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Abstract

Self-supervised learning has the potential of lifting several of the key challenges
in reinforcement learning today, such as exploration, representation learning, and
reward design. Recent work (METRA [52]) has effectively argued that moving
away from mutual information and instead optimizing a certain Wasserstein dis-
tance is important for good performance. In this paper, we argue that the benefits
seen in that paper can largely be explained within the existing framework of mutual
information skill learning (MISL). Our analysis suggests a new MISL method (con-
trastive successor features) that retains the excellent performance of METRA with
fewer moving parts, and highlights connections between skill learning, contrastive
representation learning, and successor features. Finally, through careful ablation
studies, we provide further insight into some of the key ingredients for both our
method and METRA.2
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Figure 1: From METRA to MISL. (Left) METRA
argues optimizing a Wasserstein distance is superior to
using mutual information. (Right) Through careful anal-
ysis, we show METRA still bears striking similarities
to MISL algorithms, which allows us to develop a new
MISL algorithm (CSF) that matches the performance
of METRA while retaining the theoretical properties
associated with MI maximization.

Self-supervised learning has had a large impact
on areas of machine learning ranging from audio
processing [46, 47] or computer vision [56, 12]
to natural language processing [16, 57, 58, 9].
In the reinforcement learning (RL) domain, the
“right” recipe to apply self-supervised learning
is not yet clear. Several self-supervised meth-
ods for RL directly apply off-the-shelf meth-
ods from other domains such as masked autoen-
coding [38], but have achieved limited success
so far. Other methods design self-supervised
routines more specifically built for the RL set-
ting [10, 53, 18, 63, 54]. We will focus on the
skill learning methods, which aim to learn a set
of diverse and distinguishable behaviors (skills)
without an external reward function. This objec-
tive is typically formulated as maximizing the mutual information between skills and states [24, 18],
namely mutual information skill learning (MISL). However, some promising recent advances in
skill learning methods build on other intuitions such as Lipschitz constraints [49] or transition dis-
tances [50]. This paper focuses on determining whether the good performance of those recent methods
can still be explained within the well-studied framework of mutual information maximization.
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METRA [52], one of the strongest prior skill learning methods, proposes maximizing the Wasserstein
dependency measure between states and skills as an alternative to the idea of mutual information
maximization. The success of this method calls into question the viability of the MISL framework.
However, mutual information has a long history dating back to Shannon [62] and gracefully handles
stochasticity and continuous states [44]. These appealing properties of mutual information raises the
question: Can we build effective skill learning algorithms within the MISL framework, or is MISL
fundamentally flawed?

We start by carefully studying the components of METRA both theoretically and empirically. For
representation learning, METRA maximizes a lower bound on the mutual information, resembling
contrastive learning. For policy learning, METRA optimizes a mutual information term plus an
extra exploration term. These findings provide an interpretation of METRA that does not appeal to
Wassertein distances and motivate a simpler algorithm (Fig. 1).

Building upon our new interpretations of METRA, we propose a simpler and competitive MISL
algorithm called Contrastive Successor Features (CSF). First, CSF learns state representations by
directly optimizing a contrastive lower bound on mutual information, preventing the dual gradient
descent procedure adopted by METRA. Second, while any off-the-shelf RL algorithm (e.g. SAC [27])
is applicable, CSF instead learns a policy by leveraging successor features of linear rewards defined by
the learned representations. Experiments on six continuous control tasks show that CSF is comparable
with METRA, as evaluated on exploration performance and on downstream tasks. Furthermore,
ablation studies suggest that rewards derived from the information bottleneck as well as a specific
parametrization of representations are key for good performance.

2 Understanding the Prior Method

In this section we reinterpret METRA through the lens of MISL, showing that (1) the METRA
representation objective is nearly identical to a contrastive loss (which maximizes a lower bound
on mutual information, see Sec. 2.1), and (2) the METRA actor objective is equivalent to a mutual
information lower bound plus an extra term. This extra term is related to an information bottleneck [68,
3] and our experiments will show it is important for exploration. See Sec. 2.2. The sections below
will provide a brief overview of the theoretical results, while a full and more formal exposition is left
to Appendix A.

2.1 Connecting METRA’s Representation Objective and Contrastive Learning

Instead of enforcing a temporal distance constraint on each transition pair (s, s′) ∈ Sβadj (see Ap-

pendix C), where Sβadj denotes the set of all the adjacent state pairs visited by policy β, the METRA
representation objective actually imposes the temporal distance constraint over all transition pairs
(s, s′) in expectation:

max
ϕ

Ep(z)pβ(s,s′|z)[(ϕ(s′)− ϕ(s))⊤z] s.t. Epβ(s,s′)
[
∥ϕ(s′)− ϕ(s)∥22

]
≤ 1.

Identifying the actual METRA representation objective allows us to draw a connection with the
rank-based contrastive loss (InfoNCE [47, 41]). Specifically, METRA learns state representations ϕ
via (approximately) maximizing a contrastive lower bound of mutual information between transition
pairs and skills under the behavior policy Iβ(S, S′;Z):

Iβ(S, S′;Z) ≥ Epβ(s,s′,z)[f(s, s′, z)]− Epβ(s,s′)
[
logEp(z)

[
ef(s,s

′,z)
]]
,

where f : S × S × Z 7→ R is the critic function [41, 55, 20, 76]. Furthermore, our empirical studies
(Sec. 4) confirm that the representations learned by METRA indeed bear a resemblance to those
learned by a contrastive loss.

2.2 Connecting METRA’s Actor Objective with an Information Bottleneck

METRA uses different objectives for the representations and the actor. Specifically, the METRA actor
objective optimizes the intrinsic reward (ϕ(s′) − ϕ(s))⊤z (which misses the λ term from Eq. 10)
derived from learned representations, which we show is a lower bound of the information bottleneck
Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′)−ϕ(S)) (see Prop. 3). This result implies that simply maximizing the
mutual information Iπ(S, S′;Z) may be insufficient for deriving a diverse skill-conditioned policy π.
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3 A Simplified Algorithm for MISL via Contrastive Learning

In this section, we derive a simpler unsupervised skill learning method building upon our under-
standing of METRA (Sec. 2). This method maximizes MI (unlike METRA), while retaining the
good performance of METRA (see discussion in Appendix C). We will first use the contrastive lower
bound to optimize the state representation ϕ and estimate intrinsic rewards, and then we will learn
the policy π using successor features. We name our method contrastive successor features (CSF).

3.1 Learning Representations through Contrastive Learning

Based on our analysis in Sec. 2.1, we use the contrastive lower bound on Iβ(S, S′;Z) to optimize the
state representation directly. Unlike METRA, we obtain this contrastive lower bound within the MISL
framework (Eq. 7 & 8) by employing a parameterization of the variational distribution q(z | s, s′)
mentioned in prior work [55, 65]. Specifically, using a scaled energy-based model conditioned
representations of transition pairs (s, s′), we define the variational distribution as

q(z | s, s′) ≜ p(z)e(ϕ(s
′)−ϕ(s))⊤z

Ep(z′)[e(ϕ(s′)−ϕ(s))⊤z′ ]
. (1)

Plugging this parameterization into Eq. 7 produces

ϕk+1 ← argmax
ϕ

Epβ(s,s′,z)
[
(ϕ(s′)− ϕ(s))⊤z

]
− Epβ(s,s′)

[
logEp(z′)

[
e(ϕ(s

′)−ϕ(s))⊤z′
]]
, (2)

which is exactly the contrastive lower bound on Iβ(S, S′;Z). This contrastive lower bound allows us
to learn the state representation ϕ while getting rid of the dual gradient descent procedure (Eq. 10)
adopted by METRA. In practice, we find that adding a fixed coefficient ξ = 5 to the second term of
Eq. 2 helps boost performance.

In the same way that the METRA actor objective excluded the anti-exploration term (Sec. 2.2), we
propose to construct the intrinsic reward by removing the negative term from our representation
objective (Eq. 2), resulting in the same RL objective as J(π) (Eq. 11):

πk+1 ← argmax
π

Epπ(s,s′,z) [rk(s, s′, z)] , rk(s, s′, z) ≜ (ϕk(s
′)− ϕk(s))⊤z (3)

We use this RL objective as the update rule for the skill-conditioned policy π in our algorithm.

3.2 Learning a Policy with Successor Features

To optimize the policy (Eq. 3), we will use an actor-critic method. Most skill learning methods use an
off-the-shelf RL algorithm (e.g., TD3 [22], SAC [27]) to fit the critic. However, by noting that the
intrinsic reward function r(s, s′, z) 3 is a linear combination between basis ϕ(s′)− ϕ(s) ∈ Rd and
weights z ∈ Z ⊂ Rd, we can borrow ideas from successor representations to learn a vector-valued
critic. We learn the successor features ψπ : S ×A×Z 7→ Rd:

ψπ(s, a, z) ≜ Es∼pπ(s+=s|z),s′∼p(s′|s,a) [ϕ(s
′)− ϕ(s)] ,

with the corresponding skill-conditioned policy π in an actor-critic style:

ψk+1(s, a, z)← argmin
ψ

E(s,a,z)∼pβ(s,a,s′,z),a′∼π(a′|s′,z)

[(
ψ(s, a, z)− ψ̂k(s, s′, a′, z)

)2]
,

where ψ̂k(s, s
′, a′, z) ≜ ϕk(s

′)− ϕk(s) + γψ̄k(s
′, a′, z),

πk+1 ← argmax
π

E(s,z)∼pβ(s,z),a∼π(a|s,z)
[
ψk(s, a, z)

⊤z
]
,

where ψ is an estimation of ψπ . In practice, we optimize ψ and π for one gradient step iteratively. In
Appendix D, we summarize our algorithm and show the pseudo-code of CSF (Alg. 1).

3We ignore the iteration k for notation simplicity.

3



(a) Expected constraint

0.5 0.0 0.5
(s′) (s) z dim 1

0.5

0.0

0.5

(s
′ )

(s
)

z d
im

 0

counts0

5

10

15

20
0.5 0.0 0.5

0

500

co
un

ts

0 500
counts

0.5

0.0

0.5

(b) Gaussianity

2 0 2
angles

0

250

500

750

co
un

ts

(c) Uniformity
Figure 2: Histograms of METRA representations. (a) The expected distance of representations converges
to 1.0, helping to explain what objective METRA’s representations are optimizing. (b) Given a latent skill, the
conditional difference in representations (ϕ(s′)− ϕ(s) | z) converges to an isotropic Gaussian distribution. (c)

Taking the marginal over latent skills, the normalized difference in representations
(

(ϕ(s′)−ϕ(s))
∥ϕ(s′)−ϕ(s)∥2

)
converges to

a UNIF(Sd−1). These observations are consistent with our theoretical analysis (Cor. 1) suggesting that METRA
is performing a form of contrastive learning.

4 Experiments
The aims of our experiments are (1) verifying the theoretical analysis in Sec. 2 experimentally,
and (2) comparing our simplified algorithm CSF to prior work. Our experiments will use standard
benchmarks introduced by prior work on skill learning. All experiments show means and standard
deviations across ten random seeds. In Appendix F, we also include experiments identifying several
ingredients that are key to making MISL algorithms work well more broadly.

4.1 METRA Constrains Representations in Expectation

Prop. 1 predicts that the optimal METRA representation satisfies its constraint
Eβp (s, s′)

[
∥ϕ(s′)− ϕ(s)∥22

]
= 1 strictly. We study whether this condition holds after train-

ing the algorithm for a long time. To answer this question, we conduct didactic experiments with
the state-based Ant from METRA [52] navigating in an open space. We set the dimension of ϕ to
d = 2 such that visualizing the learned representations becomes easier. After training the METRA
algorithm for 20M environment steps (50K gradient steps), we analyze the norm of the difference in
representations ∥ϕ(s′)− ϕ(s)∥22.

We plot the histogram of ∥ϕ(s′)− ϕ(s)∥22 over 10K transitions randomly sampled from the replay
buffer (Fig. 2a). The observation that the empirical average of ∥ϕ(s′)− ϕ(s)∥22 converges to 0.9884
suggests that the learned representations are feasible. Stochastic gradient descent methods typically
find globally optimal solutions on over-parameterized neural networks [17], making us conjecture
that the learned representations are nearly optimal (Prop. 1). Furthermore, the spreading of the value
of ∥ϕ(s′)− ϕ(s)∥22 implies that maximizing the METRA representation objective will not learn state
representations ϕ that satisfy ∥ϕ(s′) − ϕ(s)∥22 ≤ 1 for every (s, s′) ∈ Sβadj. These results help to
explain what objective METRA’s representations are optimizing.

4.2 METRA Learns Contrastive Representations

We next study connections between representations learned by METRA and those learned by con-
trastive learning empirically. Our analysis in Sec. 2.1 reveals that the representation objective of
METRA corresponds to the contrastive lower bound on Iβ(S, S′;Z). This analysis raises the question
of whether representations learned by METRA share similar structures to representations learned by
contrastive losses [25, 41, 71].

To answer this question, we reuse the trained algorithm in Sec. 4.1 and visualize two important
statistics: (1) the conditional differences in representations ϕ(s′)− ϕ(s)− z and (2) the normalized
marginal differences in representations (ϕ(s′)− ϕ(s))/∥ϕ(s′)− ϕ(s)∥2. The resulting histograms
(Fig. 2b & 2c) indicate that the conditional differences in representations ϕ(s′)− ϕ(s)− z converge
to an isotropic Gaussian in distribution while the normalized marginal differences in representa-
tions (ϕ(s′)− ϕ(s))/∥ϕ(s′)− ϕ(s)∥2 converge to a uniform distribution on the d-dimensional unit
hypersphere Sd−1 in distribution. Prior work [71] has shown that representations derived from
contrastive learning preserve properties similar to these observations. We conjecture that maximizing
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Figure 3: CSF performs on par with METRA. We compare CSF with baselines on state coverage (left),
zero-shot goal reaching (middle), and hierarchical control (right). We generally find CSF to perform roughly
on par with METRA and outperform all other baselines in most settings. Shaded areas indicate one standard
deviation. Appendix Fig. 5, 6& 7 show the learning curves for all tasks.

the contrastive lower bound on Iβ(S, S′;Z) directly has the same effect as maximizing the METRA
representation objective. See Appendix G.6 for formal claims and connections.

4.3 CSF Matches SOTA for both Exploration and Downstream performance

Our final set of experiments compare CSF to prior MISL algorithms, measuring performance on both
unsupervised exploration and solving downstream tasks.

Experimental Setup. We evaluate on the same five tasks as those used in Park et al. [52] plus
Robobin from LEXA [42], though we will only focus on HalfCheetah and Humanoid in the main
text. For baselines, we also use a subset from Park et al. [52] (METRA [52], CIC [34], DIAYN [18],
and DADS [63]) along with VISR [28]. See Appendix H.2 for details.

Exploration performance. To measure the inherent exploration capabilities of each method without
considering any particular downstream task, we compute the state coverage by counting the unique
number of (x, y) coordinates visited by the agent. Fig. 3 (left) shows CSF matches METRA on both
HalfCheetah and Humanoid. For the full set of exploration results, please see Appendix H.3.

Zero-shot goal reaching. In this setting the agent infers the right skill given a goal without further
training on the environment. We evaluate on the same set of six tasks and defer both the goal sampling
and skill inference strategies to Appendix H.4. We report the staying time fraction, which is the
number of time steps that the agent stays at the goal divided by the horizon length. In Fig. 3 (middle),
we find all methods to perform similarly on HalfCheetah, while METRA and CSF perform best on
Humanoid, with METRA performing slightly better on the latter. For the full set of zero-shot goal
reaching results, please see Appendix H.4.

Hierarchical control. We train a hierarchical controller πh(z | s) that outputs latent skills z as
actions for every fixed number of time steps to maximize the discounted return in two downstream
tasks from Park et al. [52], one of which requires to reach a specified goal (HumanoidGoal) and one
requires jumping over hurdles (HalfCheetahHurdle). The results in Fig. 3 (right) show CSF and
METRA are the best performing methods, showing mostly similar performance. For further details
as well as the full set of results on all tasks, please see Appendix H.5.

5 Conclusion

In this paper, we show how one of the current strongest unsupervised skill discovery algorithms
can be understood through the lens of mutual information skill learning. Our analysis allowed the
development of our new method CSF, which we showed to perform on par with METRA in most
settings. More broadly, our work provides evidence that mutual information maximization can still
be effective to build high performing skill discovery algorithms.

Limitations. It is unclear how far CSF can scale to increasingly complex environments with
potentially an increased number of interactive objects, partial observability, environment stochasticity,
and discrete action spaces. We leave investigating these empirical scaling limits to future work.
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A A Complete Understanding of The Prior Method

A.1 Connecting METRA’s Representation Objective and Contrastive Learning

Our understanding of METRA starts by interpreting the representation objective of METRA as a
contrastive loss. This interpretation proceeds by two steps. First, we focus on understanding the
actual representation objective of METRA, aiming to predict the convergent behavior of the learned
representations. Second, based on the actual representation objective, we draw a connection between
METRA and contrastive learning. In Sec. 4, we conduct experiments to verify that METRA learns
optimal representations in practice and that they bear resemblance to contrastive representations.

Appendix C mentioned that the Lagrangian L(ϕ, λ) used as the METRA representation objective does
not correspond to the constrained optimization problem in Eq. 9, raising the following question: What
is the actual METRA representation objective? To answer this question, we note that, rather than using
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distinct dual variables for each pair of (s, s′) ∈ Sβadj, L(ϕ, λ) employs a single dual variable, imposing
an expected temporal distance constraint over all pairs of (s, s′) under the historical transition
distribution pβ(s, s′). This observation suggests that METRA’s representations are optimized with
the following objective

max
ϕ

Ep(z)pβ(s,s′|z)[(ϕ(s′)− ϕ(s))⊤z] s.t. Epβ(s,s′)
[
∥ϕ(s′)− ϕ(s)∥22

]
≤ 1. (4)

Applying KKT conditions to L(ϕ, λ), we claim that
Proposition 1. The optimal state representation ϕ⋆ of the actual METRA representation objective
(Eq. 4) satisfies

Epβ(s,s′)
[
∥ϕ⋆(s′)− ϕ⋆(s)∥22

]
= 1.

The proof is in Appendix G.2. Constraining the representations of consecutive states in expectation
not only clarifies the actual METRA representation objective, but also means that we can predict
the value of this expectation for optimal ϕ. Sec. 4.1 includes experiments studying whether the
optimal representation satisfies this proposition in practice. Importantly, identifying the actual
METRA representation objective allows us to draw a connection with the rank-based contrastive loss
(InfoNCE [47, 41]), which we discuss next.

We relate the actual METRA representation objective to a contrastive loss, which we will specify
first and then provide some intuitions for what it is optimizing. This loss is a lower bound on the
mutual information Iβ(S, S′;Z) and a variant of the InfoNCE objective [30, 41, 76]. Starting from
the standard variational lower bound [4, 55], prior work derived an unnormalized variational lower
bound on Iβ(S, S′;Z) (IUBA in [55]),

Iβ(S, S′;Z) ≥ Epβ(s,s′,z)[f(s, s′, z)]− Epβ(s,s′)
[
logEp(z′)

[
ef(s,s

′,z′)
]]
,

where f : S × S × Z 7→ R is the critic function [41, 55, 20, 76]. Since the critic function f
takes arbitrary functional form, one can choose to parameterize f as the inner product between the
difference of transition representations and the latent skill, i.e. f(s, s′, z) = (ϕ(s′)− ϕ(s))⊤z. This
yields a specific lower bound:

Iβ(S, S′;Z) ≥ Epβ(s,s′,z)[(ϕ(s
′)− ϕ(s))⊤z]︸ ︷︷ ︸

LBβ
+(ϕ)

−Epβ(s,s′)

[
logEp(z′)

[
e(ϕ(s

′)−ϕ(s))⊤z′
]]

︸ ︷︷ ︸
LBβ

−(ϕ)

≜ LBβ(ϕ). (5)

Intuitively, LBβ+(ϕ) pushes together the difference of transition representations ϕ(s′) − ϕ(s) and
the latent skill z sampled from the same trajectory (positive pairs), while LBβ−(ϕ) pushes away
ϕ(s′)− ϕ(s) and z sampled from different trajectories (negative pairs). This intuition is similar to
the effects of the contrastive loss, and we note that Eq. 5 only differs from the standard InfoNCE loss
in excluding the positive pair in LBβ−(ϕ). We will call this lower bound on the mutual information
the contrastive lower bound.

We now connect the contrastive lower bound LBβ(ϕ) (Eq. 5) to the actual METRA representation loss
L(ϕ, λ) (Eq. 10). While both of these optimization problems share the positive pair term (LBβ+(ϕ)),
they vary in the way they handle randomly sampled (s, s′, z) pairs (negatives): METRA constrains
the expected L2 representation distances λ

(
1− Epβ(s,s′)

[
∥ϕ(s′)− ϕ(s)∥22

])
, while the contrastive

lower bound minimizes the log-expected-exp score (LBβ−(ϕ)). However, we bridge this difference by
viewing the expected L2 distance as a quadratic approximation of the log-expected-exp score:
Proposition 2. There exists a λ0(d) depending on the dimension d of the state representation ϕ such
that the following second-order Taylor approximation holds

λ0(d)(1− Epβ
[
∥ϕ(s′)− ϕ(s)∥22

]
) ≈ LBβ−(ϕ).

See Appendix G.3 for a proof. This approximation shows that the constraint in the actual METRA
representation loss has effects similar to LBβ−(ϕ), namely pushing ϕ(s′)− ϕ(s) away from randomly
sampled skills. Furthermore, this proposition allows us to spell out the (approximate) equivalence
between representation learning in METRA and the contrastive lower bound on Iβ(S, S′;Z):
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Corollary 1. The METRA representation objective is equivalent to a second-order Taylor approxi-
mation of Iβ(S, S′;Z), i.e., L(ϕ, λ0(d)) ≈ LBβ(ϕ).

The METRA representation objective can be interpreted as a contrastive loss, allowing us to pre-
dict that the optimal state representations ϕ⋆ (Prop. 1) have properties similar to those learned via
contrastive learning. In Appendix I.1, we include experiments studying whether the approximation
in Prop. 2 is reasonable in practice. In Sec. 4.2, we empirically compare METRA’s representa-
tions to those learned by the contrastive loss. Appendix F studies whether replacing the METRA
representation objective with a contrastive objective retains similar performance.

A.2 Connecting METRA’s Actor Objective with an Information Bottleneck

This section discusses the actor objective used in METRA. We first clarify the distinction between
the actor objective of METRA and those used in prior methods, helping to identify a term that
discourages exploration. Removing this anti-exploration term results in covering a larger proposition
of the state space while learning distinguishable skills. We then relate this anti-exploration term
to estimating another mutual information, drawing a connection between the entire METRA actor
objective and a variant of the information bottleneck [68, 3].

While prior work [18, 24, 63, 28, 11] usually uses the same functional form of the lower bound on
the mutual information I(S, S′;Z) to learn both representations and skill-conditioned policies (Eq. 7
& 8), METRA uses different objectives for the representation and the actor. Specifically, the actor
objective of METRA J(π) (Eq. 11) only encourages the similarity between the difference of transition
representations ϕ(s′)−ϕ(s) and their skill z (positive pairs), while ignoring the dissimilarity between
ϕ(s′)− ϕ(s) and a random skill z (negative pairs):

J(π) = LBπ+(ϕ) = LBπ(ϕ)− LBπ−(ϕ),

where LBπ(ϕ), LBπ+(ϕ), and LBπ−(ϕ) are under the target policy π instead of the behavioral policy
β. The SOTA performance of METRA and the divergence between the functional form of the actor
objective (positive term) and the representation objective (positive and negative terms) suggests that
LBπ−(ϕ) may be a term discouraging exploration. Intuitively, removing this anti-exploration term
boosts the learning of diverse skills. We empirically study the effect of the anti-exploration term in
Appendix F and provide theoretical interpretations next.

Our understanding of the anti-exploration term LBπ−(ϕ) relates it to a resubstituion estimation of the
differential entropy hπ(ϕ(S′)− ϕ(S)) in the representation space (see Appendix G.4 for details), i.e.,
LBπ−(ϕ) = ĥπ(ϕ(S′)− ϕ(S)). Note that this entropy is different from the entropy of states hπ(S),
indicating that we want to minimize the entropy of difference of representations ϕ(s′) − ϕ(s) to
encourage exploration. There are two underlying reasons for this (seemly counterintuitive) purpose:
METRA aims to (1) constrain the expected L2 distance of difference of representations ϕ(s′)− ϕ(s)
(Eq. 10) and (2) push difference of representations ϕ(s′) − ϕ(s) towards skills z sampled from
UNIF(Sd−1). Nonetheless, this relationship allows us to further rewrite the anti-exploration term
LBπ−(ϕ) as an estimation of the mutual information Iπ(ϕ(S′)−ϕ(S′);S, S′), connecting the METRA
actor objective to an information bottleneck:
Proposition 3. The METRA actor objective is a lower bound on the information bottleneck
Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′)− ϕ(S)), i.e., J(π) ≤ Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′) = ϕ(S)).

See Appendix G.4 for a proof and further discussions. Maximizing the information bottleneck
Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′)− ϕ(S)) compresses the information in transitions (s, s′) into differ-
ence in representations ϕ(s′)− ϕ(s) while relating these representations to the latent skills z [3, 68].
This result implies that simply maximizing the mutual information Iπ(S, S′;Z) may be insufficient
for deriving a diverse skill-conditioned policy π, and removing the anti-exploration LBπ2 (ϕ) may be
a key ingredient for the actor objective. In Appendix G.5, we propose a general MISL framework
based on Prop. 3.

B Related Work

Through careful theoretical and experimental analysis, we develop a new mutual information skill
learning method that builds upon contrastive learning and successor features.

11



Unsupervised skill discovery. Our work builds upon prior methods that perform unsupervised skill
discovery. Prior work has achieved this aim by maximizing lower bounds [70, 55] of different mutual
information formulations, including diverse and distinguishable skill-conditioned trajectories [37, 18,
28, 34, 66], intrinsic empowerment [43, 13], distinguishable termination states [24, 72, 6], entropy
bonus [21, 36, 61], predictable transitions [63, 11], etc. Among those prior methods, perhaps the
most related works are CIC [34] and VISR [28]. Another line of unsupervised skill learning methods
utilize ideas other than mutual information maximization, such as Lipschitz constraints [49], MDP
abstraction [51], model learning [50], and Wasserstein distance [52, 29]. Our work will analyze the
state-of-the-art method named METRA [52] that builds on the Wasserstein dependency measure [48],
provide an alternative explanation under the well-studied MISL framework, and ultimately develop a
simpler method.

Contrastive learning. Contrastive learning has achieved great success for representation learning
in natural language processing and computer vision [56, 12, 23, 64, 14, 47, 26, 41, 70]. These
methods aim to push together the representations of positive pairs drawn from the joint distribution,
while pushing away the representations of negative pairs drawn from the marginals [41, 47]. In
the domain of RL, contrastive learning has been used to define auxiliary representation learning
objective for control [35, 74], solve goal-conditioned RL problems [76, 20, 19, 40], and derive
representations for skill discovery [34]. Prior work has also provided theoretical analysis for these
methods from the perspective of mutual information maximization [55, 70] and the geometry of
learned representations [71]. Our work will combine insights from both angles to analyze METRA
and show its relationship to contrastive learning, resulting in a new skill learning method.

Successor features. Our work builds on successor representations [15], which encode the discounted
state occupancy measure of policies. Prior work has shown these representations can be learned
on high-dimensional tasks [33, 75] and help with transfer learning [5]. When combined with
universal value function approximators [59], these representations generalize to universal successor
features, which estimates a value function for any reward under any policy [7]. While prior methods
have combined successor feature learning with mutual information skill discovery for fast task
inference [28, 39], we instead use successor features to replace Q estimation after learning state
representations (Sec. 3).

C Preliminaries

Mutual information skill learning. The MISL problem typically involves two steps: (1) unsupervised
pretraining and (2) downstream control. For the first step, we consider a Markov decision process
(MDP) without reward function defined by states s ∈ S, actions a ∈ A, initial state distribution
p0 ∈ ∆(S), discount factor γ ∈ (0, 1], and dynamics p : S × A 7→ ∆(S), where ∆(·) denotes
the probability simplex. The goal of unsupervised pretraining is to learn a skill-conditioned policy
π : S × Z 7→ ∆(A) that conducts diverse and discriminable behaviors, where Z is a latent skill
space. We use β : S × Z 7→ ∆(A) to denote the behavioral policy. We define the prior distribution
of skills as a uniform distribution over the d-dimensional unit hypersphere p(z) = UNIF(Sd−1) (a
uniform von Mises–Fisher distribution [73]) and will use this prior throughout our discussions.

Given a latent skill space Z , prior methods [18, 63, 34, 24, 28] maximizes the MI between skills and
states Iπ(S;Z) or the MI between skills and transitions Iπ(S, S′;Z) under the target policy. We will
focus on Iπ(S, S′;Z) but our discussion generalizes to Iπ(S;Z). Specifically, maximizing the MI
between skills and transitions can be written as

max
π

Iπ(S, S′;Z)
const.
= max

π
Ez∼p(z),s∼pπ(s+=s|z)

s′∼pπ(s′|s,z)
[log pπ(z | s, s′)], (6)

where pπ(s+ = s | z) is the discounted state occupancy measure [31, 45, 20, 76] of policy π
conditioned on skill z, and pπ(s′ | s, z) is the state transition probability given policy π and skill
z. This optimization problem can be casted into an iterative min-max optimization problem by first
choosing a variational distribution q(z | s, s′) to fit the historical posterior pβ(z | s, s′), which is an
approximation of pπ(z | s, s′), and then choosing policy π to maximize discounted return defined by
the intrinsic reward log q(z | s, s′):

qk+1 ← argmax
q

Epβ(s,s′,z)[log q(z | s, s′)]. (7)

πk+1 ← argmax
π

Epπ(s,s′,z)[log qk(z | s, s′)], (8)
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Algorithm 1 Contrastive Successor Features
1: Input state representations ϕθ , successor features ψω , skill-conditioned policy πη , and target successor

feature ψω̄ .
2: for each iteration do
3: Collect trajectory τ with z ∼ p(z) and a ∼ πη(a | s, z), and then add τ to the replay buffer.
4: Sample {(s, a, s′, z)} ∼ replay buffer, {a′} ∼ πη(a

′ | s′, z), and {z′} ∼ p(z′).
5: L(θ)← −E(s,s′,z)

[
(ϕθ(s

′)− ϕθ(s))
⊤z

]
+ E(s,s′)

[
log

∑
z′ e

(ϕθ(s
′)−ϕθ(s))

⊤z′
]
.

6: L(ω)← E(s,a,s′,a′,z)

[
(ψω(s, a, z)− (ϕθ(s

′)− ϕθ(s) + γψω̄(s
′, a′, z)))

2
]
.

7: L(η)← −E(s,z),a∼πη(a|s,z)
[
ψω(s, a, z)

⊤z
]
.

8: Update θ, ω, and η by taking gradients of L(θ), L(ω), and L(η).
9: Update ω̄ using exponential moving averages.

10: Return ϕθ , ψω , and πη .

where k indicates the number of updates. See Appendix G.1 for detailed discussion.

For the second step, given a regular MDP (with reward function), we reuse the skill-conditioned
policy π to solve a downstream task. Prior methods achieved this aim by (1) reaching goals in a
zero-shot manner [49, 50, 52], (2) learning a hierarchical policy πh : S 7→ ∆(Z) that outputs skills
instead of actions [18, 34, 24], or (3) planning in the latent space with a learned dynamics model [63].

METRA. Maximizing the mutual information between states and latent skills I(S;Z) only encour-
ages an agent to find discriminable skills, while the algorithm might fail to prioritize state space
coverage [52, 49]. A prior state-of-the-art method METRA [52] proposes to solve this problem by
learning representations of states ϕ : S 7→ Rd via maximizing the Wasserstein dependency measure
(WDM) [48] between states and skills IW(S;Z). Specifically, METRA chooses to enforce the
1-Lipschitz continuity of ϕ under the temporal distance metric, resulting in a constrained optimization
problem for ϕ:

max
ϕ

Ep(z)pβ(s,s′|z)[(ϕ(s′)− ϕ(s))⊤z] s.t. ∥ϕ(s′)− ϕ(s)∥22 ≤ 1 ∀(s, s′) ∈ Sβadj, (9)

where pβ(s, s′ | z) denotes the probability of first sampling s from the discounted state occupancy
measure pβ(s+ = s | z) and then transiting to s′ by following the behavioral policy β, and Sβadj
denotes the set of all the adjacent state pairs visited by β. In practice, METRA uses dual gradient
descent to solve Eq. 9, resulting in an iterative optimization problem4

min
λ≥0

max
ϕ

L(ϕ, λ)

L(ϕ, λ) ≜ Ep(z)pβ(s,s′|z)[(ϕ(s′)− ϕ(s))⊤z] + λ
(
1− Epβ(s,s′)

[
∥ϕ(s′)− ϕ(s)∥22

])
, (10)

Importantly, L(ϕ, λ) is not the Lagrangian of Eq. 9 because L(ϕ, λ) does not contain a dual variable
for every (s, s′) ∈ Sβadj. We discuss the actual METRA representation objective and the behavior of
convergent representations in Sec. 2.

After learning the state representation ϕ, METRA finds its skill-conditioned policy π via maximizing
the RL objective with intrinsic reward (ϕ(s′)− ϕ(s))⊤z:

max
π

J(π), J(π) ≜ Ez∼p(z),s∼pπ(s+=s|z)
s′∼pπ(s′|s,z)

[
(ϕ(s′)− ϕ(s))⊤z

]
. (11)

D Algorithm summary

We summarize our new algorithm, CSF, in Alg. 1 and the code is available online 5. Starting from
an existing MISL algorithm (e.g., DIAYN [18]), implementing our algorithm requires making three
simple changes: (1) learning state representations ϕθ by minimizing an InfoNCE loss (excluding
positive pairs in the denominator) between pairs of (s, s′) and z, (2) using a critic ψω with d-
dimensional outputs and replacing the scalar reward with the vector ϕθ(s′)− ϕθ(s), (3) sampling the
action a from the policy ϕη to maximize the inner product ψω(s, a, z)⊤z.

4We ignore the slack variable ϵ in Park et al. [52] because it takes a fairly small value ϵ = 10−3 ≪ 1.
5https://github.com/Princeton-RL/contrastive-successor-features
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Figure 4: Ablation studies. (Left) Replacing the METRA representation loss with a contrastive loss retains
performance. (Center) Using an information bottleneck to define the intrinsic reward is important for MISL.
(Right) Choosing the right parametrization is crucial for good performance. Shaded areas indicate 1 std. dev.

Unlike CIC [34], our method does not use the standard InfoNCE loss and instead employs a variant of
it. Unlike VISR [28], our method does not train the state representation ϕ using a skill discriminator.
Unlike METRA, our method learns representations using the contrastive lower bound directly,
avoids the Wasserstein distance and dual gradient descent optimization, and results in three fewer
hyperparameters (see Appendix E for details).

E Hyperparameter Comparison to METRA

Compared to METRA, CSF has three fewer hyperparameters, as it gets rid of (1) the ϵ slack variable
in Park et al. [52], (2) the dual gradient descent learning rate, and (3) the dual gradient descent
optimizer. Reducing the number of hyperparameters in a method is important when thinking about
scaling these methods to more complex domains where training runs may take several days or more.
Extensive hyperparameter tuning in these settings will be impossible.

F Ablation Studies

We now study various design decisions of both METRA and our simplified method, aiming to identify
some key factors that boost these MISL algorithms. We will conduct ablation studies on Ant again,
comparing coverage of (x, y) coordinates of different variants.

(1) Contrastive learning recovers METRA’s representation objective. Our analysis (Sec. 2.1)
and experiments (Sec. 4.2) have shown that METRA learns contrastive representations. We now test
whether we can retain the performance of METRA by simply replacing its representation objective
with the contrastive lower bound (Eq. 5). Results in Fig. 4 (Left) suggest that using the contrastive
loss (METRA-C) fully recovers the original performance, circumventing explanations building upon
the Wasserstein dependency measure.

(2) Maximizing the information bottleneck is important. In Sec. 2.2, we interpret the intrinsic
reward in METRA as a lower bound on an information bottleneck. We conduct ablation experiments
to study the effect of maximizing this information bottleneck over maximizing the mutual information
directly, a strategy typically used by prior methods [18, 42, 28]. Results in Fig. 4 (Center) show
that CSF failed to discover skills when only maximizing the mutual information (i.e. including the
anti-exploration term). These results indicate that using the information bottleneck as the intrinsic
reward may be important for MISL algorithms.

(3) Parametrization is key for CSF. When optimizing a lower bound on the mutual information
Iπ(S, S′;Z) using a variational distribution, there are many ways to parametrize the dependence on S,
S′, and Z. In Eq. 1, we chose the parametrization (ϕ(s′)−ϕ(s))⊤z, but there are many other choices.
Testing the sensitivity of this choice of parametrization allows us to determine whether a specific
form of the lower bound is important. In Fig. 4, we study a variant of CSF that uses MLP(s, s′)⊤z
instead of (ϕ(s′)− ϕ(s))⊤z in Eq. 1. We find using the alternative parametrization is catastrophic
for performance, suggesting that practitioners may need to be careful about the parametrization when
optimizing a lower bound on mutual information.
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G Theoretical Analysis

G.1 Mutual Information Maximization as a Min-Max Optimization Problem

Maximizing the mutual information Iπ(S, S′;Z) (Eq. 6) is more challenging than standard RL
because the reward function log pπ(z | s, s′) depends on the policy itself. To break this cyclic
dependency, we introduce a variational distribution q(z | s, s′) ∈ Q ≜ {q(z | s, s′)} to approximate
the posterior pπ(z | s, s′), where we assume that the variational family Q is expressive enough to
cover the ground true distribution under any π:
Assumption 1. For any skill-conditioned policy π : S × Z 7→ ∆(A), there exists q⋆(z | s, s′) ∈ Q
such that q⋆(z | s, s′) = pπ(z | s, s′).

This assumption allows us to rewrite Eq. 6 as

max
π

Epπ(s,s′,z)[log pπ(z | s, s′)]−min
q∈Q

Epπ(s,s′) [DKL (p
π(· | s, s′) ∥ q(· | s, s′))] ,

where DKL (p
π(· | s, s′) ∥ q(· | s, s′)) is the KL divergence between distributions pπ and q and it

satisfies DKL(p
π(· | s, s′) ∥ q(· | s, s′)) = 0 ⇐⇒ pπ(z | s, s′) = q(z | s, s′). The new max-min

optimization problem can be solved iteratively by first choosing variational distribution q(z | s, s′) to
fit the ground truth pπ(z | s, s′) and then choosing policy π to maximize discounted return defined
by the intrinsic reward q(z | s, s′):

qk+1 ← argmax
q∈Q

Epπk (s,s′,z) [log q(z | s, s′)] ,

πk+1 ← argmax
π

Epπ(s,s′,z)[log qk(z | s, s′)],

where k indicates the number of updates. In practice, the data used to update q are uniformly sampled
from a replay buffer typically containing trajectories from historical policies. Thus, the behavioral
policy is exactly the average of historical policies β = 1

k

∑k
i=1 πi(a | s, z) and the update rule for q

becomes

qk+1 ← argmax
q∈Q

Epβ(s,s′,z)[log q(z | s, s′)].

G.2 Proof of Proposition 1

Proposition 1. The optimal state representation ϕ⋆ of the actual METRA representation objective
(Eq. 4) satisfies

Epβ(s,s′)
[
∥ϕ⋆(s′)− ϕ⋆(s)∥22

]
= 1.

Proof. Suppose that the optimal ϕ⋆ satisfies

0 ≤ Epβ(s,s′)
[
∥ϕ⋆(s′)− ϕ⋆(s)∥22

]
= α2 < 1, (12)

where 0 ≤ α < 1. Then, there exists a 1/α > 1 that scales the expectation in Eq. 12 to exactly 1:

1

α2
Epβ(s,s′)

[
∥ϕ⋆(s′)− ϕ⋆(s)∥22

]
= 1.

Note that the ϕ⋆/α will also scale the objective to a larger number

1

α
Ep(z)pβ(s,s′|z)

[
(ϕ⋆(s′)− ϕ⋆(s))⊤z

]
> Ep(z)pβ(s,s′|z)

[
(ϕ⋆(s′)− ϕ⋆(s))⊤z

]
,

which contradicts the assumption that ϕ⋆ is optimal. Therefore, we conclude that the optimal ϕ⋆ must
satisfy Epβ(s,s′)

[
∥ϕ⋆(s′)− ϕ⋆(s)∥22

]
= 1.

G.3 Proof of Proposition 2

Proposition 2. There exists a λ0(d) depending on the dimension d of the state representation ϕ such
that the following second-order Taylor approximation holds

λ0(d)(1− Epβ
[
∥ϕ(s′)− ϕ(s)∥22

]
) ≈ LBβ−(ϕ).
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Proof. We first compute logEp(z)
[
e(ϕ(s

′)−ϕ(s))⊤z
]

analytically,

logEp(z)
[
e(ϕ(s

′)−ϕ(s))⊤z
]
= logCd(0)

∫
e(ϕ(s

′)−ϕ(s))⊤zdz

= log
Cd(0)

Cd(∥ϕ(s′)− ϕ(s)∥2)

+ log

∫
Cd(∥ϕ(s′)− ϕ(s)∥2)e

∥ϕ(s′)−ϕ(s)∥2
(ϕ(s′)−ϕ(s))⊤z

∥ϕ(s′)−ϕ(s)∥2 dz

(a)
= log

Cd(0)

Cd(∥ϕ(s′)− ϕ(s)∥2)

= log
Γ (d/2) (2π)d/2Id/2−1(∥ϕ(s′)− ϕ(s)∥2)

2πd/2∥ϕ(s′)− ϕ(s)∥d/2−1
2

= log
Γ(d/2)2d/2−1Id/2−1(∥ϕ(s′)− ϕ(s)∥2)

∥ϕ(s′)− ϕ(s)∥d/2−1
2

, (13)

where Γ(·) is the Gamma function, Iv(·) denotes the modified Bessel function of the first kind at
order v, and in (a) we use the definition of the density of von Mises-Fisher distributions. Applying
Taylor expansion [1] to Eq. 13 around ∥ϕ(s′)− ϕ(s)∥2 = 0 by using Mathematica [32] gives us a
polynomial approximation

log
Γ(d/2)2d/2−1Id/2−1(∥ϕ(s′)− ϕ(s)∥2)

∥ϕ(s′)− ϕ(s)∥d/2−1
2

=
1

2d
∥ϕ(s′)− ϕ(s)∥22 +O(∥ϕ(s′)− ϕ(s)∥32)

Now we can simply set λ0(d) = 1
2d to get

λ0(d)(1− ∥ϕ(s′)− ϕ(s)∥22) ≈ − logEp(z)
[
e(ϕ(s

′)−ϕ(s))⊤z
]
+ const..

Hence, we conclude that λ0(d)(1− Epβ(s,s′)
[
∥ϕ(s′)− ϕ(s)∥22

]
) is a second-order Taylor approxi-

mation of LBβ−(ϕ) = −Epβ(s,s′)
[
logEp(z)

[
e(ϕ(s

′)−ϕ(s))⊤z
]]

around ∥ϕ(s′)− ϕ(s)∥22 = 0 up to a
constant factor of λ0(d).

G.4 Proof of Proposition 3

Proposition 3. The METRA actor objective is a lower bound on the information bottleneck
Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′)− ϕ(S)), i.e., J(π) ≤ Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′) = ϕ(S)).

Proof. We consider the mutual information between transition pairs and skills under the target policy
Iπ(S, S′;Z). The standard variational lower bound [4, 55] of Iπ(S, S′;Z) can we written as:

Iπ(S, S′;Z) ≥ h(Z) + Epπ(s,s′,z)[log qπ(z | s, s′)],

where qπ(z | s, s′) is an arbitrary variational approximation of pπ(z | s, s′). We can set log qπ(z |
s, s′) to be

log qπ(z | s, s′) = f(s, s′, z) + log p(z)− logEp(z)
[
ef(s,s

′,z)
]
,

resulting in a lower bound:

Iπ(S, S′;Z) ≥ Epπ(s,s′,z)[(ϕ(s′)− ϕ(s))⊤z]︸ ︷︷ ︸
LBπ

+(ϕ)

−Epπ(s,s′)
[
logEp(z)

[
e(ϕ(s

′)−ϕ(s))⊤z
]]

︸ ︷︷ ︸
LBπ

−(ϕ)

,

where LBπ+(ϕ) is exactly the same as the RL objective J(π) (Eq. 11). This lower bound is similar to
Eq. 5 but it is under the target policy π instead.
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Equivalently, we can write the RL objective as

J(π) = Ep(z)pπ(s+=s|z)pπ(s′|s,z)

[
(ϕ(s′)− ϕ(s))⊤z− logEp(z′)

[
e(ϕ(s

′)−ϕ(s))⊤z′
]

+ logEp(z′)
[
e(ϕ(s

′)−ϕ(s))⊤z′
]]

= LBπ(ϕ)− LBπ−(ϕ)

where the two log-expected-exps cancel with each other. We next focus on the additional
LBπ−(ϕ) = −Ep(z)pπ(s+=s|z)pπ(s′|s,z)

[
logEp(z′)

[
e(ϕ(s

′)−ϕ(s))⊤z′
]]

, which can be interpreted as a
resubstitution entropy estimator of ϕ(s′)− ϕ(s) [71, 2]:

LBπ−(ϕ) = −Epπ(s,s′)
[
logEp(z)

[
e(ϕ(s

′)−ϕ(s))⊤z
]]

(a)
= − 1

N

N∑
i=1

log
 1

N

N∑
j=1

Cd(∥ϕ(s′i)− ϕ(si)∥2)e
∥ϕ(s′i)−ϕ(si)∥2

(ϕ(s′i)−ϕ(si))
⊤zj

∥ϕ(s′
i
)−ϕ(si)∥2


+ log

1

Cd(∥ϕ(s′i)− ϕ(si)∥2)

]
= − 1

N

N∑
i=1

(
log p̂vMF-KDE(ϕ(s

′
i)− ϕ(si)) + log

1

Cd(∥ϕ(s′i)− ϕ(si)∥2)

)
= ĥπ(ϕ(S′)− ϕ(S))− Epπ(s,s′)

[
log

1

Cd(∥ϕ(s′i)− ϕ(si)∥2)

]
(b)
= Îπ(S, S′;ϕ(S′)− ϕ(S))− Epπ(s,s′)

[
log

1

Cd(∥ϕ(s′i)− ϕ(si)∥2)

]
(c)
≈ Îπ(S, S′;ϕ(S′)− ϕ(S))− λ0(d)Epπ(s,s′)

[
∥ϕ(s′)− ϕ(s)∥22

]
+ const.

(d)
≈ Îπ(S, S′;ϕ(S′)− ϕ(S)) + const.,

where in (a) we use Monte Carlo estimator with N transitions and skills {(si, s′i, zi)}Ni=1 to rewrite
the expectation, in (b) we replace the entropy estimator ĥπ with the mutual information estimator
Îπ since ϕ(s′)− ϕ(s) is a deterministic function of (s, s′), in (c) we apply the same approximation
in Prop. 2, and in (d) the expected squared norm is replaced by 1.0 given the constraint in Eq. 4.
Taken together, we conclude that maximizing the RL objective J(π) is approximately equivalent to
maximizing a lower bound on the information bottleneck Iπ(S, S′;Z)−Iπ(S, S′;ϕ(S′)−ϕ(S)).

G.5 A General Mutual Information Skill Learning Framework

The general mutual information skill learning algorithm alternates between (1) collecting data, (2)
learning state representation ϕ by maximizing a lower bound on the mutual information Iβ(S, S′;Z)
under the behavioral policy β, (3) relabeling the intrinsic reward as a lower bound on the information
bottleneck Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′)− ϕ(S)), and finally (4) using an off-the-shelf off policy
RL algorithm to learning the skill-conditioned policy π. We show the pseudo-code of this algorithm
in Alg. 2.

G.6 Connection Between Representations Learned by METRA and Contrastive
Representations

In our experiments (Sec. 4.2), we sample 10K pairs of (s, s′, z) from the replay buffer and use them to
visualize the histograms of conditional differences in representations ϕ(s′)−ϕ(s)−z and normalized
marginal differences in representations (ϕ(s′)− ϕ(s))/∥ϕ(s′)− ϕ(s)∥2. The resulting histograms
(Fig. 2 (Center) & (Right)) indicate two intriguing properties of representations learned by METRA.
First, given a set of skills {z}, the differences in representations subtracting the corresponding skills
ϕ(s′)− ϕ(s)− z converges to an isotropic Gaussian distribution:

Claim 1. The state representations ϕ learned by METRA satisfies that ϕ(s′)−ϕ(s)−z d−→ N (0, σ2
ϕI),

or, equivalently, ϕ(s′)− ϕ(s) | z d−→ N (z, σ2
ϕI), where d−→ denotes convergence in distribution and

σϕ is the standard deviation of the isotropic Gaussian.
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Algorithm 2 A General Mutual Information Skill Learning Framework

1: Input state representations ϕ : S 7→ Rd, latent skill distribution p(z), and skill-conditioned
policy π : S × Z 7→ ∆(A).

2: for each iteration do
3: Collect trajectory τ with z ∼ p(z) and a ∼ π(a | s, z), and then add τ to the replay buffer.
4: Sample B = {(s, s′, z)} from the replay buffer.
5: Update ϕ by maximizing a lower bound on Iβ(S, S′;Z) constructed using B.
6: Relabel the intrinsic reward as a lower bound on Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′)− ϕ(S)).
7: Update π using an off-policy RL algorithm with B ∪ {r(s, s′, z)}.
8: Return ϕ⋆ and π⋆.

Second, taking the marginal over all possible skills, the normalized difference in representations
(ϕ(s′) − ϕ(s))/∥ϕ(s′) − ϕ(s)∥2 converges to a uniform distribution on the d-dimensional unit
hypersphere Sd−1:

Claim 2. The state representations ϕ learned by METRA also satisfy ϕ(s′)−ϕ(s)
∥ϕ(s′)−ϕ(s)∥2

d−→ UNIF(Sd−1).

We next propose a Lemma that relates a isotropic Gaussian distribution to a von Mises–Fisher
distribution [73] and then draw the connection between Claim 1 and Claim 2.
Lemma 1. Given an n-dimensional isotropic Gaussian distribution N (µ, σ2I) with ∥µ∥2 = rµ, a
von Mises–Fisher distribution VMF

(
µ/rµ, rµ/σ

2
)

can be obtained by restricting the support to be
a hypersphere with radius rµ, i.e., {x : ∥x∥2 = rµ}.

Proof. The probability density function of N (µ, σ2I) be written as

p(x) =
1

(2πσ)
n
2
exp

(
− 1

2σ2
(x− µ)⊤(x− µ)

)
=

1

(2πσ)
n
2
exp

(
− 1

2σ2

(
∥x∥22 − 2x⊤µ+ ∥µ∥22

))
When conditioning on ∥x∥2 = rµ, we have

1

(2πσ)
n
2
exp

(
− 1

2σ2

(
∥x∥22 − 2x⊤µ+ ∥µ∥22

))
=

1

(2πσ)
n
2
exp

(
− 1

2σ2

(
2r2µ − 2x⊤µ

))
=

1

(2πσ)
n
2
exp

(
rµ
σ2
· µ

⊤x

rµ
−
r2µ
σ2

)

∝ exp

(
rµ
σ2
· µ

⊤x

rµ

)
.

After recomputing the normalizing constant, we recover the probability density function of the von
Mises-Fisher distribution VMF

(
µ/rµ, rµ/σ

2
)
.

Since the didactic experiments in Sec. 4.2 have shown that ϕ(s′)− ϕ(s) | z converges to a Gaussian
distribution N (z, σ2

ϕI) (Claim 1) and note that ∥z∥2 = 1, by applying Lemma G.6, we conjecture
that restricting ϕ(s′) − ϕ(s) within {∥ϕ(s′) − ϕ(s)∥2 = 1} produces a von Mises-Fisher distribu-
tion, i.e., ϕ(s′)−ϕ(s)

∥ϕ(s′)−ϕ(s)∥2

∣∣∣ z d−→ VMF(z, 1/σ2
ϕ). Furthermore, we can derive the marginal density of

ϕ(s′)−ϕ(s)
∥ϕ(s′)−ϕ(s)∥2

,

p

(
ϕ(s′)− ϕ(s)
∥ϕ(s′)− ϕ(s)∥2

)
=

∫
p(z)p

(
ϕ(s′)− ϕ(s)
∥ϕ(s′)− ϕ(s)∥2

∣∣∣∣ z) dz
(a)
= Cd(0)

∫
Cd

(
1

σ2
ϕ

)
exp

(
1

σ2
ϕ

· (ϕ(s
′)− ϕ(s))⊤z

∥ϕ(s′)− ϕ(s)∥2

)
dz

= Cd(0),
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where in (a) we use the symmetric property of the density function of von Mises-Fisher distribu-
tions. Crucially, the marginal density indicates that ϕ(s′)−ϕ(s)

∥ϕ(s′)−ϕ(s)∥2
follows a uniform distribution

UNIF(Sd−1), which is exactly the observation in our experiments (Claim 2).

G.7 Intuition for zero-shot goal inference

In zero-shot goal reaching setting, we want to figure out the corresponding latent skill z when given
a goal state or image g; a problem which can be cast as inferring the z ∈ Z that maximizes the
posterior pπ(z | s, g). Since the ground truth posterior pπ(z | s, g) is unknown, a typical workaround
is first estimating a variational approximation of pπ(z | s, g) and then maximizing the variational
posterior q(z | s, g). We provide an intuition for zero-shot goal inference by specifying the variational
posterior as

q(z | s, g) ≜ p(z)e(ϕ(g)−ϕ(s))
⊤z

Ep(z)
[
e(ϕ(g)−ϕ(s))⊤z′

]
and solving the optimization problem in the latent skill space Z

argmax
z∈Z

log q(z | s, g),

or equivalently,

argmax
z

(ϕ(g)− ϕ(s))⊤z s.t. ∥z∥22 = 1.

Taking derivative of the Lagrangian and setting it to zero, the analytical solution is exactly z⋆ =
ϕ(g)−ϕ(s)

∥ϕ(g)−ϕ(s)∥2
, suggesting that the heuristic used by prior methods and our algorithm can be understood

as a maximum a posteriori (MAP) estimation.

H Experimental Details

All experiments were run on a combination of GPUs consisting of NVIDIA GeForce RTX 2080 Ti,
NVIDIA RTX A5000, NVIDIA RTX A6000, and NVIDIA A100. All experiments took at most 1
day to run to completion.

H.1 Hyperparameter Comparison to METRA

Compared to METRA, CSF has five fewer hyperparameters, as it gets rid of (1) the ϵ slack variable
in Park et al. [52], (2) the norm constraint value in Eq. 9, (3) the dual gradient descent learning
rate, (4) the dual gradient descent optimizer, and (5) the choice of discrete or continuous skills z.
Reducing the number of hyperparameters in a method is important when thinking about scaling these
methods to more complex domains where training runs may take several days or more. Extensive
hyperparameter tuning in these settings will be impossible.

H.2 Experimental Setup

Environments. We choose to evaluate on the following six tasks: Ant and HalfCheetah from
Gym [69, 8], Quadruped and Humanoid from DeepMind Control (DMC) Suite [67], and Kitchen
and Robobin from LEXA [42]. We choose these six tasks to be consistent with the original METRA
work [52]. In addition, we added Robobin as another manipulation task since the original five
tasks are all navigation tasks except for Kitchen. The observations are state-based in Ant and
HalfCheetah and 64× 64 RGB images of the scene in all other tasks.

Baselines. We consider five baselines. (1) METRA [52] is the state-of-the-art approach which
provides the motivation for deriving CSF. (2) CIC [34] uses a rank-based contrastive loss (InfoNCE)
to learn representations of transitions and then maximizes a state entropy estimate constructed
using these representations. (3) DIAYN [18] represents a broad category of methods that first
learn a parametric discriminator q(z | s, s′) (or q(z | s)) to predict latent skills from transitions
and then construct the reverse variational lower bound on mutual information [11] as an intrinsic
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Table 1: CSF hyperparameters for unsupervised pretraining.
Hyperparameter Value
Learning rate 0.0001
Horizon 200, except for 50 in Kitchen
Parallel workers 8, except for 10 in Robobin
State normalizer used in state-based environments only
Replay buffer batch size 256
Gradient updates per trajectory collection round 50 (Ant, Cheetah), 200 (Humanoid,

Quadruped), 100 (Kitchen, Robobin)
Frame stack 3 for image-based, n/a for state-based
Trajectories per data collection round 8, except for 10 in Robobin
Automatic entropy tuning yes
ξ (scales second term in Eq. 2) 5
Number of negative zs to compute LB−(ϕ) 256 (in-batch negatives)
EMA τ (target network) 5e−3

ϕ, π, ψ network hidden dimension 1024
ϕ, π, ψ network number of layers 1 input, 1 hidden, 1 output
ϕ, π, ψ network nonlinearity relu (ϕ), tanh (π), relu (ψ)

reward. (4) DADS [63] builds upon the forward variational lower bound on mutual information [11]
which requires maximizing the state entropy h(S) to encourage state coverage while minimizing
the conditional state entropy h(S | Z) to distinguish different skills. There is a family of methods
studying variational approximations of h(S) and h(S | Z) [11, 39, 34, 36, 63] of which DADS is
a representative. (5) VISR [28] is similar to DIAYN in that it also trains the representations ϕ by
learning a discriminator to maximize the likelihood of a skill given a state, though the discriminator
is parametrized as a vMF distribution. In addition, VISR learns successor features that allow it to
perform GPI as well as fast task adaptation after unsupervised pretraining. Note that our version of
VISR does not include GPI since we evaluate on continuous control environments.

H.3 Exploration performance

Please see Fig. 5 for the full set of exploration results. We can see that CSF continues to perform on par
with METRA, while sometimes outperforming METRA (Robobin) and sometimes underperforming
METRA (Quadruped).

For CSF, all tasks were trained with continuous z sampled from a uniform vMF distribution and λ = 5.
METRA also uses a continuous z sampled from a uniform vMF distribution for all environments
except for HalfCheetah and Kitchen, where we used a one-hot discrete z, consistent with the
original work [52]. CIC uses a continuous z sampled from a standard Gaussian for all environments.
DIAYN uses a one-hot discrete z for all environments. DADS uses a continuous z sampled from
a uniform distribution on [−1, 1] for all environments. Finally, VISR uses a continuous z sampled
from a uniform vMF distribution for all environments. Please refer to Table 2 for a full overview
of skill dimensions per method and environment. A table with all relevant hyperparameters for the
unsupervised training phase can be found in Table 1.

H.4 Zero-shot goal reaching

Please see Fig. 6 for the full set of goal reaching results. We find CSF to generally perform closely to
METRA, though slightly underperforming in Quadruped, Humanoid, and Kitchen. In Ant however,
CSF outperforms METRA.

Goal sampling. We closely follow the setup in Park et al. [52]. For all baselines, 50 goals are
randomly sampled from [−50, 50] in Ant, [100, 100] in HalfCheetah, [−15, 15] in Quadruped, and
[−10, 10] in Humanoid. In Kitchen, we sample 50 times at random from the following built-in tasks:
BottomBurner, LightSwitch, SlideCabinet, HingeCabinet, Microwave, and Kettle. In Robobin, we
sample 50 times at random from the following built-in tasks: ReachLeft, ReachRight, PushFront, and
PushBack.
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Table 2: Skill dimensions per method and environment. We list the skill dimension for all methods
and environments reported in the paper.

Ant HalfCheetah Quadruped Humanoid Kitchen Robobin
CSF 2 2 4 8 4 9

METRA 2 16 4 2 24 9

DIAYN 50 50 50 50 50 50

DADS 3 3 - - - -

CIC 64 64 64 64 64 64

VISR 5 5 5 5 5 5
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Figure 5: State space coverage. We plot the unique number of coordinates visited by the agent,
except for Kitchen where we plot the task coverage. We find CSF matches the prior state-of-the-art
MISL algorithms on 4/6 tasks, and strongly outperforms METRA in Robobin. Shaded areas indicate
one standard deviation.

Evaluation Unlike prior methods [49, 52, 63, 42], we choose the staying time fraction instead of
the success rate as our evaluation metric. The staying time indicates the number of time steps that the
agent stays at the goal divided by the horizon length, while the success rate simply indicates whether
the agent reaches the goal at any time step. Importantly, a high success rate does not necessarily
imply a high staying time fraction (e.g., the agent might overshoot the goal after success).

Skill inference. Prior work [49, 52, 50] has proposed a simple inference method by setting the skill
to the difference in representations z = ϕ(g)−ϕ(s)

∥ϕ(g)−ϕ(s)∥2
, where g indicates the goal. We choose to use

the same approach for CSF and METRA and provide some theoretical intuition for this strategy in
Appendix G.7. For DIAYN, we follow prior work [52] and set z = one_hot[argmaxi q(z|g)i].

H.5 Hierarchical control

Please see Fig. 7 for the full set of hierarchical control results. We find CSF to perform closely to
METRA in most environments, though it outperforms METRA on AntMultiGoal and underperforms
METRA on QuadrupedGoal. CSF outperforms all other baselines on all environments.

We use SAC [27] for AntMultiGoal, HumanoidGoal, and QuadrupedGoal. We use PPO [60] for
CheetahGoal and CheetahHurdle. For all state-based environments, we initialize (and freeze) the
child policy with a checkpoint trained with 64M environment steps. For image-based environments,
we use checkpoints trained with 4.8M environments. A table with all relevant hyperparameters for
training the hierarchical control policy can be found in Table 3.
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Figure 6: Goal reaching. We compare CSF with baselines on goal-reaching tasks. We find that CSF
achieves strong performance on Ant and mostly outperforms DIAYN and VISR. However, CSF lags
a bit behind METRA on Quadruped, Kitchen, and Humanoid. All means and standard deviations
are computed across ten random seeds. Shaded areas indicate one standard deviation.

Table 3: CSF hyperparameters for hierarchical control.
Hyperparameter Value
Learning rate 0.0001
Option timesteps length 25
Total horizon length 200
Parallel workers 8
Trajectories per data collection round 8, except for Cheetah where we use 64
Algorithm SAC, except for Cheetah where we use PPO
State normalizer used in state-based environments only
Replay buffer batch size 256
Gradient updates per trajectory collection round 50, except for Cheetah where we use 10
Frame stack 3 for image-based, n/a for state-based
π (parent, child) networks hidden dimension 1024
π (parent, child) networks number of layers 1 input, 1 hidden, 1 output
π (parent, child) networks nonlinearity tanh
Child policy frozen? yes

I Additional Experiments

I.1 Quadratic approximation of LBβ2 (ϕ)

We conduct experiments to study the accuracy of the quadratic approximation in Prop. 2 in
practice. To answer this question, we reuse the METRA algorithm trained on the didactic Ant
environment and compare logEp(z)[e(ϕ(s

′)−ϕ(s))⊤z] against ∥ϕ(s′) − ϕ(s)∥22. We can compute
logEp(z)[e(ϕ(s

′)−ϕ(s))⊤z] analytically because d = 2 in our experiments. Results in Fig. 8
shows a clear linear relationship between logEp(z)[e(ϕ(s

′)−ϕ(s))⊤z] and ∥ϕ(s′) − ϕ(s)∥22, sug-
gesting that the slope of the least squares linear regression is near the theoretical prediction, i.e.,
λ0(d) = 1

2d = 0.25 ≈ 0.2309. We conjecture that this linear relationship still exists for higher
dimensional d and, therefore, the second-order Taylor approximation proposed by Prop. 2 is practical.

I.2 METRA and CSF are Sensitive to the Skill Dimension

METRA leverages different skill dimensions for different environments. This caused us to investigate
what the impact of the skill dimension on exploration performance is. In Fig. 9, we find that both
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Figure 7: Hierarchical control. We compare CSF with baselines on hierarchical control tasks using
returns averaged over the 10 past evaluations. We find CSF to perform mostly competitively compared
to METRA, outperforming METRA in AntMultiGoal, but underperforming in QuadrupedGoal
(and to a small extent in HalfCheetahGoal and HumanoidGoal). All means and standard deviations
are computed across ten random seeds. Shaded areas indicate one standard deviation.
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Figure 9: Skill Dimension. CSF and METRA (to
a lesser extent) are sensitive to the skill dimension
(indicated in parentheses).

METRA (to a lesser extent) and CSF are quite sensitive to the skill dimension. We conclude that skill
dimension is a key parameter to tune for practitioners when training their MISL algorithm.
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