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Abstract

Einsum expressions specify an output tensor in terms of several input tensors.
They offer a simple yet expressive abstraction for many computational tasks in
artificial intelligence and beyond. However, evaluating einsum expressions poses
hard algorithmic problems that depend on the representation of the tensors. Two
popular representations are multidimensional arrays and coordinate lists. The
latter is a more compact representation for sparse tensors, that is, tensors where a
significant proportion of the entries are zero. So far, however, most of the popular
einsum implementations use the multidimensional array representation for tensors.
Here, we show on a non-trivial example that, when evaluating einsum expressions,
coordinate lists can be exponentially more efficient than multidimensional arrays.
In practice, however, coordinate lists can also be significantly less efficient than
multidimensional arrays, but it is hard to decide from the input tensors whether
this will be the case. Sparsity evolves dynamically in intermediate tensors during
the evaluation of an einsum expression. Therefore, we introduce a hybrid solution
where the representation is switched on the fly from multidimensional arrays to co-
ordinate lists depending on the sparsity of the remaining tensors. In our experiments
on established benchmark einsum expressions, the hybrid solution is consistently
competitive with or outperforms the better of the two static representations.

1 Introduction

Einsum was introduced in NumPy [19] in 2011 and has since become the quasi-standard for specifying
pure tensor expressions, meaning expressions that involve no non-linear operations on tensor entries.
It is now an integral part of machine learning frameworks such as TensorFlow [1], PyTorch [25], and
Nvidia’s cuQuantum [5] library for quantum information science. So far, these frameworks support
only dense tensor formats in einsum. While dense formats are widely used, sparse tensor formats such
as coordinate lists offer potential advantages when many tensor entries are zero. They can reduce
the number of floating-point operations (flops) compared to dense formats and, as we demonstrate
in this paper, may even yield exponential improvements in specific cases. However, sparse formats
also have drawbacks. They may require more memory when tensors are not particularly sparse, and
while in theory their space usage grows at most linearly, in practice the memory overhead can be
considerable. Moreover, they often use a less favorable data layout for computation, which can lead
to significantly slower execution. Thus, choosing the appropriate tensor format is critical for efficient
execution of einsum expressions.

Sparse tensor formats in einsum are supported in the Python package sparse [26] and also in SQL [8].
These implementations, however, rely on static format choices. In our experiments, we show that
sparsity can evolve dynamically in intermediate tensors during the evaluation of an einsum expression,
especially for tensor expressions that involve a large number of input tensors. Such expressions
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are not yet a primary focus of established frameworks, but are becoming increasingly important in
model classes such as probabilistic circuits [15, 28, 32] and probabilistic neural circuits [38], which
often rely on einsum as a computational backend, as well as in neuro-symbolic models that combine
deep learning with logical constraints [10, 12]. Moreover, the simulation and validation of quantum
machine learning algorithms [7, 4, 35, 29] also benefit directly from dynamically sparse einsum.
However, since sparsity can evolve dynamically, it is difficult to determine from the expression and the
input tensors alone which tensor format is best for a given einsum expression. Therefore, to efficiently
exploit dynamic sparsity in einsum, we introduce a hybrid solution, where the representation is
switched on the fly from a dense to a sparse format once the sparsity of the remaining tensors falls
below a predefined threshold. In our experiments we show that the overhead for switching from one
format to the other is relatively low. As a result, the hybrid solution is consistently competitive with
or outperforms the better of the two static representations.

Our approach to einsum aligns well with a current trend in the machine learning community that is
shifting from traditional static sparse modeling to dynamic sparsity [17, 21, 24, 31, 33, 34, 37], which
is broadly defined as any kind of sparse computation or memory compression where the sparsity
pattern is input-dependent or adaptive [23].

2 Einsum expressions and tensor formats

In this section, we provide the necessary background on einsum expressions and their evalua-
tion, as well as dense and sparse formats for storing tensors. Einsum expressions are of the form
einsum (I1, . . . , In → O; T1, . . . , Tn) , where the Ti are input tensors with index strings Ii, and O
is the index string of the output tensor. The index strings consist of symbols that represent tensor
axes, sometimes also called dimensions or modes. The size of the index string Ii is the order of the
tensor Ti. Notably, input tensors can themselves be einsum expressions.

2.1 Evaluating einsum expressions

All indices that appear in at least one input tensor but not in the output tensor are summed
over. Indices that occur in two or more input tensors signify a combination, and if such in-
dices are also summed over, they define a contraction. The simplest combination is the elemen-
twise product of two vectors u and v, written as einsum (i, i → i; u, v). The simplest contrac-
tion is the inner product u⊤v = einsum (i, i →; u, v), where the output index string is empty
because the result is a scalar. More complex expressions involve multiple contraction indices,
such as the matrix-matrix-vector product einsum (ij, jk, k → i; A,B, v), which results in a vector.
Contracting over index j first, as in einsum

(
ik, k → i; einsum (ij, jk → ik; A,B) , v

)
, requires

2 · |i| · |j| · |k|+ 2 · |i| · |k| floating point operations (flops), whereas contracting over k first, as in
einsum

(
ij, j → i; A, einsum (jk, k → j; B, v)

)
, requires only 2 · |j| · |k|+ 2 · |i| · |k| flops. Thus,

the second contraction order is more efficient.

Computing an optimal contraction order that minimizes the number of flops is, in general, an
NP-hard problem [11]. Therefore, heuristics such as greedy strategies [13] or graph partitioning
methods [18, 30] are used in practical solvers for computing tensor contraction orders. The number of
flops depends not only on the contraction order but also on the choice of data structure for representing
tensors. Sparse tensor formats can significantly reduce the number of flops compared to dense formats
when the tensors involved in the contractions are sparse. Note, however, that in einsum expressions
involving a large number of tensors, it is not known in advance whether intermediate tensors will
become sparse.

2.2 Dense and sparse tensor formats

In machine learning contexts, tensors are often equated with multidimensional arrays. Here, we take
a more abstract view and consider tensors as multivariate functions of the form T : A → R, where
A = A1 × . . .×An with finite sets Ai, which are called tensor axes. The natural data structure for
storing a tensor T is a multidimensional array, where T [a1, . . . , an] = T (a1, . . . , an). Alternatively,
tensors can be stored as lists of coordinate entries of the form

(
a1, . . . , an, T (a1, . . . , an)

)
. Lists

have the advantage that sparse tensors, meaning tensors in which a significant proportion of function
values are zero, can be stored more compactly by only storing the coordinates where the function
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values are nonzero. For dense tensors, however, the list format is less efficient because of the overhead
incurred by explicitly storing the coordinates.

3 Exponential separation

In this section, we show that there exist einsum expressions that can be evaluated exponentially
more efficiently when using coordinate lists instead of multidimensional arrays. These expressions
are represented as tensor hypernetworks, which form the underlying algebraic structure of einsum
expressions. The tensor hypernetworks used to demonstrate the exponential separation between
data structures stem from model counting problems. The model counting problem #SAT is of
independent interest in artificial intelligence, because a variety of real-world questions can be
encoded very naturally and succinctly in #SAT, including problems in probabilistic reasoning [2, 20],
risk analysis [14, 36], and explainable artificial intelligence [3, 27].

3.1 Tensor hypernetworks and einsum

Tensor hypernetworks define an output tensor in terms of input tensors. Formally, let A =
{A1, . . . , Am} be a set of axes. A tensor hypernetwork T is given by a finite set {T1, . . . , Tn}
of input tensors such that the axes of each input tensor Ti are a subset Ai ⊆ A of the axes set. The
subset Ai is encoded in the index string Ii of the corresponding einsum expression. For instance, the
tensor hypernetwork corresponding to the einsum expression einsum (ij, jk, k → i; A,B, v) from
the previous section has three axes. The first axis, i, is used only by the matrix A. The second axis,
j, is shared by the matrices A and B. The third axis, k, is shared by the matrix B and the vector v.
Therefore, the set of axes for the matrix A contains the first and second axes, indexed by ij. The set
of axes of the matrix B contains the second and third axes, indexed by jk, and the set of axes of the
vector v contains the third axis, indexed by k.

The output tensor is given by combining input tensors that share a common axis and by summing
over all axes in A that are not part of the output tensor. Here, in order to keep the exposition simple,
we assume that the output tensor has no axes, that is, it is a scalar, and thus we sum over all axes in A.
The full combination of the tensor hypernetwork T is a tensor T with axes A, such that, for a ∈ A,
T (a) =

∏n
i=1 Ti

(
a|i

)
, where a|i is the projection of a onto the axes in Ai. The full summation of T ,

that is, the scalar output tensor, is the sum of all function values of T and can thus be written as∑
a∈A

T (a) =
∑
a∈A

n∏
i=1

Ti

(
a|i

)
.

Algorithmically, of course, it is not a good idea to first compute the full combination and then the full
contraction, because the full combination results in a large intermediate tensor. In practice, the tensor
hypernetwork is contracted by contracting over the axes one after the other, following an optimized
contraction order. To contract over an axis, one collects all tensors that share the axis, computes the
full combination of these tensors, and sums it over the given axis. Finally, the collected tensors are
replaced by the sum over the full combination, which is a single tensor but not necessarily a scalar.

The combinatorial structure of a tensor hypernetwork can be encoded in a hypergraph: the nodes
are given by the input tensors in T and for each axis Ai there is a hyperedge that contains all input
tensors Tj with Ai ∈ Aj . Contracting over an axis in a tensor hypernetwork corresponds to the
contraction of the corresponding hyperedge in the hypergraph. The contraction of a hyperedge is
illustrated by example in Figure 1.

3.2 Model counting by tensor contractions

Problems on propositional formulas naturally fit into the framework of tensor hypernetworks [6, 16].
A propositional formula is a multivariate function of the form F : {0, 1}n → {0, 1} and thus a tensor
with axes Ai = {0, 1} for i ∈ [n].

Given a propositional formula F , the satisfiability problem SAT asks if there exists a ∈ {0, 1}n such
that F (a) = 1. Such a satisfying assignment is called a model for F . The model counting problem
#SAT asks to count all models, that is, all satisfying assignments.
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Figure 1: Left: Tensor hypernetwork for the grid formula GRID3 (cf. Section 3.3). Here, large black
bullets represent input tensors (matrices), and small gray bullets represent hyperedges. The tensor
hypernetwork has one hyperedge of size four (at the center), and four hyperedges of sizes three and
two, respectively. Right: The tensor hypernetwork after contracting the hyperedge of size four. Four
second-order tensors have been contracted into one fourth-order tensor.

Both problems, satisfiability and model counting, can be served by tensor hypernetwork contractions.
This is possible because any propositional formula has a representation in conjunctive normal form
(CNF), that is, as a conjunction of clauses. A clause is a disjunction of literals, and a literal is either a
variable xi or its negation xi.

Let F be a propositional formula in conjunctive normal form, clauses(F ) be its clauses, and vars(F )
be the set of variables in F . For a clause C ∈ clauses(F ), let vars(C) ⊆ vars(F ) be the set of
variables in C. Since any clause C is itself a propositional formula, it is also a tensor TC . The axes
of TC correspond to its variables vars(C). The tensor hypernetwork F that results from the CNF
representation of the formula F is given as F =

{
TC | C ∈ clauses(F )

}
. The full combination of

F corresponds to the formula F , and the full summation∑
a∈{0,1}n

∏
C∈clauses(F )

TC(a|C ),

where a|C is the projection of a onto the axes of TC that correspond to vars(C), is the propositional
model count.

3.3 Exponential separation

We separate the two data structures, multidimensional arrays and coordinate lists, on a family of grid
formulas. Let [n] = {1, . . . , n}, the formula GRIDn has variables xi,j for i, j ∈ [n] and clauses

¬xi,j ∨ xi+1,j and xi,j ∨ ¬xi+1,j , for i ∈ [n− 1], j ∈ [n],

¬xi,j ∨ xi,j+1 and xi,j ∨ ¬xi,j+1, for i ∈ [n], j ∈ [n− 1].

That is, GRIDn has 4n(n − 1) clauses and n2 variables. The two clauses in the first line encode
the condition xi,j = xi+1,j and the two clauses in the second line encode xi,j = xi,j+1. That is,
by construction, to satisfy GRIDn, all variables have to take the same value. Therefore, GRIDn has
exactly two models.

If the clauses are encoded in multidimensional arrays, then these multidimensional arrays are given
by the following matrices T¬xi,j∨xi+1,j

=
(
1 0
1 1

)
and Txi,j∨¬xi+1,j

=
(
1 1
0 1

)
, where, in both matrices,

the columns are labeled by xi,j = 0, 1 and the rows are labeled by xi+1,j = 0, 1, starting in the
top left corner. The encoding of the clauses ¬xi,j ∨ xi,j+1 and xi,j ∨ ¬xi,j+1 into matrices follows
analogously.

Contractions are over the axes, that is, the variables. The contractions over xi,j and xi+1,j , respec-
tively, involve both tensors T¬xi,j∨xi+1,j

and Txi,j∨¬xi+1,j
, which are contracted by an elementwise

multiplication. Therefore, the tensors T¬xi,j∨xi+1,j
and Txi,j∨¬xi+1,j

can be replaced with their
elementwise product in the tensor hypernetwork encoding, which reduces the number of tensors to
2n(n− 1) and is standard practice in contraction algorithms. In the multidimensional array encoding,
all the 2n(n− 1) tensors are (2× 2)-matrices with 1 on the diagonal and 0 on the off-diagonal. Their
coordinate list encoding is given as

(
(0, 0, 1), (1, 1, 1)

)
.

Lemma 1. Contracting the tensor hypernetwork encoding of GRIDn, n ≥ 2 needs 4n2 − 4n − 1
flops, when using the coordinate list encoding.

Proof. As we have explained before, the tensor hypernetwork is contracted by contracting over the
n2 axes one after the other. Since all axes for the GRIDn tensor hypernetwork have size two, the
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arguments of all tensors, including the intermediate tensors, can be encoded by bitstrings. The lengths
of the bitstrings are the orders of the corresponding tensors. For the proof, we can assume that the
bits are ordered by the contraction order of the corresponding axes. Therefore, the first bit always
corresponds to the contraction axis.

We show by induction that any algorithm for contracting the tensor hypernetwork encoding of GRIDn

keeps the following invariant: All tensors that arise during the contraction, except for the last tensor,
have exactly two non-zero elements, namely, at the all-zeroes and the all-ones bitstrings, where they
evaluate to 1. The last tensor gives the value of the tensor hypernetwork, which is a scalar.

Base case. By construction, the invariant holds true for the input tensors that encode the clauses as
shown above.

Inductive step. If the invariant holds true before a contraction, then it also must hold true after the
contraction, because, as we show below, computing the full combination for the given axis and the
subsequent summation over this axis both keep the invariant.
Full combination: Assume that c tensors need to be contracted. The value of the full combination at
every bitstring is given by the product of the values of the tensors that need to be contracted at the
projection of the bitstring onto the axes of these tensors. In particular, we only multiply elements
whose first bit is equal. By our induction hypothesis all to be contracted tensors only take non-zero
values at the all-zeroes and the all-ones bitstrings. Therefore, only two products are non-zero, namely
the products at the all-ones and the all-zeroes bitstrings.
Summation: We need to sum all entries that differ on the first bit, but are equal on all other bits. Since
the first bit is always equal to the other bits, no summation occurs, until we reach the last contraction,
where only one bit is remaining. The summation for the last contraction always boils down to the
addition 1 + 1. This results in the correct model count of 2.

Required flops. As discussed above, the full combination of c tensors needs 2(c− 1) flops. Overall
we need to combine 2n(n− 1) tensors leading to 2(2n(n− 1)− 1) = 4n(n− 1)− 2 flops. As only
the final summation needs a flop, the total number of flops is 4n2 − 4n− 1.

The proof shows that, when intermediate tensors become large in terms of the number of axes, they
become hyper-sparse. Next, we show that the intermediate tensors, actually become large in terms of
the number of axes. The exponential separation then follows, because all entries must be computed
in the dense tensor encoding.

Lemma 2. Contracting the tensor hypernetwork encoding of GRIDn needs at least 2n flops, when
using multidimensional arrays.

Proof. Mostly follows from Proposition 4.2 in Markov and Shi [22]. A full proof is included in the
appendix.

We summarize Lemmas 1 and 2 in the following proposition.

Proposition 1. Contracting the tensor hypernetwork encoding of GRIDn needs exponentially more
flops, when using multidimensional arrays instead of coordinate list encodings.

Here, the data structures can be separated exponentially, because the intermediate tensors become
hyper-sparse. In general, it is hard to tell from the input tensors if intermediate tensors will become
sparse enough to warrant the sparse representation, which can also incur significant overhead over
the dense encoding. Even in the grid formulas the input tensors have an average sparsity of 50%, that
is, only half of the entries are zero, which, in general, is not considered sparse.

4 Experiments

We first verify Proposition 1 empirically by simulating the model counting instance GRIDn. Since
this is a synthetic result, we also analyze dynamic sparsity on a recent benchmark of 168 einsum
expressions [9] from areas such as probabilistic models, weighted model counting, tensorized
language models, and quantum computing. Our findings show that hyper-sparse instances occur
in practice but often become evident only during execution. Sparse formats are efficient in such
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cases but introduce overhead on dense instances. To address this, we propose a hybrid approach that
performs well across the benchmark.

All experiments were run five times and we report median runtimes. Experiments were conducted
on a 64-core system (4 × Intel Xeon Gold 6130, 2.1 GHz) with 1.5 TB RAM. Code is available at
https://github.com/ti2-group/dynamic-sparsity-einsum. We use PyTorch [25] for the
dense baseline, as it has been shown to perform best on the einsum benchmark. Existing sparse
einsum libraries cannot handle all benchmark cases due to index limitations, especially in expressions
with many input tensors and large intermediate tensors, so we use our own prototype implementation.
We exclude ten dense instances from the einsum benchmark due to resource constraints, leaving 158
instances. Optimized contraction orders for all instances are provided by the benchmark.

4.1 Exponential speedup on GRIDn

To confirm Proposition 1 empirically, we executed the einsum expressions for model counting tensor
hypernetworks GRIDn for n ∈ [2, 80] using both dense and sparse implementations. As shown in
Figure 2, the exponential separation between the two tensor formats is clearly visible. Moreover,
the figure illustrates that, as predicted by theory, the runtime for the dense tensor format grows
exponentially in n, while the runtime for the sparse format grows only quadratically.
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Figure 2: Running times for dense and sparse tensor formats when evaluating einsum expressions for
GRIDn formulas with n ∈ [2, 80].

4.2 Dynamic sparsity in the benchmark

The results on the synthetic GRIDn expressions show that the choice of tensor format can significantly
impact the time needed to evaluate einsum expressions if tensors become sparse during the evaluation.
We refer to the latter phenomenon as dynamic sparsity. To assess if dynamic sparsity also arises in
practice, we analyzed the sparsity evolution, in particular the average density, during the evaluation
of einsum expressions from the benchmark dataset.

Average density. In order to benefit from sparse tensor formats, the fraction of non-zero entries,
and thus saved flops, needs to be small across the whole contraction sequence. Many sparse, but
small contractions, will not lead to a significant speedup, if the running time is dominated by a few
large and dense contractions. Therefore, we introduce avgτ which denotes the average density of all
tensors that arise in the contraction sequence up to the τ -th contraction. Here, the average density is
the sum of all non-zero entries in all tensors up to the τ -th contraction, divided by the total number of
elements across those tensors. The average density of the input tensors is avg0. We refer to avgτmax

at the end of the contraction sequence simply as the average density of the expression.

Density evolution. We analyzed the average density of the benchmark expressions as a function
of τ . In 104 out of the 158 considered benchmark instances, the difference between the maximum
and minimum average density exceeds 0.2, indicating significant changes in sparsity over the course
of their contraction sequences. Figure 3 shows the evolution of average density for these instances.
The instances are grouped by their final average density into three main categories. For each group,
the bold red line represents the median average density evolution. A larger version of this figure is
available in the appendix.
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Figure 3: Evolution of average tensor density across instances, grouped by their final values. Within
each group, a bold red line indicates the median density. The last group comprises instances
transitioning from sparse (< 5%) to dense (> 10%). An exponential scaling at both ends is used
along the x-axis to show the fraction of completed contractions τ/τmax. A green dashed line marks
the 5% density threshold.

The first group contains 42 instances whose initial average densities avg0 vary widely, but become
nearly dense toward the end of the contraction sequence. Several instances begin relatively sparse,
but then transition to dense tensors as zeros are eliminated through summations.

The second group contains 28 instances that become very sparse. Five of these instances have fewer
than 10−5 non-zero entries. Interestingly, none of these instances starts out sparse. Their average
sparsity arises only during large, flop-heavy contractions toward the end of the contraction sequence.

The third group contains 34 instances that gradually decrease in average density but maintain an
average density above 5% and are split into two subgroups, Group 3a and Group 3b. Group 3b
contains seven instances that exhibit more complex behavior. These instances first become sparse
during the contraction sequence, but then their average density increases again. For instances that
exhibit this mixed-density pattern, a sparse backend would not be optimal.

4.3 Sparse vs. dense on the benchmark dataset

The density evolution shows that there is potential for a sparse implementation to be faster than a
dense implementation on at least 28 instances. We confirm this by executing all instances using
both the sparse and dense tensor formats. Figure 4 shows the relative speedup, (td/ts), where td
is the running time for the dense format and ts is the running time for the sparse format. The red
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line represents a speedup of one. Thus, points above the red line correspond to instances where the
sparse format is faster than the dense format. This appears to be the case for the majority of instances
with an average density below 5%. Afterwards, the dense format is mostly faster. In both cases, the
speedup can reach up to 1,000x. Overall, the median slowdown of sparse vs. dense is around 17x on
all instances and around 30x on dense instances. Thus, using the sparse format for all benchmark
instances is not viable in practice.
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Figure 4: Relative speedup of the sparse over the dense tensor format on the benchmark dataset. The
red line marks equal performance. The orange dots represent instances with an integer data type,
and the green dots represent instances with fewer than 108 flops. The right plot shows the relative
performance on the sparse integer instances after conversion to the double data type.

Outliers. There are some outliers where sparse is faster even though the average density is high,
primarily for two reasons. First, some of the instances, marked in orange, have very few flops.
Therefore, the choice of tensor format has little impact. Our sparse implementation is written purely
in C++, and thus has lower overhead during einsum expression evaluations, which leads to slightly
better running times on these instances. Second, as shown in the benchmark paper [9], PyTorch
can experience significant slowdowns on integer operations, whereas our sparse implementation
does not have this problem, which results in a speedup for these instances. To validate the speedup
for instances with densities below 5%, we converted all input tensors from integers to doubles and
repeated the experiment. The speedup became smaller but persisted for sparse instances. Moreover,
there are a few sparse outliers where PyTorch performs more efficiently, although their average
density is below 5%.

4.4 Algorithmically exploiting dynamic sparsity

These observations show that sparsity in einsum is inherently dynamic: tensors that start sparse can
create dense intermediates, tensors with few nonzeros can produce hyper-sparse intermediates later.
There are no sparsity estimators tailored to this setting, and while existing cardinality estimators
from the database literature are likely adaptable they are often unreliable and expensive on large
expressions. Rather than relying on a costly upfront estimate, our hybrid approach detects sparsity
during execution and adapts the representation on the fly. Below we first describe the hybrid algorithm
in detail and then evaluate its effectiveness on the benchmark dataset.

Hybrid algorithm. The hybrid algorithm evaluates contractions in the dense format while the
average density of the remaining (not-yet-contracted) tensors stays above a chosen threshold. Once
the average density falls below that threshold, the algorithm switches to the sparse format. For
example, in Figure 1 there are twelve remaining tensors on the left. After the first contraction the
four center tensors are combined into a single intermediate tensor, leaving nine remaining tensors on
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Figure 5: Slowdown and speedup of hybrid algorithm on dense and sparse instances (avgτmax
< 0.05).

the right. Because all other tensors are unchanged by this contraction, updating the average density
requires only computing the density of the new intermediate tensor and updating the running totals.

For the experiments reported here we used a 5% threshold chosen empirically from the benchmark.
As indicated by Figure 4, this threshold appears to be the point where a speedup is most likely. In
general, the threshold depends mostly on the sparse implementation and should be chosen rather low,
since this will only slightly delay the switch on instances that become hyper-sparse.

To minimize the overhead of calculating the density, we compute it only before expensive contractions.
Moreover, once the average density exceeds 95%, we stop calculating it. In Figure 5, we compare the
hybrid algorithm against the standard algorithm using either sparse or dense tensor formats.

Hybrid vs. sparse. The results of the comparison are shown in Figure 5a. The hybrid algorithm is
significantly faster on the vast majority of dense instances. It is more than 100x faster on 17 instances,
and even more than 1000x faster on three instances. Overall, we achieve a median speedup of 22x.
We observe a small slowdown on small instances and on integer instances, which, as discussed earlier,
are exceptional cases.

For sparse instances, the overhead of the hybrid over the sparse algorithm appears to be minimal.
The median slowdown is approximately 1.08x. The hybrid algorithm takes twice as long for just
four instances, primarily because it either does not switch to sparse or switches to sparse too late.
However, switching too late only results in a slowdown due to performance differences observed on
integer instances. There are also three instances that benefit from the hybrid algorithm because they
are initially dense and thus benefit from the initial dense phase of the hybrid algorithm.

Hybrid vs. dense. The results of the comparison are shown in Figure 5b. In contrast to the
comparison with the sparse algorithm, we cannot expect a speedup over the dense algorithm on dense
instances, as additional operations are performed for the density test. However, in practice we observe
a small speedup on the integer instances from the third group, where we incorrectly switch to the
sparse format because of their mixed density characteristics that can be seen in Figure 3 (right). The
largest slowdowns are experienced on the remaining instances of the third group, where we also
incorrectly switch to the sparse format. On the other instances, the slowdown, and thus the overhead,
on dense instances is indeed very small. The median slowdown is approximately 1.01x.

On sparse instances, the hybrid algorithm clearly outperforms the dense algorithm, reaching a speedup
of nearly 1000x on a very sparse instance. The median speedup is approximately 6.2x. The hybrid
algorithm is notably slower than the dense algorithm on only one sparse instance, because the dense
implementation performs better even though the instance is sparse.

Hybrid vs. virtual best. Overall, the hybrid algorithm closely matches the runtime of the faster
static backend (the virtual best between dense and sparse) and occasionally outperforms it. The
density-estimation overhead is negligible in practice and provides clear gains on sparse instances.
Measurable slowdowns occur mainly for mixed-density cases and integer-typed inputs. As shown
in Figure 6, the hybrid algorithm is more than twice as slow as the virtual best for only 8 of 158
instances, and the median slowdown is about 1.02× (≈ 2%). Conversely, the hybrid method can beat
both static choices: in our experiments it was substantially faster than the virtual best on 3 of the 28
sparse instances.
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Figure 6: Slowdown and speedup of hybrid algorithm vs. the virtual best algorithm.

5 Limitations

While our hybrid approach to dynamically exploiting sparsity in einsum expressions demonstrates
strong empirical performance across a range of benchmark instances, it also presents several limita-
tions. First, the effectiveness of the hybrid strategy is sensitive to the choice of sparsity threshold
used to trigger format switching. Although our 5% threshold performs well across the dataset, this
value may not generalize across all domains or applications. A more adaptive or learned switching
criterion could further improve performance but was not explored in this work.

Second, our current implementation only supports switching from dense to sparse formats, and not
vice versa. As demonstrated by mixed-density instances, some tensors become sparse mid-evaluation
but later become dense again. For such cases, the optimal strategy may involve switching back and
forth between sparse and dense formats based on the evolving average density. Our hybrid approach
does not support this bidirectional switching, which limits its flexibility. Moreover, some contractions
might benefit from mixing sparse and dense tensors. Supporting mixed-format operations could
further improve performance but is beyond the scope of this work.

Third, our experiments concentrate on CPU performance because sparse einsum support on accel-
erators (such as GPUs and TPUs) is currently too limited. Nevertheless, the hybrid algorithm is
device-agnostic in design and can be adapted to other hardware. In fact, different devices could be
used for the dense and sparse phases, depending on which device has better support for the respective
format. However, we chose not to mix hardware in our experiments, as we consider the lack of sparse
GPU einsum support a temporary limitation.

Finally, our method assumes a static contraction order, which may not be optimal when sparsity
evolves dynamically. Integrating contraction order optimization that is aware of evolving sparsity
could offer further improvements but is non-trivial and left for future work.

6 Conclusions

Einsum is a key component of modern machine learning frameworks and also has applications in
classical areas of artificial intelligence, such as probabilistic models, probabilistic inference, and
constraint satisfaction. The range of tensor expressions that einsum implementations must support is
extensive. Sparsity in einsum has traditionally been handled statically, meaning a dense or sparse
data structure is chosen before the evaluation begins. However, it is difficult to predict the most
efficient data structure for a given einsum expression, especially when it involves many input tensors.
Our experiments show that sparsity often arises dynamically in real-world einsum instances, with
intermediate tensors becoming sparse during the evaluation, even if the input tensors are initially
dense. To address this, we introduced a hybrid algorithm that dynamically switches the data structure
from dense to sparse based on the sparsity of the remaining tensors. The runtime of density checks is
negligible compared to the overall time required to evaluate the expression. Our hybrid algorithm is
up to three orders of magnitude faster than using an inefficient data structure and performs comparably
to or faster than the optimal static choice.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state that the paper introduces a hybrid
algorithm to exploit dynamic sparsity in einsum expressions, and supports this with both
theoretical and empirical evidence.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A dedicated Limitations section is included, discussing threshold sensitivity,
lack of bidirectional format switching, limitations in backend optimization, and generaliza-
tion to large-scale or mixed-density workloads.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results (e.g., Lemma 1, Lemma 2, Proposition 1) are stated
with assumptions and justified by sketches or full proofs. A minor proof is deferred to the
appendix.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper describes the hardware, software, dataset used, and how experiments
were run. All code and data are made available at the provided GitHub repository.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides a GitHub link to a repository that includes both the code
and instructions to run the experiments.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental section specifies hardware, datasets, number of runs, median
reporting, and other relevant settings. No learning parameters are involved, as the method is
non-parametric.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not included. Instead, results are reported using medians over
five runs. Variability is low and the results are dominated by algorithmic complexity, not
stochasticity.

13



8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 4.1 describes the compute environment: a 64-core Xeon server with
1.5TB RAM, and mentions that runtimes are in the order of seconds to hours, with outlier
handling discussed.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is entirely algorithmic and does not involve humans, personal
data, or decision-making systems with ethical implications.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The work is foundational and methodological, focused on tensor expression
evaluation. It does not directly interface with users or society in a way that warrants a
broader impact discussion.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such high-risk assets are released. The code is a low-risk algorithmic
implementation for tensor contraction.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and libraries (e.g., PyTorch, einsum benchmark) used in the paper
are publicly available and properly cited.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The provided GitHub repository includes our sparse einsum implementation
and instructions for reproducing all benchmarks and results.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any human subjects or crowdsourcing.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human subjects and thus does not require IRB
approval.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?
Answer: [NA]
Justification: No large language models were used in the research methodology or con-
tributed to any part of the core method development.
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