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ABSTRACT

This paper investigates discrepancies in how neural networks learn from different
imaging domains, which are commonly overlooked when adopting computer vi-
sion techniques from the domain of natural images to other specialized domains
such as medical images. Recent works have found that the generalization error
of a trained network typically increases with the intrinsic dimension (ddata) of its
training set. Yet, the steepness of this relationship varies significantly between
medical (radiological) and natural imaging domains, with no existing theoretical
explanation. We address this gap in knowledge by establishing and empirically
validating a generalization scaling law with respect to ddata, and propose that the
substantial scaling discrepancy between the two considered domains may be at
least partially attributed to the higher intrinsic “label sharpness” (KF ) of medical
imaging datasets, a metric which we propose. Next, we demonstrate an additional
benefit of measuring the label sharpness of a training set: it is negatively correlated
with the trained model’s adversarial robustness, which notably leads to models for
medical images having a substantially higher vulnerability to adversarial attack.
Finally, we extend our ddata formalism to the related metric of learned represen-
tation intrinsic dimension (drepr), derive a generalization scaling law with respect
to drepr, and show that ddata serves as an upper bound for drepr. Our theoretical
results are supported by thorough experiments with six models and eleven natu-
ral and medical imaging datasets over a range of training set sizes. Our findings
offer insights into the influence of intrinsic dataset properties on generalization,
representation learning, and robustness in deep neural networks.1

1 INTRODUCTION

There has been recent attention towards how a neural network’s ability to generalize to test data
relates to the intrinsic dimension ddata of its training dataset, i.e., the dataset’s inherent “complexity”
or the minimum degrees of freedom needed to represent it without substantial information loss
(Gong et al., 2019). Recent works have found that generalization error typically increases with
ddata, empirically (Pope et al., 2020) or theoretically (Bahri et al., 2021). Such “scaling laws”
with respect to intrinsic dataset properties are attractive because they may describe neural network
behavior in generality, for different models and/or datasets, allowing for better understanding and
predictability of the behavior, capabilities, and challenges of deep learning. However, a recent study
(Konz et al., 2022) showed that generalization scaling behavior differs drastically depending on the
input image type, e.g., natural or medical images, showing the non-universality of the scaling law
and motivating us to consider its relationship to properties of the dataset and imaging domain.2

In this work, we provide theoretical and empirical findings on how measurable intrinsic properties
of an image dataset can affect the behavior of a neural network trained on it. We show that certain

1Code link: https://github.com/mazurowski-lab/intrinsic-properties.
2Here we take “medical” images to refer to radiology images (e.g., x-ray, MRI), the most common type.
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dataset properties that differ between imaging domains can lead to discrepancies in behaviors such
as generalization ability and adversarial robustness. Our contributions are summarized as follows.

First, we introduce the novel measure of the intrinsic label sharpness (KF ) of a dataset (defined in
Section 3.2). The label sharpness essentially measures how similar images in the dataset can be to
each other while still having different labels, and we find that it usually differs noticeably between
natural and medical image datasets. We then derive and test a neural network generalization scaling
law with respect to dataset intrinsic dimension ddata, which includes KF . Our experiments support
the derived scaling behavior within each of these two domains, and show a distinct difference in
the scaling rate between them. According to our scaling law and likelihood analysis of observed
generalization data (Appendix C.1), this may be due to the measured KF being typically higher for
medical datasets.

Next, we show how a model’s adversarial robustness relates to its training set’s KF , and show that
over a range of attacks, robustness decreases with higher KF . Indeed, medical image datasets,
which have higher KF , are typically more susceptible to adversarial attack than natural image
datasets. Finally, we extend our ddata formalism to derive and test a generalization scaling law with
respect to the intrinsic dimension of the model’s learned representations, drepr, and reconcile the
ddata and drepr scaling laws to show that ddata serves as an approximate upper bound for drepr. We
also provide many additional results in the supplementary material, such as a likelihood analysis
of our proposed scaling law given observed generalization data (Appendix C.1), the evaluation of a
new dataset in a third domain (Appendix C.2), an example of a practical application of our findings
(Appendix C.3), and more.

All theoretical results are validated with thorough experiments on six CNN architectures and eleven
datasets from natural and medical imaging domains over a range of training set sizes. We hope that
our work initiates further study into how network behavior differs between imaging domains.

2 RELATED WORKS

We are interested in the scaling of the generalization ability of supervised convolutional neural
networks with respect to intrinsic properties of the training set. Other works have also explored
generalization scaling with respect to parameter count or training set size for vision or other modal-
ities (Caballero et al., 2023; Kaplan et al., 2020; Hoffmann et al., 2022; Touvron et al., 2023). Note
that we model the intrinsic dimension to be constant throughout the dataset’s manifold as in Pope
et al. (2020); Bahri et al. (2021) for simplicity, as opposed to the recent work of Brown et al. (2023),
which we find to be suitable for interpretable scaling laws and dataset properties.

Similar to dataset intrinsic dimension scaling (Pope et al., 2020; Bahri et al., 2021; Konz et al.,
2022), recent works have also found a monotonic relationship between a network’s generalization
error and the intrinsic dimension of both the learned hidden layer representations (Ansuini et al.,
2019), or some measure of intrinsic dimensionality of the trained model itself (Birdal et al., 2021;
Andreeva et al., 2023). In this work, we focus on the former, as the latter model dimensionality
measures are typically completely different mathematical objects than the intrinsic dimension of the
manifolds of data or representations. Similarly, Kvinge et al. (2023) found a correlation between
prompt perplexity and representation intrinsic dimension in Stable Diffusion models.

3 PRELIMINARIES

We consider a binary classification dataset D of points x ∈ Rn with target labels y = F(x) defined
by some unknown function F : Rn → {0, 1}, split into a training set Dtrain of size N and test set
Dtest. The manifold hypothesis (Fefferman et al., 2016) assumes that the input data x lies approx-
imately on some ddata-dimensional manifold Mddata

⊂ Rn, with ddata ≪ n. More technically,
Mddata

is a metric space such that for all x ∈ Mddata
, there exists some neighborhood Ux of x such

that Ux is homeomorphic to Rddata , defined by the standard L2 distance metric || · ||.
As in Bahri et al. (2021), we consider over-parameterized (number of parameters ≫ N ) models
f(x) : Rn → {0, 1}, that are “well-trained” and learn to interpolate all training data: f(x) = F(x)
for all x ∈ Dtrain. We use a non-negative loss function L, such that L = 0 when f(x) = F(x).
Note that we write L as the expected loss over a set of test set points. We assume that F , f and
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L are Lipschitz/smooth on Mddata
with respective constants KF , Kf and KL. Note that we use

the term “Lipschitz constant” of a function to refer to the smallest value that satisfies the Lipschitz
inequality.3 We focus on binary classification as in Pope et al. (2020); Konz et al. (2022), but we
note that our results extend naturally to the multi-class case (see Appendix A.1 for more details).

3.1 ESTIMATING DATASET INTRINSIC DIMENSION

Here we introduce two common intrinsic dimension estimators for high-dimensional datasets that
we use in our experiments, which have been used in prior works on image datasets (Pope et al.,
2020; Konz et al., 2022) and learned representations (Ansuini et al., 2019; Gong et al., 2019).

MLE: The MLE (maximum likelihood estimation) intrinsic dimension estimator (Levina & Bickel,
2004; MacKay & Ghahramani, 2005) works by assuming that the number of datapoints enclosed
within some ϵ-ball about some point on Mddata

scales not as O(ϵn), but O(ϵddata), and then solving
for ddata with MLE after modeling the data as sampled from a Poisson process. This results in

d̂data =
[

1
N(k−1)

∑N
i=1

∑k−1
j=1 log

Tk(xi)
Tj(xi)

]−1

, where Tj(x) is the L2 distance from x to its jth

nearest neighbor and k is a hyperparameter; we set k = 20 as in Pope et al. (2020); Konz et al.
(2022). TwoNN: TwoNN (Facco et al., 2017) is a similar approach that instead relies on the ratio
of the first- and second-nearest neighbor distances. We default to using the MLE method for ddata
estimation as Pope et al. (2020) found it to be more reliable for image data than TwoNN, but we still
evaluate with TwoNN for all experiments. Note that these estimators do not use datapoint labels.

3.2 ESTIMATING DATASET LABEL SHARPNESS

Another property of interest is an empirical estimate for the “label sharpness” of a dataset, KF .
This measures the extent to which images in the dataset can resemble each other while still having
different labels. Formally, KF is the Lipschitz constant of the ground truth labeling function F ,
i.e., the smallest positive KF that satisfies KF ||x1 − x2|| ≥ |F(x1) − F(x2)| = |y1 − y2| for all
x1, x2 ∼ Mddata

, where yi = F(xi) ∈ {0, 1} is the target label for xi. We estimate this as

K̂F := max
j,k

(
|yj − yk|
||xj − xk||

)
, (1)

computed over all M2 pairings ((xj , yj), (xk, yk)) of some M evenly class-balanced random sam-
ples {(xi, yi)}Mi=1 from the dataset D. We use M = 1000 in practice, which we found more than
sufficient for a converging estimate, and it takes <1 sec. to compute K̂F . We minimize the effect of
trivial dataset-specific factors on K̂F by linearly normalizing all images to the same range (Sec. 4),
and we note that both K̂F and ddata are invariant to image resolution and channel count (Appendix
B.1). As the natural image datasets have multiple possible combinations of classes for the binary
classification task, we report K̂F averaged over 25 runs of randomly chosen class pairings.

4 DATASETS, MODELS AND TRAINING

Medical Image Datasets. We conducted our experiments on seven public medical image (radiol-
ogy) datasets from diverse modalities and anatomies for different binary classification tasks. These
are (1) brain MRI glioma detection (BraTS, Menze et al. (2014)); (2) breast MRI cancer detection
(DBC, Saha et al. (2018)); (3) prostate MRI cancer risk scoring (Prostate MRI, Sonn et al. (2013));
(4) brain CT hemorrhage detection (RSNA-IH-CT, Flanders et al. (2020)); (5) chest X-ray pleural
effusion detection (CheXpert, Irvin et al. (2019)); (6) musculoskeletal X-ray abnormality detection
(MURA, Rajpurkar et al. (2017)); and (7) knee X-ray osteoarthritis detection (OAI, Tiulpin et al.
(2018)). All dataset preparation and task definition details are provided in Appendix G.

Natural Image Datasets. We also perform our experiments using four common “natural” image
classification datasets: ImageNet (Deng et al., 2009), CIFAR10 (Krizhevsky et al., 2009), SVHN
(Netzer et al., 2011), and MNIST (Deng, 2012).

3A subtlety here is that our Lipschitz assumptions only involve pairs of datapoints sampled from the true
data manifold Mddata ; adversarially-perturbed images (Goodfellow et al., 2015) are not included.
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For each dataset, we create training sets of size N ∈ {500, 750, 1000, 1250, 1500, 1750}, along with
a test set of 750 examples. These splits are randomly sampled with even class-balancing from their
respective base datasets. For the natural image datasets we choose two random classes (different for
each experiment) to define the binary classification task, and all results are averaged over five runs
using different class pairs.4 Images are resized to 224× 224 and normalized linearly to [0, 1].
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Figure 1: Measured intrinsic dimension (ddata, left) and label sharpnesses (K̂F , right) of the natural
(orange) and medical (blue) image datasets which we analyze (Sec. 4). K̂F is typically higher for
the medical datasets. ddata values are averaged over all training set sizes, and K̂F over all class
pairings (Sec. 3.2); error bars indicate 95% confidence intervals.

Models and training. We evaluate six models total: ResNet-18, -34 and -50 (He et al., 2016), and
VGG-13, -16 and -19 (Simonyan & Zisserman, 2015). Each model f is trained on each dataset for
its respective binary classification task with Adam (Kingma & Ba, 2015) until the model fully fits
to the training set, for each training set size N described previously. We provide all training and
implementation details in Appendix F, and our code can be found at https://github.com/
mazurowski-lab/intrinsic-properties.

5 THE RELATIONSHIP OF GENERALIZATION WITH DATASET INTRINSIC
DIMENSION AND LABEL SHARPNESS

In Fig. 1 we show the average measured intrinsic dimension ddata and label sharpness K̂F of each
dataset we study. While both natural and medical datasets can range in ddata, we note that medical
datasets typically have much higher K̂F than natural image datasets, which we will propose may
explain differences in generalization ability scaling rates between the two imaging domains. We
emphasize that ddata and KF are model-independent properties of a dataset itself. We will now
describe how network generalization ability scales with ddata and KF .

5.1 BOUNDING GENERALIZATION ABILITY WITH DATASET INTRINSIC DIMENSION

A result which we will use throughout is that on average, given some N datapoints sampled
i.i.d. from a d-dimensional manifold, the distance between the nearest neighbor x̂ of some data-
point x scales as Ex ||x − x̂|| = O(N−1/ddata) (Levina & Bickel, 2004). As such, the nearest-
neighbor distance of some test point to the training set decreases as the training set grows larger
by O(N−1/ddata). It can then be shown that the loss on the test set/generalization error scales as
O(KL max(Kf ,KF )N

−1/ddata) on average; this is summarized in the following theorem.
Theorem 1 (Generalization Error and Dataset Intrinsic Dim. Scaling Law (Bahri et al., 2021)). Let
L, f and F be Lipschitz on Mddata

with respective constants KL, Kf and KF . Further let Dtrain

be a training set of size N sampled i.i.d. from Mddata
, with f(x) = F(x) for all x ∈ Dtrain. Then,

L = O(KL max(Kf ,KF )N
−1/ddata).

4N = 1750 is the upper limit of N that all datasets could satisfy, given the smaller size of medical image
datasets and ImageNet’s typical example count per class. In Appendix C.4 we evaluate much higher N for
datasets that allow for it.
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We note that the KF term is typically treated as an unknown constant in the literature (Bahri et al.,
2021); instead, we propose to estimate it with the empirical label sharpness K̂F (Sec. 3.2). We will
next show that Kf ≃ KF for large N (common for deep models), which allows us to approximate
Theorem 1 as L ≃ O(KLKFN

−1/ddata), a scaling law independent of the trained model f .
Intuitively, this means that the Lipschitz smoothness of f molds to the smoothness of the label
distribution as the training set grows larger and test points typically become closer to training points.
Theorem 2 (Approximating Kf with KF ). Kf converges to KF in probability as N → ∞.

We show the full proof in Appendix A.2 due to space constraints. This result is also desirable
because computing an estimate for Kf , the Lipschitz constant of the model f , either using Eq. (1)
or with other techniques (Fazlyab et al., 2019), depends on the choice of model f , and may require
many forward passes. Estimating KF (Eq. (1) is far more tractable, as it is an intrinsic property of
the dataset itself which is relatively fast to compute.

Next, note that the Lipschitz constant KL is a property of the loss function, which we take as fixed
a priori, and so does not vary between datasets or models. As such, KL can be factored out of the
scaling law of interest, such that we can simply consider L ≃ O(KFN

−1/ddata), i.e.,

logL ≲ − 1

ddata
logN + logKF + a (2)

for some constant a. In the following section, we will demonstrate how the prediction of Eq. (2)
may explain recent empirical results in the literature where the rate of this generalization scaling law
differed drastically between natural and medical datasets, via the measured differences in the typical
label sharpness K̂F of datasets in these two domains.

5.2 GENERALIZATION DISCREPANCIES BETWEEN IMAGING DOMAINS

Consider the result from Eq. (2) that the test loss/generalization error scales approximately as L ∝
KFN

−1/ddata on average. From this, we hypothesize that a higher label sharpness KF will result
in the test loss curve that grows faster with respect to ddata.

In Fig. 2 we evaluate the generalization error (log test loss) scaling of all models trained on each
natural and medical image dataset with respect to the training set intrinsic dimension ddata, for all
evaluated training set sizes N . We also show the scaling of test accuracy in Appendix E.1.

We see that within an imaging domain (natural or medical), model generalization error typically
increases with ddata, as predicted, similar to prior results (Pope et al., 2020; Konz et al., 2022); in
particular, approximately logL ∝ −1/ddata + const., aligning with Eq. (2). However, we also see
that the generalization error scaling is much sharper for models trained on medical data than natural
data; models trained on datasets with similar ddata and of the same size N tend to perform much
worse if the data is medical images. A similarly large gap appears for the scaling of test accuracy
(Appendix E.1). We posit that this difference is explained by medical datasets typically having
much higher label sharpness (K̂F ∼ 2.5×10−4) than natural images (K̂F ∼ 1×10−4) (Fig. 1) , as
KF is the only term in Eq. (2) that differs between two models with the same training set intrinsic
dimension ddata and size N . Moreover, in Appendix C.1 we show that accounting for KF increases
the likelihood of the posited scaling law given the observed generalization data. However, we note
that there could certainly be other factors causing the discrepancy which are not accounted for.

Intuitively, the difference in dataset label sharpness KF between these imaging domains is reason-
able, as KF describes how similar a dataset’s images can be while still having different labels (Sec.
3.2). For natural image classification, images from different classes are typically quite visually dis-
tinct. However, in many medical imaging tasks, a change in class can be due to a small change or
abnormality in the image, resulting in a higher dataset KF ; for example, the presence of a small
breast tumor will change the label of a breast MRI from healthy to cancer.

6 ADVERSARIAL ROBUSTNESS AND TRAINING SET LABEL SHARPNESS

In this section we present another advantage of obtaining the sharpness of the dataset label distri-
bution (KF ): it is negatively correlated with the adversarial robustness of a neural network. Given
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Figure 2: Scaling of log test set loss/generalization ability with training dataset intrinsic dimension
(ddata) for natural and medical datasets. Each point corresponds to a (model, dataset, training set
size) triplet. Medical dataset results are shown in blue shades, and natural dataset results are shown
in red; note the difference in generalization error scaling rate between the two imaging domains.
Standard deviation error bars are shown for natural image datasets for 5 different class pairs.

some test point x0 ∈ Mddata
with true label y = F(x0), the general goal of an adversarial attack

is to find some x̃ that appears similar to x0 — i.e., ||x̃ − x0||∞ is small — that results in a differ-
ent, seemingly erroneous network prediction for x̃. Formally, the robustness radius of the trained
network f at x0 is defined by

R(f, x0) := inf
x̃

{||x̃− x0||∞ : f(x̃) ̸= y} , (3)

where x0 ∈ Mddata
(Zhang et al., 2021). This describes the largest region around x0 where

f is robust to adversarial attacks. We define the expected robust radius of f as R̂(f) :=
Ex0∼Mddata

R(f, x0).

Theorem 3 (Adversarial Robustness and Label Sharpness Scaling Law). Let f be Kf -Lipschitz on
Rn. For a sufficiently large training set, the lower bound for the expected robustness radius of f
scales as R̂(f) ≃ Ω (1/KF ).

Proof. This follows from Prop. 1 of Tsuzuku et al. (2018) — see Appendix A.4 for all details.

While it is very difficult to estimate robustness radii of neural networks in practice (Katz et al., 2017),
we can instead measure the average loss penalty of f due to attack, Ex0∼Dtest(L(x̃)− L(x0)), over
a test set Dtest of points sampled from Mddata

, and see if it correlates negatively with K̂F (Eq.
(1)) for different models and datasets. As the expected robustness radius decreases, so should the
loss penalty become steeper. We use FGSM (Goodfellow et al., 2015) attacks with L∞ budgets of
ϵ ∈ {1/255, 2/255, 4/225, 8/255} to obtain x̃.

In Fig. 3 we plot the test loss penalty with respect to K̂F for all models and training set sizes for
ϵ = 2/255, and show the Pearson correlation r between these quantities for each model, for all ϵ, in
Table 1 (per-domain correlations are provided in Appendix E.3). (We provide the plots for the other
ϵ values, as well as for the test accuracy penalty, in Appendix E.3). Here we average results over the
different training set sizes N due to the lack of dependence of Theorem 3 on N .
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Figure 3: Test set loss penalty due to FGSM adversarial attack vs. measured dataset label sharpness
(K̂F ) for models trained on natural and medical image datasets (orange and blue points, respec-
tively). Pearson correlation coefficient r also shown. Error bars are 95% confidence intervals over
all training set sizes N for the same dataset.

Atk. ϵ RN-18 RN-34 RN-50 V-13 V-16 V-19
1/255 0.77 0.48 0.55 0.47 0.63 0.61
2/255 0.70 0.37 0.48 0.47 0.64 0.61
4/255 0.63 0.26 0.41 0.45 0.62 0.6
8/255 0.54 0.18 0.34 0.39 0.58 0.57

Table 1: Pearson correlation r between test loss penalty due
to FGSM attack and dataset label sharpness K̂F , over all
datasets and all training sizes. “RN” = ResNet, “V” = VGG.

As expected, the loss penalty is typ-
ically worse for models trained on
datasets with higher KF , implying
a smaller expected robustness radius.
We see that medical datasets, which
typically have higher KF than natu-
ral datasets (Fig. 1), are indeed typ-
ically more susceptible to attack, as
was found in Ma et al. (2021). In Ap-
pendix D.1 we show example clean
and attacked images for each medical image dataset for ϵ = 2/255. A clinical practitioner may not
notice any difference between the clean and attacked images upon first look,5 yet the attack makes
model predictions completely unreliable. This indicates that adversarially-robust models may be
needed for medical image analysis scenarios where potential attacks may be a concern.

7 CONNECTING REPRESENTATION INTRINSIC DIMENSION TO DATASET
INTRINSIC DIMENSION AND GENERALIZATION

The scaling of network generalization ability with dataset intrinsic dimension ddata (Sec. 5.1) moti-
vates us to study the same behavior in the space of the network’s learned hidden representations for
the dataset. In particular, we follow (Ansuini et al., 2019; Gong et al., 2019) and assume that an en-
coder in a neural network maps input images to some drepr-dimensional manifold of representations
(for a given layer), with drepr ≪ n. As in the empirical work of Ansuini et al. (2019), we consider
the intrinsic dimensionality of the representations of the final hidden layer of f . Recall that the test
loss can be bounded above as L = O(KL max(Kf ,KF )N

−1/ddata) (Thm. 1). A similar analysis
can be used to derive a loss scaling law for drepr, as follows.

Theorem 4 (Generalization Error and Learned Representation Intrinsic Dimension Scaling Law).
L ≃ O(KLN

−1/drepr), where KL is the Lipschitz constant for L.

5That being said, the precise physical interpretation of intensity values in certain medical imaging modali-
ties, such as Hounsfield units for CT, may reveal the attack upon close inspection.
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We reserve the proof for Appendix A.3 due to length constraints, but the key is to split f into a
composition of an encoder and a final layer and analyze the test loss in terms of the encoder’s
outputted representations. Similarly to Eq. (2), KL is fixed for all experiments, such that we can
simplify this result to L ≃ O(N−1/drepr), i.e.,

logL ≲ − 1

drepr
logN + b (4)

for some constant b. This equation is of the same form as the loss scaling law based on the dataset
intrinsic dimension ddata of Thm. 1. This helps provide theoretical justification for prior empirical
results of L increasing with drepr (Ansuini et al. (2019), as well as for it being similar in form to the
scaling of L with ddata (Fig. (2)).

In Fig. 4 we evaluate the scaling of log test loss with the drepr of the training set (Eq. (4)), for each
model, dataset, and training set size as in Sec. 5.1. The estimates of drepr are made using TwoNN
on the final hidden layer representations computed from the training set for the given model, as in
Ansuini et al. (2019). We also show the scaling of test accuracy in Appendix E.1, as well as results
from using the MLE estimator to compute drepr.
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Figure 4: Scaling of log test set loss/generalization ability with the intrinsic dimension of final
hidden layer learned representations of the training set (drepr), for natural and medical datasets.
Each point corresponds to a (model, dataset, training set size) triplet. Medical dataset results are
shown in blue shades, and natural dataset results are shown in red.

We see that generalization error typically increases with drepr, in a similar shape as the ddata scaling
(Fig. 2). The similarity of these curves may be explained by drepr ≲ ddata, or other potential factors
unaccounted for. The former arises if the loss bounds of Theorems 1 and 4 are taken as estimates:

Theorem 5 (Bounding of Representation Intrinsic Dim. with Dataset Intrinsic Dim.). Let Theorems
1 and 4 be taken as estimates, i.e., L ≈ KL max(Kf ,KF )N

−1/ddata and L ≈ KLN
−1/drepr . Then,

drepr ≲ ddata.

Proof. This centers on equating the two scaling laws and using a property of the Lipschitz constant
of classification networks– see Appendix A.5 for the full proof.

In other words, the intrinsic dimension of the training dataset serves as an upper bound for the
intrinsic dimension of the final hidden layer’s learned representations. While a rough estimate, we
found this to usually be the case in practice, shown in Fig. 5 for all models, datasets and training
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sizes. Here, drepr = ddata is shown as a dashed line, and we use the same estimator (MLE, Sec.
3.1) for ddata and drepr for consistency (similar results using TwoNN are shown in Appendix E.2).

Intuitively, we would expect drepr to be bounded by ddata, as ddata encapsulates all raw dataset
information, while learned representations prioritize task-related information and discard irrelevant
details (Tishby & Zaslavsky, 2015), resulting in drepr ≲ ddata. Future work could investigate how
this relationship varies for networks trained on different tasks, including supervised (e.g., segmenta-
tion, detection) and self-supervised or unsupervised learning, where drepr might approach ddata.

DISCUSSION AND CONCLUSIONS

In this paper, we explored how the generalization ability and adversarial robustness of a neural
network relate to the intrinsic properties of its training set, such as intrinsic dimension (ddata) and
label sharpness (KF ). We chose radiological and natural image domains as prominent examples, but
our approach was quite general; indeed, in Appendix C.2 we evaluate our hypotheses on a skin lesion
image dataset, a domain that shares similarities with both natural images and radiological images,
and intriguingly find that properties of the dataset and models trained on it often lie in between these
two domains. It would be interesting to study these relationships in still other imaging domains
such as satellite imaging (Pritt & Chern, 2017), histopathology (Komura & Ishikawa, 2018), and
others. Additionally, this analysis could be extended to other tasks (e.g., multi-class classification
or semantic segmentation), newer model architectures such as ConvNeXt (Liu et al., 2022), non-
convolutional models such as MLPs or vision transformers (Dosovitskiy et al., 2021), or even natural
language models.
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Figure 5: Training set intrinsic dimen-
sion upper-bounds learned represen-
tation intrinsic dimension. Each point
corresponds to a (model, dataset, train-
ing set size) triplet.

Our findings may provide practical uses beyond merely
a better theoretical understanding of these phenomena.
For example, we provide a short example of using the
network generalization dependence on label sharpness to
rank the predicted learning difficulty of different tasks
for the same dataset in Appendix C.3. Additionally, the
minimum number of annotations needed for an unlabeled
training set of images could be inferred given the mea-
sured ddata of the dataset and some desired test loss (Eq.
(2)), which depends on the imaging domain of the dataset
(Fig. 2).6 This is especially relevant to medical images,
where creating quality annotations can be expensive and
time-consuming. Additionally, Sec. 6 demonstrates the
importance of using adversarially robust models or train-
ing techniques for more vulnerable domains. Finally, the
relation of learned representation intrinsic dimension to
generalization ability (Sec. 7) and dataset intrinsic di-
mension (Theorem 5) could inform the minimum param-
eter count of network bottleneck layers.

A limitation of our study is that despite our best efforts, it is difficult to definitively say if training set
label sharpness (KF ) causes the observed generalization scaling discrepancy between natural and
medical image models (Sec. 5.1, Fig. 2). We attempted to rule out alternatives via our formal analy-
sis and by constraining many factors in our experiments (e.g., model, loss, training and test set sizes,
data sampling strategy, etc.). Additionally, we found that accounting for KF in the generalization
scaling law increases the likelihood of the law given our observed data (Appendix C.1). Altogether,
our results tell us that KF constitutes an important difference between natural and medical image
datasets, but other potential factors unaccounted for should still be considered.

Our findings provide insights into how neural network behavior varies within and between the two
crucial domains of natural and medical images, enhancing our understanding of the dependence of
generalization ability, representation learning, and adversarial robustness on intrinsic measurable
properties of the training set.

6Note that doing so in practice by fitting the scaling law model to existing (L, N , ddata) results would
require first evaluating a wider range of N due to the logarithmic dependence of Eq. (2) on N .
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