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ABSTRACT

Phylogenetic inference aims to reconstruct the evolutionary relationships among
species from DNA sequence data. Despite its long history and broad applications,
accurately modeling phylogenetic tree distributions remains challenging due to
the combinatorial explosion of possible topologies. In this work, we introduce
PhyloTextDiff, the first textual-based and discrete diffusion model for phylogenetic
inference. PhyloTextDiff is trained once using multiple DNA matrices allowing it
to learn common patterns both in the DNA sequences and the textual tree represen-
tations. It operates non-autoregressively, enabling fast and scalable generation that
is minimally impacted by the number of taxa. Leveraging the diffusion process,
PhyloTextDiff is particularly well-suited for exploring the vast and multimodal land-
scape of phylogenetic tree spaces. Experiments on benchmark datasets demonstrate
that PhyloTextDiff produces high-quality trees and enables efficient exploration of
large phylogenetic spaces, opening the door to large-scale phylogenetic discovery.

1 INTRODUCTION

Phylogenetic inference is a fundamental task in computational biology, aiming to reconstruct the
evolutionary relationships among species using data such as DNA sequences, protein structures,
or morphological traits. Accurate phylogenetic inference underpins diverse applications, including
epidemiology (Dudas et al., 2017; Attwood et al., 2022), antibiotic resistance studies (Aminov and
Mackie, 2007; Ranjbar et al., 2020; Layne et al., 2020), conservation genetics (DeSalle and Amato,
2004), and risk assessment of invasive species (Hamelin et al., 2022; Dort et al., 2023). Despite
its importance, phylogenetic inference is notoriously difficult. Tree topologies are discrete while
branch lengths are continuous, and the number of possible trees grows super-exponentially: for n
taxa (or species), there exist (2n− 5)!! 1 distinct unrooted bifurcating tree topologies (Billera et al.,
2000). Even under simplifying assumptions such as a molecular clock, maximum likelihood tree
reconstruction remains NP-hard (Chor and Tuller, 2005).

Traditional approaches such as Markov Chain Monte Carlo (MCMC) sampling rely on Felsenstein’s
pruning algorithm (Felsenstein, 1981) to compute tree likelihoods and converge in theory to the
true posterior (Huelsenbeck and Ronquist, 2001; Larget and Simon, 1999; Altekar et al., 2004; Xie
et al., 2011; Höhna et al., 2016; Drummond and Rambaut, 2007; Nguyen et al., 2015; Goloboff
et al., 2008; Stamatakis et al., 2005). In practice, however, MCMC suffers from slow convergence,
strong correlations between successive states, and rare transitions between modes of the posterior
(Tjelmeland and Hegstad, 2001; Neal, 1996). Variational inference (VI) methods provide faster
alternatives. Subsplit Bayesian Networks (SBNs) (Zhang and Matsen, 2018; Zhang, 2023; 2020;
Zhang and Iv, 2019) capture distributions over tree topologies but are limited by pre-specified
structures. Other VI methods build trees incrementally (Xie and Zhang, 2023; Zhou et al., 2024a;
Koptagel et al., 2023; Mimori and Hamada, 2023), which scales poorly with the number of taxa and
does not guarantee improved accuracy. Both MCMC and VI approaches generally require dataset-
specific retraining, further limiting their scalability. Recently, generative models have emerged as
promising alternatives for phylogenetic inference. PhyloGen (Duan et al., 2024) employs a VAE-based
framework grounded in the neighbor-joining algorithm. One notable approach is PhyloVAE (Xie et al.,
2025), which offers a method for unsupervised phylogenetic inference by learning a continuous latent

1The double factorial of a number n, denoted by n!!, is the product of all the positive integers up to n that
have the same parity (odd or even) as n
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representation of tree topologies. While PhyloVAE excels at capturing global structure, our diffusion
model, PhyloTextDiff, focuses on refining the phylogenetic posterior distribution, addressing the
critical need for improved sampling across the combinatorial tree space.

In this work, we introduce PhyloTextDiff, the first discrete diffusion and text-based generative model
for phylogenetic inference. By operating on the Newick textual representation of trees, PhyloTextDiff
directly models the discrete topology of phylogenetic trees while enabling fast, non-autoregressive
generation. Unlike prior methods, our approach avoids the linear growth in sampling time with the
number of taxa and efficiently explores multimodal tree distributions.

Our key contributions are:

• First textual-based model for phylogenetics. PhyloTextDiff operates directly on Newick trees,
treating them as sequences of tokens. This textual representation allows the model to leverage
powerful sequence modeling techniques from NLP, capture both local and global tree structures,
and avoid combinatorial constraints that hinder conventional tree-based methods.

• Cross-dataset training and representation learning. Training on multiple datasets simultaneously
allows PhyloTextDiff to learn a shared Newick representation, to capture common structural patterns
across datasets, and to generalize effectively to unseen tree distributions.

• Model-agnostic posterior refinement via diffusion. By learning from trees generated by any
phylogenetic tree sampling method, PhyloTextDiff leverages a discrete diffusion process to refine
existing posteriors, discover additional high-probability modes, and generate a richer, more diverse
set of candidate trees.

• Empirical validation. Experiments on benchmark datasets demonstrate that PhyloTextDiff
achieves high-quality reconstructions, competitive likelihoods, and efficient exploration of large
phylogenetic spaces.

2 RELATED WORK

MCMC-based approaches. Classical methods such as MrBayes (Huelsenbeck and Ronquist, 2001;
Ronquist and Huelsenbeck, 2003; Ronquist et al., 2012), RevBayes (Höhna et al., 2016), and PAUP*
(Swofford, 2003) remain the gold standard for phylogenetic inference. While theoretically convergent,
MCMC suffers from slow mixing, correlations between samples, and poor coverage of low-probability
modes, making accurate posterior estimation computationally expensive.

Variational inference and Generative Models. VI offers faster alternatives by approximating
the posterior distribution. Subsplit Bayesian Networks (SBNs) (Zhang and Matsen, 2018) learn
distributions over tree topologies but require pre-specified structures and scale poorly with the number
of taxa. Recent incremental approaches such as ArTree (Xie and Zhang, 2023) and PhyloGFN (Zhou
et al., 2024a) build trees sequentially but face growing computational costs as the number of taxa
increases. More recently, deep generative methods have been explored. PhyloGen (Duan et al., 2024)
adapts VAEs with neighbor-joining priors, while PhyloVAE (Xie et al., 2025) learns continuous
latent representations of trees. These models improve scalability and representation learning but still
struggle to efficiently explore the full posterior distribution.

3 BACKGROUND AND PROBLEM DEFINITION

3.1 REPRESENTATION OF PHYLOGENETIC TREES

A phylogenetic tree is represented as (τ,b), where the topology τ = (V, E) is a bifurcating graph with
nodes V and edges E , and the vector of branch lengths b consists of non-negative values measuring
evolutionary change. Trees may be rooted, with a unique ancestor node, or unrooted, which capture
relatedness without direction of ancestry. In this work, we focus on unrooted trees, though our method
extends to rooted trees. Leaf nodes (degree 1) correspond to observed species (or taxa), while internal
nodes (degree 3) represent unobserved ancestors.

Trees can be compactly encoded in the Newick format, which uses nested parentheses and commas to
describe branching structure, and terminates with a semicolon. Leaves are labeled by species names,
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and both rooted and unrooted trees can be represented (Fig. 1). For a tree with n taxa, the Newick
string contains n labels, n−1 commas, and one semicolon, plus (n−1) pairs of parentheses in the
rooted case or (n−2) pairs in the unrooted case.

Human Chimpanzee Gorilla Orangutan Gibbon

Root node
Internal node
Leaf node Human

Chimpanzee

Gorilla
Orangutan

Gibbon

a. b.

Figure 1: Examples of Newick representations for n = 5 taxa. (a) Rooted
tree: ((Human,Chimpanzee),(Gorilla,(Orangutan,Gibbon))); (b) Unrooted tree:
(Human,Chimpanzee,(Gorilla,(Orangutan,Gibbon)));.

3.2 DISCRETE SCORE-BASED DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015) are latent-variable generative models defined by a
forward process that gradually corrupts data x0 ∼ qdata into a base distribution qbase, and a reverse
process qθ that denoises back to the data distribution. For discrete state space X = {1, . . . , N}D,

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1), qθ(x0:T ) = q(xT )

T∏
t=1

qθ(xt−1 | xt) ,x ∈ X . (1)

Score-based diffusion learns the log-probability gradient ∇x log p(x) with a score network sθ :
RD → RD (Song and Ermon, 2019; Song et al., 2019). The forward process is defined by a
continuous-time rate matrix Rt, such that qt|t−∆t(x|x̂) = δx,x̂ +Rt(x̂,x)∆t+ o(∆t)(Austin et al.,
2021).This process has a known reversal, given by the backward rate matrix R̄t (Sun et al., 2023):

dqt−∆t

dt
= R̄t(x̂,x)∆t+ o(∆t) , R̄t(x, x̂) =

qt(x̂)

qt(x)
Rt(x̂,x) . (2)

Therefore, once we know the ratio
[
qt(x̂)
qt(x)

]
x̸̂=x

, we can obtain the generative flow towards qdata. Full

technical details are relegated to Appendix B.

3.3 PROBLEM STATEMENT

We are provided with a set of DNA matrices Y1,Y2, · · · ,YN , where Yj ∈ Σnj×m and Σ =
{A,C,G, T}. Each matrix represents an evolutionary set up with a set of taxa. We aim to learn to
sample from the phylogenetic posterior distributions p(τ,b | Yj),∀j ∈ [1, N ].

Although our work is applicable to any likelihood function that can be evaluated for each (τ, b), in our
experimental work, we define the likelihood p(Yj | τ,b) (Eq 9) via a substitution model. Specifically,
we adopt the Jukes-Cantor continuous-time substitution model (Jukes and Cantor, 1969)) that has
commonly been employed in the phylogenetic inference literature (Zhou et al., 2024a; Zhang, 2023).
More details about the likelihood computation can be found in Appendix A. As in most prior work,
we assume independent priors p(τ, b) = p(τ)p(b), with a uniform prior on the tree topology p(τ)
and exponential prior on the branch lengths p(b). Evaluation of the normalization constant p(Yj) is
intractable, but the constant is the same for all trees within the dataset.

Our goals are: (i) efficiently sample from a distribution that matches the posterior as closely as
possible; (ii) sample high-probability trees; and (iii) successfully explore multiple modes. Ideally,
the approach should achieve high diversity, i.e., sampling a large number of unique trees. In order
to measure the extent to which we achieve these goals, we evaluate lower bounds on the marginal
log-likelihood (MLL) as well as several diversity measures, including Simpson’s diversity metric.

Generative Model Our hypothesis is that common patterns exist across the provided DNA datasets
and their textual tree representations. We are therefore motivated to learn a common generative model
qθ,ϕ(τ, b | Yj) that can conditionally sample from the posterior p(τ, b|Yj) for every Yj . We train the
model using all of the N available DNA matrices.
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Detokenizer
𝜏

(𝜏, 𝒃)

( 𝑥! !"#
$! , 𝑗)	

GNN

Figure 2: Framework of PhyloTextDiff. DNA matrices Yj and their associated set of trees in
Newick format are fed to our discrete diffusion model. We use DNABERT to produce species-aware
embeddings of the DNA. Our tree topology sampler is then trained to generate tokenized trees x
conditioned on Yj , which are subsequently detokenized and passed to GNNs to infer branch lengths.

4 PROPOSED METHOD

In this section, we introduce PhyloTextDiff, a discrete diffusion model for phylogenetic inference.
Our methodology builds on the ability of existing phylogenetic sampling methods to generate samples
from an approximate posterior distribution for a single DNA matrix. This means that we can use,
for example, MrBayes (Ronquist et al., 2012) to produce samples from p̃j(τ, b | Yj), where p̃j is an
approximation to the true posterior. Given a set of samples {τ (i)j }nji=1 ∼ p̃j for each j = 1, . . . , N ,
we then train a common discrete diffusion model qθ(τ | Yj) that learns not only from these samples,
but also from DNABERT encoded representations of the DNA matrices. The model also operates
on tokenizations of the textual representations of the trees and can thus identify commonalities in
the textual structure. The model is trained to perform conditional sampling, but because the model
parameters θ are common for all Yj , the model can (and is encouraged to) capture common structure
across the DNA matrices and textual representations.

4.1 PHYLOTEXTDIFF: AN OVERVIEW

The high-level structure of PhyloTextDiff is depicted in Figure 2. We introduce an approximation
of the posterior qθ,ϕ(τ,b | Yj) = qθ(τ | Yj)qϕ,j(b | τ,Yj). We use a diffusion model to learn to
sample from the approximate distribution of the tree topologies qθ(τ | Yj). This diffusion model is
trained once for all the datasets. Conditioned on a sample τ (k) generated by the discrete diffusion
module, a GNN-based module is then employed to learn and sample from qϕ,j(b | τ,Yj). The
GNN-based module is trained once per dataset.

The first step in our process is to collect tree topology samples {τ (i)j }nji=1 ∼ p̃j for each j = 1, . . . , N
using a base phylogenetic sampler. In our experiments, we explore performance when using a range
of different models. We then represent these tree topologies in a text-based Newick format and
tokenize them using a custom Phylogenetic Tokenizer. These tokenized representations are fed to our
Discrete Diffusion Model (Section 4.2). The Discrete Diffusion Model is provided with DNABERT-S
(Zhou et al., 2024b) embeddings of the DNA matrices so that it can learn to sample form conditional
distributions qθ(τ | Yj) (which are variational approximations of the marginal posteriors).

The branch length distribution qϕ,j(b | τ,Yj) is approximated using GNNs, following directly Zhang
(2023). We model the branch length distribution as a diagonal lognormal distribution and parametrize
qϕ(b|τ, Y ) using the learnable topological features with the edge convolution operator (EDGE) for
GNNs. This is not a novel contribution, but for completeness the approach is detailed in Appendix E.

4.2 DISCRETE DIFFUSION MODEL

Tokenizer. We collect tree topology samples {τ (i)j }nji=1 ∼ p̃j in textual format for each dataset
j = 1, . . . , N using a base phylogenetic sampler. We introduce a custom tokenizer that converts
textual phylogenetic trees into fixed-length token sequences. For datasets 1, . . . , N with n1, . . . , nN
taxa, let nmax = maxj nj be the maximum number of taxa. Each tree with n taxa is mapped to a
sequence of length d = 4nmax − 4, augmented with start, end, and padding tokens to standardize
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sequence length across datasets. The vocabulary W1:N contains all tokens: four special symbols, four
Newick structural characters, and one token per taxon name per dataset. Unlike standard tokenizers,
our approach assigns fixed indices to taxa names, eliminating the need for learned segmentation.
More details can be found in Appendix C.

Forward and Backward Process. The tokenized trees are then fed to our diffusion model. We
model our probability distributions over the support X = [1, · · · , |W1:N |]. Our method is built upon
a continuous time process from t = 0 to t = T . We define a Continuous Time Markov Chain (CTMC)
from q0 ≈ qdata to qT ≈ qbase, the stationary distribution of the CTMC which contains only noise.
Motivated by the success of BERT (Devlin et al., 2019) and masked language models, we consider a
transition rate matrix with an absorbing state, such that each token either stays the same or transitions
to the absorbing state with probability σt that increases with t:

Rt = σtR, R =
(
e(|W1:N |+1) − I

)
∈ R(|W1:N |+1)×(|W1:N |+1) , (3)

where e(|W1:N |+1) is the one-hot encoding of the absorbing state. We condition the time reversal
of the forward process on the DNA matrix Yj ∈ Σnj×m. The backward process is also a CTMC
with initial distribution qT (xT | Yj) at t = T and target distribution q0(x0 | Yj) and is entirely
determined by its forward and backward rate matrices R and R̄.

R̄t(x, x̂ | Yj) =
qt(x̂ | Yj)
qt(x | Yj)

Rt(x̂,x), R̄t(x,x | Yj) = −
∑
z ̸=x

R̄t(z,x | Yj), ∀x̂ ̸= x. (4)

Factorization of diffused state conditioned on x0. We consider sequences x = (x(1) . . . x(d)) ∈
X . Since this is a continuous time process and each dimension’s forward process is independent of
the others, we can factorize the forward process such that each dimension propagates independently.
The joint distribution is entirely determined by its conditional probabilities, so we follow previous
works (Lou et al., 2024; Campbell et al., 2022) and only evaluate ratios with Hamming distance of
one. Each token in the sequence x is perturbed independently with a noise level σt, i.e.,

qseqt|0 (x̂|x) =
d∏
i=1

qtokt|0 (x̂
(i)|x(i)) , s.t. qtokt|0 (x̂

(i)|x(i)) = exp

(∫ t

0

σ(s)dsR(·, ·)
)
. (5)

Score learning. In order to derive the backward rate matrix R̄ , we propose to learn the conditioned
concrete score sθ(x, t | Yj) ≈

[
qt(z|Yj)
qt(x|Yj)

]
z ̸=x

(sθ : X × R × Σnj×m → RX ) using a modified

version of the diffusion weighted denoising score entropy loss (Lou et al., 2024) conditioned on the
DNA Yj . With K(a) = a(log a− 1), it is defined as:

Lθ(x0 | Yj) =
∫ T

0

Ext∼qt|0(·|x0)

∑
z̸=xt

Rt(xt, z)lt(xt, z | x0,Yj)dt , (6)

s.t. lt(xt, z | x0,Yj) =

(
sθ(xt, t | Yj)z −

qt|0(z|x0)

qt|0(xt|x0)
log sθ(xt, t | Yj)z +K

(
qt|0(z|x0)

qt|0(xt|x0)

))
.

Sampling. Discrete Tweedie’s Theorem (Lou et al., 2024) expresses the true denoiser in terms of
ratios of forward probabilities. Since in practice only ratios between Hamming distance–1 sequences
are accessible, we follow Lou et al. (2024) and employ, with σ∆t

t =
∫ t
t−∆t

σ(s)ds, the τ -leaping
Tweedie denoiser:

qtweedie
t−∆t|t(x

(i)
t−∆t | x

(i)
t ,Yj) =

(
exp(−σ∆t

t R), sθ(xt, t,Yj)i
)
x

(i)
t−∆t

exp(σ∆t
t R)(x

(i)
t ,x

(i)
t−∆t) . (7)

Adaptation to a structured space. Phylogenetic tree topologies are subject to strict syntactic rules:
for nj taxa, each valid Newick string contains nj−2 opening and closing parentheses, nj−1 commas,
and a final semicolon, for a total length dj = 4(nj − 1). To ensure that our diffusion model respects
these constraints, we restrict the sampling space by fixing the start, end and padding tokens, while
keeping intermediate positions masked before denoising. This significantly improves sample quality.
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Vocabulary
Embedder

+ Positional
Encoding

Timestep
Embedder

DDiT Blocks
(with Cross-

Attn(M))

DDiT Final
Layer

xt

ct

sθ(x, t | Yj)

M

σt

Figure 3: Overview of the PhyloTextDiff architecture. The input xt ∼ qt|0(x0) is first embedded and
enriched with DNA embeddings M, then combined with rotary positional encodings and sinusoidal
timestep embeddings σt. These representations are processed through DDiT blocks with cross-
attention and the DDiT final layer to produce the predicted score sθ(x, t | Yj).

Architecture. In order to condition the backward diffusion process on the DNA sequences, we
gather pre-trained embeddings of the DNA sequences using DNABERT-S (Zhou et al., 2024b), a
genome foundation model that produces species-aware embeddings. For N datasets with DNA matri-
ces Y1, . . . ,YN , we build an embedding matrix M ∈ R(|W1:N |+1)×h, where each row i corresponds
to the DNABERT-S embedding of a site if i is a taxa token or to the zero vector 0h otherwise. We then
condition our model by introducing cross-attention layers to enable dataset-aware guided diffusion.
Our architecture is based on the Discrete Diffusion Transformer (DDiT) (Peebles and Xie, 2023) and
a schematic overview is shown in Fig. 3. The full architecture is described in Appendix F.

To enrich the token representations, we integrate DNA information directly into the embeddings.
Specifically, each token x(i)t is embedded as the sum of its learnable embedding E

x
(i)
t

and the

corresponding row of M, M
x
(i)
t

, i.e., h(i)
t = E

x
(i)
t

+ M
x
(i)
t

. This approach allows the model to
leverage both ground-truth biological information about the taxa and learnable features that capture
the structure of the phylogenetic tree during the diffusion process.

4.3 MARGINAL LOG-LIKELIHOOD ESTIMATION

To assess how well PhyloTextDiff approximates the true posterior distribution, we derive the following
importance-weighted variational lower bound on the marginal log-likelihood:

E x0:T∼qR,j
b∼qϕ(b|x0)

log

K∑
i=1

x0:T∼qR,j
b∼qϕ(b|x0)

1

K
P (Y |x0, b)p(x0)

qF (x1:T |x0)

qR,j(x0:T )

p(b|x0)

qϕ(b|x0)
≤ logP (Y ) . (8)

where qF (x0:T ) = pdata(x0)
∏T
t=1 qt|t−1(xt|xt−1) denotes the forward process, qR,j(x0:T ) =

pbase(xT )
∏T
t=1 qt−1|t(xt−1|xt, j) the backward process, x0:T ∼ qR,j and b ∼ qϕ,j(b | x0) denote

independent samples from the backward diffusion process and the branch length model, respectively.
This bound provides a principled way to approximate log p(Yj) while leveraging multiple samples
for tighter estimation. The derivation of this bound is provided in Appendix D.

5 EXPERIMENTS

We evaluate PhyloTextDiff on eight real world benchmark datasets that are standard in the literature,
that we call DS1-DS8 (Hedges et al., 1990; Garey et al., 1996; Yang and Yoder, 2003; Henk et al.,
2003; Lakner et al., 2008; Zhang and Blackwell, 2001; Yoder and Yang, 2004; Rossman et al.,
2001). These datasets consist of sequences from 27 to 64 eukaryote species with 378 to 2520 site
observations. Details about the datasets can be found in Appendix G, and details about training in
Appendix H. In the following sections, we present our results on Bayesian phylogenetic inference;
we analyze the tree topological diversity as well as the coverage of posterior modes.

Experimental Setup. PhyloTextDiff is trained from trees that are sampled using another phyloge-
netic tree sampling approach. We conduct experiments using trees obtained using (i) the MCMC-based

6
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Table 1: MLL estimates mean (↑) and (variance (↓)) on eight benchmark datasets. Best values are
highlighted in green, second highest in blue, and third highest from in brown.

Methods Dataset DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
#Taxa (N) 27 29 36 41 50 50 59 64

MCMC-
based

MrBayes -7108.42
(0.18)

-26367.57
(0.48)

-33735.44
(0.50)

-13330.44
(0.54)

-8214.51
(0.28)

-6724.07
(0.86)

-37332.76
(2.42)

-8649.88
(1.75)

Structure
Representa-
tion

SBN -7108.41
(0.15)

-26367.71
(0.08)

-33735.09
(0.09)

-13329.94
(0.20)

-8214.62
(0.40)

-6724.37
(0.43)

-37331.97
(0.28)

-8650.64
(0.50)

VBPI-GNN (EDGE) -7108.41
(0.14)

-26367.73
(0.07)

-33735.12
(0.09)

-13329.94
(0.19)

-8214.64
(0.38)

-6724.37
(0.40)

-37332.04
(0.12)

-8650.65
(0.45)

Structure
Generation

phi-CSMC -7290.36
(7.23)

-30568.49
(31.34)

-33798.06
(6.62)

-13582.24
(35.08)

-8367.51
(8.87)

-7013.83
(16.99)

NA -9209.18
(18.03)

GeoPhy -7111.55
(0.07)

-26379.48
(11.60)

-33757.79
(8.07)

-13342.71
(1.61)

-8240.87
(9.80)

-6735.14
(2.64)

-37377.86
(29.48)

-8663.51
(6.85)

GeoPhy LOO(3)+ -7116.09
(10.67)

-26368.54
(0.12)

-33735.85
(0.12)

-13337.42
(1.32)

-8233.89
(6.63)

-6735.9
(1.13)

-37358.96
(13.06)

-8660.48
(0.78)

ARTree -7108.41
(0.19)

-26367.71
(0.09)

-33735.09
(0.09)

-13329.94
(0.17)

-8214.59
(0.34)

-6724.37
(0.46)

-37331.95
(0.27)

-8650.61
(0.48)

PhyloGFN -7108.95
(0.06)

-26368.9
(0.28)

-33735.6
(0.35)

-13331.83
(0.19)

-8215.15
(0.20)

-6730.68
(0.54)

-37359.96
(1.14)

-8654.76
(0.19)

PhyloGen -6910.02
(0.07)

-26257.09
(0.06)

-33481.57
(0.10)

-13063.15
(1.34)

-7928.4
(0.23)

-6330.21
(0.31)

-36838.42
(12.03)

-8171.04
(0.96)

Textual
Representa-
tion

MrBayes + PhyloTextDiff -6424.14
(3.62)

-25751.56
(2.62)

-33028.06
(6.32)

-12594.27
(4.71)

-7451.55
(2.36)

-5967.69
(3.99)

-36577.11
(4.84)

-7852.22
(5.36)

IQ-Tree + PhyloTextDiff -6303.89
(4.41)

-25571.31
(4.12)

-32934.96
(5.37)

-12497.71
(5.37)

-7418.71
(5.38)

-5930.22
(6.76)

-36540.99
(3.93)

-7851.44
(4.72)

VBPI-GNN + PhyloTextDiff -6298.56
(3.32)

-25560.36
(3.55)

-32923.35
(5.62)

-12514.25
(7.69)

-7409.00
(4.21)

-5926.91
(2.93)

-36533.82
(3.89)

-7840.57
(4.51)

method MrBayes (Ronquist et al., 2012); (ii) the variational inference approach VBPI-GNN (Zhang,
2023); and (iii) IQ-TREE (Minh et al., 2020) with the ultrafast bootstrap UFBoot procedure (Minh
et al., 2013; Hoang et al., 2018). Details of the sampling procedures are provided in Appendix M.
To train the branch length model, we optimize a simplified version of the multi-sample lower bound
described in Eq. 8 with K = 10, where we omit the computation of qR, j and qF . During evaluation,
we do not apply the space restriction trick described in Section 4.2, as it alters the final distribution.
We use T = 1024 denoising steps for sampling during the edge model’s training and T = 2048 steps
for evaluation (see Appendix K for a sensitivity study on the denoising step). Our adopted model is
the same as in (Zhou et al., 2024a; Zhang, 2023; Mimori and Hamada, 2023): (i) decomposed prior
p(τ, b) = p(τ)p(b); (ii) uniform prior on the tree topology; (iii) exponential prior (λ = 10) on the
branch lengths; (iv) Jukes-Cantor substitution model (Jukes and Cantor, 1969).

Baselines and Performance Metrics. We compare our method to the MCMC-based method
MrBayes (Ronquist et al., 2012), the structure representation methods SBN (Zhang and Iv, 2019)
and VBPI-GNN (Zhang, 2023), and the structure generation methods VaiPhy (Koptagel et al.,
2023), GeoPhy and GeoPhy LOO(3)+ (Mimori and Hamada, 2023) , Artree (Xie and Zhang, 2023),
PhyloGFN (Zhou et al., 2024a) and PhyloGen (Duan et al., 2024). We report the evidence lower
bound (ELBO) (K = 1, nruns = 10, nrepetitions = 10) and the marginal log-likelihood (MLL) estimate
(K = 1000, nruns = 1, nrepetitions = 10). For our method, we use the lower bound in equation 8.
Details about the MLL lower bounds for the other methods are provided in Appendix I.

5.1 RESULTS AND DISCUSSION

MLL bounds and ELBO. Table 1 reports the MLL lower bounds and Table 2 reports the ELBO
values. Across all datasets, PhyloTextDiff achieves the highest lower bound, with substantial
improvements over both MCMC-based and variational baselines. On average, our estimates are
higher by several hundred nats compared to the best-performing baselines. Traditional MCMC
and subsplit methods generally trail behind, while autoregressive and GFlowNet and VAE inspired
approaches (e.g., PhyloGen, PhyloGFN) show partial gains but remain consistently outperformed.

Tree Topological Diversity Analysis. We evaluate the diversity of sampled tree topologies using
three complementary metrics. Details concerning the experimental procedure are provided in Ap-
pendix J.1. Topological diversity is quantified using Simpson’s diversity index (He and Hu, 2005),
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defined as 1−D (higher is better), with D =
∑
i
ni(ni−1)
N(N−1) ∈ [0, 1], where ni denotes the number

of trees with topology i and N is the total number of trees. D measures the probability that two
randomly sampled trees share the same topology. We also report two additional metrics: the top
frequency, i.e., the proportion of the most frequently sampled topology (lower is better), and the
top 95% frequency, defined as the number of distinct topologies accounting for 95% of the samples
(higher is better), which reflects broader posterior support.

Table 2: Comparison of ELBO (↑) and (variance (↓)) on eight benchmark datasets. Best values are
highlighted in green, second highest in blue, and third highest from in brown.

Methods Dataset DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
#Taxa (N) 27 29 36 41 50 50 59 64

Structure
Representa-
tion

SBN -7110.24
(0.03)

-26368.88
(0.03)

-33736.22
(0.02)

-13331.83
(0.02)

-8217.80
(0.04)

-6728.65
(0.04)

-37334.85
(0.03)

-8655.05
(0.04)

VBPI-GNN (EDGE) -7110.26
(0.10)

-26368.84
(0.09)

-33736.25
(0.08)

-13331.80
(0.10)

-8217.80
(0.12)

-6728.57
(0.16)

-37334.84
(0.14)

-8655.01
(0.14)

Structure
Generation

ARTree -7110.09
(0.04)

-26368.78
(0.07)

-33735.25
(0.08)

-13330.27
(0.05)

-8215.34
(0.04)

-6725.33
(0.06)

-37332.54
(0.13)

-8651.73
(0.05)

PhyloGen -7005.98
(0.06)

-26362.75
(0.12)

-33430.94
(0.34)

-13113.03
(3.67)

-8053.23
(2.58)

-6324.9
(1.26)

-36838.42
(1.97)

-8409.06
(1.07)

Textual
Representa-
tion

MrBayes + PhyloTextDiff -6457.12
(0.88)

-25798.33
(2.63)

-33073.93
(1.13)

-12638.93
(1.71)

-7489.49
(1.67)

-6010.54
(1.44)

-36696.14
(8.89)

-7894.35
(1.59)

IQ-Tree + PhyloTextDiff -6356.79
(1.81)

-25667.39
(4.85)

-33012.91
(3.99)

-12576.35
(2.06)

-7473.54
(1.65)

-6007.33
(5.92)

-36648.47
(5.36)

-7906.63
(1.20)

VBPI-GNN + PhyloTextDiff -6341.83
(1.42)

-25632.69
(5.68)

-32976.97
(1.71)

-12570.64
(2.50)

-7455.93
(1.48)

-5973.61
(1.07)

-36620.67
(4.34)

-7887.46
(2.33)

Table 3: Tree Topological Diversity for all datasets (DS1–DS8). Higher Diversity Index and Top 95%
Frequency indicate more diverse posterior distributions.

Metrics Methods DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

Simpson MrBayes 0.87268 0.68390 0.68227 0.89930 0.99900 0.99937 0.98802 0.97974
Diversity MrBayes + PhyloTextDiff 0.99963 0.92847 0.98934 0.99954 0.99960 0.99965 0.99972 0.99963

Index (↑) IQ-TREE 0.99743 0.98406 0.99722 0.99625 0.99851 0.99713 0.99714 0.99873
IQ-TREE + PhyloTextDiff 0.99899 0.99866 0.99913 0.99909 0.99950 0.99971 0.99968 0.99934

VBPI-GNN 0.96245 0.70976 0.81314 0.94849 0.99989 0.99998 0.99119 0.99464
VBPI-GNN + PhyloTextDiff 0.99810 0.97908 0.99369 0.99843 0.99927 0.99965 0.99859 0.99806

Top MrBayes 0.279 0.505 0.454 0.268 0.007 0.005 0.035 0.116
Frequency (↓) MrBayes + PhyloTextDiff 0.006 0.095 0.022 0.006 0.005 0.004 0.004 0.005

IQ-TREE 0.012 0.051 0.014 0.021 0.014 0.019 0.018 0.008
IQ-TREE + PhyloTextDiff 0.009 0.008 0.007 0.010 0.009 0.005 0.004 0.010

VBPI-GNN 0.091 0.463 0.309 0.186 0.004 0.003 0.029 0.054
VBPI-GNN + PhyloTextDiff 0.010 0.050 0.021 0.010 0.006 0.006 0.010 0.012

Top 95% MrBayes 41 5 12 111 629 698 240 289
Frequency (↑) MrBayes + PhyloTextDiff 796 14 100 782 797 796 830 815

IQ-TREE 450 243 424 402 614 513 475 593
IQ-TREE + PhyloTextDiff 666 596 682 673 470 671 814 514

VBPI-GNN 138 5 22 234 907 942 288 613
VBPI-GNN + PhyloTextDiff 510 61 221 550 716 818 579 566

Table 3 compares PhyloTextDiff to each method it was trained on. Except for DS5 and DS6,
PhyloTextDiff consistently enhances the topological diversity, for all the metrics, demonstrating a
broader exploration of the posterior distribution.

Unnormalized posterior comparison with MrBayes. We compare the posterior distributions
of MrBayes + PhyloTextDiff and MrBayes on dataset DS1. Details concerning the experimental
procedure are provided in Appendix J.2. We observe that PhyloTextDiff produces a more dispersed
posterior distribution compared to MrBayes, indicating greater sampling diversity (Fig. 4). Its
posterior is also concentrated in higher-probability regions, suggesting more accurate identification
of likely trees, as showcase by the results illustrated in the tables.
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Figure 4: Normalized histograms of unnor-
malized log-posterior values for MrBayes
(blue) and PhyloTextDiff (orange) on dataset
DS1. PhyloTextDiff (21h) shows a less
peaked distribution, indicating greater sam-
pling diversity and better coverage of high-
probability trees.

Figure 5: Tree space comparison between
MrBayes and PhyloTextDiff. Each point
is a cluster, colored by mean unnormalized
log-posterior. Points above the red dashed
line indicate clusters better represented by
PhyloTextDiff. Counts are normalized, and
ϵ = 10−5 is added for log–log plotting.

We further analyze the tree space explored by MrBayes and PhyloTextDiff by randomly sampling
2,500 trees from each model and computing pairwise Robinson–Foulds (RF) distances (Robinson and
Foulds, 1981), which quantify topological differences between trees based on differing bipartitions.
Using the resulting RF distance matrix, we perform hierarchical clustering with a threshold set at
30% of the maximum RF distance; the remaining trees are assigned to the nearest cluster medoid.
This procedure identifies a total of 76 clusters. Figure 5 presents the results. Each point represents a
cluster, with the color indicating the mean unnormalized posterior probability of that cluster. Counts
are normalized by the total number of trees for each method. A small ϵ = 10−4 was added to include
clusters with zero trees on the log–log scale (gray lines). The red dashed line corresponds to y = x;
points above this line indicate clusters where PhyloTextDiff contributes more trees than MrBayes,
while points below indicate the opposite. We observe that for both methods, clusters with higher
unnormalized mean posterior (top right) have higher sampling frequencies. However, clusters with
lower unnormalized mean posterior (middle) are better represented by PhyloTextDiff. On the two
gray lines, we see that PhyloTextDiff successfully discovers eight clusters and fails to recover only
one. A closer analysis of these nine clusters is provided in Appendix J.4 and another posterior analysis
with equal sampling in Appendix J.3. We also discuss runtime considerations in Appendix J.5.

6 SUMMARY AND CONCLUDING REMARKS

We introduced PhyloTextDiff, the first discrete diffusion model for phylogenetic inference that
operates directly on a text-based representation of tree topologies. Our framework integrates a custom
tokenizer, DNA-informed token embeddings, a conditioned loss and architecture, and an efficient
sampling strategy. Evaluations on eight real datasets, each trained under three different phylogenetic
models, show that PhyloTextDiff outperforms baselines in terms of MLL and ELBO, while efficiently
exploring tree space. Notably, the diffusion model achieves comprehensive results for all datasets
within only six hours of training. Looking ahead, we aim to extend PhyloTextDiff toward more
generalizable and end-to-end phylogenetic inference. A key direction is enabling zero-shot and
few-shot inference, so that the model can seamlessly handle unseen taxa or datasets without retraining.
This will require rethinking the tokenization scheme. Another important avenue is the joint modeling
of branch lengths and topologies, for example by coupling discrete diffusion on tree structures with
conditional models that generate both simultaneously. Beyond DNA sequences, broadening the
framework to proteins or morphological traits through specialized encoders would further expand
its applicability. Together, these extensions could move the field closer to scalable, foundation-style
generative models for phylogenetics. For a more detailed discussion, see Appendix L.
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REPRODUCIBILITY

Code and data will be made available. See Appendix M for more details.
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A PHYLOGENETIC LIKELIHOOD AND THE PRUNING ALGORITHM

The evolutionary process along a phylogenetic tree is modeled as a Markov process on characters
(Felsenstein, 2004). Let Σ denote the alphabet of possible character states (e.g., nucleotides). For site
i ∈ {1, . . . ,m} and node v ∈ V , let aiv ∈ Σ denote the character assigned to node v. The set of leaf
nodes is denoted by L, and for v ∈ L the assignments aiv are observed from the sequence alignment
Y .

We denote the root by r. For each site i, the root state air is assumed to be drawn independently from
the stationary distribution η(·) of the substitution model.

For any edge (u, v) ∈ E(τ) with branch length buv, the transition probability from state aiu at node
u to state aiv at node v is given by Paiuaiv (buv), where P (·) is determined by a continuous-time
substitution model (e.g., Jukes and Cantor, 1969).

Assuming independence across sites, the likelihood of observing Y given topology τ and branch
lengths b is

P (Y | τ,b) =
m∏
i=1

P (Yi | τ,b) =
m∏
i=1

∑
ai

(
η(air)

∏
(u,v)∈E(τ)

Paiuaiv (buv)

)
, (9)

where ai ranges over all extensions of Yi to the internal nodes, E(τ) is the set of edges of τ , and the
leaf assignments aiv for v ∈ L are fixed by the data.

The likelihood can be evaluated efficiently using Felsenstein’s pruning algorithm (Felsenstein, 2004).
This is a bottom-up dynamic programming procedure performed as a post-order traversal of the tree.

Let Liu denote the sequences at site i in the subtree below an internal node u, and let v and w be its
two children. The conditional probability of observing Liu given that node u is in state aiu is

P (Liu | aiu) =
∑

aiv,a
i
w∈Σ

P (aiv | aiu, b(ev))P (Liv | aiv)P (aiw | aiu, b(ew))P (Liw | aiw), (10)

where b(ev) and b(ew) are the branch lengths of edges connecting u to v and w, respectively.

At the leaves, the conditional probabilities are represented using one-hot encoding of the observed
character, so that for leaf node l:

P (Lil | ail = c) =

{
1, if the observed character at site i is c,
0, otherwise.

(11)

Finally, the likelihood at site i is obtained at the root node r as

P (Yi | τ,b) =
∑
air∈Σ

η(air)P (L
i
r | air), (12)

where η(air) is the stationary distribution of the substitution model at the root. The full likelihood for
the alignment is then

P (Y | τ,b) =
m∏
i=1

P (Yi | τ,b) . (13)

Finally, by the Pulley principle (Felsenstein, 1981), the placement of the root does not affect the
computed likelihood.

B SCORE-BASED DIFFUSION MODELS

Score-based diffusion models originate from Langevin dynamics, designed to sample from a probabil-
ity density p(x) using only gradients ∇x log p(x). In continuous space, Stochastic Gradient Langevin
Dynamics (SGLD) iteratively updates:

xt = xt−1 +
δ

2
∇x log p(xt−1) +

√
δ ϵt, ϵt ∼ N (0, I). (14)
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A score network sθ : RD → RD learns the score ∇x log p(x) by minimizing the objective

Epdata

[
∥sθ(x)−∇x log pdata(x)∥2

]
, (15)

with scalable variants including denoising score matching (Vincent, 2011) and sliced score matching
(Song et al., 2019).

Discrete diffusion. For discrete spaces X = {1, . . . ,K}, the forward process is defined via a
transition matrix Qt ∈ [0, 1]K×K :

[Qt]ij = q(xt = j | xt−1 = i), q(xt | x0) = Cat(xt; p = x0

t∏
i=1

Qi), (16)

where Cat denotes a categorical distribution. The rows of Qt sum to one and
∏t
i=1Qi converges to

a stationary distribution.

Inspired by masked language models, Qt can include an absorbing [MASK] state m:

Qt = (1− βt)I + βt1eTm , [Qt]ij =


1 i = j = m

1− βt i = j ̸= m

βt i ̸= m, j = m

. (17)

Continuous-time framework. Campbell et al. (2022) define a transition rate matrix Rt with

qt|t−∆t(x | x̂) = δx,x̂ +Rt(x̂, x)∆t+ o(∆t), (18)

allowing the forward distribution to be computed analytically as

qt|0(x | x0) =
[
exp

(∫ t

0

Rsds

)]
x0,x

. (19)

For high-dimensional spaces, each dimension can be propagated independently due to factorization
of the forward process.

Reverse-time process. The generative reverse-time process X̄t = XT−t is also Markovian (Sun
et al., 2023), with transition probabilities

qs|t(xs | xt) =
qs(xs)

qt(xt)
qt|s(xt | xs), s < t, (20)

implying a backward rate matrix

R̄t(x, y) =
qt(y)

qt(x)
Rt(y, x). (21)

Learning this ratio is intractable jointly, so it is approximated dimension by dimension using a neural
network.

Diffusion-weighted denoising score entropy (DWDSE) loss. Lou et al. (2024) defined a loss for
learning the score sθ(x, t):

LDWDSE(x0) =

∫ T

0

Ext∼qt|0(·|x0)

∑
y ̸=xt

Rt(xt, y)

[
sθ(xt, t)y−

qt|0(y|x0)
qt|0(xt|x0)

log sθ(xt, t)y+K
( qt|0(y|x0)
qt|0(xt|x0)

)]
dt,

(22)
with K(a) = a(log a− 1). This upper-bounds the negative log-likelihood:

− log qθ0(x0) ≤ LDWDSE(x0) +DKL(qT |0(·|x0) ∥ pbase). (23)
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C PHYLOGENETIC TOKENIZER AND TEXTUAL REPRESENTATION OF
PHYLOGENETIC TREES

The position of the root does not impact the likelihood of a tree, so we unroot all the trees. Each
textual tree topology from dataset j with nj taxa has then a fixed length of 4nj − 4 words. We note
dj = 4nj − 4 the length of the textual tree topologies from dataset j and d = max1≤j≤N dj the
maximum length of trees across all the datasets.

With S = {<PAD>,<UNK>,<SOS>,<EOS>}, the special tokens set, N = {(,),,,;}, the Newick
format characters set, and Tj = {t0, · · · , tnj} the taxa names set, we define Wj , the Newick
vocabulary for a dataset j with nj taxa, as Wj = Tj ∪N ∪ S . For a collection of N datasets, with
T1:N =

⋃N
j=1 Tj , we define the Newick vocabulary as W1:N = T1:N ∪N ∪ S . We design a custom

tokenizer that maps our textual tree topologies τj ∈ Wdj
j to vectors x ∈ X = [0, · · · , |W1:N |−1]d+2:

Tokenizer : [1, · · · , N ]×
⋃N
j=1 W

dj
j −→ X = [0, · · · , |W1:N | − 1]d+2

j, τj = (τ
(0)
j , · · · , τ (dj−1)

j ) 7−→ x = [<SOS>, x(0), · · · , x(d−1),<EOS>] ,
(24)

where the target space X = [0, · · · , |W1:N | − 1]d+2 is the set of (d+ 2)-dimensional vectors with
values in {0, · · · , |W1:N | − 1}, and |W1:N | denotes the cardinality of the vocabulary set W1:N . We
design our tokenizer so that the first 4 tokens are assigned to S, and the next 4 tokens to N . The
remaining |W1:N | − 8 tokens are then assigned to T1:N . Each sentence τj ∈ Wdj

j from dataset j
is constructed by first placing the <SOS> token, followed by the 4nj − 4 tokens corresponding to
elements from N ∪ Tj , the <EOS> token, and finally padding tokens to fill the remaining d − dj
positions. Our tokenizer is both fast and scalable. Unlike standard approaches that require learning
a tokenization scheme (e.g., subword segmentation), ours treats taxa names as predefined indices.
This eliminates the need for training and results in a small, fixed vocabulary, which reduces the
computational cost of the downstream neural network, as its matrix sizes depend on vocabulary size.

D MARGINAL LIKELIHOOD ESTIMATION

We aim to minimize the KL between the true and the learned posterior distribution:

θ∗, ϕ∗ = argmin
ϕ,ψ

DKL (qθ,ϕ(τ,b) ∥ p(τ,b | Yj)) , (25)

which is equivalent to maximizing the following evidence lower bound:

Eqθ,ϕ(τ,b) log
(
P (Yj |τ,b)p(τ,b)
qθ(τ)qϕ(b|τ)

)
≤ log p(Yj) . (26)

However, we cannot evaluate qθ(τ), so we instead evaluate this evidence lower bound:

E x0:T∼qR,j
b∼qϕ(b|x0)

log

(
p(Yj |x0, b)p(x0)

qF (x1:T |x0)

qR,j(x0:T )

p(b|x0)

qϕ(b|x0)

)
≤ log p(Yj) . (27)

Proof. Let x0 ∼ pdata. We define the trajectory x0:T = (x0,x1, . . . ,xT ). We note the for-
ward process qF (x0:T ) = pdata(x0)

∏T
t=1 qt|t−1(xt|xt−1) and the reverse process qR,j(x0:T ) =

pbase(xT )
∏T
t=1 qt−1|t(xt−1|xt, j) .

Now let’s consider qF (x1:T |x0) =
∏T
t=1 qt−1|t(xt−1|xt), which is the probability of generating

a trajectory x1, . . . ,xT given initial state x0. This is a distribution over all the trajectories and
therefore it sums to one:∑

x1:T

qF (x1:T |x0) =
∑
x1

∑
x2

· · ·
∑
xT

q1|0(x1|x0)q2|1(x2|x1) · · · qT |T−1(xT |xT−1) = 1 (28)

We can thus derive the following:
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P (Y) =

∫
b

∑
τ∈X

P (Y |τ, b)p(τ)p(b|τ)db (29)

=

∫
b

∑
x0∈X

P (Y |x0, b)p(x0)p(b|x0)db×
∑
x1:T

qF (x1:T |x0) (30)

=

∫
b

∑
x0

∑
x1:T

P (Y |x0, b)p(x0)p(b|x0)qF (x1:T |x0)db (31)

=

∫
b

∑
x0:T

qR,j(x0:T )qϕ(b|x0)
p(Y |x0, b)p(x0)p(b|x0)qF (x1:T |x0)

qR,j(x0:T )qϕ(b|x0)
db (32)

=
∑
x0:T

qR,j(x0:T )

∫
b

qϕ(b|x0)P (Y |x0, b)p(x0)
qF (x1:T |x0)

qR,j(x0:T )

p(b|x0)

qϕ(b|x0)
db (33)

= Ex0:T∼qR,jEb∼qϕ(b|x0)P (Y |x0, b)p(x0)
qF (x1:T |x0)

qR,j(x0:T )

p(b|x0)

qϕ(b|x0)
. (34)

(35)

By sampling K i.i.d. pairs (x0:T , b) ∼ qR,jqϕ, let the importance weights be defined as

w(x0:T , b) = p(Y |x0, b)p(x0)
qF (x1:T |x0)

qR,j(x0:T )

p(b|x0)

qϕ(b|x0)
. (36)

We define the following random variable:

Ẑ =
1

K

K∑
i=1

x0:T∼qR,j
b∼qϕ(b|x0)

w(x0:T , b) . (37)

Thus,

E x0:T∼qR,j
b∼qϕ(b|x0)

[Ẑ] = E x0:T∼qR,j
b∼qϕ(b|x0)

1

K

K∑
i=1

x0:T∼qR,j
b∼qϕ(b|x0)

w(x0:T , b) = P (Y) . (38)

By Jensen’s inequality applied to the concave function log(·), we have:

E x0:T∼qR,j
b∼qϕ(b|x0)

[log Ẑ] ≤ logE x0:T∼qR,j
b∼qϕ(b|x0)

[Ẑ] = logP (Y ) , (39)

i.e.

E x0:T∼qR,j
b∼qϕ(b|x0)

log

 1

K

K∑
i=1

x0:T∼qR,j
b∼qϕ(b|x0)

P (Y |x0, b)p(x0)
qF (x1:T |x0)

qR,j(x0:T )

p(b|x0)

qϕ(b|x0)

 ≤ logP (Y ) . (40)

E BRANCH LENGTH MODEL

We adopt the strategy introduced in VBPI-GNN (Zhang, 2023). Our exposition here follows the
original paper closely, and we refer readers to it for full details. Following this approach, we assume
that node features vary smoothly across the tree topology - that is, the feature vector of each node
is similar to those of its neighbors. A common measure of smoothness for functions defined on the
nodes of a graph is the Dirichlet energy.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Formally, given a tree topology τ = (V,E), where V denotes the set of nodes and E the set of edges,
and a feature mapping f : V → Rd, the Dirichlet energy is defined as:

l(f, τ) =
∑

(u,v)∈E

∥f(u)− f(v)∥2. (41)

Let V = V b ∪ V ◦, where V b denotes the set of leaf nodes and V ◦ denotes the set of interior nodes.
Let Xb = {xv|v ∈ V b} be the set of one-hot embeddings for the leaf nodes. The interior node
features X◦ = {xv|v ∈ V ◦} then can be obtained by minimizing the Dirichlet energy

X̂◦ = argmin
X◦

ℓ(X◦, Xb, τ) = argmin
X◦

∑
(u,v)∈E

∥xu − xv∥2. (42)

Note that the above Dirichlet energy function is convex, its minimizer therefore can be obtained by
solving the following optimality condition

∂ℓ(Xo,Xb, τ)

∂Xo
(X̂o) = 0. (43)

It turns out that this equation has a close-form solution based on matrix inversion. However, as matrix
inversion scales cubically in general, it is infeasible for graphs with many nodes. Fortunately, by
leveraging the hierarchical structure of phylogenetic trees, we can design a more efficient linear time
algorithm as follows. We first rewrite the equation as a system of linear equations∑

v∈N (u)

(x̂u − x̂v) = 0, ∀u ∈ V o, x̂v = xv, ∀v ∈ V b, (44)

where N (u) is the set of neighbors of node u. Given a topological ordering induced by the tree, we
can obtain the solution within a two-pass sweep through the tree topology, similar to the Thomas
algorithm (Thomas, 1949) for solving tridiagonal systems of linear equations. In the first pass, we
traverse the tree in a postorder fashion and express the node features as a linear function of those of
their parents,

x̂u = cux̂πu + du, (45)

for all the nodes except the root node, where πu denotes the parent node of u. More specifically, we
first initialize cu = 0, du = xu for all leaf nodes u ∈ V b. For all the interior nodes except the root
node, we compute cu, du recursively as follows:

cu =
1

|N (u)| −
∑
v∈ch(u) cv

, du =

∑
v∈ch(u) dv

|N (u)| −
∑
v∈ch(u) cv

, (46)

where ch(u) denotes the set of child nodes of u. In the second pass, we traverse the tree in a preorder
fashion and compute the solution by back substitution. Concretely, at the root node r, we can compute
the node feature directly as below:

x̂r =

∑
v∈ch(r) dv

|N (r)| −
∑
v∈ch(r) cv

. (47)

For all the other interior nodes, the node features can be obtained by substituting the learned features
for the parent nodes. Moreover, the algorithm is proven to be numerically stable.

Once we have the node features, we can derive the branch features using a graph neural network:

∀e = (u, v) ∈ E, he = GNN(hu, hv) (48)

and finally, by chosing the branch length to follow a diagonal lognormal distribution, we can derive
the mean and standard variation parameters :

µ(e, τ) = MLPµ(he), σ(e, τ) = MLPσ(he) (49)
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Figure 6: Detailed Architecture of PhyloTextDiff. Input tokens xt ∼ qt|0(x0) are first embedded
using a learnable embedding matrix and enriched with DNA embeddings M. These embeddings are
combined with Rotary Positional Encodings and timestep embeddings σt, then processed through
3DT blocks with cross-attention on M. The final output is the predicted score sθ(x, t | Yj).

F ARCHITECTURE

Our architecture is described in Fig.6.

We first begin by sampling from the forward distribution:

xt ∼ qt|0(xt|x0) =

(
exp

[∫ t

0

Rs ds

])
x0

, t ∼ U(0, 1) (50)

To embed our trees, we combine semantic and structural information of our tokens with genetic
information. Let xt = (x

(1)
t , . . . , x

(d)
t ) be a sequence of tokens, and let E ∈ R(|W|+1)×h be a

learnable embedding matrix. Specifically, each token x(i)t is embedded as the sum of its learnable
embedding E

x
(i)
t

and the corresponding row of M, M
x
(i)
t

, i.e., h(i)
t = E

x
(i)
t

+M
x
(i)
t

.

A Rotary Positional Encoding (RoPE) is then applied :

rt = RoPE(ht) (51)

The Timestep Embedder is inspired by the approach described in the Glide framework (Nichol et al.,
2022). A sinusoidal embedding is computed based on the noise levet σt using exponentially spaced
frequencies and then passed trough an MLP and a Sigmoid Linear Unit (SiLU) function

ct = SiLU(Timestep Embedder(σt)). (52)

We design the DNA Discrete Diffusion Transformer (3DT) blocks to enable dataset-aware guided
diffusion. Specifically, we introduce a Multi-Head Cross-Attention block in each transformer layer,
where the guidance source is the previously defined matrix M. The architecture of the 3DT block is
described in Fig. 7.

Layer
Norm

Multi-Head
Self-Attention

+ Layer
Norm

Multi-Head
Cross-

Attention
+ Layer

Norm
Pointwise

Feedforwardxt, ct

rt M

Figure 7: Architecture of a single 3DT block in PhyloTextDiff. The block receives token embeddings
xt and timestep embeddings ct, along with positional encodings rt. Inputs are first normalized, then
processed through Multi-Head Self-Attention and a residual connection, followed by Layer Norm and
Multi-Head Cross-Attention with guidance from M. A final Layer Norm and pointwise feedforward
layer produce the block output.

Finally, we use a final layer composed of a layer normalization and of a linear layer and scale the
output by σt. The output of the model is the concrete score sθ(x, t | Yj).
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G DATASET INFORMATION

Table 4 summarizes the benchmark datasets (DS1–DS8) used in our experiments, including the
number of species, alignment length in sites, and references. Each dataset corresponds to a multiple
sequence alignment of DNA sequences, where sites represent aligned nucleotide ( {A,C,G, T})
positions.

Table 4: Statistics of the benchmark datasets from DS1 to DS8.

Dataset # Species # Sites Reference
DS1 27 1949 (Hedges et al., 1990)
DS2 29 2520 (Garey et al., 1996)
DS3 36 1812 (Yang and Yoder, 2003)
DS4 41 1137 (Henk et al., 2003)
DS5 50 378 (Lakner et al., 2008)
DS6 50 1133 (Zhang and Blackwell, 2001)
DS7 59 1824 (Yoder and Yang, 2004)
DS8 64 1008 (Rossman et al., 2001)

H TRAINING DETAILS

We adopt the same hyperparameter settings as Lou et al. (2024) and train our model on 2 A100 GPUs
with 64 GB of memory.

Table 5: Hyperparameters and training details for PhyloTextDiff.

Category Value
Model Architecture
DDiT Hidden size 768
Timestep embedding dim 128
Number of transformer blocks 12 (small), 24 (medium)
Number of attention heads 12 (small), 16 (medium)
Dropout 0.1
Scale by σ True
Training
Batch size 64
Gradient accumulation 1
Number of training steps 80,000 (small), 90,000 (medium)
Learning rate 3e-4
Optimizer AdamW (β1 = 0.9, β2 = 0.999, ϵ = 1e− 8)
Weight decay 0
Warmup steps 2,500
Gradient clipping 1.0
EMA 0.9999
Noise / Forward Process
Type loglinear
σmin 1e-4
σmax 20
ϵ 1e-3

I DETAILS ON MARGINAL LOG-LIKELIHOOD (MLL) ESTIMATION

I.1 RESULTS FROM OTHER METHODS

The MLL results for the baseline are taken from (Duan et al., 2024) except for SBN (Zhang and Iv,
2019) which is taken from from (Xie and Zhang, 2023). We experimentally veried the results for
MrBayes (Ronquist et al., 2012), VBPI-GNN (Zhang, 2023) and PhyloGFN (Zhou et al., 2024a).
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I.2 LOWER BOUND COMPUTATIONS FOR OTHER METHODS

I.2.1 MRBAYES SS

We use MrBayes (Ronquist et al., 2012) with the stepping-stone (SS) method (Xie et al., 2011) to
derive its MLL estimation. The marginal likelihood of a dataset D under model M is

p(D |M) =

∫
p(D | θ,M) p(θ |M) dθ, (53)

where θ represents all model parameters, including tree topology and substitution model parameters.
Direct computation of this integral is intractable.

Stepping-stone sampling introduces a series of power posteriors defined by a temperature parameter
β ∈ [0, 1]:

pβ(θ | D,M) ∝ p(D | θ,M)β p(θ |M). (54)

Let 0 = β0 < β1 < · · · < βK = 1 denote the sequence of stepping stones. The marginal likelihood
can be written as a telescoping product:

p(D |M) =

K∏
k=1

Zβk
Zβk−1

, (55)

where Zβk is the normalizing constant of the βk-th power posterior.

Each ratio is approximated using MCMC samples {θ(k)i }nki=1 from pβk(θ | D,M):

Zβk
Zβk−1

≈ 1

nk

nk∑
i=1

p(D | θ(k)i ,M)βk−βk−1 . (56)

Hence, the log marginal likelihood is estimated as

log p(D |M) ≈
K∑
k=1

log

(
1

nk

nk∑
i=1

p(D | θ(k)i ,M)βk−βk−1

)
. (57)

I.2.2 SBN (ZHANG AND IV, 2019), VBPI-GNN (ZHANG, 2023), GEOPHY (MIMORI AND
HAMADA, 2023), ARTREE (XIE AND ZHANG, 2023)

The variational approximation is factorized as

Qϕ,ψ(τ, q) = Qϕ(τ)Qψ(q | τ). (58)

The KL divergence to the true posterior is minimized as

(ϕ∗, ψ∗) = argmin
ϕ,ψ

DKL

(
Qϕ,ψ(τ, q) ∥ p(τ, q | Y )

)
. (59)

The Evidence Lower Bound (ELBO) is

L(ϕ, ψ) = EQϕ,ψ(τ,q)
[
log

p(Y | τ, q) p(τ, q)
Qϕ(τ)Qψ(q | τ)

]
≤ log p(Y ). (60)

The multi-sample ELBO is

LK(ϕ, ψ) = EQϕ,ψ(τ1:K ,q1:K)

[
log

1

K

K∑
i=1

p(Y | τ i, qi) p(τ i, qi)
Qϕ(τ i)Qψ(qi | τ i)

]
≤ log p(Y ), (61)

where

Qϕ,ψ(τ
1:K , q1:K) =

K∏
i=1

Qϕ,ψ(τ
i, qi). (62)
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I.2.3 VAIPHY (KOPTAGEL ET AL., 2023)

Vaiphy performs variational inference in an augmented space A by approximating the posterior

pθ(τ,B, Z | X) ∝ pθ(X,Z | B, τ) pθ(B | τ) pθ(τ) (63)

with a factorized variational distribution

q(τ,B, Z | X) = q(B | X) q(τ | X) q(Z | X), q(Z | X) =
∏

i∈I(A)

q(Zi | X), (64)

where I(A) is the set of internal vertices in the augmented space.

The expected number of mutations along edge (i, j) is computed as

ϕij ∈ [0,M ], (65)

where M is the number of sites.

The framework learns its parameters by maximizing the ELBO:

L = Eq(τ,B,Z|X)

[
log

pθ(X,Z | B, τ) pθ(B | τ) pθ(τ)
q(B | X) q(τ | X) q(Z | X)

]
. (66)

However, the importance-weighted ELBO (IWELBO) offers a tighter lower bound for evaluation.
Using SLANTIS and the JC sampler, the IWELBO is computed as

LL = EB′,τ ′∼sϕ(B,τ)

[
log

1

L

L∑
l=1

pθ(X,B
(l), τ (l))

sϕ(B(l), τ (l))

]
, (67)

where the sampling distribution may be factorized as

sϕ(B, τ) = sϕ(B | τ) sϕ(τ), sϕ(B | τ) =
∏

e∈E(τ)

sϕ(b(e)). (68)

Note that the auxiliary variable Z is marginalized out, as they do not compute LL using the variational
distributions for Z.

I.2.4 PHYLOGFN (ZHOU ET AL., 2024A)

PhyloGFN uses a GFlowNet-based sampler to approximate the posterior over phylogenetic trees
and branch lengths. To evaluate how well the sampler approximates the true posterior, the marginal
log-likelihood (MLL) is estimated using an importance-weighted variational lower bound:

logP (Y ) ≥ Eτ1:K∼PF

[
log

P (z) 1
K

∑K
i=1 PB(τ

i | zi, bi)R(zi, bi)
PF (τ i)

]
, (69)

where PF is the GFlowNet policy over trajectories τ , PB(τ | z, b) is the branch length distribution
conditioned on latent variables z, b, and R(z, b) is a reweighting function.

I.2.5 PHYLOGEN (DUAN ET AL., 2024)

PhyloGEN aims to maximize the expected marginal likelihood of the observed species sequences Y :

max log p(Y | (τ(z), Bτ )), (70)

where τ(z) denotes the sampled tree topology and Bτ the corresponding branch lengths.

This is approximated using a variational distribution:

q(τ(z), Bτ | Y ) = q(Bτ | τ(z)) q(τ(z)). (71)

The joint probability is

p(Y, τ(z), Bτ ) = p(Y | τ(z), Bτ ) p(Bτ | τ(z)) p(τ(z)), (72)
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assuming conditional independence between the tree topology and branch lengths.

The Evidence Lower Bound (ELBO) is formulated as

L(Q) = Eq[logP (Y, τ(z), Bτ )]− Eq[log q(τ(z), Bτ )]. (73)

To improve training stability, a regularization term R(z | τ(z∗)) is introduced:

L(Q,R) = Eq(z)
[
Eq(Bτ |τ(z))

[
logP (Y,Bτ | τ(z)) p(τ(z))R(z | τ(z∗))

]]
− Eq[log q(τ(z), Bτ )].

(74)

For reduced variance and better performance, a multi-sample approach is adopted:

Lmulti-sample(Q,R) =
1

K

K∑
k=1

log
[
p(Y,Bτk | τ(zk)) p(τ(zk))R(zk | τ(z∗k))

]
, (75)

where K is the number of Monte Carlo samples, and z∗k , Bτk are sampled from q(z∗) and q(Bτ |
τ(z)), respectively.

J ADDITIONAL RESULTS

J.1 EXPERIMENTAL PROCEDURE - TREE TOPOLOGICAL DIVESITY ANALYSIS

For MrBayes, we first collect the top 2000 distinct trees across 10 independent MCMC runs for each
dataset, similar to the procedure used during training. From these, we sample 1000 trees according
to the posterior probabilities of each unique topology. This procedure ensures that the sampled set
reflects the posterior distribution estimated by MrBayes, although it does not exactly replicate the
software’s internal sampling probabilities. For all other methods, we sample 1000 trees from each
model. All trees are then sorted, unrooted, and metrics are computed on this standardized set.

J.2 EXPERIMENTAL PROCEDURE - POSTERIOR COMPARISON

For MrBayes, we first collect all distinct trees topologies across 10 independent MCMC runs for each
dataset. These runs retain all unique trees whose cumulative posterior sums to 1− ϵ, with ϵ = 10−6.
Branch lengths are added using our edge-length model. Let {τMB

i ,bMB
i }Ni=1 and {τPTD

i ,bPTD
i }Ni=1

denote the sampled MrBayes and PhyloTextDiff trees, respectively. For each model M , the mean
unnormalized log-posterior is computed as

log pM =
1

N

N∑
i=1

log
[
p(Y | τMi ,bMi ) p(τMi ,bMi )

]
. (76)

PhyloTextDiff trees are sampled for 21 hours, corresponding to the training time of MrBayes, and the
unnormalized log-posterior distributions are visualized for comparison. This set up corresponds to
experiment 1 in Table 6.

J.3 TREE TOPOLOGICAL COMPARISON WITH MRBAYES

We performed an additional experiment to compare the tree space explored by MrBayes and Phylo-
TextDiff using equal numbers of sampled trees. Table 6 summarizes the results for two experiments.
For each model, we report the number of sampled trees, the number of unique trees, the number of
trees shared between the two methods, and the mean posterior probability. We observe that Phylo-
TextDiff consistently discovers more unique trees as the number of sampled trees increases. MrBayes’
results are not directly comparable because we only have access to the output file with posterior
values, which does not include very low probability trees. This means that the number of unique trees
is an approximation, although only low probability trees are excluded from the calculations. Across
both experiments, PhyloTextDiff achieves slightly higher mean posterior values on average.

Figure 8 shows the normalized histograms of log-posterior values for experiment 2. The distributions
indicate that PhyloTextDiff samples a broader range of tree topologies and emphasizes higher-
posterior regions compared to MrBayes.
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Experiment Model Sampled Trees Unique Trees Common Trees Mean Posterior

1 MrBayes 2921 2921 2363 -7147.79
PhyloTextDiff 42109 11656 – -7146.64

2 MrBayes 2521 2521 915 -7147.31
PhyloTextDiff 2521 1709 – -7146.91

Table 6: Comparison of MrBayes and PhyloTextDiff across Experiments 1 and 2.

Figure 8: Normalized histograms of unnormalized log-posterior values for MrBayes (blue) and
PhyloTextDiff (orange) on dataset DS1 for experiment 2. PhyloTextDiff (equal sampling) shows a
less peaked distribution, indicating greater sampling diversity and better coverage of high-probability
trees.

J.4 PHYLOGENETIC CLUSTER ANALYSIS AND CHARACTERISTIC SPLITS

We analyzed phylogenetic trees generated by two methods: MrBayes and our PhyloTextDiff model
after a sampling time of 21 hours. Clusters of similar trees were identified across the combined
dataset. Let Ck denote the set of trees belonging to cluster k.

For each cluster, we first identified splits, i.e., bipartitions of leaf nodes induced by internal nodes,
ignoring trivial splits (single leaves or the root). Characteristic splits were defined as those that occur
frequently within a cluster but are rare outside the cluster. Formally, a split s is characteristic of
cluster k if its frequency within the cluster k fin,k(s) ≥ 0.5 and its frequency outside the cluster
fout,k(s) ≤ 0.2. This ensures that characteristic splits capture distinctive phylogenetic patterns
specific to a cluster.

To visualize the 8 clusters discovered by PhyloTextDiff and the cluster containing only MrBayes
trees, we selected a representative tree from each cluster and highlighted its characteristic splits.
They are depicted in Figures 9, 10, 11, 12 and 13. Each split was assigned a unique color, and both
vertical and horizontal branches corresponding to the split were colored for emphasis. Node labels
were retained in black to maintain readability. Table 7 summarizes the properties of the identified
phylogenetic clusters. For each cluster, we report the cluster ID, the composition of trees generated
by MrBayes and PhyloTextDiff, and the mean unnormalized posterior log p across the trees in the
cluster (see section J.2 for details on the computation of the unnormalized posterior). In addition, we
list the characteristic splits identified within each cluster. Each split is assigned a color corresponding
to the branches highlighted in the visualizations, along with its frequency within the cluster (Inside)
and its frequency outside the cluster (Outside). Clusters often contain multiple characteristic splits,
reflecting distinct, recurrent evolutionary groupings. High Inside frequencies coupled with low
Outside frequencies indicate splits that are strongly representative of a particular cluster, making them
useful markers for interpreting cluster-specific phylogenetic structure. This analysis demonstrates that
PhyloTextDiff was able to discover novel high-probability phylogenetic trees that were not identified
by MrBayes, highlighting its ability to efficiently explore alternative high-probability topologies.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 7: Comparison of clusters. For each cluster, the table shows the number of trees contributed by
MrBayes and PhyloTextDiff, the mean unnormalized log-posterior, and the characteristic splits with
their frequencies inside and outside the cluster.

Fig Cluster {τMB
i }/{τPTD

i } log p Split Inside Outside

9a 1 0/27 -7165.49 Red 0.93 0.12
Blue 0.74 0.03
Green 0.74 0.07
Orange 0.63 0.01
Purple 0.50 0.00
Brown 0.59 0.00

9b 2 0/11 -7169.42 Red 1.00 0.01
Blue 0.91 0.18
Green 0.82 0.15
Orange 0.55 0.18

10a 3 0/34 -7162.49 Red 0.59 0.07
Blue 0.50 0.13

10b 4 0/17 -7175.60 Red 0.88 0.18
Blue 0.59 0.00

11a 5 0/11 -7164.18 Red 1.00 0.17
Blue 0.64 0.05

11b 6 0/8 -7165.37 Red 0.88 0.05
Blue 0.62 0.05

12a 7 0/25 -7156.85 Red 1.00 0.18
Blue 0.96 0.17
Green 0.84 0.02

12b 8 0/11 -7157.77 Red 0.91 0.18
Blue 0.91 0.17

13 9 5/0 -7178.03 Red 1.00 0.00
Blue 0.60 0.10

J.5 RUNNING TIME

We evaluate the computational efficiency of our discrete diffusion model by reporting both training
and sampling times (for 100 trees per dataset) for DS1–DS8 in Table 8. Our results demonstrate that
the diffusion model can improve posterior approximation of tree topologies across all eight datasets
in roughly 6 hours for the small model and 13 hours for the medium model.

We also report the running times (in minutes) for the edge-length model, corresponding to the training
required to obtain our MLL/ELBO results (Table 9).

For comparison, we include the running times of PhyloGFN, the previous reproducible state-of-the-art
method, in Table 10. These numbers are taken from the original paper. PhyloGFN was trained on
virtual machines with 10 CPU cores and 10 GB of RAM for all datasets, and uses a single V100
GPU for DS1–DS6 and a single A100 GPU for DS7–DS8. Despite the differences in hardware, our
discrete diffusion model consistently trains faster than PhyloGFN while achieving superior posterior
approximation.
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Figure 9: Representative trees from clusters 1 and 2
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Figure 10: Representative trees from clusters 3 and 4
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Figure 11: Representative trees from clusters 5 and 6
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Figure 12: Representative trees from clusters 7 and 8
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Table 9: Running time (minutes) and number of steps for the edge-length model for each of the eight
datasets DS1-8

Methods Criteria DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

MrBayes + PhyloTextDiff Time 560.37 582.32 587.18 551.78 355.20 355.20 352.15 352.15
MrBayes + PhyloTextDiff Step 1200 1400 1400 1000 800 800 800 800
IQ-TREE + PhyloTextDiff Time 1430.65 1365.98 1377.28 1361.68 993.67 1187.62 1285.62 1392.97
IQ-TREE + PhyloTextDiff Step 1000 1000 1200 800 400 600 1000 600
VBPI-GNN + PhyloTextDiff Time 1251.55 1384.93 1326.92 1364.52 1394.90 1206.32 1328.12 1342.43
VBPI-GNN + PhyloTextDiff Step 1000 1200 1200 1000 1000 800 1200 1000

Table 10: Running times (in minutes) of PhyloGFN for each of the eight datasets DS1–DS8.

Method DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

PhyloGFN Full 3760 4156 4820 6234 7670 8110 10443 11425
PhyloGFN Short 1240 1680 2140 2670 3100 3190 3620 3700
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Table 8: Running time and sampling time of the diffusion model for the eight datasets DS1-8

Method Training Time Sampling Time Model size
MrBayes + PhyloTextDiff 80k steps - 366.62 min 10.73 min Small
VBPI-GNN + PhyloTextDiff 90k steps - 783.71 min 33.27 min Medium
IQ-Tree + PhyloTextDiff 90k steps - 763.78 min 33.92 min Medium

K SENSITIVITY STUDY

We perform a sensitivity study on the number of denoising steps for each method, varying the steps
among 512, 1024, 2048, and 4096. Table 11 reports the results, where the numbers correspond to a
single-point estimate of the ELBO (using one particle, one run, and one repetition).

Across all datasets and all methods, the optimal number of denoising steps is 2048 steps, which is
why we use this setting for evaluating our model. For training purposes, we choose 1024 steps, as it
provides a good trade-off between performance and computation time.

Table 11: Sensitivity to the Number of Denoising Steps for PhyloTextDiff (ELBO). Best values are
highlighted in green.

Method Denoising
Steps

Mean
Sampling
Time

DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

MrBayes + 512 14.94s -7017.75 -26273.10 -33659.34 -13281.47 -8134.10 -6639.81 -37300.53 -8556.10
PhyloTextDiff 1024 28.61s -6846.00 -26110.11 -33476.09 -13056.23 -7946.38 -6458.04 -37182.28 -8391.58

2048 45.55s -6347.73 -25619.47 -32971.85 -12582.51 -7437.71 -5956.42 -36674.04 -7899.23
4096 113.79s -6750.85 -26032.95 -33350.77 -12983.59 -7823.61 -6349.53 -37062.56 -8278.81

IQ-Tree + 512 32.49s -7032.81 -26290.19 -33643.86 -13254.67 -8132.23 -6860.49 -37387.28 -8563.92
PhyloTextDiff 1024 93.51s -6907.07 -26092.58 -33504.36 -13074.31 -7958.36 -6476.03 -37056.63 -8380.22

2048 98.94s -6396.94 -25673.42 -33146.95 -12594.38 -7476.04 -6043.45 -36604.53 -7906.54
4096 242.20s -6792.58 -25997.40 -33403.47 -12981.94 -7889.54 -6580.53 -37083.41 -8323.76

VBPI-GNN + 512 36.61s -7026.37 -26307.87 -33645.66 -13339.33 -8123.20 -6639.01 -37259.26 -8556.45
PhyloTextDiff 1024 55.89s -6822.00 -26076.29 -33448.41 -13045.76 -7934.72 -6459.91 -37056.63 -8370.03

2048 115.62s -6360.35 -25565.12 -32948.10 -12556.91 -7431.71 -5968.39 -36579.89 -7917.64
4096 231.30s -6732.86 -26035.87 -33403.02 -12954.58 -7867.63 -6381.86 -36998.67 -8310.58

L LIMITATIONS

While PhyloTextDiff achieves strong performance in modeling tree topology posteriors efficiently,
several limitations remain. First, the model focuses exclusively on tree topologies and does not jointly
model branch lengths in a fully generative way; instead, branch lengths are incorporated post hoc
using a separate edge-length model. A natural extension would be to combine discrete diffusion for
tree structures with continuous diffusion for branch lengths, or to design conditional architectures in
which branch lengths are generated jointly with the evolving topology in an end-to-end framework
(e.g., by predicting the parameters µ and σ of the diagonal lognormal distribution). Second, the
predefined tokenizer may introduce inductive bias, since taxa are assigned integer labels that could
influence how the model learns relationships. This issue could be mitigated by adopting a one-
hot encoding scheme or alternative representations that avoid imposing arbitrary orderings. Third,
because of this tokenization design, the model cannot easily generalize to unseen taxa or datasets
without retraining. A first potential solution would be to adopt a global vocabulary where each taxon
is assigned a consistent token across datasets, rather than redefining tokens per dataset. Finally,
the current model is tailored to DNA sequences and does not handle protein data or morphological
traits. Extending the approach to broader data types would require integrating specialized encoders
to replace the DNABERT module. Addressing these limitations is a key step toward building fully
end-to-end generative models of phylogenetic trees.
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M REPRODUCIBILITY

In this section, we describe the sampling procedures for different methods.

M.1 MRBAYES

We obtained posterior samples of tree topologies by running 10 independent single-chain analyses in
MrBayes (Ronquist et al., 2012), each for one billion iterations. Samples were collected every 1000
iterations, and the first 25% of each chain was discarded as burn-in.

The analyses were performed with the following command:

conda install bioconda::mrbayes

execute INPUT_FOLDER/ds1.nex
lset nst=1
prset statefreqpr=fixed(equal)
prset brlenspr=unconstrained:exp(10.0)
ss
ngen=1000000000
nruns=10
nchains=4
printfreq=1000
samplefreq=1000
savebrlens=yes
filename=OUTPUT_FOLDER

This setup specifies a Jukes-Cantor model (nst=1), a uniform prior over tree topologies and an i.i.d.
exponential prior on branch lengths with rate 10.

M.2 VBPI-GNN

We trained VBPI-GNN (Zhang, 2023) for datasets DS1–DS8 using the script provided on the paper’s
GitHub repository. For example, for DS1, the following command was executed:

python main.py --dataset DS1 --brlen_model gnn --gnn_type edge \
--hL 2 --hdim 100 --maxIter 400000 --empFreq --psp

This setup specifies:

• a branch length model based on a GNN (--brlen model gnn) with edge-based message
passing (--gnn type edge),

• 2 hidden layers (--hL 2) and 100 hidden units (--hdim 100),
• a maximum of 400,000 iterations (--maxIter 400000),
• empirical frequencies (--empFreq), and
• structured amortization using primary subsplit pairs (--psp).

M.3 IQ-TREE

Phylogenetic inference was performed using IQ-TREE 2 (Minh et al., 2020). For dataset DS1, we
ran:

iqtree2 -s DS1 -bb 10000 -wbt -m JC69 -redo

This command specifies the Jukes-Cantor substitution model (-m JC69) and performs 10,000
ultrafast bootstrap replicates (-bb 10000) to assess branch support. The -wbt flag writes branch
lengths and support values to the tree files, and -redo ensures that any previous analyses are
overwritten.
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