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Abstract

Multimodal language models (MLLMs) have recently emerged as versatile models1

that unify visual perception with language understanding. However, their per-2

formance across core vision tasks remains poorly characterized relative to the3

traditional vision backbones—on which they are built. In this work, we provide a4

systematic comparison of MLLMs and their underlying vision backbones across a5

diverse set of benchmarks. Our analysis reveals a consistent gap: MLLMs under-6

perform their own vision-backbone on perception tasks such as object recognition7

with deficits of 10-15% in accuracy. On the other hand, MLLMs demonstrate8

considerable gains in reasoning-heavy tasks, such as counting and relational un-9

derstanding, where language grounding provides complementary benefits. One10

reason for this discrepancy lies in the limitations of current evaluation practices.11

Unlike Vision-Language Models (VLMs), MLLMs are evaluated through open-12

ended text generation, making results more sensitive to formatting errors and13

instruction-following failures rather than core visual competence. Finally, to en-14

courage research into the vision-capabilities of MLLMs we provide a reduced set15

of evaluations requiring modest resources while maintaining diagnostic value.16

1 Introduction17

MLLMs align a pretrained large language model (LLM) - with its robust text understanding and18

generation capabilities - with a vision backbone, enabling unified reasoning over both modalities. This19

paradigm has rapidly advanced the field, producing models that can not only answer visual questions20

with free-form explanations but also engage in multimodal dialogue Liu et al. [2023b, 2024a], Li21

et al. [2023b]. While the integration of LLMs has undoubtedly expanded the scope of multimodal22

models, it remains unclear what progress LLMs have brought to vision-centric understanding. This23

raises a fundamental question: do MLLMs retain the same level of visual competence as their vision24

backbones, or does alignment with an LLM come at the expense of core-perception?25

Many benchmarks study vision capabilities via classification [Russakovsky et al., 2015, Recht et al.,26

2019, Idrissi et al., 2022, Hendrycks et al., 2021], attributes and relations of objects [Al-Tahan et al.,27

2024a, Dumpala et al., 2024, Thrush et al., 2022]. Recent efforts to benchmark multimodal model28

have relied on larger composite suites of benchmarks that span several tasks such as recognition,29

OCR, counting, visual question answering, and object attributes etc. [Yu et al., 2024, Liu et al.,30

2024b, Li et al., 2023a, Yue et al., 2023]. These new efforts however are not compatible with the31

prior generation of benchmarks designed for vision-language models, making comparisons to modern32

MLLMs challenging.33

In this work, we unify evaluation protocols of MLLMs on vision-centric capabilities. By applying34

standardized, controlled evaluations, we provide a systematic comparison of MLLMs with their35

underlying vision backbones. Our evaluation spans 48 benchmarks (e.g., ImageNet-1k, CIFAR-100,36
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Figure 1: VLMs and MLLMs exhibit complementary strengths: VLMs excel at perception,
while MLLMs are stronger at reasoning. VLMs are trained through contrastive learning between
vision and text encoders, whereas MLLMs align pre-trained LLMs with the vision backbone inherited
from VLMs. Benchmark comparisons illustrate that, despite reusing the same vision backbone,
MLLMs shift performance toward reasoning tasks such as counting, while VLMs remain superior at
object recognition—highlighting how alignment with language fundamentally reshapes multimodal
capabilities.

CountBench, VG Attribution) grouped into 18 distinct capability categories, including relation under-37

standing, object recognition, spatial understanding, robustness to corruption, and scene recognition.38

Results reveal MLLMs underperform their own vision backbone on perception tasks such as ob-39

ject recognition. On average, MLLMs trail their backbones by 7–10% across perception-oriented40

categories, with drops as large as 14% in standard object recognition and related benchmarks. Si-41

multaneously, MLLMs demonstrate advantages in reasoning tasks such as counting and relational42

understanding, where language grounding provides complementary strengths. On average, MLLMs43

outperform their backbones by 20–25% in reasoning-focused capabilities, with gains exceeding 40%44

in some settings (e.g., spatial understanding, corruption robustness). These findings indicate that the45

integration of LLMs systematically boosts reasoning while degrading perception, underscoring the46

trade-offs introduced by multimodal alignment.47

2 Methods48

The evaluation of model performance was conducted using a standardized, comprehensive framework49

to ensure a fair and rigorous comparison between MLLMs and contrastive vision-language models.50

The methodology, including the selection of models and the evaluation datasets, is described in detail51

below.52

2.1 Models and Capabilities53

We included a wide range of MLLMs for evaluation, encompassing models from several leading54

families. The models were evaluated across multiple variants to provide a thorough assessment.55

The model families included Llama 4 [Touvron et al., 2023], LLaVA [Liu et al., 2024a, 2023a,b],56

Paligemma [Beyer et al., 2024, Steiner et al., 2024], Gemma [Team et al., 2024], Chameleon [Team,57

2025], and Aya Vision [Dash et al., 2025]. In our analysis, we leveraged these design choices to58

reveal how different backbones, scales, and training regimes shape downstream performance on59

UniBench. For example, models such as LLaVA leverage CLIP-style encoders, while Paligemma60

and Gemma rely on integration with newer backbones such as SigLIP, which utilizes SoViT-400m61

architecture. These architectural pairings highlight the spectrum of strategies for bridging visual62

and textual modalities. The models also vary significantly in scale, ranging from lightweight 3B63

parameter variants optimized for efficiency, to mid-sized 7B–13B models balancing capacity with64

cost, and up to frontier-scale 27B+ systems designed for state-of-the-art performance.65
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The evaluation was performed using the UniBench framework [Al-Tahan et al., 2024b], a robust66

benchmark designed to assess a model’s visual reasoning capabilities across a variety of tasks and67

benchmarks. We used all UniBench benchmarks, including well-known benchmarks such as Imagenet,68

CIFAR100, CLEVR, CountBench, and SugarCrepe, among many others, which span 18 capabilities:69

relations, standard object recognition, counting, spatial understanding, geographic diversity, specifies70

classification, depth estimation, pose detection, texture detection, satellite, character recognition,71

imagenet, natural transformations, rendition, challenging imagenet, corruption, medical, and scene72

recognition. For each benchmark in UniBench, we evaluated 5,000 samples per benchmark, and used73

the same subset across models.74

2.2 Evaluating Multimodal LLLMs75

The evaluation of MLLMs presents unique challenges beyond standard classification tasks. Since the76

models generate natural language outputs, a simple match-based evaluation is often insufficient to77

capture the nuance of the response. To address these challenges and provide a comprehensive analysis,78

we established several evaluation setups for our experiments. For our primary classification task,79

we tested multi-choice prompting but we also evaluated using other text based evaluation matching80

Appendix A. The task’s parameters included a number of classes (4) and a prompt formatted as81

follows: What type of object is in this photo? Choose one of the following options: class names.82

Example: What type of object is in this photo? Choose one of the following options: (A) Apple (B)83

Dog (C) Cat (D) Orange.84

Beyond classification, we also evaluated the MLLMs ability to understand and reason about relation-85

ships between objects in image(s). For these relational understanding tasks, we evaluated a model’s86

ability to correctly associate a given image with the correct caption from a set of captions. A correct87

overall response requires the model to have correctly associated the set captions with their images.88

Figure 2: Comparison of MLLMs and their vision backbones across vision-centric capabili-
ties. The x-axis denotes capability categories, with performance shown as box plots over multiple
benchmarks. Numbers above each category indicate the relative difference in accuracy (%) between
the best-performing MLLM and the best-performing vision backbone. The left panel highlights
capabilities where MLLMs outperform vision backbones—primarily reasoning-oriented tasks such
as relations, counting, and spatial understanding. The right panel shows capabilities where vision
backbones outperform MLLMs, typically perception-heavy tasks such as object recognition, character
recognition, and medical imaging.
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3 Where do Multimodal LLMs excel or falter over VLMs89

MLLMs boost visual reasoning capabilities. Figure 2 (left panel) shows that the average MLLM90

models demonstrated superior performance on a distinct set of capabilities, including Corruption,91

Counting, and various visual understanding tasks. These tasks require the model to go beyond simple92

feature extraction and engage in more complex processes like spatial understanding, robust perception93

under degradation, and the synthesis of abstract visual concepts.94

The distribution of results across families highlights that this trend is not confined to a single95

architecture: models span includes Llava, PaliGemma, Gemma, and Llama Vision families on average96

shows gains when paired with an LLM. Importantly, the distributions reveal that the performance97

improvements of MLLMs are consistent over their vision-only backbones such as SigLIP, EVA, and98

CLIP.99

MLLMs offer worse perception than their own vision-backbones. In contrast to their gains on100

reasoning tasks, MLLMs underperform their vision-backbones on perception capabilities, shown101

in Figure 2 (right panel). Tasks such as Natural Transformations, Rendition, Standard Object102

Recognition, Character Recognition, Medical, and Scene Recognition rely on fine-grained visual103

cues, low-level texture fidelity, and precise classification—all areas where vision encoders like SigLIP,104

EVA, and CLIP maintain a clear advantage.105

Instruction following offers a partial explanation of MLLMs perception weakness In Figure 3,106

we evaluated instruction-following fidelity by measuring whether each model’s outputs adhered to107

the expected multiple-choice response format. Compliance was scored using a rule-based validator108

that awarded full credit (score of 1) when a model produced exactly one valid option (e.g., A, (B), or109

**C**), partial credit (score of 0.5) when a valid choice was embedded in additional text, and no110

credit otherwise (score of 0).111

Overall, performance varied widely across model families and sizes. The strongest models in this112

evaluation were Gemma 3 (27B) and Gemma 3 (4B), which achieved validity rates above 45%. In113

contrast, many smaller models and some instruction-tuned variants frequently deviated from the114

expected format, with validity rates dropping below 15%. Interestingly, while larger models generally115

showed better adherence, this was not uniform: several medium-scale models (e.g., Paligemma mixes116

and LLaVA variants) clustered around 35–40%, demonstrating only moderate reliability.117

4 Practical Recommendations118

To identify efficient proxies for full-scale evaluation, we analyzed benchmark correlations across119

both vision-language models (VLMs) and multimodal large language models (MLLMs). Tables 1120

and 2 summarize the strongest correlations for each benchmark type and highlight curated subsets121

that can serve as representative evaluations.122

In Table 1, object recognition (ImageNet-1k, 0.82) and Robustness (ImageNet-v2, 0.81) are highly123

correlated. These results suggest that traditional vision-oriented evaluations can be effectively124

approximated with smaller curated datasets. However, reasoning-oriented tasks are less predictable:125

Counting correlates moderately with CountBench (0.76), while Spatial reasoning is only weakly126

captured by DSPR Position (0.29).127

In contrast, MLLMs display stronger correlations for multimodal and relational tasks, reflecting128

their broader training objectives. Object recognition is better captured by Cifar-100 (0.92) than by129

ImageNet-1k, and Spatial reasoning shows a much stronger correlation with DSPR Position (0.84)130

compared to VLMs. Relational reasoning also benefits from benchmarks like Flickr30k (0.74).131

Robustness remains well represented (ImageNet-v2, 0.98), but Counting again stands out as difficult132

to approximate, with a very low correlation to Clevr Count (0.16).133

Research opportunity for better multimodal alignment methods MMLMs relatively worse134

performance on perception suggests room for better alignment methods to fully take advantage of the135

existing capabilities in the model’s vision-backbone.136
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Figure 3: Model validity judgement rates across evaluated models. The percentage reflects how
often each model produced outputs in the correct multiple-choice format (e.g., A, (B), **C**). Scores
were computed by applying a rule-based validator that assigns correct for strictly valid outputs, 0.5
when only one valid answer is present but with extraneous text, and 0.0 otherwise. Models such as
Gemma 3 (27B) and Gemma 3 (4B) showed the highest compliance, while smaller or instruction-
tuned variants tended to generate less consistent formatting.

A Text Classification234

For this task, the model was instructed to output the target class directly. The task’s parameters235

included a number of classes (4) and a prompt formatted as follows: What type of object is in this236

photo? Choose one from class names. The evaluation for this task, which we term Text Classification,237

was a simple string-based check to determine if the target class name appeared anywhere in the238

MLLM’s output text. While straightforward, this method has several drawbacks. For instance, the239

model’s output might contain extraneous information, as an example, prompting Aya Vision 32B240

yeilds "The object in the photo is a number, specifically the numeral 7. Therefore, the correct answer241

is 4, as it represents a number." In other cases, the model may produce a valid but incorrect answer242

that is not one of the provided options, such as "Circle" or "Person" when the options were only243

MNIST classes. Another drawback is when the model might respond with the correct class but in a244

different format, such as "The object in the photo is a number seven," which would not be recognized245

by a strict string-matching algorithm.246

B Additional results247
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Figure 4: Correlation matrix of model performance across different capabilities. Warmer colors
indicate stronger positive correlations, while cooler colors reflect weaker relationships. The results
reveal that many visual recognition tasks—such as standard object recognition, scene recognition,
and geographic diversity—are highly correlated, whereas tasks like relations and counting show
weaker alignment. Overall, models share strengths across perceptual recognition tasks but diverge
more on reasoning-oriented capabilities.

Benchmark Type Most Correlated
Benchmark

Correlation
Value

Object recognition ImageNet-1k 0.82
Reasoning (Counting) CountBench 0.76
Reasoning (Spatial) DSPR Position 0.29
Relation VG Attribution 0.57
Texture DTD 1
Non-Natural Images Resisc45 0.72
Robustness ImageNet-v2 0.81
Corruption ImageNet-c 1

Table 1: Evaluate on a curated list of bench-
mark types, to save time for VLMs.

Benchmark Type Most Correlated
Benchmark

Correlation
Value

Object recognition Cifar 100 0.92
Reasoning (Counting) Clevr Count 0.16
Reasoning (Spatial) DSPR Position 0.84
Relation Flickr30k 0.74
Texture DTD 1
Non-Natural Images Resisc45 0.84
Robustness ImageNet-v2 0.98
Corruption ImageNet-c 1

Table 2: Evaluate on a curated list of bench-
mark types, to save time for MLLMs.
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Figure 5:
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Figure 6: Zero-shot evaluation of a wide range of model architectures across 18 visual under-
standing tasks. While conventional vision encoders (e.g., SigLIP) achieve strong performance on
recognition-heavy benchmarks (e.g., ImageNet, Object Recognition), VLMs consistently outper-
form them on higher-level reasoning tasks such as Relations, Counting, Spatial Understanding, and
Geographic Diversity, highlighting their broader capability beyond standard recognition. Red bars
highlight the performance of a reference model (SigLIP 2 So400m/14).
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Figure 7: Zero-shot performance of diverse model architectures across seven benchmark
categories: Relation, Object Recognition, Reasoning, Texture, Non-Natural Images, Robustness,
and Corruption. VLMs consistently outperform unimodal vision encoders on reasoning-heavy tasks
(e.g., Relation, Reasoning), while vision encoders such as SigLIP dominate low-level perception tasks
(e.g., Texture, Object Recognition). These results highlight complementary strengths: VLMs excel
in semantic and abstract understanding, whereas vision-only models remain strong in fine-grained
recognition and robustness benchmarks. Red bars highlight the performance of a reference model
(SigLIP 2 So400m/14).

Figure 8: (Left) Performance comparison of different models on text classification (dark color) and
multi-choice classification (light color) tasks. Models are grouped and colored by their vision back-
bone (see legend). (Right) Correlation between text and multi-choice classification task performance.
Each point represents a model, and its color indicates the vision backbone used. The dashed gray line
indicates the ideal scenario where performance on both tasks is equal. The figure suggests a positive
correlation between performance on the two tasks, though with significant variability.
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