training process
corresponding to Sec. 6.1. Here, we only show the visualizations of some classes. And, the whole
demonstration is shown in the Appendix. Each row represents the visualization of a different training
stage: (a) epoch 0-1; (b) epoch 2-3; (c) epoch 5-6; (d) epoch 10-11; (e) epoch 20-21; (f) epoch 30-31.

Figure 4: Comparison between our explanation of normal training and that of adversarial training
(AT). Here, we only show the visualizations of some classes: Bird, Cat, Deer, Truck. And the whole
demonstration is shown in Appendix. The left part of each row is the visualization of normal training,
and the right part belongs to AT.

As shown in Figure 3, in the early stage of the training procedure, the knowledge learned by the
model have rich information about the color and the rough contour of the class object. For example,
the background of Ship class is always blue, and that of Horse class is brown. Also, some rough
shapes, such as horse’s body and car’s body, could be easily identified. With the training process
continuing, model knowledge tend to include clean and sharp local traits of the object, such as the
head of the horse and the buckhorn. In the meantime, texture becomes more clear and becomes the
dominant feature in the later phase of training. Although the model gets better performance with
training, the learned knowledge is actually less aligned with human perception. This observation is
align with Kumar et al. (2022). They also observed that representation from underfitting ImageNet
models with modest validation accuracy achieves the best perception score.

6.2 ADVERSARIAL TRAINING

Adversarial training (AT) has been one of the most effective methods to enhance adversarial ro-
bustness (Madry et al., 2018). At the same time, an adversarially trained "robust model" tends to
generate a better feature representation that has a better semantic meaning and aligns better with
human perception (Ilyas et al., 2019). Recently, adversarial perturbations have been used to improve
the model generalization in both computer vision (Xie et al., 2020) and natural language processing
domains (Gan et al., 2020). In this section, we study the model knowledge obtained by adversarially
trained model.

In the experiment, we use the ℓ∞ PGD-AT (Madry et al., 2018) to train a ConvNet AT model. We use
the cross-entropy loss and set the perturbation constraint ϵ = 4/255. We set the number of iterations
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Figure 5: Our explanation of training model with different label noise corresponding to Sec. 6.3.
Here, we just show the visualizations of some classes. And, the whole demonstration is shown in the
Appendix. Each row represents the visualization of a different training process: (a) normal training
(0% label noise) ; (b) 25% label noise; (c) 50% label noise; (d) 75% label noise.

of inner maximization as 10 and step size as 2/255. More details of adversarial training are shown in
the Appendix. The other parameters for conducting visualizations are the same as those used in Sec.4.

From Figure 4, the most obvious difference is the contrast ratio of adversarially trained feature is
much smaller than the normal training. We find that the representation set from adversarial training
has a much wider pixel range from [−5, 5] compared to [−1, 1] in the normal training. Then, we have
to project the representation set into the [−1, 1] space in order to do the visualization. The change
of pixel range might be brought by the adversarial training mechanism. That is, the model relies on
edge cases much heavier since model update depends on calculating loss on adversarial examples
generated in the inner loop. As we are approaching the representation set using the adversarial
training method, the representation set has a wider pixel range. Moreover, we can clearly observe
that adversarially-trained feature representation aligns better with human perception and looks more
"clean", which is also supported by other works (Ilyas et al., 2019; Xie et al., 2020).

6.3 NOISY LABEL TRAINING

Since the seminal work discusses the learning algorithm should cope with incorrect training ex-
amples (Angluin & Laird, 1988), machine learning with noisy label has become a heated topic as,
in real-world applications, the labels are often noisy and imperfect. Therefore, it is important to
understand how the neural network knowledge will be changed when the label is noisy. On the other
hand, deep learning is well-known for having ability to learn very complex features and becomes
over-fitting. While label noise could be seen as a challenge in current machine learning, a proper
noise strength could act as a good regularizer to help the model generalize better. In this section, we
study the difference of model knowledge under the different levels of label noise.
Here, we also use ConvNet model trained on the CIFAR-10 dataset as an example. We modify the
dataset by adding various levels of noise (25%, 50%, 75%) to the labels of the training set. This noise
is added by taking, say in the case of 25% label noise, 25% of the examples at random and randomly
permuting their labels. For generating class-wise explanations, we also follow the hyperparameter
setting used in Sec.4.

As shown in Figure 5, a small amount of label noise like 25% does help to achieve a more human-like
model knowledge. For example, birds and cats in Figure 5 have a much sharper and better semantic
feature than pure training without any label noise. Our observation is that label noise could act as a
good regularizer to help to get the model knowledge closer to human perception. However, as the
noise level increases, the quality drops significantly. When the noise level reaches 75%, the learned
knowledge becomes barely recognizable.

7 CONCLUSION

In this paper, we propose a global visual explanation method, which generates high-quality and
class-discriminative explanation in the input space. We further show the proposed method could be
utilized for debugging model failures, such as revealing backdoor triggers in the attack. Finally, we
devise a way to study the model knowledge in different training mechanisms, which sheds light on
building a more generalizable and trustworthy machine learning method.
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A IMPLEMENTATION DETAILS

All experiments are conducted on 2 Nvidia-V100 GPUs.

Datasets SVHN dataset is a realworld digit dataset which has 73, 257 training and 26, 032 testing
images of 10 numbers. CIFAR-10 has 50, 000 training and 10, 000 testing images from 10 object
categories. GTSRB contains 43 classes of traffic signs, split into 39, 209 training images and 12, 630
test images. Tiny ImageNet contains 100000 images of 200 classes. Each class has 500 training
images and 50 test images. The image scale of the first three datasets is 32× 32. The image scale of
Tiny ImageNet is 64× 64. all those datasets are licensed under MIT.

Implementation details of training base models. We choose ConvNet (Gidaris & Komodakis,
2018) as our base model. The default ConvNet has 3 duplicate convolution blocks followed by a
linear classifier, and each block consists of 128 filters, average pooling, ReLu activation, and instance
normalization (Ulyanov et al., 2016). The ConvNet is randomly initialized with Kaiming initialization
(He et al., 2015). We set the learning rate as 0.01 and adopt SGD to train the ConvNet for 100 epochs.
We also adopt the data augmentations: crop, rotation, scale, and flip transformations with the im-
plementation from https://github.com/mit-han-lab/data-efficient-gans. Our
ConvNet could get 85.34% accuracy on CIFAR-10. For other models used for evaluation in Table 1,
we use the implementation in https://github.com/kuangliu/pytorch-cifar.

Implementation details of Activation maximization method. We adopt the source code from
this github repository2. We utilize the Gaussian blur regularization to further improve visualization
quality. The iteration number of maximiztion procedure is set as 3000. The step size is set as 10 and
the radius for Gaussian blur is 1.

Implementation details of adversarially training models. We use the implementation in https:
//github.com/DengpanFu/RobustAdversarialNetwork to adversarially train model
on CIFAR-10. We use the ℓ∞ norm as our norm constraint. We train the AT model against
perturbations of size ϵ = 4/255. We set the number of iteration of inner maximization as 10 and
step size as 2/255. We use SGD with momentum 0.9 in outer minimization and train model for 200
epochs.

Implementation details of backdoor attacks For backdoor attacks, we choose the Blended attack,
Badnet attack, and SIG attack. We follow the attack setting used in Li et al. (2021b;a). We use a
3× 3 grid square located at the bottom right corner as the trigger pattern on CIFAR-10 dataset for the
Badnet attack. For the Blended attack, we adopt the ’Hello-Kitty’ pattern on CIFAR-10 and set the
blended ratio λ = 0.2. For SIG attack, we set the δ = 20. For all backdoor attacks, we select the
Dog as our targeted class and set the poison rate as 0.05. We set the learning rate as 0.01 and adopt
SGD to train the ConvNet for 100 epochs.

B FULL VISUALIZATION RESULTS

In Sec. B.1, we show full visualization results of the class-wise explanations. In Sec. B.2, we show
full class-wise explanations of model poisoned by backdoor attacks on CIFAR-10 dataset. In Sec. B.3,
we show full class-wise explanations of different phases of the model training process on CIFAR-10
dataset. We demonstrate full class-wise explanations of the adversarially trained model on CIFAR-10
dataset in Sec. B.4. We demonstrate full class-wise explanations of the model trained under the
different levels of noise on CIFAR-10 dataset in Sec. B.5.

2https://github.com/utkuozbulak/pytorch-cnn-visualizations
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B.1 THE VISUALIZATION RESULTS OF CLASSWISE EXPLANATIONS

We demonstrate the whole class-wise explanations from our method about ConvNet on CIFAR-10,
SVHN, GTSRB, and Tiny ImageNet in Figure 6, 7, 8, 9, and 10, respectively. For CIFAR-10, SVHN
and GTSRB, we set the size of class-wise explanation set as 10 images per class ane 1 for Tiny
Imagnet. For all datasets, we use the standard Gaussian noise as the initialization of our explanation
set S.

For VGG-11 and AlexNet models, we show the visualizations generated from our method on CIFAR-
10 in Figure 11 and Figure 12.

The visualization generated from Activation maximization method of these four datasets on the
ConvNet are shown Figure 13, 14, 15, 16, and 17.

The class-wise explanations about ConvNet on CIFAR-10 are shown in Figure 6. Each row corre-
sponds to each class.

Figure 6: Our class-wise visualizations of ConvNet on CIFAR-10 dataset.
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The class-wise explanations about ConvNet on SVHN are shown in Figure 7.

Figure 7: Our class-wise visualizations of ConvNet on SVHN dataset.
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The class-wise explanations about ConvNet on GTSRB are shown in Figure 8 and 9. The Figure 8 is
about class-wise visualizations of class label 0− 18. The Figure 9 is about class-wise visualizations
of class label 19− 42.

Figure 8: Our class-wise visualizations (class label 0− 18) of ConvNet on GTSRB dataset.
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The below Figure 9 is about class-wise visualizations of class label 19− 42 on GTSRB dataset.

Figure 9: Our class-wise visualizations (class label 19− 42) of ConvNet on GTSRB dataset.

17



Under review as a conference paper at ICLR 2023

For the large scale dataset, Tiny ImageNet, we use the ConvNet with 4 convolution blocks. Due to the
computation and memory cost, we set the size of class-wise explanation set as 1 image per class on
Tiny ImageNet. The class-wise explanations about ConvNet on Tiny ImageNet are shown in Figure
10. Each subfigure corresponds to each class.

Figure 10: Our class-wise visualizations on Tiny ImageNet dataset.
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The class-wise explanations about VGG-11 and AlexNet on CIFAR-10 generated by our method are
shown in below figures, Figure 11 an 12. Each row corresponds to each class.

Being similar to the results on ConvNet model, our method can still generate high-quality visu-
alizations on larger CNN models. And our class-wise explanations have the apparent class-wise
features for each class. These also verify that our method could generalize well on various network
architectures.

Figure 11: Our class-wise visualizations of VGG-11 on CIFAR-10 dataset.
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Figure 12: Our class-wise visualizations of AlexNet on CIFAR-10 dataset.
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The class-wise explanations generated from AM about ConvNet on CIFAR-10 are shown in Figure
13. Each row corresponds to each class.

Figure 13: The class-wise visualizations generated from AM of ConvNet on CIFAR-10 dataset.
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The class-wise explanations about ConvNet on SVHN are shown in Figure 14.

Figure 14: The class-wise visualizations generated from AM of ConvNet on SVHN dataset.
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The class-wise explanations from AM method about ConvNet on GTSRB are shown in Figure 15 and
16. The Figure 15 is about class-wise visualizations of class label 0 − 18. The Figure 16 is about
class-wise visualizations of class label 19− 42.

Figure 15: The class-wise visualizations from AM (class label 0−18) of ConvNet on GTSRB dataset.
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The below Figure 16 is about class-wise visualizations from AM of class label 19− 42 on GTSRB
dataset.

Figure 16: The class-wise visualizations (class label 19 − 42) from AM of ConvNet on GTSRB
dataset.
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For the large scale dataset, Tiny ImageNet, we use the ConvNet with 4 convolution blocks. Due to the
computation and memory cost, we set the size of class-wise explanation set as 1 image per class on
Tiny ImageNet. The class-wise explanations generated from AM about ConvNet on Tiny ImageNet
are shown in Figure 17. Each subfigure corresponds to each class.

Figure 17: The class-wise visualizations from AM on Tiny ImageNet dataset.
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B.2 THE VISUALIZATION RESULTS OF BACKDOOR ATTACKS

We first demonstrate the visualizations of three different triggers from Activation maximization are
shown in Figure 18. The visualizations of backdoor learning with three different attacks from our
method are in the Figure 19, 21, and 20.

Figure 18: The visualizations of three triggers (Hello-Kitty, Sig, and Grid triggers) on the ConvNet
model and CIFAR-10 dataset.

The visualizations from our method of three different triggers are shown in the the following 3 figures.

Figure 19: The class-wise visualizations of the ConvNet model attacked by blended attacks (Hello-
Kitty trigger) on CIFAR-10 dataset.
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Figure 20: The class-wise visualizations of ConvNet model attacked by SIG attack on CIFAR-10
dataset.

Figure 21: The class-wise visualizations of ConvNet model attacked by badnet attack (grid trigger)
on CIFAR-10 dataset.
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B.3 THE VISUALIZATION RESULTS OF TRAINING DYNAMICS

In this section, we show the class-wise visualizations of different phases of training process with our
method.

Figure 22: The class-wise visualizations for epoch 0-1 training process of ConvNet on CIFAR-10
dataset.
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Figure 23: The class-wise visualizations for epoch 2-3 training process of ConvNet on CIFAR-10
dataset.

Figure 24: The class-wise visualizations for epoch 5-6 training process of ConvNet on CIFAR-10
dataset.
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Figure 25: The class-wise visualizations for epoch 10-11 training process of ConvNet on CIFAR-10
dataset.

Figure 26: The class-wise visualizations for epoch 20-21 training process of ConvNet on CIFAR-10
dataset.
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Figure 27: The class-wise visualizations for epoch 30-31 training process of ConvNet on CIFAR-10
dataset.
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B.4 THE VISUALIZATION RESULTS OF AT MODEL

In this section, we show the class-wise explanations of adversarially trained model.

Figure 28: The class-wise visualizations of adversarial trained ConvNet model on CIFAR-10 dataset.
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B.5 THE VISUALIZATION RESULTS OF NOISY LABEL TRAINING

In this section, we show the class-wise explanations of models trained with the different levels of
label noise in the following figures.

Figure 29: The class-wise visualizations of label noise training ConvNet model with 25% noise on
CIFAR-10 dataset.
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Figure 30: The class-wise visualizations of label noise training ConvNet model with 50% noise on
CIFAR-10 dataset.

Figure 31: The class-wise visualizations of label noise training ConvNet model with 75% noise on
CIFAR-10 dataset.
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