
Under review as submission to TMLR

Are Domain Generalization Benchmarks with Accuracy on
the Line Misspecified?

Anonymous authors
Paper under double-blind review

Abstract

Spurious correlations are unstable statistical associations that hinder robust decision-making.
Conventional wisdom suggests that models relying on such correlations will fail to generalize
out-of-distribution (OOD), particularly under strong distribution shifts. However, a growing
body of empirical evidence challenges this view, as naive empirical risk minimizers often
achieve the best OOD accuracy across popular OOD generalization benchmarks. In light
of these counterintuitive results, we propose a different perspective: many widely used
benchmarks for assessing the impact of spurious correlations on OOD generalization are
misspecified. Specifically, they fail to include shifts in spurious correlations that meaningfully
degrade OOD generalization, making them unsuitable for evaluating the benefits of removing
such correlations. We establish sufficient—and in some cases necessary—conditions under
which a distribution shift can reliably assess a model’s reliance on spurious correlations.
Crucially, under these conditions, we provably should not observe a strong positive correlation
between in-distribution and out-of-distribution accuracy—often referred to as accuracy on
the line. Yet, when we examine state-of-the-art OOD generalization benchmarks, we find
that most exhibit accuracy on the line, suggesting they do not effectively assess robustness to
spurious correlations. Our findings expose a limitation in evaluating algorithms for domain
generalization, i.e., learning predictors that do not rely on spurious correlations. Our results
highlight the need to rethink how we assess robustness to spurious correlations.

1 Introduction

Domain generalization aims to develop predictors that generalize to arbitrarily new and potentially worst-case
unobserved distributions (Arjovsky et al., 2019; Rosenfeld et al., 2020). Spurious correlations, also referred
to as shortcuts, are coincidental statistical associations between features and labels in training data that
fail to generalize beyond the training distribution, hindering domain generalization (Nagarajan et al., 2020;
Geirhos et al., 2020; Makar et al., 2022). For example, a medical diagnosis model trained on data from one
hospital may be less effective in a different hospital with distinct patient demographics, equipment, or clinical
practices (Zech et al., 2018; Yang et al., 2024). Similarly, an animal detection model trained on data from one
environment and sensor type may be less effective in classifying animals in images captured under a different
environment and sensor configuration (Beery et al., 2018; Xiao et al., 2020).

Thus, many algorithms for domain generalization have been focused on learning predictors that ignore these
unreliable patterns—i.e., invariance or feature disentanglement methods (Arjovsky et al., 2019; Krueger
et al., 2021; Wang et al., 2019; Parascandolo et al., 2020; Creager et al., 2021; Ahuja et al., 2021; Shi et al.,
2021; Zhou et al., 2022; Wang et al., 2022b; Li et al., 2022; Salaudeen & Koyejo, 2024). Zhou et al. (2022);
Wang et al. (2022b) provide a more comprehensive survey on domain generalization (Lin et al., 2023; Chen
et al., 2022b; 2023b; Zhang et al., 2022). However, empirical evidence suggests that standard empirical risk
minimization (ERM), which may leverage spurious correlations (Xiao et al., 2020), often achieves the highest
out-of-distribution (OOD) accuracy on widely used benchmarks (Gulrajani & Lopez-Paz, 2020a; Yao et al.,
2022; Gagnon-Audet et al., 2022; Yang et al., 2023). Additionally, Taori et al. (2020); Miller et al. (2020; 2021);
Wenzel et al. (2022); Baek et al. (2022); Saxena et al. (2024); Nastl & Hardt (2024) demonstrate a strong
correlation between in- and out-of-distribution accuracy across several state-of-the-art benchmarks, suggesting
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that better in-distribution (ID) performance generally predicts better out-of-distribution performance. Nastl
& Hardt (2024) further shows that a model that uses all available features generally results in better OOD
performance than a model that uses a select subset of causal features for popular distribution shift tabular
datasets (Gardner et al., 2023). This observation is seemingly counter to the thesis that there can be statistical
patterns in training data that can improve ID performance but worsen OOD performance (Geirhos et al., 2020;
Makar et al., 2022). These findings raise a critical question: Does a better in-distribution classifier imply a
better out-of-distribution classifier, challenging the necessity of targeted algorithms for domain generalization?

We propose and provide evidence for an alternative explanation of ERM’s success in domain generalization.
Drawing on the concept of underspecification in modern machine learning pipelines (D’Amour et al., 2022),
we argue that ERM’s apparent superiority may stem from the (mis/under)specification of popular domain
generalization benchmarks.

Specifically, we consider the setting where correlations exist in training data and a subset (spurious) shift
at test time. We investigate the types of shifts under which predictions from a classifier that relies on
these spurious correlations generalize worse out-of-distribution than a classier that only uses the static
(domain-general) correlations, i.e., naive ERM is insufficient. We call these types of shifts well-specified. We
argue that when the best in-distribution classifier is also the best out-of-distribution classifier on a benchmark,
this benchmark does not represent the types of settings domain generalization is concerned with. The core
of this work studies a benchmark’s ability to distinguish between two types of predictors in this setting:
one that ignores spurious correlations (domain-general or invariant) and another that leverages all available
correlations (including spurious) that maximize in-distribution accuracy (domain-specific).

1.1 Our Contributions

• We establish a negative margin under distribution shift condition (or spurious correlation reversal)
that characterizes well-specified domain generalization benchmarks—Theorem 1.

• We show that well-specified benchmarks typically lack a strong correlation between in and out-
of-distribution accuracy for a diverse set of classifiers—such a strong correlation has been termed
accuracy on the line (Miller et al., 2020)—Theorem 3. When there is positive accuracy on the
line, the dataset may be misspecified for evaluating domain generalization.

• With over 40 total ID/OOD splits across 12 benchmarks, we show that many of the state-of-the-art
benchmarks exhibit (accuracy on the line) and may be misspecified for domain generalization. Code∗

While the theoretical and empirical results we present subsequently provide actionable insights for designing
and using domain generalization benchmarks, we will also discuss their implications on benchmarking norms
and practices, e.g., model selection, algorithmic fairness, causal representation learning, etc., in the context of
both predictive and generative models.

2 Theoretical Analysis: (Mis)specification of Domain Generalization Benchmarks

Following previous work (Wang et al., 2019; Rosenfeld et al., 2020; Ahuja et al., 2021; Salaudeen & Koyejo,
2024) we define domain-general (dg) features Zdg ⊆ Rk, where the optimal predictor that only uses these
domain-general features is desired. Conversely, spurious features (spu or domain-specific) Zspu ⊆ Rl contain
additional domain-specific information that improves the prediction task in-distribution, but their use can
degrade performance out-of-distribution. The observed features X ⊆ Rd are a concatenation of Zdg and Zspu,
where d = k + l. We also define Y = {±1}. P ’s represent probability distributions over X, Y . Let E , where
|E| > 1, denote the set of distributions of interest. P ∈ E implies that marginals without Zspu are preserved.

We consider classifiers f ∈ F : X 7→ Y of the form f(X) = ZT
dgwdg + ZT

spuwspu where wdg ∈ Rk and wspu ∈ Rl.
We note empirical findings support our parameterization of Zdg and Zspu from non-linear transformation
when a final linear mapping is applied, e.g., kernel regressors or common deep neural networks. Rosenfeld

∗https://anonymous.4open.science/status/misspecified_DG_benchmarks-E5FD.
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et al. (2022a) demonstrates that improving out-of-distribution performance can be done with new linear
classifiers on learned (non-linear) representations. Additional work shows that last-layer retraining improves
robustness to spurious correlations (Liu et al., 2021b; LaBonte et al., 2023). These findings suggest that the
non-spurious and spurious representations learned by deep models are often linearly separable, suggesting
that our assumption is reasonable. Importantly, we allow for a nonlinear shift in spurious correlation.

Within F , Fdg ⊂ F comprises functions fdg that only use domain-general features fdg(X) = fdg([Zdg; 0]).
Additionally, denote fX ∈ F\Fdg := FX, where fX uses both domain-general and domain-specific features.
The function ℓ(·, ·) 7→ R denotes a loss function, and Re(f) = EPe

[ℓ(Y, f(X))] defines the expected loss for
some function f ∈ F . Additionally, we define the accuracy of f ∈ F on distribution P as

accP (f) = E(X,Y )∼P

[
1(f(X) · Y > 0)

]
= Pr

(
f(X) · Y > 0

)
(1)

We first formally define spurious features and domain-general features (Definitions 1- 2). The relationship
between spurious features and the label we want to predict is allowed to change across domains and can
negatively impact out-of-distribution performance, while the relationship between domain-general features
and the label is stable across domains. For instance, when predicting medical diagnoses from chest X-rays,
the relationship between physiological features and diagnoses is expected to be stable from site to site
(domain-general), while the relationship between site-specific markings on X-rays and diagnoses is unstable
(spurious); predictors relying on site-specific markings fail out-of-distribution (Zech et al., 2018).
Definition 1 (Domain-General Features Zdg). For all Pi, Pj ∈ E,

EPi [Y | Zdg] = EPj [Y | Zdg]. (2)

Definition 2 (Spurious Features Zspu). For all Pi, Pj ∈ E,

EPi [Y | Zspu] ̸= EPj [Y | Zspu] EPi [Y | Zdg, Zspu] ̸= EPj [Y | Zdg, Zspu]. (3)

We assume both types of features are informative about labels (Assumption 1) and are not redundant
(Assumption 2). Clearly, if Assumption 1 does not hold, then the learning problem is ill-posed; features are
uncorrelated with labels. When Assumption 2 does not hold, spurious features are redundant and have no
unique information about the labels. Ahuja et al. (2021) study this setting (Fully Informative Invariant
Features (FIIF); we use ‘domain-general’ instead of ‘invariant’) and give conditions under which predictors
using spurious correlations can achieve equal OOD accuracy as the optimal invariant predictor. Hence, we
focus on the partially informative domain-general features setting.
Assumption 1 (Informative Domain-General and Domain-Specific Features). For all observed training
distributions P ,

EP [Y | Zdg] ̸= EP [Y ] and EP [Y | Zspu] ̸= EP [Y ]. (4)

Assumption 2 (Non-Redundant Features).

Zspu ̸⊥⊥ Y | Zdg and Zdg ̸⊥⊥ Y | Zspu. (5)

Also referred to as partially informative domain-general features.

Since we consider any feature whose inclusion decreases worst-case performance on the set of distribution of
interest E as spurious, e.g., the set of hospitals one expects a predictor to have to operate in, the definition
of spurious is strongly tied to the E ‘worst-case’ is with respect to. What is considered spurious for E ′ ̸= E
may differ, even if E ′ ⊂ E . Notably, this observation implies that domain generalization cannot practically be
divorced from domain expertise in defining E . Clearly, too narrow of an E decreases expected robustness
(potentially catastrophically), and too broad of an E may excessively and unnecessarily decrease overall utility.

We define two predictors: (i) the optimal domain-general predictor, which depends on E (Definition 3) and
(ii) the optimal domain-specific predictor for a given P ∈ E (Definition 4).
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Definition 3 (Optimal Domain General Predictor fE
dg). Given a set of distributions of interest E = {Pi(X, Y ) :

i = 1, . . .},
fE

dg = argmax
f∈Fdg

min
Pi∈E

accPi(f). (6)

By construction, fE
dg ∈ Fdg does not use spurious features.

Definition 4 (Optimal Domain Specific Predictor fP
X ). Given a distribution P and

fP
X = argmax

f∈F
accP (f). (7)

By construction, fP
X ∈ FX uses spurious features (Lemma 1).

Our first result—Lemma 1—shows that, given informative and non-redundant features (Assumptions 1-2)
and for any distribution P ∈ E , the optimal E-domain-general and P -domain-specific predictor are different,
and the optimal domain-specific predictor achieves a lower (convex) loss in-distribution than the optimal
domain-general predictor. This also contextualizes the rest of our results in that optimal domain-specific
models use all non-redundant features that improve performance.
Lemma 1 (Domain-General and Domain-Specific In-Distribution Error Gap). Assume non-redundant/non-
trivial features, partially informative domain-general features (Assumptions 1-2), and strongly convex loss
ℓ.

min
f∈F

Re(f) < min
f∈Fdg

Re(f), (8)

where F : X → R where f(x) = w⊤x = w⊤
dgzdg + w⊤

spuzspu, f ∈ F . For f ∈ Fdg, f(x) = w⊤x = w⊤
dgzdg. The

proof of Lemma 1 is provided in Appendix A.1.

Given that the in-distribution risk minimizer and the domain-general predictor differ, we now show that
given training and test distributions PID ̸= POOD ∈ E , respectively, the domain-general predictor fE

dg may also
not achieve a higher OOD accuracy than in-distribution risk minimizer fPID

X on POOD. We derive sufficient
conditions on POOD such that fE

dg achieves a higher OOD accuracy than fPID
X —Theorem 1. Such PID, POOD

ID/OOD splits make for ‘well-specified’ benchmarks, as outlined in the following—Definition 5. Our conditions
illustrate the need for sufficient misalignment between spurious correlations between PID and POOD.
Definition 5 (Well-Specified Domain Generalization Benchmark). Two ID/OOD splits, PID, POOD ∈ E, are
‘well-specified’ if and only if

accPOOD

(
fPID

X
)

< accPOOD

(
fE

X
)
, (9)

where fE
dg, fPID

X are from Definitions 3 and 4, respectively—note that this definition is w.r.t. to accuracy.

Analysis Setting. For the rest of this work, we consider sub-Gaussian ZID
spu with mean µspu, covariance

Σspu, and sub-Gaussian parameter κ—importantly, our results also apply more generally to other classes of
random variables (Remark 1). We define an Lϕ-Lipschitz function which parametrizes the distribution shift
w.r.t. Zspu; ϕ : Rl×l → Rl×l such that ZOOD

spu = ϕ(ZID
spu) and E[ZOOD

spu ] = ME[ZID
spu] = Mµspu where M ∈ Rl×l

and Σϕ is the covariance of ZOOD
spu .

Our overall goal is to identify shifts where achieving higher transfer accuracy is informative about the reliance
of predictions on spurious correlations. Identifying the class of such shifts is necessary as they describe
ID/OOD splits for domain-generalization benchmarks where achieving the higher OOD accuracy meaningfully
maps to learning domain-general predictors, i.e., the shift is well-specified for the task. Without such
well-specified shifts, we would incorrectly assume that a domain-general predictor is ineffective because it
achieves a lower accuracy out-of-distribution than a different empirical risk minimizer. Thus, our next result
shows that when shifts (ϕ) result in a sufficient misalignment between spurious correlations before and after
the shift, the domain-general model achieves a higher out-of-distribution accuracy than a domain-specific
predictor.
Remark 1. Our results consider sub-Gaussian spurious features. However, our results hold for other
classes of random variables, e.g., sub-exponential, bounded moments, or other random variables in Orlicz
spaces (Krasnoselskii, 1960). In these cases, our proofs remain largely unchanged, with only the constant
factors adjusted to account for the different concentration properties of the spurious features.
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Theorem 1 (Sufficient Conditions for Well-Specified Domain Generalization Splits). Assume Z ID
spu is sub-

Gaussian with mean µspu, covariance Σspu, and parameter κ. Define a nonlinear transformation

ϕ : Rl → Rl,

that is Lϕ–Lipschitz, and let
ZOOD

spu = ϕ(Z ID
spu).

Assume further that
E[ZOOD

spu ] = E[ϕ(Z ID
spu)] = M µspu,

for some matrix M ∈ Rl×l. In-distribution, Z ID
spu ∼ PID and out-of-distribution, ZOOD

spu ∼ POOD. Additionally,
denote wspu the contribution of Z ID

spu to the optimal PID predictor fPID
X . Then, for any δ ∈ (0, 1), if

w⊤
spu(M µspu) +

√
2 (Lϕ κ)2 ∥wspu∥2

2 log(1/δ) < 0,

(with the understanding that under the Lipschitz assumption, the sub-Gaussian property carries over with
parameter Lϕ κ), then with probability at least 1 − δ over ZOOD

spu , we have

accPOOD(fPID
X ) < accPOOD(fE

dg),

where fE
dg and fPID

X are the optimal domain–general and domain–specific predictions (Definitions 3–4).

Proof provided in Appendix A.2.

Theorem 2 (Neccesary and Sufficient Conditions for Well-Specified Domain Generalization Splits under
Distributional Symmetry). Assume Z ID

spu is a random variable with mean µspu, covariance Σspu, and w⊤
dgZOOD

dg
is symmetric about its mean. Define a nonlinear transformation

ϕ : Rl → Rl,

that is Lϕ–Lipschitz, and let
ZOOD

spu = ϕ(Z ID
spu).

Assume further that

E[ZOOD
spu ] = E[ϕ(Z ID

spu)] = M µspu, and Var(ZOOD
spu ) = Σϕ

for some matrix M ∈ Rl×l, and that the scalar and w⊤
spuZOOD

spu is symmetric about its mean. Then,

accPOOD(fPID
X ) < accPOOD(fE

dg) ⇐⇒
w⊤

dgµdg + w⊤
spuMµspu√

w⊤
dgΣdgwdg + w⊤

spuΣϕwspu

<
w⊤

dgµdg√
w⊤

dgΣdgwdg

. (10)

Note that the RHS of Equation 10 implies that either:

• Spurious Correlation Reversal: w⊤
spuMµspu < 0 (related to sufficiency condition without the symmetry

assumption in Theorem 1), or

• sufficiently large variance for w⊤
spuMµspu > 0, i.e., small SNR.

Proof provided in Appendix A.3.

Theorem 1 demonstrates that a domain generalization split is well-specified if and only if (i) the OOD
spurious correlation is misaligned with the ID spurious correlation and (ii) the variance of spurious features is
sufficiently controlled not to undo the effect of misalignment. For symmetrically distributed features, e.g.,
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(a) All random variables are Gaus-
sian. When Theorem 1 conditions are
satisfied OOD (x-axis: w⊤

spuMµspu + c
< 0; c > 0), the fdg’s outperform fX’s
OOD. This result verifies that there
needs to be sufficient misalignment
between in- and out-of-distribution
spurious correlations for the domain-
general features to outperform the
domain-specific models in OOD ac-
curacy.
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conclusions in Figure 1a hold for sub-
Gaussian random variables when the
test distribution is an extrapolation.
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(c) Rosenfeld et al. (2022b) studies do-
main interpolation, where the target
domain is a mixture of the training
domain; a variant of ERM is provably
worst-shift optimal. ZID

spu is defined
to be a mixture of 4 Gaussian
distributions such that the test
distributions are a different mix-
ture of the 4 Gaussians. Overall,
there is minimal difference in OOD
accuracy between fdg and fX in this
setting (domain interpolation).

Figure 1: fdg are trained on (Zdg, Y ) pairs and fX are trained on (X, Y ) pairs from the same distribution.
X = Zdg ⊕ ZID

spu, where ⊕ is concatenation. ZID
spu is sub-Gaussian. We evaluate these models on 50 test

distributions generated with randomly sampled M such that all other distributions are the same ID and
OOD in the test distribution but ZOOD

spu = MZID
spu. Details on the experiments can be found in Appendix B.

Gaussians, these conditions are necessary and sufficient, and hold with certainty (Theorem 1)) illustrates this
with Gaussian features..

For example, consider the classic examples of predictors using background, pasture or desert, to predict
cows and camels, respectively. This means that the correlation between background and label has to lead to
sufficient disagreement (reversed) between training and test distributions such that their use harms OOD
(test) predictions.

Importantly, we are concerned with benchmarking predictors designed to not rely on spurious correlations
for prediction, even if they are useful and potentially reliable predictors most of the time. For example,
site-specific markings or orientation of chest X-rays in medical diagnosis (Jabbour et al., 2020), demographic
attributes in resource allocation prediction tasks (Chouldechova, 2017; Kumar et al., 2022), etc. Figure 1
verifies these conditions empirically with simulation experiments. Additionally, semi-synthetic examples with
variants of the ColoredMNIST dataset is provided in Appendix B.1 (Arjovsky et al., 2019).
Remark 2 (Multisource Domain-Generalization.). We often have access to a set of distributions for evaluation,
and the norm is to evaluate leave-one-domain-out ID and OOD splits (Gulrajani & Lopez-Paz, 2020a). In
the context of Definition 5, PID represents the mixture of ID distributions, and the test split is POOD (which
can also be a mixture). Importantly, a finite mixture of sub-Gaussians is also sub-Gaussian (Appendix A.8
Lemma 6), so our results directly apply without loss of generality. Notably, we focus on ID/OOD split settings.
While a set of domains may give many splits, only a subset of the splits may be well-specified.

So far, we have shown that the learned domain-general and domain-specific predictors on a given training
distribution differ, and the domain-general model achieves higher OOD accuracy (well-specified) when spurious
correlations ID and OOD are sufficiently misaligned. Next, suppose we observe such misalignment and the
split is well-specified; then, we evaluate a set of diverse predictors on held-out ID and OOD test data. We
should observe a weak correlation or a strong negative correlation between the predictors’ ID and OOD
accuracy, i.e., no positive accuracy on the line. When we observe accuracy on the line, with a high probability,
the ID/OOD split is misspecified.
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2.1 Accuracy on the Line

First, we define accuracy on the line, the correlation strength between in- and out-of-distribution accuracy—
Definition 6.
Definition 6 (Accuracy on the Line; Miller et al. (2021)). Define a ∈ R, ϵ ≥ 0, and Φ−1 as the inverse
Gaussian cumulative density function. The correlation property is defined as∣∣Φ−1 (accPID(f)) − a · Φ−1 (accPOOD(f))

∣∣ ≤ ϵ ∀ f, (11)

where f ’s are distinct predictors.

If there exists an a such that ϵ = 0, then there is a perfect correlation between ID and OOD accuracy. As ϵ
grows, the strength of the correlation decreases. If a > 0, then the correlation is positive, and if a < 0, the
correlation is negative. We will call the setting where a > 0 positive accuracy on the line and a < 0 accuracy
on the inverse line. Next, we show that the smaller the ϵ, the smaller the probability of the ID/OOD split
being well-specified. The probability of a well-specified ID/OOD split when ϵ = 0 is also 0.
Theorem 3 (Benchmarks with Accuracy on the Line are Misspecified Almost Everywhere.). Define

Wϵ =

M ∈ Rl×l :
w⊤

spu(M µspu) +
√

2 (Lϕ κ)2 Σspu log(1/δ) < 0 (Theorem 1),∣∣∣Φ−1(accP (fX)
)

− a Φ−1(accPϕ
(fX)

)∣∣∣ ≤ ϵ (ϵ ≥ 0)

 (12)

Then:

(i) W0 has Lebesgue measure zero in Rl×l.

(ii) For any 0 ≤ ϵi ≤ ϵj, we have Wϵi
⊆ Wϵj

.

The proof of Theorem 3 and supporting Lemmas provided in Appendix A.6.

The two conditions in Equation 12 are at odds. In particular, as ϵ → 0 (i.e., perfect accuracy on the
line), almost every shift is misspecified, and the Lebesgue measure of the set of well-specified shifts grows
monotonically with ϵ, i.e., inversely with accuracy on the line. This means that when we observe accuracy
on the line, with a high probability, the ID/OOD split is misspecified. In Appendix A.7, we construct
an intuitive example of such (zero-measure) shifts, where both the conditions for well-specified splits and
accuracy on the line hold.

Theoretical Results Summary. Overall, Theorem 1 gives conditions for well-specified domain generalization
ID/OOD splits, and Theorem 3 demonstrates that there is zero probability that such conditions and accuracy
on the line for the ID/OOD split simultaneously hold—Figure 2. Moreover, accuracy on the line is at odds
with well-specified shifts. Our results suggest that datasets with accuracy on the line may be misspecified for
benchmarking domain generalization. In contrast, benchmarks with accuracy on the inverse line, or weak
correlation between ID and OOD accuracy, are better suited to benchmark domain generalization. This
property now gives a test for well-specified benchmarks. Later (Section 4), we apply this test to state-of-the-art
domain generalization benchmarks.

3 Related Work

Two influential domain generalization benchmark suites are DomainBed (Gulrajani & Lopez-Paz, 2020a) and
WILDS (Koh et al., 2021). DomainBed is a collection of object recognition domain generalization benchmarks.
For example, PACS (Khosla et al., 2012; Li et al., 2017) includes images of seven classes across four domains:
Photos, Art Paintings, Cartoons, and Sketches. Another benchmark is ColoredMNIST (Arjovsky et al.,
2019), a semi-synthetic binary classification variation of MNIST (Deng, 2012), which introduces color as a
spurious correlation and defines domains by specific color-label associations. Gulrajani & Lopez-Paz (2020a)
found that empirical risk minimization achieved the best transfer performance compared to state-of-the-art
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Figure 2: ID vs. OOD accuracy on probit scale. When M satisfies Theorem 1’s conditions, the accuracy on
the line phenomenon does not occur. For MID = I and MOOD = aI, where a is allowed to vary, we observe
accuracy on the line. When a < 0, we have the spurious correlation reversal condition and have accuracy on
the inverse line, where these is a strong but negative correlation between in- and out-of-distribution accuracy.
Notably, ID/OOD splits with accuracy on the inverse line are well-specified. More experimental details can
be found in Appendix B.

domain generalization algorithms across PACS, ColoredMNIST, and other DomainBed benchmarks. They
also observed differences in their findings based on their choice of model selection.

WILDS was designed to better represent real-world shifts across vision and language. For example,
Camelyon17 (Zech et al., 2018; AlBadawy et al., 2018) includes images of tissue that may contain tumor
tissue (classes) from different hospitals with varying conditions (domains). CivilComments Borkan et al.
(2019) includes comments to an online article that may be toxic (class) for different subpopulations defined by
demographic identities (domains). These benchmarks illustrate the suite’s focus on practical and natural real-
world applications. However, even across WILDS benchmarks, no state-of-the-art methods have demonstrated
consistent superiority over ERM (Koh et al., 2021).

For Subpopulation shift, which we consider a special case of the broader domain generalization task,
benchmarks are designed specifically to evaluate distribution shift robustness in scenarios where spurious
correlations lead to worse performance on underrepresented subgroups out-of-distribution. For example,
the Waterbirds benchmark (Sagawa et al., 2019) introduces a spurious correlation between bird species
and backgrounds, such as waterbirds predominantly appearing in water environments. Models that rely on
backgrounds rather than bird features when predicting bird type (classes) generalize poorly to new domains
where backgrounds are urban areas—birds in urban backgrounds are undersampled in the training data.

Benchmarks addressing other types of distribution shifts where domain generalization is desired have
also been proposed, e.g., temporal shifts (Yao et al., 2022; Joshi et al., 2023; Zhang et al., 2023).

Other conceptualizations of distribution shift datasets have been extended to benchmark domain generalization.
However, not all are designed to evaluate robustness to spurious correlations, nor do they represent multi-
source domain generalization settings. For instance, some benchmarks are designed to assess robustness
against typical data quality variations encountered in real-world settings, like variations of ImageNet (Deng
et al., 2009; Hendrycks & Dietterich, 2019; Hendrycks et al., 2021). Such benchmarks are out of scope for our
study as they are not standard benchmarks for the domain generalization tasks we study. Nevertheless, we
refer to previous work studying accuracy on the line for these datasets (Taori et al., 2020).

3.1 Accuracy on the Line

The accuracy on the line phenomena has been observed empirically in previous work for many benchmarks
in these suites (Recht et al., 2019; Miller et al., 2021; 2020; Taori et al., 2020; Baek et al., 2022; Saxena
et al., 2024). However, Liu et al. (2023a) identify real-world tabular datasets with weak or negative linear
correlation, and Teney et al. (2023) identify non-tabular real-world datasets where ID and OOD performance
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exhibit other patterns between in- and out-of-distribution accuracy beyond strongly positive and linear.
Notably, they also found that correlations can be inverted in some datasets. Sanyal et al. (2024) derive noise
conditions to achieve shifts with accuracy on the inverse line. Our work uniquely specifies the implications of
accuracy on the line (or lack thereof) on the utility of datasets as domain generalization benchmarks.

Other works have studied conditions where the empirical risk minimizer for observed distributions is sufficient
for domain generalization. Rosenfeld et al. (2022b) show this to be the case under domain interpolation, i.e.,
OOD distributions are convex combinations of observed distributions (in an online setting). Additionally,
when domain-general features are fully informative, i.e., spurious correlations are redundant, and under some
conditions, Ahuja et al. (2021) also show this to be the case. Our results corroborate their findings.

This notion of worst-case stress testing to establish robustness under distribution shift is not new. When
evaluating the out-of-distribution generalization of deep learning methods developed on the ImageNet
task (Deng et al., 2009) (ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al.,
2015)), Kornblith et al. (2019) assess generalization by applying said methods to contemporary datasets
with presumably different distributions than ImageNet, such as CIFAR-10 (Krizhevsky, 2009). However,
the datasets they investigated could be considered quite similar in distribution to ImageNet. Alternatively,
Salaudeen & Hardt (2024) adversarially constructed a dataset, ImageNot, designed to shift spurious correlations
present in the original ImageNet construction strongly. Notably, the findings of Salaudeen & Koyejo (2022)
align with those of Kornblith et al. (2019) despite the deliberately adversarial construction of ImageNot. We
argue that constructing datasets with such adversarial spurious correlation shifts is essential for rigorously
probing a model’s use of spurious correlations.

More generally, other works have proposed alternative approaches to developing domain generalization
benchmarks. Satisfying our conditions introduces an additional necessary dimension for creating more
meaningful evaluations. For example, Zhang et al. (2023) argues that many existing benchmarks are limited
by having too few domains and overly simplistic settings, which restrict their ability to simulate the significant
distribution shifts observed in real-world scenarios. Similarly, Lynch et al. (2023) contend that benchmarks
inadequately capture the complex, many-to-many spurious correlations that can arise in practical applications.

Like previous work, we next investigate the accuracy of the line properties of state-of-the-art domain
generalization benchmarks to take an inventory of well-specified datasets.

4 Empirical Results

We evaluate the correlation between in-domain (ID) and out-of-domain (OOD) accuracy for benchmarks in
the popular DomainBed (Gulrajani & Lopez-Paz, 2020a) and WILDS (Koh et al., 2021) benchmark suites, as
well as subpopulation shift benchmarks, e.g., WaterBirds (Sagawa et al., 2019).

Datasets. Specifically, our results include the following datasets: Camelyon (Bandi et al., 2018; Koh et al.,
2021), CivilComments (Borkan et al., 2019; Koh et al., 2021), ColoredMNIST (Arjovsky et al., 2019;
Gulrajani & Lopez-Paz, 2020a), Covid-CXR (Alzate-Grisales et al., 2022; Cohen et al., 2020b; Tabik et al.,
2020; Tahir et al., 2021; Suwalska et al., 2023), FMoW (Christie et al., 2018; Koh et al., 2021), PACS (Li
et al., 2017; Gulrajani & Lopez-Paz, 2020a), Spawrious (Lynch et al., 2023), TerraIncognita (Beery et al.,
2018; Gulrajani & Lopez-Paz, 2020a), and Waterbirds (Sagawa et al., 2019).

Model Architectures. For vision datasets, we leverage pretrained deep learning architectures such as
ResNet-18/50 (He et al., 2016), DenseNet-121 (Huang et al., 2017), Vision Transformers (Dosovitskiy
et al., 2020), and ConvNeXt-Tiny (Liu et al., 2022). For language datasets, we utilize pretrained embeddings
from BERT Jacob et al. (2019) and DistilBERT Sanh et al. (2020), and apply lower-capacity machine
learning models, such as logistic regression, for downstream classification tasks.

Experimental Setup. The benchmarks we consider include a set of domains—distinct data distributions.
As standard in the literature (Gulrajani & Lopez-Paz, 2020a; Koh et al., 2021), the in-distribution (ID)
data is defined as a mixture of a subset of the data domains, and the out-of-distribution (OOD) data is not
included in the training domains, i.e., we perform a leave-one-domain-out ID/OOD splits for our experiments,
where we train on all but one domain and use the left-out domain as OOD. We generate models for our
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(a) PACS (Env 0)

20 30 40 50 60 70 80 9890
Average Train Envs Acc

20
30
40
50
60
70
80

98

90

Te
st

 E
nv

 2
 A

cc

R=0.78

(b) Camelyon (Env 2)
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(c) Covid-CXR (Env 3)
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(d) CivilComments (Env 1).

Figure 3: We show some ID/OOD splits of popular domain-generalization benchmarks with a strong positive,
weak, or strong negative correlation between in-distribution and out-of-distribution accuracy. Our results
suggest that algorithms that consistently provide models with the best transfer accuracies for these splits are
at least partially successful in removing spurious correlations. For Camelyon (b), within some accuracy range,
we have accuracy on the inverse line, indicating the importance of a qualitative assessment of these trends.

experiments by varying model and training hyperparameters for each architecture, including the number
of training epochs (Appendix C Table 1). Our experiments include training these models end-to-end with
varying hyperparameters and data augmentations, as well as pretraining and transfer learning.

Table 3 highlights the prevalence of widely-used domain generalization benchmarks with accuracy on the line,
a signature of potential misspecification, while Figure 3 qualitatively illustrates benchmarks with weak or
strongly negative correlation between in and out-of-distribution accuracy. We provide a detailed account of
our experiments, along with benchmark-specific discussions, in Appendix C.

Selecting Number of Models. To ensure a robust estimate of ID-OOD correlation, we follow and extend
the approach of prior work by training a diverse set of models that vary in architecture, random seed, data
order, and hyperparameters. This diversity mitigates the risk of single-model artifacts influencing our findings.
We adopt a simple heuristic: continue adding models until the ID-OOD Pearson correlation changes by less
than 1%. As shown in Table 2, this threshold is consistently reached well before exhausting our pool of
trained models. In practice, we train 2–10× more models than previous studies, often exceeding thousands
per dataset and ensuring our correlation estimates are stable and conservative. For instance, we train over
10,000 models for a single CivilComments split, and our criterion is satisfied with less than 7,000 models. We
train over 5,000 models for a PACS environment, and our criterion is satisfied with 910. We trained as many
models as computationally feasible to ensure the robustness of our findings.
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4.1 Findings

We find that, primarily, semisynthetic datasets satisfy our derived conditions. Particularly, semisynthetic
here means real-world datasets that either (i) have artificial spurious correlations introduced (ColoredMNIST,
Spawrious, and Waterbirds) and (ii) have some selection process that introduces spurious correlations
(CivilComments). The CXR datasets exhibit a relationship that Teney et al. (2024) refers to as ‘Not Transfer,’
where the OOD accuracy is near constant despite high variance in the ID accuracy. Our results further echo
Teney et al. (2024)’s notes on potentially misleading advice from past studies—particularly the focus on
improving ID performance to improve OOD robustness (Wenzel et al., 2022), which our work suggests is only
a reasonable strategy in settings where distribution shifts are relatively simple and weak.

Our results and findings should not be surprising, given that spurious correlations we aim to mitigate for
decision-making tend not to be localized (Teresa-Morales et al., 2022). For instance, correlations between
gender and occupation likely persist across naturally collected datasets. Hence, they may not harm performance
across different data sources. We find that the subpopulation shift benchmarks we assess often have the
desired properties derived in this work. Notably, these benchmarks are (i) constructed such the spurious
correlation from training is no longer accurate at testing and (ii) evaluated based on worst-group (worst-case)
performance. Our work shows that in less concisely defined domain generalization contexts, such types of
shifts are also necessary. We provide detailed results and discussion in Appendix C.

4.2 Discussion

<5 / Red
>=5 / Red
<5 / Green

>=5 / Green
OOD
ID

(a) ColoredMNIST. Embeddings of a model trained on
Env 1 and 2. The labels are < 5, ≥ 5 and the spurious
feature is color (red, green). The UMAP of the embed-
dings clusters based on color (spurious) rather than digit
features (domain-general). This leads to incorrect predic-
tions OOD where the color-label correlation reverses, as
observed in our experiments (Section C.2).

W bird / W bg
L bird / W bg
W bird / L bg

L bird / L bg
OOD
ID

(b) Waterbirds. Embeddings trained examples with spu-
rious correlation between bird type and background. The
bird type is the label, and the background is the spurious
feature. The UMAP of the embeddings clusters based
on background type (spurious) more strongly than bird
features (domain-general). This leads to incorrect predic-
tions OOD where background-label correlation changes,
as observed in our experiments (Section C.9).

Figure 4: We use a UMAP to visualize the embedding clusters for examples. We fit the UMAP to held-out
examples of the in-distribution data and also apply it to the out-of-distribution data.

Domain generalization considers worst-case shifts (Arjovsky et al., 2019; Rosenfeld et al., 2022b). While
worst-case shifts may have a trade-off with average utility (Salaudeen & Koyejo, 2024; Miller, 2024), it is
crucial in fairness-sensitive and high-stakes applications like healthcare (Angwin et al., 2016; Chen et al.,
2019; Oakden-Rayner et al., 2020). However, domain generalization benchmarks have not been rigorously
assessed for their utility in such scenarios. We address this gap by deriving conditions for well-specified
benchmarks, helping practitioners align benchmark choices with their goals. We showed that well-specified
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Class 0
Class 1
Class 2
Class 3
Env 0
Env 1
Env 2

(a) Spawrious O2O Hard. Embeddings of a model trained
on Env 1 and 2. The label is animal type ,and the spu-
rious feature is background. Generally, for some classes
(e.g., Class 0), some subset of OOD (Env 0) examples
cluster very closely to the same classes in in-distribution
data. However, for the same class, many OOD examples
incorrectly cluster more closely to class 2; there is also
smaller variance in these examples. We observe this for
most classes, demonstrating that the model is relying on
spurious correlations. This matches our observations of
OOD performance degradation due to spurious correla-
tions (Section C.3.2)

Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Env 0
Env 1
Env 2
Env 3

(b) PACS. Embeddings of a model trained on Env 0-2.
The spurious feature is unknown, but it is purported to
exist because each environment has a different image style.
We find that there is a relatively strong alignment between
the in-distribution and out-of-distribution embeddings
for each class. This matches our finding that there is not
a strong spurious correlation that would cause models to
embed examples based on features that have an unstable
relationship between labels (Section C.4), like we see in
the other examples we analyzed with UMAP.

Figure 5: We use a UMAP to visualize the embedding clusters for examples. We fit the UMAP to held-out
examples of the in-distribution data and also apply it to the out-of-distribution data.

benchmarks, i.e., are aligned with worst-case shifts, will not have accuracy on the line. Hence, benchmark
users and curators with a goal of addressing such shifts should seek out benchmarks with weak or negative
ID and OOD accuracy correlation.

Many benchmark curators define their intended scope carefully. For example, WILDS (Koh et al., 2021)
focuses on real-world rather than worst-case shifts. Our findings often validate these intended scopes, yet
benchmark users may not always adhere to them. To clarify benchmark suitability, we categorize benchmarks
into (i) worst-case and (ii) natural shifts (Koh et al., 2021; Taori et al., 2020), emphasizing that worst-case
benchmarks are particularly valuable for auditing uninterpretable predictors, such as detecting demographic
biases in model decisions (Ferrer et al., 2021), whereas natural shifts may suffice when prioritizing average
OOD performance. Our conditions enable assessing whether spurious correlations (e.g., race in Chest X-
Rays (Gichoya et al., 2022)) impact predictions. For robust algorithm development, both worst-case and
natural shifts should be considered to ensure broad applicability. Additionally, new spurious correlation
benchmarks should undergo accuracy on the line evaluations to support their reliability—ideally, there is no
positive accuracy on the line. Finally, domain expertise is critical in defining spurious correlations: a narrow
potential distribution set may limit robustness, while an overly broad definition of potential distributions can
unnecessarily reduce utility (Shen et al., 2024). For instance, Chiou et al. (2024) report that training a model
on multiple recording sessions degrades OOD (new session) brain-computer interface (BCI) classification
performance compared to training on single-session data.

Constructing Benchmarks Without Positive Accuracy on the Line. Indeed, some of the datasets
we study empirically that satisfy our desired conditions are primarily semisynthetic (e.g., ColoredMNIST,
Spawrious, Waterbirds). In contrast, datasets such as Covid-CXR and WILDSCamelyon, have in-distribution
(ID) and out-of-distribution (OOD) splits that do not exhibit positive accuracy on the line. This suggests
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that careful and intentional data collection and curation is likely necessary to obtain naturally occurring
datasets without positive accuracy on the line.

One approach to constructing such datasets is to identify settings where a natural experiment or
intervention has occurred. For example, the Covid-CXR dataset leverages the natural intervention of
the pandemic and regional variations. Without such interventions, there may be little reason to ex-
pect that spurious correlations would fail to generalize in the real-world datasets that are most readily available.

Before finalizing a benchmark, we should measure the correlation between ID and OOD perfor-
mance to ensure that the dataset does not exhibit strong positive accuracy on the line. This validation can
help confirm that the benchmark is well-specified and truly tests robustness to spurious correlations.

One approach to constructing such datasets is to identify settings where a natural experiment or intervention
has occurred. For example, the Covid-CXR dataset leverages the natural intervention of the pandemic and
regional variations. Without such interventions, there may be little reason to expect that spurious correlations
would fail to generalize in the datasets that are most readily available.

Qualitatively Assessing Accuracy on the Line. For the Camelyon dataset (Section C.6), we observe a
shift in correlation patterns based on model accuracy. Specifically, models with greater than 90% accuracy
exhibit a negative correlation between ID and OOD performance, whereas models below this threshold show
a positive correlation. Since accuracy on the line (Definition 2) is a global property, this dataset does not
meet the criteria for accuracy on the line since there is a strong deviation from the positive correlation in
some regimes. This underscores a key limitation: evaluating overall correlation may not sufficiently identify
well-specified benchmarks. While this approach is robust against false negatives of misspecification, it may
introduce false positives, necessitating qualitative inspection as a complementary assessment tool.

On the Slope vs. the Correlation Coefficient. In this work, we focus on the correlation between ID
and OOD accuracy rather than the slope between the two quantities. Recall that for a set of pairs x, y,
which have a Pearson R correlation of r, the slope when y is regressed on x is s = r ∗ (σy/σx). s depends
on variances σy and σx, which may or may not be relevant to the spurious correlation problem. The slope
depends strongly on the definition of F (Appendix C). This observation is also related to limitations in
attributing accuracy drop across distribution only to distributional systematic bias (Salaudeen & Hardt,
2024). While s is informative, its relationship with our derived conditions is not as obvious.

Reconciling Worst-Case and Average-Case Generalization. A strict worst-case approach to general-
ization can conflict with developing locally (sites) beneficial models, particularly in healthcare (Futoma et al.,
2020; Miller, 2024). However, failures even within the same site suggest this tension is unavoidable (Oakden-
Rayner et al., 2020), as spurious correlations remain brittle due to other non-local factors like temporal
drifts (Ji et al., 2023) or interventions (Birkmeyer et al., 2020). Reliable worst-case robustness benchmarks
remain essential, even with a narrower scope. Still, when worst-case focus severely impacts average utility,
additional evaluation on alternative benchmarks is warranted. A practical approach is narrowing the model’s
deployment scope to a smaller set of distributions, which can improve worst-case performance (e.g., when
the shifts in the smaller set are weaker) without sacrificing as much average utility. However, practically,
maintaining reliable predictions may require scope-dependent model monitoring and updates.

Implications on Key Domain Generalization and Evaluation Practices. ID/OOD splits
within the same dataset can exhibit varying Pearson R correlations, meaning some splits provide more
reliable benchmarks than others. However, averaging over all ID/OOD splits (Gulrajani & Lopez-Paz,
2020a) dilutes this reliability, particularly when only one split is well-specified. The issue worsens when
averaging across multiple datasets to compare domain generalization methods (Gulrajani & Lopez-Paz,
2020a). In subpopulation shifts, worst-group accuracy is the standard evaluation metric (Koh et al.,
2021); adopting a similar norm more generally for domain generalization improves the robustness of evaluation.

A related issue arises in model selection via cross-validation, where selecting models based on
held-out accuracy—whether IID or a held-out domain—can lead to overfitting to spurious correlations
specific to that set. Alternative selection criteria are implied conditional independencies (Salaudeen & Koyejo,
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2024), cross-risk minimization (Pezeshki et al., 2023), and confidence-based ensemble aggregation (Chen
et al., 2023a). However, model selection under distribution shifts remains a challenge.

Furthermore, our test can act as a pre-check to decide whether algorithmic invariance penalties are
worth tuning. However, if there are spurious correlations between a set of observed environments, for any
single test environment, it may be the case that models that ignore these spurious correlations perform worse
than a model that utilizes them. However, there is a tradeoff between this and other environments where the
same spurious correlations lead to failure. This tradeoff is implicit and domain-specific. Analysis of this
tradeoff is out of the scope of this work.

Implications on Benchmarking Causal Representation Learning which aims to uncover underlying
causal structures. One approach to this is independent causal mechanisms (Pearl, 2009; Schölkopf et al.,
2021), which has motivated many domain generalization algorithms (Arjovsky et al., 2019; Peters et al.,
2016). Since both tasks require distinguishing stable from spurious correlations, our results on evaluating
domain generalization also apply to benchmarking causal representation learning. Specifically, when assessing
models—including disentangled causal models—based on OOD accuracy, our framework helps determine
when domain generalization reliably reflects success in learning causal representations (Salaudeen et al.,
2024)—we discuss this further in Appendix D.

Implications on Benchmarking Algorithmic fairness which aims to mitigate biases that cause disparate
performance across demographic groups; some definitions of fairness are closely linked to domain generaliza-
tion (Creager et al., 2021). Group sufficiency particularly aligns with the principle of invariance (Chouldechova,
2017; Liu et al., 2019). We emphasize a straightforward but key insight: when using OOD accuracy to
benchmark whether models avoid relying on group information, the benchmark must ensure that group
information hinders out-of-distribution performance. In this case, a strong positive correlation between
training and worst-group test accuracy suggests that group information generalizes. In contrast, a weak or
negative correlation between ID and OOD accuracy is preferable.

Modern foundation models are susceptible to spurious correlations (Alabdulmohsin et al., 2024; Zhu et al.,
2023; Gerych et al., 2024; Hamidieh et al., 2024). Analyzing the Civil Comments dataset, we find that spurious
correlation shifts in language datasets exhibit similar patterns to vision datasets within our framework,
showing strong positive, negative, and weak correlations between ID and OOD accuracy. Furthermore,
Saxena et al. (2024) report strong positive correlations in large language models for predictive tasks (Q/A)
under distribution shift. Our results highlight that the benchmark conditions we establish are also crucial for
evaluating spurious correlations in foundation models.

Embeddings Analysis. UMAP (Uniform Manifold Approximation and Projection) is a fast, scalable
dimensionality reduction technique that preserves both local and global structure of data (McInnes et al.,
2018). Unlike t-SNE (Van der Maaten & Hinton, 2008), UMAP can generalize to new data via a learned
embedding function, making it especially useful for visualizing high-dimensional datasets and comparing
in-distribution versus out-of-distribution representations. Figures 4-Figures 5 demonstrate the concordance
between our findings and the embeddings learned by models. For instance, for ColoredMNIST, Waterbirds,
and Spawrious, embeddings of classes are consistent in the training distribution, however, out-of-distribution,
the same classes’ embeddings are aligned with the wrong class from the in-distribution data, and would
likely be labeled incorrectly. This is because the models have learned spurious correlations that change from
in-distribution to out-of-distribution. We find that these datasets also have a lower (negative) correlation
between in- and out-of-distribution accuracy. For PACS however (Figure 5b), the alignment between in-
and out-of-distribution embeddings are consistent, meaning that the same classes in- and out-of-distribution
are closely embedded. Our analysis also finds that PACS has a strong correlation between in- and out-of-
distribution accuracy. Overall, our qualitative analysis of the embeddings leared by in-distribution optimal
models supports our theoretical and empirical findings.

State-of-the-Art Algorithms. Many algorithms have been proposed for domain generalization Gulrajani
& Lopez-Paz (2020a); Koh et al. (2021); Yang et al. (2023). On datasets we identify as misspecified—such as
PACS, Terra Incognita, WILDSCamelyon, and WILDFMoW—Empirical Risk Minimization (ERM) performs
comparably to state-of-the-art domain generalization algorithms (Gulrajani & Lopez-Paz, 2020a; Koh et al.,
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2021), particularly when controlling for factors like the use of unconstrained, large-scale pretrained models
(e.g., CLIP (Radford et al., 2021), trained on internet-scale data rather than ImageNet). Specific results
for WILDS datasets are available at https://wilds.stanford.edu/leaderboard/, maintained by the WILDS team.

In contrast, on datasets we identify as well-specified, several algorithms have consistently outper-
formed ERM, even under independent validation. For example,(Yang et al., 2023) demonstrates improvements
over ERM on Waterbirds and CivilComments.

4.3 Limitations and Future Work

While we have developed probabilistic sufficient conditions for well-specified benchmarks, we derive necessary
and sufficient conditions only under the Gaussianity assumption of features. Future work includes exploring
whether these conditions are necessary for non-Gaussian features. Demonstrating this may require developing
analytical techniques distinct from those applied in this work. Additionally, Yang et al. (2023) demonstrates
that while accuracy on the line may hold, other metrics or a combination of metrics may not simultaneously
have the same strong positive linear trend. Investigating metrics other than accuracy is left for future work.

Another direction for future work is to develop a more robust automated method for assessing accuracy
on the line, beyond simply computing correlation across all training accuracy levels. Currently, qualitative
assessment remains necessary to account for cases where models with higher training accuracy exhibit negative
accuracy on the line. Empirically, we found that standard change-point detection methods (Killick et al.,
2012) are highly sensitive to noise in accuracy measurements. However, incorporating more robust heuristics
could improve their reliability, making them a viable approach for automation.

Additionally, while we have evaluated a wide variety of models in this work, continuing to collect data points
of ID/OOD accuracies for benchmarks improves the accuracy of the true relationship. Finally, curating
additional benchmarks without accuracy on the line, drawn from diverse, real-world scenarios with high-
dimensional spurious features, is left for future work. This work, along with others (Recht et al., 2019; Taori
et al., 2020; Miller et al., 2021), has characterized this property for a variety of popular benchmarks.

5 Conclusion

Robustness to spurious correlations under worst-case distribution shifts is a critical challenge in machine
learning, essential for ensuring the reliability and fairness of models. In this work, we identify significant
limitations in current benchmarks designed to address this problem. Specifically, many state-of-the-art
benchmarks, which evaluate OOD accuracy by training models on an in-distribution (ID) split and testing on
an out-of-distribution (OOD) split, fail to guarantee that models free of spurious correlations will transfer
better. We define a benchmark as well-specified if such a guarantee exists.

Previous work observed that many benchmarks exhibit the phenomenon of accuracy on the line, where
improved ID performance directly correlates with improved out-of-distribution performance. Our theoretical
findings suggest that this behavior indicates that such benchmarks are misspecified for evaluating domain
generalization and emphasize the importance of prioritizing benchmarks that do not exhibit accuracy on
the line when addressing worst-case distribution shifts. We aim to provide a clearer path toward developing
models robust to spurious correlations by addressing the evaluation ambiguity.
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A Proofs

A.1 Proof of Lemma 1—Domain-Specific Models have Lower In-Domain Error under Partially
Informative Domain-General Features

Assume Non-trivial and non-redundant features (Assumption 1-2), and strongly convex ℓ.

min
f∈F

E(X,Y )∼P

[
ℓ(f(X), Y )

]
< min

f∈Fdg
E(X,Y )∼P

[
ℓ(f(X), Y )

]
, (13)

where F : X → R where f(x) = w⊤x = w⊤
dgzdg + w⊤

spuzspu, f ∈ F . For f ∈ Fdg, f(x) = (w)⊤x = w⊤
dgzdg.
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Proof. From Assumption 1-2, non-trivial and non-redundant features, a model that uses both domain-general
and spurious features is more expressive than one that does not. Let w be the Bayes optional By the Bayes
optimality of w∗, any w achieving the same risk agrees with w∗ almost everywhere, i.e.,

µ
({

x ∈ X | w∗⊤x ̸= w⊤x
})

= 0,

where µ denotes the Lebesgue measure on X .

Let x = zdg ⊕ zspu and w = wdg ⊕ wspu such that

w∗⊤x = w⊤
dgzdg + w⊤

spuzspu.

If we only consider values of x where w⊤
dgzdg ̸= 0 and w⊤

spuzspu ̸= 0, then without loss of generality we have
that

w∗⊤x = w⊤
dgzdg + w⊤

spuzspu ̸= w⊤
dgzdg.

Given Assumption 1-2,
µ
({

x | w⊤
dgzdg ̸= 0

})
> 0,

the risk of w⊤
dgzdg is strictly greater than that of w∗⊤x. Equation 13 follows from the strong convexity of the

loss.

A.2 Proof of Theorem 1—Sufficient Conditions for Well-Specified Domain Generalization Benchmark
Splits

Assume ZID
spu is sub-Gaussian with mean µspu, covariance Σspu, and parameter κ. Define a nonlinear

transformation
ϕ : Rl → Rl,

that is Lϕ–Lipschitz, and let
ZOOD

spu = ϕ(ZID
spu).

Assume further that
E[ZOOD

spu ] = E[ϕ(ZID
spu)] = M µspu,

for some matrix M ∈ Rl×l. In-distribution, ZID
spu ∼ PID and out-of-distribution, ZOOD

spu ∼ POOD. Additionally,
denote wspu the contribution of ZID

spu to the optimal PID predictor fPID
X . Then, for any δ ∈ (0, 1), if

w⊤
spu(M µspu) +

√
2 (Lϕ κ)2 ∥wspu∥2

2 log(1/δ) < 0,

(with the understanding that under the Lipschitz assumption the sub-Gaussian property carries over with
parameter Lϕ κ), then with probability at least 1 − δ over ZOOD

spu , we have

accPOOD(fPID
X ) < accPOOD(fE

dg),

where fE
dg and fPID

X are the optimal domain–general and domain–specific predictions (Definitions 3–4).

Proof. Define
ZOOD

spu = ϕ(ZID
spu).

From Equation 1 and the law of total probability, the out-of-distribution (OOD) accuracy of fPID
X is equivalently

accOOD(fPID
X ) = Pr

(
w⊤

dgZdg + w⊤
spuZspu > 0

)
,

and
accOOD(fE

dg) = Pr
(

w⊤
dgZdg > 0

)
.
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It suffices to show that
Pr
(

w⊤
dgZdg > −w⊤

spuZOOD
spu

)
< Pr

(
w⊤

dgZdg > 0
)

(14)

with high probability.

Since ZID
spu is sub-Gaussian with parameter κ, by the Lipschitz property of ϕ the random variable

w⊤
spuZOOD

spu is sub-Gaussian with mean

E
[
w⊤

spuZOOD
spu

]
= w⊤

spuE
[
ZOOD

spu

]
= w⊤

spu(M µspu)

and sub-Gaussian parameter at most Lϕ κ (i.e., with variance proxy bounded by (Lϕ κ)2 ∥wspu∥2
2). Thus, for

any t > 0,

Pr
(

w⊤
spuZOOD

spu > w⊤
spu(M µspu) + t

)
≤ exp

(
− t2

2(Lϕ κ)2 ∥wspu∥2
2

)
.

Choose
t =

√
2(Lϕ κ)2 ∥wspu∥2

2 log(1/δ).

Then,
Pr
(

w⊤
spuZOOD

spu > w⊤
spu(M µspu) + t

)
≤ δ.

Therefore, with probability at least 1 − δ,

w⊤
spuZOOD

spu < w⊤
spu(M µspu) +

√
2(Lϕ κ)2 ∥wspu∥2

2 log(1/δ).

Assume that
w⊤

spu(M µspu) +
√

2(Lϕ κ)2 ∥wspu∥2
2 log(1/δ) < 0.

Then, with probability at least 1 − δ, we have

w⊤
spuZOOD

spu < 0.

In this case, {
w⊤

dgZdg > −w⊤
spuZOOD

spu

}
⊂
{

w⊤
dgZdg > 0

}
,

which implies
Pr
(

w⊤
dgZdg > −w⊤

spuZOOD
spu

)
< Pr

(
w⊤

dgZdg > 0
)

.

Equivalently,

accOOD(fPID
X ) = Pr

(
w⊤

dgZdg + w⊤
spuZOOD

spu > 0
)

= Pr
(

w⊤
dgZdg > −w⊤

spuZOOD
spu

)
< Pr

(
w⊤

dgZdg > 0
)

= accOOD(fE
dg).

Therefore, with probability at least 1 − δ,

accOOD(fPID
X ) < accOOD(fE

dg).
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Lemma 2 (Monotonicity of 0–1 Accuracy under Symmetry). Let W0 be a continuous, nondegenerate random
variable satisfying

W0
d= −W0,

i.e. centrally symmetric about zero, and assume its CDF FW0 is strictly increasing on R with FW0(0) = 1
2 .

Fix p = Pr(Y = 1) ∈ (0, 1), and define the conditional scores

U | (Y = 0) = σW0, U | (Y = 1) = µ1 + σW0,

with σ > 0 and µ1 ∈ R. Let
r = µ1 − 0

σ
= µ1

σ
.

Then the 0–1 accuracy of the threshold-at-zero classifier Ŷ = 1{U > 0} can be written as

acc = p FW0(r) + (1 − p) Pr(W0 ≤ 0) = p FW0(r) + (1 − p) 1
2 ,

and this accuracy is a strictly increasing function of the signal-to-noise ratio r.

Proof. We first define the accuracy decomposition. Writing Ŷ = 1 ⇐⇒ U > 0, we have

acc = Pr(Ŷ = Y ) = Pr(Ŷ = 1, Y = 1) + Pr(Ŷ = 0, Y = 0)
= p Pr(U > 0 | Y = 1) + (1 − p) Pr(U ≤ 0 | Y = 0).

Then we use a change of variables using symmetry. Since U | Y = 1 = µ1 + σW0,

Pr(U > 0 | Y = 1) = Pr
(
W0 > − µ1

σ

)
= 1 − FW0(−r) = FW0(r),

and since U | Y = 0 = σW0 with Pr(W0 ≤ 0) = FW0(0) = 1
2 ,

Pr(U ≤ 0 | Y = 0) = 1
2 .

Substituting into the decomposition gives

acc = p FW0(r) + (1 − p) 1
2 = G(r).

Because FW0 is strictly increasing and p > 0, G is strictly increasing in r. Hence accuracy increases in the
signal-to-noise ratio r = µ1/σ.

A.3 Theorem 2—Necessary Conditions for Well-Specified Domain Generalization Benchmark Splits

Assume ZID
spu is a random variable with mean µspu, covariance Σspu, and w⊤

dgZOOD
dg is symmetric about its

mean. Define a nonlinear transformation
ϕ : Rl → Rl,

that is Lϕ–Lipschitz, and let
ZOOD

spu = ϕ(ZID
spu).

Assume further that

E[ZOOD
spu ] = E[ϕ(ZID

spu)] = M µspu, and Var(ZOOD
spu ) = Σϕ

for some matrix M ∈ Rl×l, and that the scalar and w⊤
spuZOOD

spu is symmetric about its mean. Then,

accPOOD(fPID
X ) < accPOOD(fE

dg) ⇐⇒
w⊤

dgµdg + w⊤
spuMµspu√

w⊤
dgΣdgwdg + w⊤

spuΣϕwspu

<
w⊤

dgµdg√
w⊤

dgΣdgwdg

. (15)

Note that the RHS of Equation 15 implies that either:
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• Spurious Correlation Reversal: w⊤
spuMµspu < 0 (related to sufficiency condition without the symmetry

assumption in Theorem 1), or

• sufficiently large variance when w⊤
spuMµspu > 0, i.e., small SNR.

Proof. Directly applying Lemma 2,

accPOOD(fPID
X ) < accPOOD(fE

dg) ⇐⇒
w⊤

dgµdg + w⊤
spuMµspu√

w⊤
dgΣdgwdg + w⊤

spuΣϕwspu

<
w⊤

dgµdg√
w⊤

dgΣdgwdg

.

A.4 Lemma 4—Accuracy on the Line

Lemma 3. Assume Z ID
spu is sub-Gaussian with mean µspu, covariance Σspu, and parameter κ. Define a

nonlinear mapping
ϕ : Rl → Rl,

that is Lϕ–Lipschitz, and let
ZOOD

spu = ϕ(Z ID
spu).

Assume further that
E[ZOOD

spu ] = E[ϕ(Z ID
spu)] = M µspu, and Σϕ = ZOOD

spu (ZOOD
spu )⊤

and that

∥M µspu − µspu∥ ≤ ϵ1, (16)∥∥∥w⊤
spu Σ⊤

ϕ wspu − w⊤
spuΣspu wspu

∥∥∥ ≤ ϵ2. (17)

Moreover, assume there exists a constant B > 0 such that for sufficiently small t (a Tsybakov-type condition),

Pr
(

|fX(X)| ≤ t
)

≤ Bt.

Then, for any δ > 0, with probability at least 1 − δ over Z ID
spu, the following holds for any classifier fX ∈ F :∣∣∣accP (fX) − accPϕ

(fX)
∣∣∣ ≤ B ϵ,

where
ϵ = ∥wspu∥ϵ1 + C

√
log(1/δ) +

√
ϵ2,

and for some small constant c > 0,

C = cκ · max
{

∥wspu∥, ∥M∥ · ∥wspu∥
}

.

Proof. Define
∆(X) = f(X) − f(X ′),

where X ∼ P and X ′ ∼ Pϕ, respectively, (i.e. X ′ is obtained by replacing ZID
spu with ZOOD

spu ). Since

f(X) = w⊤
dgZdg + w⊤

spuZID
spu and f(X ′) = w⊤

dgZdg + w⊤
spuZOOD

spu ,

we have
∆(X) = w⊤

spuZID
spu − w⊤

spuZOOD
spu = w⊤

spu

(
ZID

spu − ZOOD
spu

)
.
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We now decompose ∆(X) into a deterministic part g(X) and a stochastic part h(X):

∆(X) =
[
w⊤

spuE[ZID
spu] − w⊤

spuE[ZOOD
spu ]

]
︸ ︷︷ ︸

g(X)

+ (18)

(
(w⊤

spuZID
spu − E[w⊤

spuZID
spu]) − (w⊤

spuZOOD
spu − E[w⊤

spuZOOD
spu ])

)
︸ ︷︷ ︸

h(X)

. (19)

Since
E[ZID

spu] = µspu and E[ZOOD
spu ] = M µspu,

we have

|g(X)| =
∣∣w⊤

spuµspu − w⊤
spu(M µspu)

∣∣ (20)
=
∣∣w⊤

spu(µspu − M µspu)
∣∣ (21)

≤ ∥wspu∥ ∥µspu − M µspu∥ (22)
≤ ∥wspu∥ ϵ1. (23)

Next, consider the stochastic term h(X). Since ZID
spu is sub-Gaussian with parameter κ, both w⊤

spuZspu and
w⊤

spuZOOD
spu are sub-Gaussian with parameters κ∥wspu∥ and Lϕκ∥wspu∥ respectively.

Therefore, for any t > 0,

Pr
(

|w⊤
spuZID

spu − E[w⊤
spuZspu]| > t

)
≤ 2 exp

(
− t2

2(κ∥wspu∥)2

)
,

and
Pr
(

|w⊤
spuZOOD

spu − E[w⊤
spuZOOD

spu ]| > t
)

≤ 2 exp
(

− t2

2(Lϕκ∥wspu∥)2

)
.

Applying the union bound, with probability at least 1 − δ we have∣∣∣w⊤
spuZspu − E[w⊤

spuZspu]
∣∣∣+
∣∣∣w⊤

spuZOOD
spu − E[w⊤

spuZOOD
spu ]

∣∣∣ ≤ C
√

log(1/δ),

where with a small constant factor c > 0,

C = cκ · max
{

∥wspu∥, Lϕ · ∥wspu∥
}

.

Additionally, by assumption, ∣∣∣w⊤
spu(M µspu) − w⊤

spuµspu

∣∣∣ ≤ ∥wspu∥ ϵ1,

and ∣∣∣w⊤
spu (Σϕwspu) − w⊤

spu (Σspuwspu)
∣∣∣ ≤ ϵ2.

Combining these bounds, with probability at least 1 − δ we obtain

∆(X) ≤ ∥wspu∥ϵ1 + C
√

log(1/δ) +
√

ϵ2 = ϵ.

Finally, the classifier’s accuracy difference is determined by the probability that f(X) and f(X ′) disagree in
sign. Given a Tsybakov-type condition, Pr(|fX(X)| ≤ t) ≤ Bt, this probability is controlled by Bϵ. It follow
that, ∣∣∣accP (f) − accPϕ

(f)
∣∣∣ ≤ Bϵ.

This completes the proof.
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Lemma 4. Assume Z ID
spu is sub-Gaussian with mean µspu, covariance Σspu, and parameter κ. Define a

nonlinear mapping
ϕ : Rl → Rl,

which is Lϕ–Lipschitz, and let
ZOOD

spu = ϕ(Z ID
spu).

Assume further that
E[ZOOD

spu ] = E[ϕ(Z ID
spu)] = M µspu, and Σϕ = ZOOD

spu (ZOOD
spu )⊤

and that

∥M µspu − µspu∥ ≤ ϵ1, (24)∥∥∥w⊤
spuΣϕwspu − w⊤

spuΣspu wspu

∥∥∥ ≤ ϵ2, (25)

where the second inequality is understood to control the difference in the covariance (or concentration) of
the spurious features after transformation. Moreover, assume there exists a constant B > 0 such that for
sufficiently small t (a Tsybakov-type condition),

Pr
(

|fX(X)| ≤ t
)

≤ Bt,

and there exists α > 0 such that

accP (fX) ∈ [α, 1 − α] and a accPϕ
(fX) ∈ [α, 1 − α].

Then for any δ ∈ (0, 1), with probability at least 1 − δ,∣∣∣Φ−1(accP (fX)
)

− a Φ−1(accPϕ
(fX)

)∣∣∣ ≤ ϵ̃, (26)

for any classifier fX ∈ F , where

ϵ̃ = LB
(

∥wspu∥ϵ1 + C
√

log(1/δ) +
√

ϵ2

)
+ ζ,

with—for a small constant factor c > 0—

C = cκ · max
{

∥wspu∥, ∥M∥ · ∥wspu∥
}

,

and
ζ = a|1 − a| max

x∈[α,1−α]

∣∣∣Φ−1(x)
∣∣∣,

where Φ is the Gaussian cumulative distribution function, and L is its Lipschitz constant on [α, 1 − α], i.e.,
for p, q ∈ [α, 1 − α], ∣∣∣Φ−1(p) − Φ−1(q)

∣∣∣ ≤ L|p − q|.

Proof. By Lemma 3, with probability at least 1 − δ we have∣∣∣accP (fX) − a accPϕ
(fX)

∣∣∣ ≤ B
(

∥wspu∥ϵ1 + C
√

log(1/δ) +
√

ϵ2

)
.

Since accP (fX) and a accPϕ
(fX) lie in [α, 1 − α], the function Φ−1 is Lipschitz on this interval with constant

L. Therefore, if we set p = accP (fX) and q = accPϕ
(fX), then∣∣∣Φ−1(p) − Φ−1(q)

∣∣∣ ≤ L|p − q|.

Taking into account the scaling factor a yields∣∣∣Φ−1(p) − a Φ−1(q)
∣∣∣ ≤ L|p − q| + |1 − a|

∣∣∣Φ−1(q)
∣∣∣.
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Since |p − q| is bounded by the result of Lemma 3, we obtain∣∣∣Φ−1(accP (fX)
)

− a Φ−1(accPϕ
(fX)

)∣∣∣ ≤ LB
(

∥wspu∥ϵ1 (27)

+ C
√

2 log(4/δ) +
√

ϵ2

)
+ |1 − a| max

x∈[α,1−α]

∣∣∣Φ−1(x)
∣∣∣. (28)

Defining the right-hand side as ϵ̃ completes the proof.

A.5 Lemma 5—Tradeoff Between Accuracy on The Line and Well-Specification

Lemma 5. Assume Z ID
spu is sub-Gaussian with mean µspu, covariance Σspu, and parameter κ. Define a

nonlinear mapping
ϕ : Rl → Rl,

which is Lϕ–Lipschitz, and let
ZOOD

spu = ϕ(Z ID
spu).

Assume further that
E[ZOOD

spu ] = E[ϕ(Z ID
spu)] = M µspu, and Σϕ = ZOOD

spu (ZOOD
spu )⊤

and that

∥M µspu − µspu∥ ≤ ϵ1, (29)∥∥∥w⊤
spuΣϕwspu − w⊤

spuΣspu wspu

∥∥∥ ≤ ϵ2. (30)

Fix wspu ∈ Rl so that w⊤
spuµspu > 0. Suppose that M satisfies the spurious correlation reversal condition

w⊤
spu(M µspu) +

√
2(Lϕκ)2∥wspu∥2

2 log(1/δ) ≤ −γ < 0,

for some margin γ > 0. Moreover, assume there exists a constant B > 0 such that for sufficiently small t (a
Tsybakov-type condition),

Pr
(

|fX(X)| ≤ t
)

≤ Bt,

and that there exists some α > 0 such that

accP (fX), a accPϕ
(fX) ∈ [α, 1 − α].

Then, with probability at least 1 − δ,∣∣∣Φ−1(accP (fX)
)

− a Φ−1(accPϕ
(fX)

)∣∣∣ ≥ C ∥wspu∥
√

log(1/δ) ∥M µspu − µspu∥ − ζ, (31)

where
ζ = |1 − a| max

x∈[α,1−α]

∣∣∣Φ−1(x)
∣∣∣,

and C is a positive constant (depending on α and the local slope of Φ−1, Lipschitzness of ϕ, and concentration
of ZOOD

spu ). Moreover,
∥M µspu − µspu∥ ≥ ∥wspu∥−1

(
γ + w⊤

spuµspu

)
,

so that the right-hand side of (31) is strictly positive whenever γ + w⊤
spuµspu > 0.

Proof. Since the spurious correlation reversal condition yields

w⊤
spu(M µspu) ≤ −γ < 0,

and since w⊤
spuµspu > 0, we have

w⊤
spu(M µspu − µspu) = w⊤

spu(M µspu) − w⊤
spuµspu ≤ −γ − w⊤

spuµspu.
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By the Cauchy–Schwarz inequality,

∥wspu∥ ∥M µspu − µspu∥ ≥
∣∣w⊤

spu(M µspu − µspu)
∣∣ ≥ γ + w⊤

spuµspu,

so that

∥M µspu − µspu∥ ≥
γ + w⊤

spuµspu

∥wspu∥
.

Next, note that

accP (fX) = Pr
(

w⊤
dgZdg > −w⊤

spuZID
spu

)
and accPϕ

(fX) = Pr
(

w⊤
dgZdg > −w⊤

spuZOOD
spu

)
.

Since w⊤
spu(M µspu) is very negative relative to the random fluctuations of w⊤

spuZOOD
spu (by the sub-Gaussian

concentration inequality with parameter κ) and since w⊤
spuµspu > 0, one can apply standard concentration

arguments to show that with probability at least 1 − δ∣∣∣accP (fX) − a accPϕ
(fX)

∣∣∣ ≥ C0κ ∥wspu∥
√

log(1/δ) ∥M µspu − µspu∥

for some constant C0 > 0. Since by assumption accP (fX) and a accPϕ
(fX) lie in [α, 1 − α], the inverse

Gaussian CDF Φ−1 is L-Lipschitz on this interval. Thus, we have∣∣∣Φ−1(accP (fX)
)

− a Φ−1(accPϕ
(fX)

)∣∣∣ ≥ L
∣∣∣accP (fX) − a accPϕ

(fX)
∣∣∣− |1 − a| max

x∈[α,1−α]

∣∣∣Φ−1(x)
∣∣∣

≥ L
(

C0κ ∥wspu∥
√

log(1/δ) ∥M µspu − µspu∥
)

− |1 − a| max
x∈[α,1−α]

∣∣∣Φ−1(x)
∣∣∣.

Defining C = C0Lκ and ζ = |1 − a| maxx∈[α,1−α] |Φ−1(x)| completes the proof:∣∣∣Φ−1(accP (fX)
)

− a Φ−1(accPϕ
(fX)

)∣∣∣ ≥ C ∥wspu∥
√

log(1/δ) ∥M µspu − µspu∥ − ζ.

Since ∥M µspu − µspu∥ ≥ γ+w⊤
spuµspu

∥wspu∥ , the right-hand side is strictly positive whenever γ + w⊤
spuµspu > 0.

A.6 Proof of Theorem 3—Benchmarks with Accuracy on the Line are Misspecified Almost Everywhere.

Assume that ZID
spu is sub-Gaussian with mean µspu, covariance Σspu, and parameter κ. Define a nonlinear

mapping
ϕ : Rl → Rl,

which is Lϕ–Lipschitz, and let
ZOOD

spu = ϕ(ZID
spu).

Assume further that
E[ZOOD

spu ] = E[ϕ(ZID
spu)] = M µspu,

and that

∥M µspu − µspu∥ ≤ ϵ1, (32)∥∥∥w⊤
spuΣϕ wspu − w⊤

spuΣspu wspu

∥∥∥ ≤ ϵ2. (33)

Suppose that M ∈ Rl×l satisfies the spurious correlation reversal condition

w⊤
spu(M µspu) +

√
2 (Lϕ κ)2 ∥wspu∥2

2 log(1/δ) < 0,
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and assume that there exists a constant B > 0 such that for sufficiently small t (a Tsybakov-type condition),

Pr
(

|fX(X)| ≤ t
)

≤ Bt,

and there exists some α > 0 such that

accP (fX), a accPϕ
(fX) ∈ [α, 1 − α],

where accPϕ
(fX) is the accuracy when the out-of-distribution features are given by ϕ(ZID

spu), and Φ denotes
the Gaussian cumulative distribution function.

Define

Wϵ =
{

M ∈ Rl×l :
w⊤

spu(M µspu) +
√

2 (Lϕ κ)2 ∥wspu∥2
2 log(1/δ) < 0,∣∣∣Φ−1(accP (fX)

)
− a Φ−1(accPϕ

(fX)
)∣∣∣ ≤ ϵ

}
. (34)

Then:

(i) W0 has Lebesgue measure zero in Rl×l.

(ii) For any 0 ≤ ϵi ≤ ϵj , we have Wϵi
⊆ Wϵj

.

In particular, as ϵ → 0 (i.e., perfect accuracy on the line), almost every shift is misspecified, and the Lebesgue
measure of the set of well–specified shifts grows monotonically with ϵ.

Proof. From Lemma 4 have the inequality∣∣∣Φ−1(accP (fX)
)

− a Φ−1(accPϕ
(fX)

)∣∣∣ ≥ C
(

∥wspu∥
√

log(1/δ) ∥Mµspu − µspu∥
)

− |1 − a| max
x∈[α,1−α]

∣∣∣Φ−1(x)
∣∣∣,

where C is a positive constant (depending on the concentration bounds), and L is the Lipschitz constant of
Φ−1 on [α, 1 − α]. Suppose ∣∣∣Φ−1(accP (fX)

)
− a Φ−1(accPϕ

(fX)
)∣∣∣ ≤ ϵ,

then for ϵ sufficiently small, it must be that

∥Mµspu − µspu∥ ≤
ϵ + |1 − a| maxx∈[α,1−α]

∣∣∣Φ−1(x)
∣∣∣

C ∥wspu∥
√

log(1/δ)
. (35)

Thus, as ϵ → 0 we must have
∥Mµspu − µspu∥ = 0,

i.e.,
Mµspu = µspu =⇒ w⊤

spu(Mµspu) = w⊤
spuµspu ≥ 0.

The second equality follows from wspu being the optimal contribution of ZID
spu to fPID

X .

Let
S = {M ∈ Rl×l : Mµspu = µspu}.

Since µspu ̸= 0, S is an affine subspace of Rl×l with dimension strictly less than l2 and hence has Lebesgue
measure zero. Since

W0 ⊂ S,

it follows that W0 has Lebesgue measure zero.

The monotonicity claim follows immediately from Equations 34-35: if 0 ≤ ϵi ≤ ϵj , then by defini-
tion

Wϵi
⊆ Wϵj

.

This completes the proof.
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A.7 Example of Shifts with Accuracy on the Line that are Well-Specified

Let Zspu ∈ Rk be Gaussian with mean µspu = E[Zspu] ̸= 0, and covariance Σspu. Fix wspu ∈ Rk with
w⊤

spuµspu ̸= 0 and let a > 0. Assume the mapping is linear, i.e. ϕ(u) = M u, so that

ZOOD
spu = ϕ(ZID

spu) = M ZID
spu.

Then for any ϵ > 0 and δ ∈ (0, 1), there exists a matrix M ∈ Rk×k such that:

w⊤
spuMµspu +

√
2 w⊤

spuMΣspuM⊤wspu log(1/δ) < 0, (36)∣∣∣Φ−1(accP (fX)
)

− a Φ−1(accPM
(fX)

)∣∣∣ ≤ ϵ, (37)

with probability at least 1 − δ, where accP (fX) and accPM
(fX) are defined as in Lemma 4.

For the construction, let
v = wspu

∥wspu∥
be the unit vector in the direction of wspu, and define its reflection matrix

R = I − 2vv⊤.

Note that Rv = −v and R2 = I. Choose a scalar α > 0 and define

M = αR.

Then, we compute:

w⊤
spu(Mµspu) = w⊤

spu(αRµspu) = α (w⊤
spuRµspu) = −α w⊤

spuµspu,

w⊤
spu(MΣspuM⊤)wspu = α2 w⊤

spu(RΣspuR⊤)wspu = α2 w⊤
spuΣspuwspu,

since Rwspu = −wspu and R is orthogonal.

The spurious correlation reversal condition (36) becomes

−α w⊤
spuµspu +

√
2 α2 w⊤

spuΣspuwspu log(1/δ) < 0.

This can be written as

α

(
−w⊤

spuµspu + α
√

2 w⊤
spuΣspuwspu log(1/δ)

)
< 0.

In particular, since w⊤
spuµspu > 0, it suffices to choose α such that

α >

√
2 w⊤

spuΣspuwspu log(1/δ)

w⊤
spuµspu

.

At the same time, we want the errors induced by M to be small. Define the following error terms:

ϵ1 = ∥Mµspu − µspu∥ = ∥αRµspu − µspu∥,

and
ϵ2 = |α2 − 1| ·

∣∣w⊤
spuΣspuwspu

∣∣.
We want to choose α close to 1 (so that ϵ1 and ϵ2 are small) while also satisfying the above inequality. Hence,
we set

α = max
{

1 + η,

√
2 w⊤

spuΣspuwspu log(1/δ)

w⊤
spuµspu

}
,

for some small η > 0 chosen so that |α − 1| is below the desired threshold. By choosing α accordingly, we
ensure that:
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1. The spurious correlation reversal condition (36) holds.

2. The induced errors ϵ1 and ϵ2 are small enough so that, by Lemma 4, we have∣∣∣Φ−1(accP (fX)) − a Φ−1(accPM
(fX))

∣∣∣ ≤ B
(

∥wspu∥ϵ1 + C
√

2 log(4/δ) +
√

ϵ2

)
≤ ϵ.

Thus, M = αR satisfies both conditions (36) and (37) with probability at least 1 − δ. Note, however, that
the set of such M has Lebesgue measure zero in Rl×l.

A.8 Lemma 6—Finite Mixtures of sub-Gaussians are sub-Gaussian

Lemma 6. Let X be a finite mixture of sub-Gaussian random variables X1, X2, . . . , Xk with parameters
c1, c2, . . . , ck respectively. That is, ∀t ∈ R and each i ∈ {1, . . . , k},

E
[
et(Xi−E[Xi])] ≤ ecit2

.

Assume the mixture probabilities p1, p2, . . . , pk satisfy
∑k

i=1 pi = 1 and pi ≥ 0. Then X is also sub-Gaussian.
Specifically, there exists a constant c > 0 such that ∀t ∈ R,

E
[
et(X−E[X])] ≤ ect2

.

Proof. Since X is a mixture, we have

E
[
et(X−E[X])] =

k∑
i=1

pi E
[
et(Xi−E[X])].

For each i, write
Xi − E[X] =

(
Xi − E[Xi]

)
+
(
E[Xi] − E[X]

)
.

Thus,
E
[
et(Xi−E[X])] = et(E[Xi]−E[X]) E

[
et(Xi−E[Xi])] ≤ et(E[Xi]−E[X]) eci t2

.

Let
∆ = max

1≤i≤k

∣∣E[Xi] − E[X]
∣∣ and C = max

1≤i≤k
ci.

Then, since et(E[Xi]−E[X]) ≤ e|t|∆ for each i, it follows that

E
[
et(X−E[X])] ≤

k∑
i=1

pi e|t|∆ eC t2
= e|t|∆ eC t2

.

Then we have ∀t ∈ R
e|t|∆ ≤ e

1
2 ∆2

e
1
2 t2

and
E
[
et(X−E[X])] ≤ e

1
2 ∆2

e(C+ 1
2 )t2

.

Defining

c = C + 1
2 +

1
2 ∆2

t2 ,

note that the factor e
1
2 ∆2 is independent of t and can be absorbed into a constant. In particular, there exists

a constant c′ > 0 (which may depend on ∆ and C) such that

E
[
et(X−E[X])] ≤ ec′ t2

∀t ∈ R.

Thus, X is sub-Gaussian.
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B Simulation Experiment Setup

Simulation Experiments. We evaluate our results so far empirically. We define an initial distribution
with Zdg ∈ R2 as a Gaussian with mean Y · µdg, where µdg = [1; 1] and unit variance, and ZID

spu ∈ R2 as a
Gaussian with mean Y · µspu, where µspu = [1; 1] and unit variance. The input X ∈ R4 and label y ∈ {0, 1}.
We define a domain by M where ZOOD

spu = MZ0
spu and all other random variables’ distribution is preserved.

We consider settings where the training domain is (i) Gaussian and (ii) Sub-Gaussian (mixture of Gausians).
We define a set of 50 Gaussian test domains defined by randomly sampled M .

We train two types of models: domain general, which are logistic regression models trained and evaluated with
only Zdg features but still trained only on the training distribution, and domain specific, which are logistic
regression models trained an evaluated with X features but still trained only on the training distribution.
Details on the experiments can be found in Appendix B.

Figure 1a demonstrates the setting where the training domain is defined by M = I[2], i.e., ZID
spu is a multivariate

Gaussian. In this setting, we observe the expected behavior derived in Theorem 1. That is, when the spurious
correlation reversal and controlled spurious feature variance hold out-of-distribution, the domain-general
models outperform the domain-specific models.

Figure 1 demonstrates the setting where the training domain is a mixture of M ’s, i.e., a mixture of Gaussians
making a Sub-Gaussian distribution. Figure 1c demonstrates the setting where M is unconstrained. Here, the
test domains can be written as an interpolation of the training domains, i.e., there are positive and negative
definite M ’s mixed to create the training domain. In this setting, Rosenfeld et al. Rosenfeld et al. (2022b)
show that the training domain empirical risk minimizer solves the worst-case domain generalization problem.
Indeed, figure 1c’s results show that there is not generally a difference in OOD performance between the
domain-general and domain-specific models.

Figure 1c demonstrates the setting where the testing domains are not a convex combination of the training
domain – test domains can be outside the bounds of the training M ’s. Here, there is a clear difference in
the OOD performance between the domain-general and domain-specific models. Furthermore, the expected
conditions derived in Theorem 1 are observed. That is, when the spurious correlation reversal and controlled
spurious feature variance hold out-of-distribution, the domain-general models outperform the domain-specific
models.

Clearly, in natural datasets, it is often impractical to conduct such experiments to determine when a
domain-general model achieves the best transfer accuracy on a benchmark. Typically, the domain-general
features are unknown, and we lack the ability to manipulate natural datasets. However, we demonstrate
below that the absence of a strong positive correlation between in- and out-of-distribution accuracy for
arbitrary predictors—referred to as accuracy on the line (Miller et al., 2021), Definition 6—can identify
well-specified benchmarks that reliably evaluate domain generalization via transfer accuracy. We will show
that well-specified domain generalization benchmarks exhibit either weak in- and out-of-distribution accuracy
correlation or a strong inverse correlation.

Parameters. We use the following parameters across our experiments: µ = [1, 1], Σdg = diag([1, 1]),
µspu = [1, 1]. We expect our results to hold independent of these parameters. We chose these parameters for
the ease of intuition of the results on the simulated dataset. We use a sample size of 1000 for each domain.

PM =


Y = Bern(0.5)
Zdg = N

(
Y · µdg, Σdg

)
Zspu = N

(
Y · Mµdg, MΣspuM⊤) (38)

In Figure 1a, We pick a PI as our train domain and then randomly sample M ’s to construct PM ’s. We then
train a domain-specific logistic regression model for fX : X 7→ Y and a domain-general logistic regression
model for fdg : Zdg 7→ Y for PI . We retrain each model

37



Under review as submission to TMLR

Algorithm 1: Generative Mechanism for ColoredMNIST
Input : MNIST dataset with grayscale images zdg and binary labels y ∈ {0, 1}
Output : ColoredMNIST dataset with colorized images x and labels y
Define color mapping probability P (zspu|y) based on a chosen spurious correlation
Sample y ∼ P (y) from the original MNIST dataset
Sample grayscale image zdg corresponding to y
// Introduce spurious correlation
With probability p, assign color zspu based on P (zspu|y)
With probability 1 − p, assign color zspu randomly (breaking correlation)
Apply color transformation T (zdg, zspu) to obtain x
return (x, y)

Figure 6: Colored MNIST image examples

B.1 ColoredMNIST Case Study

The ColoredMNIST dataset (Arjovsky et al., 2019) intuitively illustrates the complexity of benchmarking
domain generalization. ColoredMNIST modifies the gray-scale MNIST (Deng, 2012) dataset by adding color
as a spurious correlation. The digits labels are binary with +1 when ‘digit ≥ 5’ and −1 otherwise. The
observed (training) labels, however, contain 25% label noise, i.e., a predictor that uses digit information can
achieve 75% accuracy at most, in/out-of-distribution. Additionally, the digit images are colored. The color of
the digit matches the noisy observed labels with probability pe, inducing a spurious correlation or shortcut of
strength pe. pe defines a distinct distribution.

Since the observed labels are noisy versions of the true digit labels, the color potentially correlates more with
the observed labels than the digit itself. For example, consider a training domain where pi

e = Pi(Y = +1 |
color = +1) = 0.9. A color-based predictor would achieve 90% accuracy in-domain, while a domain-general
predictor that ignores color would achieve 75% accuracy at a maximum. Furthermore, under a shift where
pj

e = Pj(Y = 1 | color = +1) > 0.75, a color-based model trained on pi
e model will still outperform the

domain-general model in OOD accuracy. However, when pj
e = Pj(Y = 1 | color = +1) < 0.75, the same

color-based model will transfer worse than the domain-general model. This simple example underscores that
for a domain generalization benchmark to be well-specified, w.r.t. to OOD accuracy, spurious correlations
from training to test domains must change enough for the domain-general model to achieve the highest
possible OOD accuracy.

Figure 7 demonstrates that domain-general models need not transfer the best OOD. To demonstrate this,
we test a set of models on a ColoredMNIST training domain where Ptr(Y = 1 | color = green) = 0.1 and
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Figure 7: Correlations between model performance In-Distristribution vs. Out-of-Distribution on ColoredM-
NIST variations. m is the slope of the line, and R is the Pearson correlation coefficient. The axis-parallel
dashed lines denote the maximum within-domain accuracy of 75%, and y = x represents invariant performance
across training and test (target) domains. Models achieving above 75% accuracy use color as a predictor.
Figures 7a and 7b represent shifts where color-based predictors achieve the highest OOD accuracy—above
75% accuracy. Without domain knowledge, one might conclude that the best ERM solution is the most
domain-general. However, Figures 7c and 7d show that these models are not domain-general; some features
that improve ID accuracy hurt OOD performance.

across various test domains with Pte(Y = 1 | color = green) = pj
e. The observation of the variance in the

domain-general and color-based model transfer gap in Figure 7 underscores this work’s key question on which
ID-OOD shifts allow for reliable domain-generalization evaluation.

We leverage a ConvNet architecture for the ColoredMNIST dataset (Table 4); we vary hyperparameters
enumerated in (Gulrajani & Lopez-Paz, 2020a). We vary the hyperparameters in Table 1 and whether or not
we use data augmentation.

C Additional Results and Discussion

C.1 Model Training

Data Augmentation. When data augmentation is applied, the transformation consists of a series of
preprocessing steps applied to images before they are used for training. First, the image undergoes a random
resized crop to a size of 224 × 224 pixels, with a scaling factor ranging from 70% to 100% of the original size.
Next, a random horizontal flip is applied to introduce variability in orientation. The transformation also
includes color jittering, which adjusts brightness, contrast, saturation, and hue with a factor of 0.3 each,
followed by random grayscale conversion, which randomly turns images into grayscale with a certain
probability.

Experimental Setup. We follow the following general experimental procedure. When experiments deviate
from this, it is specified in their respective sections.

Each dataset consists of E domains, each corresponding to a unique data distribution. Our experiments
involve ID/OOD splits using a leave-one-domain-out approach. Specifically, for each domain indexed as
i ∈ [1..E], we train on the subset E i

train = {e1, . . . , ei−1, ei+1, . . . , eE} and test on the held-out domain
E i

test = {ei}.

For each i, we train the following models on P Ei
train : ResNet18, ResNet50, DenseNet121, and ConvNeXt_Tiny.

For each model, we consider ImageNet pretrained variants: (i) Fine-tuned – end-to-end training on P Ei
train and
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Table 1: Models Generation

Hyperparameter Range
Learning Rate (lr) 10−5 to 10−3.5

Weight Decay 10−6 to 10−2

Batch Size 23 (8) to 25.5 (≈ 45)
Data Augmentation {True, False}
Transfer Learning {True, False}
Model Architecture {ResNet18, ResNet50, DenseNet121, ViT-B-16, and ConvNeXt_Tiny}
Dropout {0.0, 0.1, 0.5}
Epoch –

(ii) Transfer learning – retraining only the last layer on P Ei
train . Models are generated with hyperparameters

in Table 1; we also take models at different checkpoints during training.

Table 2: Dataset environments with minimum samples such that change in ID and OOD accuracies correlation
changes less than 1% with new models, and total samples included. We do this for each dataset and ID/OOD
split. Our analysis accounts for sampling error and ensures this threshold is met with 95% confidence,
determined by bootstrapping with 1000 resamplings.

Dataset OOD Minimum Samples Total Samples
CivilComments Env 0 6,710 10,350
CivilComments Env 1 7,210 10,350
CivilComments Env 2 7,610 10,350
CivilComments Env 3 10,310 10,350
CivilComments Env 4 6,210 10,350
CivilComments Env 5 9,810 10,350
CivilComments Env 6 9,810 10,350
CivilComments Env 7 10,310 10,350
CivilComments Env 8 10,310 10,350
CivilComments Env 9 4,910 10,350
CivilComments Env 10 5,910 10,350
CivilComments Env 11 5,510 10,350
CivilComments Env 12 4,810 10,350
CivilComments Env 13 5,610 10,350
CivilComments Env 14 2,510 10,350
CivilComments Env 15 5,910 10,350
ColoredMNIST Env 0 14,110 19,758
ColoredMNIST Env 1 3,110 20,130
ColoredMNIST Env 2 1,810 20,020
Covid-CXR Env 0 3,410 7,140
Covid-CXR Env 1 1,410 7,140
Covid-CXR Env 2 3,310 7,140
Covid-CXR Env 3 4,110 7,140
Covid-CXR Env 4 4,610 7,140
PACS Env 0 2,310 4,407
PACS Env 1 3,110 4,761
PACS Env 2 910 5,043
PACS Env 3 1,210 4,806
SpawriousM2M Easy Env 0 1,310 6,630
SpawriousM2M Easy Env 1 3,010 6,630

Continued on next page
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Table 2 continued from previous page
Dataset OOD Minimum Samples Total Samples
SpawriousM2M Easy Env 2 1,610 6,732
SpawriousM2M Hard Env 0 5,610 5,916
SpawriousM2M Hard Env 1 2,910 5,916
SpawriousM2M Hard Env 2 2,910 5,916
SpawriousO2O Easy Env 0 4,810 6,630
SpawriousO2O Easy Env 1 5,610 6,630
SpawriousO2O Easy Env 2 5,610 6,630
SpawriousO2O Hard Env 0 4,810 5,916
SpawriousO2O Hard Env 1 4,310 5,916
SpawriousO2O Hard Env 2 5,910 5,916
Terra Incognita Env 0 910 3,186
Terra Incognita Env 1 1,410 3,186
Terra Incognita Env 2 1,010 3,135
Terra Incognita Env 3 1,710 3,165
WILDS Camelyon Env 0 1,610 8,400
WILDS Camelyon Env 1 2,010 9,228
WILDS Camelyon Env 2 3,110 7,408
WILDS Camelyon Env 3 2,810 8,548
WILDS Camelyon Env 4 4,710 7,480
WILDS FMoW Env 0 810 27,340
WILDS FMoW Env 1 2,310 27,245
WILDS FMoW Env 2 710 28,725
WILDS FMoW Env 3 4,110 25,550
WILDS FMoW Env 4 4,310 23,930
WILDS FMoW Env 5 7,010 26,540
WILDS Waterbirds Env 0 2,010 8,823
WILDS Waterbirds Env 1 510 9,027
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Table 3: We train on a set of ID distributions and test on a left-out OOD distribution. We present the
Pearson R of ID and OOD probit-transformed accuracies and the slope and intercept of OOD accuracy
regressed on ID accuracy. (*) OOD for waterbirds refers to the group where y = 0 and a = 0. The ID dataset
is the mixture of groups at train time. Additional datasets and analysis are provided in Appendix C, which
also includes complete tables with all splits for each dataset. With a threshold of R < 0.5, only a subset of
datasets satisfy our derived conditions.

Dataset OOD R < 0.5 slope offset R p-value std error
ColoredMNIST Env 2 acc ✓ -1.56 0.47 -0.74 0.00 0.01
CXR Env 1 acc ✓ -0.60 0.56 -0.48 0.00 0.03
SpawriousO2O hard Env 0 acc ✓ 0.32 -0.21 0.50 0.00 0.05
SpawriousM2M hard Env 0 acc ✓ 0.76 -0.26 0.94 0.00 0.01
SpawriousO2O easy Env 0 acc ✗ 0.48 -0.29 0.74 0.00 0.04
SpawriousM2M easy Env 0 acc ✗ 0.34 0.26 0.60 0.00 0.00
PACS Env 1 acc ✗ 0.68 -0.68 0.84 0.00 0.01
TerraIncognita Env 1 acc ✗ 0.83 -1.41 0.74 0.00 0.02
Camelyon Env 2 acc ✗ 0.62 0.49 0.78 0.00 0.01
FMoW Env 5 acc ✗ 0.76 -0.61 0.87 0.00 0.01
CivilComments Env 1 acc ✓ -0.49 0.16 -0.47 0.00 0.03
WaterBirds Env 0 (*) acc ✓ -0.13 1.58 -0.13 0.00 0.03

C.2 ColoredMNIST

ColoredMNIST (Arjovsky et al., 2019). A variant of the MNIST handwritten digit classification
dataset (LeCun, 1998). Domain d ∈ {0.1, 0.2, 0.9} contains a disjoint set of digits colored either red or blue.
The label is a noisy function of the digit and color, such that color bears a correlation of d with the label and
the digit bears a correlation of 0.75 with the label. This dataset contains 70,000 examples of dimension (2,
28, 28) and 2 classes.

Experimental Details. We leverage a ConvNet architecture for the ColoredMNIST dataset (Table 4).

Table 4: MNIST ConvNet architecture.

# Layer
1 Conv2D (in=d, out=64)
2 ReLU
3 GroupNorm (groups=8)
4 Conv2D (in=64, out=128, stride=2)
5 ReLU
6 GroupNorm (groups=8)
7 Conv2D (in=128, out=128)
8 ReLU
9 GroupNorm (groups=8)
10 Conv2D (in=128, out=128)
11 ReLU
12 GroupNorm (8 groups)
13 Global average-pooling

Discussion. Despite colored MNIST’s apparent simplicity, the spurious correlation between color and the
label is quite strong – particularly generalization to text environment 2, going from domains with spurious
correlation probability of 0.1, 0.2 → 0.9. in Gulrajani & Lopez-Paz (2020a)’s evaluation of standard domain
generalization methods at the time, they found that no model could mitigate the effect of this spurious
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correlation. We note that this ID/OOD split has a strong accuracy on the inverse line. In test environment 1,
we observe that the training distributions are such that the spurious correlations cancel out (0.1 vs. 0.9), and
the domain-general model is also the best ID empirical risk minimizer.

Knowledge of the spurious correlation mechanism in each domain makes it relatively easy to identify the
type of features a model uses due to the predictability of expected accuracy between models that use color
and those that don’t. Due to the potential ambiguity of benchmarking results when spurious correlation
mechanisms are unknown, semisynthetic benchmarks are vital in the evaluation process.

Table 5: ColoredMNIST ID vs. OOD properties.

OOD slope intercept Pearson R p-value standard error
Env 0 acc 1.90 -0.58 0.82 0.00 0.01
Env 1 acc 0.96 0.01 0.94 0.00 0.00
Env 2 acc -1.56 0.47 -0.74 0.00 0.01

Table 6: ColoredMNIST ID vs. OOD properties.

OOD ID slope intercept Pearson R p-value standard error
Env 0 acc Env 1 acc 1.23 -0.12 0.99 0.00 0.00
Env 0 acc Env 2 acc -0.73 0.87 -0.36 0.00 0.02
Env 1 acc Env 0 acc 0.91 0.04 0.98 0.00 0.00
Env 1 acc Env 2 acc 0.67 0.16 0.72 0.00 0.01
Env 2 acc Env 0 acc -1.34 0.53 -0.82 0.00 0.01
Env 2 acc Env 1 acc -1.65 0.29 -0.64 0.00 0.02
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Figure 8: ColoredMNIST: Average train Env Accuracy vs. Test Env Accuracy.
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Figure 9: ColoredMNIST: Train Env Accuracy vs. Test Env Accuracy.

C.3 Spawrious

Spawrious (Lynch et al., 2023). The Spawrious image classification benchmark suite consists of six
different datasets, including one-to-one (O2O) spurious correlations, where a single spurious attribute
correlates with a binary label, and many-to-many (M2M) spurious correlations across multiple classes and
spurious attributes. Each benchmark task is proposed with three difficulty levels: Easy, Medium, and
Hard. The dataset contains images of four dog breeds c ∈ {bulldog, dachshund, labrador, corgi} found in
six backgrounds b ∈ {beach, desert, dirt, jungle, mountain, sand}. Images are generated using text-to-image
models and filtered using an image-to-text model for quality control. This benchmark suite consists of 152,064
images of dimensions (3, 224, 224).

For the O2O task, the class (dog breed) and background combinations are sampled such that µ% of the
images per class contain a spurious background bsp and (100 − µ)% contain a generic background bge. While
the generic background is held constant for each class, each spurious background is observed in only one class
(ptrain(bsp

i | cj) = 1 if i = j and 0 if i ̸= j). Two separate training domains are defined by varying the value of
µ. These induced spurious correlations are reverted to yield a test domain with an unseen class-background
pair for each class (ptest(bi | ci) = 1).

For the M2M task, disjoint class and background groups are constructed B1, B2, C1, C2, each with two elements.
To introduce the training domains, class-background combinations (c, b) are selected with c ∈ Ci and b ∈ Bi.
Each training domain consists of a single background per class such that pe

train(bk | ck) = e, with domain
index e ∈ {0, 1}, bk ∈ Bi, ck ∈ Ci. In contrast, the test domain is generated by selecting combinations from
c ∈ Ci and b ∈ Bj with i ̸= j and sampling backgrounds such that ptest(b1 | ck) = ptest(b2 | ck) = 0.5 for
ck ∈ Ci, {b1, b2} = Bj .
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The difficulty level (Easy, Medium, Hard) differs due to the splits in the available class-background combina-
tions. These splits were empirically determined, and the full details of the final data combinations are found
in Table 2 of Lynch et al. (2023).

Discussion. We observed that test environments 1 and 2 have a strong correlation between ID and
OOD accuracy and have a slope of 1, making them misspecified for benchmarking domain generalization.
Appropriately, Lynch et al. (2023) propose transferring to test environment ‘0’ as the spurious correlation task.
The correlation for test environment 0 is much weaker than the others, indicating that ID improvement does
not as strongly imply OOD improvement. While there is still a positive linear correlation, the interpretation
of these benchmarking results is informative because of the knowledge of the spurious correlation mechanism.
Lynch et al. (2023) give examples of informative analysis of benchmarking results on this dataset. Notably,
the O2O_easy setting has a weaker correlation by design, and the accuracy on the line strength increases.
We see similar behavior for the M2M_ setting. However, this task is much harder than the O2O task, which
is reflected in weaker accuracy on the line.

C.3.1 SpawriousO2O Easy

Table 7: SpawriousO2O_easy ID vs. OOD properties.

OOD slope intercept Pearson R p-value standard error
Env 0 acc 0.48 -0.29 0.74 0.00 0.04
Env 1 acc 1.05 -0.13 0.98 0.00 0.02
Env 2 acc 0.95 -0.11 0.97 0.00 0.02

Table 8: SpawriousO2O_easy ID vs. OOD properties.

OOD ID slope intercept Pearson R p-value standard error
Env 0 acc Env 1 acc 0.50 -0.33 0.75 0.00 0.04
Env 0 acc Env 2 acc 0.47 -0.23 0.72 0.00 0.04
Env 1 acc Env 0 acc 1.09 -0.33 0.93 0.00 0.04
Env 1 acc Env 2 acc 1.01 0.11 0.98 0.00 0.02
Env 2 acc Env 0 acc 0.93 -0.12 0.94 0.00 0.03
Env 2 acc Env 1 acc 0.94 -0.02 0.98 0.00 0.01
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Figure 10: SpawriousO2O easy: Average train Env Accuracy vs. Test Env Accuracy.
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Figure 11: SpawriousO2O easy: Train Env Accuracy vs. Test Env Accuracy.
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C.3.2 SpawriousO2O Hard

Table 9: SpawriousO2O_hard ID vs. OOD properties.

OOD slope intercept Pearson R p-value standard error
Env 0 acc 0.32 -0.21 0.50 0.00 0.05
Env 1 acc 0.98 0.06 0.96 0.00 0.02
Env 2 acc 0.94 -0.07 0.96 0.00 0.02

Table 10: SpawriousO2O_hard ID vs. OOD properties.

OOD ID slope intercept Pearson R p-value standard error
Env 0 acc Env 1 acc 0.32 -0.23 0.49 0.00 0.05
Env 0 acc Env 2 acc 0.32 -0.19 0.50 0.00 0.04
Env 1 acc Env 0 acc 0.90 0.14 0.89 0.00 0.04
Env 1 acc Env 2 acc 1.01 0.12 0.97 0.00 0.02
Env 2 acc Env 0 acc 0.92 -0.05 0.93 0.00 0.03
Env 2 acc Env 1 acc 0.92 0.01 0.97 0.00 0.02
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Figure 12: SpawriousO2O hard: Average train Env Accuracy vs. Test Env Accuracy.
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Figure 13: SpawriousO2O hard: Train Env Accuracy vs. Test Env Accuracy.

C.3.3 SpawriousM2M Easy

Table 11: SpawriousM2M_easy ID vs. OOD properties.

OOD slope intercept Pearson R p-value standard error
Env 0 acc 0.34 0.26 0.60 0.00 0.01
Env 1 acc 0.65 -0.08 0.95 0.00 0.00
Env 2 acc 0.65 0.02 0.93 0.00 0.00

Table 12: SpawriousM2M_easy ID vs. OOD properties.

OOD ID slope intercept Pearson R p-value standard error
Env 0 acc Env 1 acc 0.35 0.23 0.61 0.00 0.01
Env 0 acc Env 2 acc 0.32 0.29 0.58 0.00 0.01
Env 1 acc Env 0 acc 0.64 -0.09 0.95 0.00 0.00
Env 1 acc Env 2 acc 0.63 -0.05 0.94 0.00 0.00
Env 2 acc Env 0 acc 0.67 -0.02 0.94 0.00 0.00
Env 2 acc Env 1 acc 0.61 0.08 0.90 0.00 0.01
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Figure 14: SpawriousO2O easy: Average train Env Accuracy vs. Test Env Accuracy.
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Figure 15: SpawriousO2O easy: Train Env Accuracy vs. Test Env Accuracy.

49



Under review as submission to TMLR

C.3.4 SpawriousM2M Hard

Table 13: SpawriousM2M_hard ID vs. OOD properties.

OOD slope intercept Pearson R p-value standard error
Env 0 acc 0.16 -0.04 0.29 0.00 0.01
Env 1 acc 0.76 -0.26 0.94 0.00 0.01
Env 2 acc 0.66 -0.10 0.91 0.00 0.01

Table 14: SpawriousM2M_hard ID vs. OOD properties.

OOD ID slope intercept Pearson R p-value standard error
Env 0 acc Env 1 acc 0.17 -0.07 0.33 0.00 0.01
Env 0 acc Env 2 acc 0.14 -0.02 0.27 0.00 0.01
Env 1 acc Env 0 acc 0.78 -0.27 0.95 0.00 0.00
Env 1 acc Env 2 acc 0.73 -0.23 0.92 0.00 0.01
Env 2 acc Env 0 acc 0.68 -0.11 0.92 0.00 0.01
Env 2 acc Env 1 acc 0.62 -0.08 0.89 0.00 0.01
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Figure 16: SpawriousM2M Hard: Average train Env Accuracy vs. Test Env Accuracy.
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Figure 17: SpawriousM2M Hard: Train Env Accuracy vs. Test Env Accuracy.

C.4 PACS

PACS (Li et al., 2017). A dataset comprised of four domains d ∈ {art, cartoons, photos, sketches}. This
dataset contains 9,991 examples of dimension (3, 224, 224) and 7 classes.

Discussion. In general, we find that PACS does not strongly represent worst-case shifts for any split. Our
results suggest that this benchmark may not accurately benchmark an algorithm’s ability to give models free
of spurious correlations.

Table 15: PACS ID vs. OOD properties.

OOD slope intercept Pearson R p-value standard error
Env 0 acc 0.74 -0.31 0.98 0.00 0.00
Env 1 acc 0.68 -0.68 0.84 0.00 0.01
Env 2 acc 1.00 0.32 0.86 0.00 0.01
Env 3 acc 0.76 -0.87 0.86 0.00 0.01
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Table 16: PACS ID vs. OOD properties.

OOD ID slope intercept Pearson R p-value standard error
Env 0 acc Env 1 acc 0.71 -0.10 0.96 0.00 0.01
Env 0 acc Env 2 acc 0.64 -0.47 0.91 0.00 0.01
Env 0 acc Env 3 acc 0.64 0.14 0.90 0.00 0.01
Env 1 acc Env 0 acc 0.75 -0.59 0.89 0.00 0.01
Env 1 acc Env 2 acc 0.51 -0.67 0.71 0.00 0.01
Env 1 acc Env 3 acc 0.71 -0.29 0.98 0.00 0.00
Env 2 acc Env 0 acc 1.04 0.23 0.87 0.00 0.01
Env 2 acc Env 1 acc 0.90 0.45 0.82 0.00 0.02
Env 2 acc Env 3 acc 0.78 0.76 0.75 0.00 0.02
Env 3 acc Env 0 acc 0.76 -0.79 0.83 0.00 0.01
Env 3 acc Env 1 acc 0.80 -0.75 0.92 0.00 0.01
Env 3 acc Env 2 acc 0.50 -0.83 0.64 0.00 0.02
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Figure 18: PACS: Average train Env Accuracy vs. Test Env Accuracy.
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Figure 19: PACS: Train Env Accuracy vs. Test Env Accuracy.
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C.5 Terra Incognita

Terra Incognita (Beery et al., 2018). A dataset that contains photographs of wild animals taken by
camera traps at locations d ∈ {L100, L38, L43, L46}. This dataset contains 24,788 examples of dimensions (3,
224, 224) and 10 classes: Bird, Bobcat, Cat, Coyote, Dog, Empty, Fox, Horse, Mouse, Opossum, Rabbit,
Raccoon, Rat, Skunk, Squirrel, Weasel.

Discussion. In general, we find that Terra Incognita does not strongly represent worst-case shifts for any
split. Ahuja et al. (2021) consider Terra Incognita domain-general features to be fully informative, i.e., labels
did not need to rely on spurious features such as the background to generate labels. Our results suggest
that this benchmark may not accurately benchmark an algorithm’s ability to give models free of spurious
correlations. For Env 1, we observe that the slope of the line varies quite a bit. Particularly, there is a
near-zero slope for models greater than 80% accuracy.
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Figure 20: Terra Incognita: Average train Env Accuracy vs. Test Env Accuracy.
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Figure 21: Terra Incognita: Train Env Accuracy vs. Test Env Accuracy.

C.6 Camelyon

Camelyon (Bandi et al., 2018; Koh et al., 2021). A dataset that contains histopathological images of
lymph node tissue, collected from two hospitals, denoted as Hospital A, Hospital B. This dataset contains
327,680 examples of dimension (3, 96, 96) and 2 classes (tumor, non-tumor).

Discussion. We find that overall, there is a strong correlation between ID and OOD accuracy. However, we
observe that for some ID/OOD splits, a regime of training accuracy has a negative correlation (environments
0 and 2), suggesting that within a certain accuracy range, these splits may be well-specified for benchmarking
spurious correlations for models in the regime with negative correlation. This highlights the importance of
qualitative evaluation as opposed to quantitative evaluation.

Table 17: WILDSCamelyon ID vs. OOD properties.

OOD slope intercept Pearson R p-value standard error
Env 0 acc 0.78 0.33 0.90 0.00 0.01
Env 1 acc 0.71 -0.00 0.88 0.00 0.01
Env 2 acc 0.62 0.49 0.78 0.00 0.01
Env 3 acc 0.63 0.49 0.88 0.00 0.01
Env 4 acc 0.63 0.40 0.78 0.00 0.01
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Table 18: WILDSCamelyon ID vs. OOD properties.

OOD ID slope intercept Pearson R p-value standard error
Env 0 acc Env 1 acc 0.73 0.44 0.88 0.00 0.01
Env 0 acc Env 2 acc 0.79 0.25 0.90 0.00 0.01
Env 0 acc Env 3 acc 0.83 0.17 0.90 0.00 0.01
Env 0 acc Env 4 acc 0.74 0.28 0.91 0.00 0.01
Env 1 acc Env 0 acc 0.71 -0.00 0.89 0.00 0.01
Env 1 acc Env 2 acc 0.69 0.02 0.85 0.00 0.01
Env 1 acc Env 3 acc 0.74 -0.05 0.89 0.00 0.01
Env 1 acc Env 4 acc 0.69 -0.03 0.89 0.00 0.01
Env 2 acc Env 0 acc 0.64 0.41 0.81 0.00 0.01
Env 2 acc Env 1 acc 0.59 0.58 0.74 0.00 0.01
Env 2 acc Env 3 acc 0.67 0.37 0.79 0.00 0.01
Env 2 acc Env 4 acc 0.61 0.44 0.81 0.00 0.01
Env 3 acc Env 0 acc 0.66 0.41 0.90 0.00 0.01
Env 3 acc Env 1 acc 0.57 0.64 0.84 0.00 0.01
Env 3 acc Env 2 acc 0.63 0.47 0.87 0.00 0.01
Env 3 acc Env 4 acc 0.61 0.45 0.88 0.00 0.01
Env 4 acc Env 0 acc 0.63 0.35 0.79 0.00 0.01
Env 4 acc Env 1 acc 0.60 0.49 0.74 0.00 0.01
Env 4 acc Env 2 acc 0.62 0.39 0.79 0.00 0.01
Env 4 acc Env 3 acc 0.67 0.29 0.78 0.00 0.01
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Figure 22: Camelyon: Average train Env Accuracy vs. Test Env Accuracy.
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Figure 23: Camelyon: Train Env Accuracy vs. Test Env Accuracy.
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C.7 Covid-CXR

Covid-CXR (Alzate-Grisales et al., 2022; Cohen et al., 2020b; Tabik et al., 2020; Tahir et al.,
2021; Suwalska et al., 2023). A dataset that aggregates five different benchmark Covid-19 datasets,
represented as the domain d ∈ {Cov-Caldas (Columbia), Covid-Chest-X-Ray (Global), Covid-GR (Spain),
Covid-Qu-Ex (Global), and PolCovid (Poland)}. These open-source Covid-19 datasets are collected from
around the globe, accessible online. We are provided with chest X-ray image (x) and binary diagnosis (y).
The objective is to maintain consistent performance across different datasets d, which may incorporate data
from singular or multiple sources.

Dataset # Train # Test % Pos Train % Neg Train % Pos Test % Neg Test
Cov-Caldas 3247 688 0.566 0.434 0.565 0.435
Covid-Chest-X-Ray 625 157 0.376 0.624 0.376 0.624
Covid-GR 681 171 0.501 0.499 0.497 0.503
Covid-Qu-Ex 21715 6788 0.353 0.647 0.353 0.647
PolCovid 4343 450 0.249 0.751 0.333 0.667

Table 19: Composition for Covid-19 Datasets.

• Cov-Caldas (Columbia, Alzate-Grisales et al. (2022)): This dataset was sourced from a single
institution, S.E.S. Hospital Universitario de Caldas, located in the State of Caldas, Colombia. Labels
were assigned based on positive results from conventional laboratory tests, such as PCR.

• Covid-Chest-X-Ray (Global, Cohen et al. (2020b)): This dataset, compiled from web sources,
publications, and volunteer contributions, includes data on five types of pneumonia and Covid-19,
along with metadata such as sex, age, and symptoms. The images are sourced from medical websites
and are part of an open-source public project, where contributors can submit pull requests to add
new images. The data is compiled from 138 unique locations.

• Covid-GR (Spain, Tabik et al. (2020)): In collaboration with four expert radiologists from Hospital
Universitario Clínico San Cecilio in Granada, Spain, the authors developed a protocol for selecting
and annotating chest X-ray (CXR) images for the dataset. A CXR image is labeled as Covid-19
positive if both the RT-PCR test and the radiologist’s assessment confirm the diagnosis within 24
hours.

• Covid-Qu-Ex (Global, Tahir et al. (2021)): This dataset aggregates chest X-rays from six subdatasets,
including the Covid-19 CXR dataset, RSNA CXR dataset (non-Covid infections and normal CXRs),
Chest-Xray-Pneumonia dataset, PadChest dataset, Montgomery and Shenzhen CXR lung mask
datasets, and QaTa-Cov19 CXR infection mask dataset. Designed to serve as a benchmark, it
combines multiple publicly available datasets and repositories, which were originally dispersed and
formatted differently. The authors performed quality control to ensure consistency. This dataset,
specifically portions of their cited Covid-19 CXR dataset, overlaps with Covid-Chest-X-Ray (Env 1),
thus deviating slightly from our standard experimental procedure of leave-one-domain-out.

• PolCovid (Poland, Suwalska et al. (2023)): Chest X-rays were collected from 15 Polish hospitals
using a variety of devices and parameters due to differences in equipment between medical centers.
The dataset includes patients with Covid-19, pneumonia, and healthy controls.

Experimental Details. Using the DomainBed suite by Gulrajani & Lopez-Paz (2020b), we employ the
ResNet-50 architecture (with and without AugMix data augmentation), along with ResNet-18, DenseNet-121,
and ConvNeXt-Tiny, on the Covid-CXR dataset. Each of the five datasets is treated as a distinct domain,
d. For each model, we apply two pretrained variants using ImageNet: (i) Fine-tuned and (ii) Transfer learning.
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Discussion. Covid-CXR is a real-world medical dataset containing chest X-ray images of Covid-19 patients,
where spurious correlations emerge naturally due to the complex and multifaceted nature of medical data.
These correlations are not explicitly observed or intentionally introduced but arise from underlying factors
such as imaging artifacts, patient demographics, or co-occurring medical conditions that are often unmeasured
or unaccounted for in the dataset. As observed, there exist strong, weak, and inverse correlations between
ID and OOD performance. While environments 0, 2, and 4 are primarily positively correlated in OOD
performance, environments 1 and 3 demonstrate the inverse accuracy-on-the-line phenomenon. Additionally,
several observations show weak correlations, with slopes close to zero. Existing literature suggests that a
horizontal line (i.e. slope of 0) is indicative of a severe distribution shift, where it prevents any meaningful
transfer learning between the training data and the OOD data Teney et al. (2024). This could be attributed
to the significantly more severe distribution shifts present in this dataset. These shifts, as discussed by Cohen
et al. (2020a), may arise due to errors in labeling, discrepancies between institutions and radiologists, biases
in clinical practices, and interobserver variability.

Moreover, Covid-Qu-Ex (Env 3), the largest and most diverse dataset of those explored in this work,
demonstrates low OOD transfer accuracy. For OOD performance for ID Env 3, we observe slopes closest to 0,
indicating a weak or near-zero correlation. The high ID accuracy (up to ≈ 99%) suggests that the model may
be learning misleading features in OOD domains. However, for environments evaluated on this dataset, a
strongly negative relationship is present, suggesting that improved ID performance may be associated with
reduced OOD accuracy. In this dataset, the authors scale by concatenating existing chest X-Ray datasets.
But, as discussed in Cohen et al. (2020a), Shen et al. (2024), and Teney et al. (2024), simply increasing the
amount of data may not address the core issue of distribution shift, as more data could exacerbate overfitting
to domain-specific artifacts or noise, rather than improving generalization. Shen et al. (2024) coins this as
the Data Addition Dilemma, where adding data can both improve and worsen performance.

Table 20: CXR ID vs. OOD properties.

OOD slope intercept Pearson R p-value standard error
Env 0 acc 0.54 -0.27 0.55 0.00 0.02
Env 1 acc -0.38 0.13 -0.50 0.00 0.02
Env 2 acc 0.44 0.05 0.54 0.00 0.02
Env 3 acc -0.60 0.56 -0.48 0.00 0.03
Env 4 acc 0.53 -0.04 0.31 0.00 0.04
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Table 21: CXR ID vs. OOD properties.

OOD ID slope intercept Pearson R p-value standard error
Env 0 acc Env 1 acc 0.56 -0.23 0.57 0.00 0.02
Env 0 acc Env 2 acc 0.31 -0.21 0.41 0.00 0.02
Env 0 acc Env 3 acc 0.16 -0.26 0.84 0.00 0.00
Env 0 acc Env 4 acc 0.43 -0.39 0.68 0.00 0.01
Env 1 acc Env 0 acc -0.43 0.09 -0.61 0.00 0.01
Env 1 acc Env 2 acc -0.16 0.06 -0.27 0.00 0.01
Env 1 acc Env 3 acc -0.07 0.06 -0.51 0.00 0.00
Env 1 acc Env 4 acc -0.21 0.12 -0.46 0.00 0.01
Env 2 acc Env 0 acc 0.39 0.07 0.54 0.00 0.01
Env 2 acc Env 1 acc 0.36 0.06 0.46 0.00 0.02
Env 2 acc Env 3 acc 0.09 0.06 0.61 0.00 0.00
Env 2 acc Env 4 acc 0.28 -0.04 0.51 0.00 0.01
Env 3 acc Env 0 acc -0.68 0.54 -0.49 0.00 0.03
Env 3 acc Env 1 acc -0.47 0.51 -0.46 0.00 0.02
Env 3 acc Env 2 acc -0.38 0.51 -0.37 0.00 0.02
Env 3 acc Env 4 acc -0.26 0.54 -0.29 0.00 0.02
Env 4 acc Env 0 acc -0.03 0.19 -0.02 0.48 0.04
Env 4 acc Env 1 acc 0.56 -0.01 0.40 0.00 0.03
Env 4 acc Env 2 acc 0.47 -0.07 0.37 0.00 0.03
Env 4 acc Env 3 acc 0.10 0.04 0.36 0.00 0.01
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Figure 24: Covid-CXR: Average train Env Accuracy vs. Test Env Accuracy.
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Figure 25: Covid-CXR: Train Env Accuracy vs. Test Env Accuracy.
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C.8 FMoW

FMoW (Bandi et al., 2018; Koh et al., 2021). A dataset consisting of 141,696 RGB satellite images
from 2022 - 2017 (resized to 224 x 224 pixels), where the label is one of 62 building or land use categories.
This dataset simultaneously considers a domain generalization task, where two domains are defined by the
year of image acquisition t ∈ {before2016, after2016}, and a subpopulation shift task, where the domains
are denoted by the geographic region of the image r ∈ {Africa, Americas, Oceana, Asia, Europe}.

Discussion. We find that WILDFMoW has accuracy on the line for all splits, suggesting that this benchmark
may be misspecified for benchmarking spurious correlations.

Table 22: WILDSFMoW ID vs. OOD properties.

OOD slope intercept Pearson R p-value standard error
Env 0 acc 0.75 -0.62 0.98 0.00 0.00
Env 1 acc 0.78 -0.34 0.96 0.00 0.00
Env 2 acc 0.65 -0.48 0.94 0.00 0.00
Env 3 acc 0.83 -0.34 0.99 0.00 0.00
Env 4 acc 0.96 -0.18 0.99 0.00 0.00
Env 5 acc 0.76 -0.61 0.87 0.00 0.01
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Table 23: WILDSFMoW ID vs. OOD properties.

OOD ID slope intercept Pearson R p-value standard error
Env 0 acc Env 1 acc 0.78 -0.52 0.98 0.00 0.00
Env 0 acc Env 2 acc 0.69 -0.72 0.97 0.00 0.00
Env 0 acc Env 3 acc 0.71 -0.52 0.97 0.00 0.00
Env 0 acc Env 4 acc 0.48 -0.89 0.96 0.00 0.00
Env 0 acc Env 5 acc 0.43 -1.11 0.94 0.00 0.00
Env 1 acc Env 0 acc 0.75 -0.26 0.97 0.00 0.00
Env 1 acc Env 2 acc 0.78 -0.43 0.96 0.00 0.00
Env 1 acc Env 3 acc 0.80 -0.20 0.98 0.00 0.00
Env 1 acc Env 4 acc 0.53 -0.62 0.95 0.00 0.00
Env 1 acc Env 5 acc 0.49 -0.88 0.94 0.00 0.00
Env 2 acc Env 0 acc 0.58 -0.50 0.94 0.00 0.00
Env 2 acc Env 1 acc 0.70 -0.47 0.93 0.00 0.00
Env 2 acc Env 3 acc 0.64 -0.49 0.92 0.00 0.00
Env 2 acc Env 4 acc 0.43 -0.80 0.91 0.00 0.00
Env 2 acc Env 5 acc 0.39 -1.01 0.92 0.00 0.00
Env 3 acc Env 0 acc 0.74 -0.30 0.98 0.00 0.00
Env 3 acc Env 1 acc 0.91 -0.25 0.99 0.00 0.00
Env 3 acc Env 2 acc 0.79 -0.49 0.97 0.00 0.00
Env 3 acc Env 4 acc 0.53 -0.67 0.96 0.00 0.00
Env 3 acc Env 5 acc 0.49 -0.96 0.92 0.00 0.00
Env 4 acc Env 0 acc 0.89 -0.13 0.98 0.00 0.00
Env 4 acc Env 1 acc 1.02 -0.08 0.99 0.00 0.00
Env 4 acc Env 2 acc 0.92 -0.33 0.98 0.00 0.00
Env 4 acc Env 3 acc 0.95 -0.08 0.99 0.00 0.00
Env 4 acc Env 5 acc 0.54 -0.87 0.90 0.00 0.00
Env 5 acc Env 0 acc 0.74 -0.56 0.89 0.00 0.01
Env 5 acc Env 1 acc 0.82 -0.54 0.85 0.00 0.01
Env 5 acc Env 2 acc 0.70 -0.74 0.84 0.00 0.01
Env 5 acc Env 3 acc 0.74 -0.55 0.85 0.00 0.01
Env 5 acc Env 4 acc 0.52 -0.90 0.86 0.00 0.00
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Figure 26: FMoW: Average train Env Accuracy vs. Test Env Accuracy.
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Figure 27: FMoW: Train Env Accuracy vs. Test Env Accuracy.
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C.9 Waterbirds

Waterbirds (Sagawa et al., 2019; Koh et al., 2021). The Waterbirds dataset is a modification of
the CUB dataset (Welinder et al., 2010) constructed to induce a subpopulation shift in the association
between bird type b ∈ {waterbird, landbird} in the foreground and the image background c ∈ {water, land}.
Waterbird labels are assigned to seabirds and waterfowl; all other bird types are labeled as landbirds. Image
backgrounds are obtained from the Places dataset (Zhou et al., 2016) and subset to include water backgrounds
(categories: ocean or natural lake) and land backgrounds (categories: bamboo forest or broadleaf forest). The
training set consists of 95% of all waterbirds with a water background and the remaining 5% with a land
background. Similarly, 95% of all landbirds are displayed on a land background with the remaining 5% on a
water background. The validation and test sets include an equal distribution of waterbirds and landbirds on
each background. This dataset consists of 11,788 examples of size (3 x 224 x 224).

Experimental Details. Environment 0 consists of the full training split from the Waterbirds dataset and
Environment 1 is a concatenation of the validation and test splits from the Waterbirds dataset (Sagawa et al.,
2019). In addition to plotting the average ID vs. OOD accuracies for each test environment, we also include
average ID vs. group-specific accuracies and pairwise combinations of group-specific ID vs. group-specific
OOD accuracy.

Discussion. In our evaluation of average ID and OOD performance, we find that the Waterbirds dataset
does not strongly represent worst-case shifts. However, plotting group-specific OOD accuracies, we find no
linear correlation for Environment 1 group (y = 0, a = 1), representing a degradation in worst-group accuracy
(WGA) with improvements to Environment 0 ID average accuracy. We examine the pairwise group-specific
accuracies for each environment and generally find that OOD group accuracy positively correlates with ID
accuracy for groups sharing the same label. Since Waterbirds groups are defined by label (bird), attribute
(background) pairs, this result is consistent with the studies that suggest worst-class accuracy (WCA) is
a good proxy for WGA when group membership is unknown (Yang et al., 2023). Similarly, OOD group
accuracy negatively correlates with ID accuracy for groups of the opposite label, demonstrating the trade-off
between majority and minority group/class performance under subpopulation shifts.

Table 24: WILDSWaterbirds average ID vs. OOD properties.

ID OOD slope intercept Pearson R p-value standard error
Env 0 acc Env 1 acc 0.83 0.35 0.92 0.00 0.01
Env 1 acc Env 0 acc 0.47 0.16 0.69 0.00 0.02
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Figure 28: Waterbirds average ID vs. average OOD accuracies
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Table 25: Waterbirds average ID vs. group-specific OOD properties.

ID OOD slope intercept Pearson R p-value standard error
Env 0 avg acc Env 1 y=0,a=0 acc -0.13 1.58 -0.13 0.00 0.03
Env 0 avg acc Env 1 y=0,a=1 acc 0.00 1.32 0.00 0.95 0.03
Env 0 avg acc Env 1 y=1,a=0 acc 0.22 1.17 0.84 0.00 0.00
Env 0 avg acc Env 1 y=1,a=1 acc 0.32 1.13 0.81 0.00 0.01
Env 1 avg acc Env 0 y=0,a=0 acc 0.70 -0.02 0.65 0.00 0.03
Env 1 avg acc Env 0 y=0,a=1 acc -0.07 1.61 -0.11 0.00 0.02
Env 1 avg acc Env 0 y=1,a=0 acc 0.27 1.63 0.56 0.00 0.01
Env 1 avg acc Env 0 y=1,a=1 acc 0.30 1.21 0.60 0.00 0.01

Table 26: Waterbirds pairwise group-specific ID vs. OOD properties.

ID OOD slope intercept Pearson R p-value standard error
Env 0 y=0,a=0 acc Env 1 y=0,a=0 acc 0.76 0.58 0.86 0.00 0.01
Env 0 y=0,a=1 acc Env 1 y=0,a=0 acc 0.72 0.73 0.73 0.00 0.02
Env 0 y=1,a=0 acc Env 1 y=0,a=0 acc -0.15 2.19 -0.43 0.00 0.01
Env 0 y=1,a=1 acc Env 1 y=0,a=0 acc -0.13 2.17 -0.36 0.00 0.01
Env 0 y=0,a=0 acc Env 1 y=0,a=1 acc 0.45 1.05 0.42 0.00 0.03
Env 0 y=0,a=1 acc Env 1 y=0,a=1 acc 0.65 0.72 0.54 0.00 0.03
Env 0 y=1,a=0 acc Env 1 y=0,a=1 acc -0.03 1.96 -0.06 0.08 0.01
Env 0 y=1,a=1 acc Env 1 y=0,a=1 acc -0.05 1.99 -0.10 0.00 0.01
Env 0 y=0,a=0 acc Env 1 y=1,a=0 acc -1.16 3.05 -0.33 0.00 0.10
Env 0 y=0,a=1 acc Env 1 y=1,a=0 acc -0.96 2.58 -0.25 0.00 0.12
Env 0 y=1,a=0 acc Env 1 y=1,a=0 acc 1.24 0.13 0.93 0.00 0.02
Env 0 y=1,a=1 acc Env 1 y=1,a=0 acc 1.34 0.12 0.92 0.00 0.02
Env 0 y=0,a=0 acc Env 1 y=1,a=1 acc -0.70 2.02 -0.32 0.00 0.07
Env 0 y=0,a=1 acc Env 1 y=1,a=1 acc -0.87 2.24 -0.34 0.00 0.08
Env 0 y=1,a=0 acc Env 1 y=1,a=1 acc 0.84 0.19 0.95 0.00 0.01
Env 0 y=1,a=1 acc Env 1 y=1,a=1 acc 0.92 0.20 0.97 0.00 0.01
Env 1 y=0,a=0 acc Env 0 y=0,a=0 acc 0.77 0.55 0.96 0.00 0.01
Env 1 y=0,a=1 acc Env 0 y=0,a=0 acc 0.16 2.18 0.35 0.00 0.01
Env 1 y=1,a=0 acc Env 0 y=0,a=0 acc -0.07 2.23 -0.18 0.00 0.01
Env 1 y=1,a=1 acc Env 0 y=0,a=0 acc 0.02 2.26 0.05 0.10 0.01
Env 1 y=0,a=0 acc Env 0 y=0,a=1 acc 0.54 -0.49 0.39 0.00 0.04
Env 1 y=0,a=1 acc Env 0 y=0,a=1 acc 0.73 0.23 0.88 0.00 0.01
Env 1 y=1,a=0 acc Env 0 y=0,a=1 acc -0.13 0.61 -0.23 0.00 0.02
Env 1 y=1,a=1 acc Env 0 y=0,a=1 acc -0.50 1.25 -0.69 0.00 0.02
Env 1 y=0,a=0 acc Env 0 y=1,a=0 acc -0.33 0.50 -0.18 0.00 0.05
Env 1 y=0,a=1 acc Env 0 y=1,a=0 acc -0.40 -0.01 -0.32 0.00 0.04
Env 1 y=1,a=0 acc Env 0 y=1,a=0 acc 0.61 0.17 0.84 0.00 0.01
Env 1 y=1,a=1 acc Env 0 y=1,a=0 acc 0.88 -1.21 0.83 0.00 0.02
Env 1 y=0,a=0 acc Env 0 y=1,a=1 acc 0.05 1.08 0.03 0.38 0.05
Env 1 y=0,a=1 acc Env 0 y=1,a=1 acc -0.50 1.50 -0.47 0.00 0.03
Env 1 y=1,a=0 acc Env 0 y=1,a=1 acc 0.44 1.44 0.60 0.00 0.02
Env 1 y=1,a=1 acc Env 0 y=1,a=1 acc 0.94 0.13 0.96 0.00 0.01
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Figure 29: Waterbirds average ID vs. group-specific OOD accuracies

70



Under review as submission to TMLR

1 10 20 30 405060 70 80 9990
Train Envs Accs

1

10
20
3040506070
80

99

90

Te
st

 E
nv

 0
 G

ro
up

 y
=0

,a
=0

 A
cc

Env 1 Group y=0,a=0 Acc. R=0.96
Env 1 Group y=0,a=1 Acc. R=0.4
Env 1 Group y=1,a=0 Acc. R=-0.18
Env 1 Group y=1,a=1 Acc. R=0.067
overall. R=0.09
y=x

1 10 20 30 405060 70 80 9990
Train Envs Accs

1

10
20
3040506070
80

99

90

Te
st

 E
nv

 1
 G

ro
up

 y
=0

,a
=0

 A
cc

Env 0 Group y=0,a=0 Acc. R=0.84
Env 0 Group y=0,a=1 Acc. R=0.73
Env 0 Group y=1,a=0 Acc. R=-0.39
Env 0 Group y=1,a=1 Acc. R=-0.41
overall. R=-0.03
y=x

1 10 20 30 405060 70 80 9990
Train Envs Accs

1

10
20
30
405060
70
80

99

90

Te
st

 E
nv

 0
 G

ro
up

 y
=0

,a
=1

 A
cc

Env 1 Group y=0,a=0 Acc. R=0.4
Env 1 Group y=0,a=1 Acc. R=0.88
Env 1 Group y=1,a=0 Acc. R=-0.29
Env 1 Group y=1,a=1 Acc. R=-0.65
overall. R=-0.00
y=x

1 10 20 30 405060 70 80 9990
Train Envs Accs

1

10
20
30
405060
70
80

99

90

Te
st

 E
nv

 1
 G

ro
up

 y
=0

,a
=1

 A
cc

Env 0 Group y=0,a=0 Acc. R=0.44
Env 0 Group y=0,a=1 Acc. R=0.59
Env 0 Group y=1,a=0 Acc. R=-0.095
Env 0 Group y=1,a=1 Acc. R=-0.096
overall. R=0.04
y=x

1 10 20 30 405060 70 80 9990
Train Envs Accs

1

10
20
3040506070
80

99

90

Te
st

 E
nv

 0
 G

ro
up

 y
=1

,a
=0

 A
cc

Env 1 Group y=0,a=0 Acc. R=-0.16
Env 1 Group y=0,a=1 Acc. R=-0.29
Env 1 Group y=1,a=0 Acc. R=0.83
Env 1 Group y=1,a=1 Acc. R=0.84
overall. R=0.20
y=x

1 10 20 30 405060 70 80 9990
Train Envs Accs

1
1020304050607080

99
90

Te
st

 E
nv

 1
 G

ro
up

 y
=1

,a
=0

 A
cc Env 0 Group y=0,a=0 Acc. R=-0.31

Env 0 Group y=0,a=1 Acc. R=-0.24
Env 0 Group y=1,a=0 Acc. R=0.93
Env 0 Group y=1,a=1 Acc. R=0.91
overall. R=0.30
y=x

1 10 20 30 405060 70 80 9990
Train Envs Accs

1

10
20
3040506070
80

99

90

Te
st

 E
nv

 0
 G

ro
up

 y
=1

,a
=1

 A
cc

Env 1 Group y=0,a=0 Acc. R=0.029
Env 1 Group y=0,a=1 Acc. R=-0.48
Env 1 Group y=1,a=0 Acc. R=0.6
Env 1 Group y=1,a=1 Acc. R=0.96
overall. R=0.16
y=x

1 10 20 30 405060 70 80 9990
Train Envs Accs

1

10
20304050607080

99

90

Te
st

 E
nv

 1
 G

ro
up

 y
=1

,a
=1

 A
cc Env 0 Group y=0,a=0 Acc. R=-0.3

Env 0 Group y=0,a=1 Acc. R=-0.35
Env 0 Group y=1,a=0 Acc. R=0.95
Env 0 Group y=1,a=1 Acc. R=0.97
overall. R=0.31
y=x

Figure 30: Waterbirds pairwise group-specific accuracies
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C.10 CivilComments

CivilComments (Koh et al., 2021) A dataset comprised of multiple subpopulations, which correspond
to different demographic identities. The domain d is a multi-dimensional binary vector with 8 dimensions,
each corresponding to whether a given comment mentions one of the 8 demographic identities: male, female,
LGBTQ, Christian, Muslim, other religions, Black, and White. For each of the 8 identities, we form 2 groups
corresponding to the toxicity label, generating a total of 16 groups (e.g., male_toxic, male_non-toxic, etc.).
By construction, since each comment may belong to more than one group, this experimental procedure differs
slightly from the standard subpopulation shift framework discussed in this work. Regardless, the experimental
results with and without group overlaps display similar accuracy on the line and accuracy on the inverse line
patterns.

Experimental Details. We leverage both BERT and DistilBERT architectures for the CivilComments
dataset.

Discussion. The CivilComments dataset exhibits both an accuracy on a line and an accuracy on the
inverse line phenomenon across all test environments in the Leave-One-Domain-Out procedure. The spurious
correlation, which involves the presence or absence of 8 different demographic identities (e.g., male, white,
Christian, Muslim, etc.), is rather strongly correlated with the toxicity label. Empirically, the correlation
coefficient (R) values range from as low as -0.47 to as high as 0.43. There appear to be many ID/OOD splits
that can be derived from this dataset for benchmarking domain generalization.

Table 27: CivilComments ID vs. OOD properties.

OOD slope intercept Pearson R p-value standard error
Env 0 acc 0.36 -0.29 0.28 0.00 0.04
Env 1 acc -0.49 0.16 -0.47 0.00 0.03
Env 2 acc 0.39 -0.17 0.28 0.00 0.04
Env 3 acc -0.49 0.12 -0.42 0.00 0.03
Env 4 acc 0.58 0.20 0.43 0.00 0.04
Env 5 acc -0.54 0.00 -0.43 0.00 0.04
Env 6 acc 0.46 -0.04 0.30 0.00 0.05
Env 7 acc -0.50 0.16 -0.43 0.00 0.03
Env 8 acc 0.49 0.03 0.36 0.00 0.04
Env 9 acc -0.49 0.06 -0.41 0.00 0.03
Env 10 acc 0.53 0.17 0.34 0.00 0.05
Env 11 acc -0.57 -0.09 -0.46 0.00 0.03
Env 12 acc 0.46 0.05 0.30 0.00 0.05
Env 13 acc -0.54 -0.04 -0.45 0.00 0.03
Env 14 acc 0.41 -0.10 0.29 0.00 0.04
Env 15 acc -0.52 0.06 -0.43 0.00 0.04
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Figure 31: CivilComments: Average train Env Accuracy vs. Test Env Accuracy.
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Figure 32: CivilComments: Average train Env Accuracy vs. Test Env Accuracy.
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Figure 33: CivilComments: Train Env Accuracy vs. Test Env Accuracy.
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Figure 34: CivilComments: Train Env Accuracy vs. Test Env Accuracy.
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D Benchmarking Causal Representation Learning

Models that incorporate or learn structural knowledge of the domains they are applied to have been shown to
be more efficient and generalize better across different settings (Parascandolo et al., 2020; Sanchez-Gonzalez
et al., 2020; Gondal et al., 2019; Goyal et al., 2019; Battaglia et al., 2016; Bapst et al., 2019; Makar et al., 2022;
Zheng & Makar, 2022; Wang et al., 2022a). An example of such a structure is the principle of independent
causal mechanisms (Haavelmo, 1944; Aldrich, 1989; Hoover, 1990; Pearl, 2009; Schölkopf et al., 2012; Janzing
et al., 2012; Peters et al., 2016; Schölkopf et al., 2021), which posits that the generative process of a system’s
variables consists of autonomous components, or mechanisms, that operate independently and do not inform
one another. This implies that the conditional distribution of each variable, given its causes (mechanisms), is
independent of the other variables and mechanisms (Peters et al., 2017). Learning causal representations is
an active area of research (Schölkopf et al., 2021). Datasets for causal representation learning are primarily
(semi)parametric where (some) causal variables are known and potentially intervenable (Von Kügelgen et al.,
2021; Lippe et al., 2022a;b; Ahmed et al., 2020; Liu et al., 2023b). Then, success is assessed by how well
learned disentangled representations (mechanisms) explain outcome variance, using R2 or MCC (Mathew’s
Correlation Coefficient) (Lopez et al., 2023). However, the task of causal representation learning with complex
datasets with limited knowledge or control over generative mechanisms remains a challenge, especially without
requiring most (or at least some) relevant causal variables to be directly observed Lopez-Paz et al. (2017)—we
identify that benchmarking causal representation learning in this setting is also challenging.

Causal representation learning is closely tied to domain generalization, which aims to learn representations
from multiple observed domains that give predictors whose performance is invariant to new domains (new
data distributions). Many works in domain generalization (Arjovsky et al., 2019; Salaudeen & Koyejo, 2022;
2024; Mahajan et al., 2021; Liu et al., 2021a; Lv et al., 2022; Chen et al., 2022a; Eastwood et al., 2022). have
been motivated by the principle of independent causal predictors, which aims to identify causal predictors
from observational data by searching for feature sets that maintain stable (invariant) predictive accuracy
across interventional distributions Peters et al. (2016); Heinze-Deml et al. (2018); Arjovsky et al. (2019).
Additionally, more recent work motivates learning causal representations from multiple datasets arising from
unknown interventions (von Kügelgen et al., 2024).

Thus, one may naively consider domain generalization as a proxy task to benchmark causal representation
learning in more complex settings. This work studies when performance on a domain generalization
task is informative of the causal representation learning task. Specifically, when benchmarking a set of
models, including a disentangled causal model, based on transfer accuracy, our results on evaluating domain
generalization apply, where non-causal correlations are spurious (Salaudeen et al., 2024).
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