
BlockPruner: Fine-grained Pruning for Large Language Models

Anonymous ACL submission

Abstract
With the rapid growth in the size and com-001
plexity of large language models (LLMs), the002
costs associated with their training and infer-003
ence have escalated significantly. Research004
indicates that certain layers in LLMs harbor005
substantial redundancy, and pruning these lay-006
ers has minimal impact on the overall perfor-007
mance. While various layer pruning meth-008
ods have been developed based on this insight,009
they generally overlook the finer-grained redun-010
dancies within the layers themselves. In this011
paper, we delve deeper into the architecture012
of LLMs and demonstrate that finer-grained013
pruning can be achieved by targeting redun-014
dancies in multi-head attention (MHA) and015
multi-layer perceptron (MLP) blocks. We pro-016
pose a novel, training-free structured pruning017
approach called BlockPruner. Unlike exist-018
ing layer pruning methods, BlockPruner seg-019
ments each Transformer layer into MHA and020
MLP blocks. It then assesses the importance021
of these blocks using perplexity measures and022
applies a heuristic search for iterative pruning.023
We applied BlockPruner to LLMs of various024
sizes and architectures and validated its per-025
formance across a wide range of downstream026
tasks. Experimental results show that Block-027
Pruner achieves more granular and effective028
pruning compared to state-of-the-art baselines.029

1 Introduction030

Large language models (LLMs) (Zhao et al., 2023;031

Minaee et al., 2024) have demonstrated outstand-032

ing performance across a diverse array of natural033

language processing tasks. However, their grow-034

ing size and complexity have led to substantial035

computational demands and increased memory us-036

age, creating obstacles for deployment in resource-037

constrained environments. Model compression038

techniques (Gao et al., 2020; Li et al., 2023; Wang039

et al., 2024) have emerged as a promising solution040

to address the challenges of deploying large, com-041

putationally intensive models. These techniques042

0 5 10 15 20 25 30
Block ID

0.0

0.1

0.2

0.3

0.4

B
lo

ck
 In

flu
en

ce

Layer
MHA
MLP

Figure 1: Block Influence (BI) scores (Men et al., 2024)
for the Llama2-7B model (Touvron et al., 2023b) com-
puted at both layer and block levels, where blocks/layers
with lower BI scores indicate less importance. The
model has 32 Transformer layers, each containing one
MHA and one MLP block, totaling 64 blocks. Block-
level BI scores are generally lower than layer-level
scores, indicating finer-grained redundancies.

aim to transform large models into more com- 043

pact versions that require less storage and execute 044

with lower latency, while minimizing performance 045

degradation. Model compression methods typically 046

involve knowledge distillation (Huang et al., 2022; 047

Gu et al., 2024), quantization (Yao et al., 2022; 048

Dettmers et al., 2023), and pruning (van der Oud- 049

eraa et al., 2024; Ashkboos et al., 2024). In this 050

study, we primarily focus on pruning, a technique 051

that can be combined with these other methods to 052

achieve more effective and efficient compression. 053

Recent research on layer redundancy has shown 054

that LLMs contain a substantial number of redun- 055

dant layers (Yang et al., 2024; Men et al., 2024; 056

Chen et al., 2024). Removing these layers does not 057

severely impact the model’s performance. To quan- 058

tify this redundancy, researchers have investigated 059

various similarity-based measurement methods and 060

developed corresponding pruning strategies, includ- 061

ing layer merging (Yang et al., 2024) and layer 062

1

removal (Men et al., 2024). These methods not063

only maintain the original width of the model archi-064

tecture and avoid introducing additional structures,065

but also demonstrate superior performance. Fur-066

thermore, Gromov et al. (2024) posited that this067

observed redundancy may be intrinsically linked068

to the residual structure (He et al., 2016) inher-069

ent in the Transformer architecture. Building on070

this intuition and recognizing that Transformer lay-071

ers can be further subdivided into smaller resid-072

ual blocks, namely multi-head attention (MHA)073

and multi-layer perceptron (MLP)1, we hypothe-074

size that fine-grained block redundancies could ex-075

ist within LLMs. Consequently, we conducted a076

preliminary experiment to assess the significance077

of blocks at varying granularities. Specifically,078

we sampled 32 instances from the Alpaca dataset079

(Taori et al., 2023) and employed the Block In-080

fluence (BI) metric (Men et al., 2024) to evaluate081

blocks at layer and block levels, as depicted in Fig-082

ure 1. The results reveal that block-level BI scores083

are generally lower than layer-level BI scores, indi-084

cating that fine-grained redundancies at the block085

level are more significant within the model.086

Building on these findings, we argue that finer-087

grained pruning can be effectively implemented in088

LLMs. Therefore, we introduce BlockPruner, a089

novel, training-free structured pruning approach.090

Unlike existing methods that focus on entire layers,091

BlockPruner segments each Transformer layer into092

MHA and MLP blocks. It then evaluates the im-093

portance of these blocks using perplexity measures094

and applies a heuristic search for iterative pruning.095

To validate the effectiveness of our method, we096

applied BlockPruner to six LLMs of varying sizes097

and architectures, and evaluated their performance098

using five representative benchmarks. Our experi-099

mental results demonstrate that BlockPruner pro-100

vides more granular and effective pruning com-101

pared to state-of-the-art baselines. Additionally,102

we performed a series of analytical experiments to103

investigate the impact of block type, block impor-104

tance metrics, and data on pruning effectiveness.105

Our findings confirm that LLMs contain substan-106

tial redundancies at the block level compared to the107

layer level, demonstrating that fine-grained pruning108

is more effective and appropriate than layer-based109

approaches for compressing these models.110

1In this work, unless otherwise specified, we refer to a
block as one of the two sublayers: MHA or MLP.

2 Related Work 111

Pruning is a well-established technique to com- 112

press and accelerate neural networks by removing 113

superfluous weights or structures within models. 114

Pruning methods can be broadly categorized into 115

unstructured pruning and structured pruning. 116

Unstructured pruning. Unstructured pruning 117

targets individual weights, eliminating redundant 118

connections in neural networks by setting the corre- 119

sponding weights to zero. For instance, SparseGPT 120

(Frantar and Alistarh, 2023) formulates pruning 121

as a layer-wise sparse regression problem, approxi- 122

mately solving it via a sequence of efficient Hessian 123

updates and weight reconstructions. Wanda (Sun 124

et al., 2024) computes the importance score of each 125

weight based on the product of the magnitude of 126

each weight and the norm of the corresponding in- 127

put activation, identifying and removing weights 128

with lower importance scores. OWL (Yin et al., 129

2024) identifies the correlation between pruning ef- 130

ficacy and the retention ratio of outliers, assigning 131

different sparsity ratios to each layer based on the 132

observed outlier ratio. RIA (Zhang et al., 2024b) 133

introduces a metric that considers both weight and 134

activation information, utilizing a permutation strat- 135

egy for the input channels of weight matrices to 136

enhance pruning performance. BESA (Xu et al., 137

2024) adopts a layer-wise pruning strategy, inde- 138

pendently pruning each Transformer layer to mini- 139

mize the reconstruction error between the outputs 140

of pruned and dense Transformer layers, which 141

avoids accumulating errors across layers. 142

Structured pruning. Structured pruning focuses 143

on broader network structures, such as neurons, 144

attention heads, or even entire modules. LLM- 145

Pruner (Ma et al., 2023) utilizes gradient informa- 146

tion to identify interdependent structures within 147

LLMs, pruning the least important groups and sub- 148

sequently using Low-Rank Adaptation (LoRA) (Hu 149

et al., 2022) to restore the performance of pruned 150

models. LoRAPrune (Zhang et al., 2023) estimates 151

the importance of pre-trained weights using LoRA 152

gradients, iteratively removing redundant channels 153

in the weight matrices and recovering the pruned 154

models’ performance through fine-tuning. Sheared- 155

LLaMA (Xia et al., 2024) learns a set of pruning 156

masks to extract a sub-network with the specified 157

target structure from the source model, employ- 158

ing a dynamic batch loading algorithm to adjust 159

the data proportion of each domain based on the 160

2

loss reduction rate in different domains. SliceGPT161

(Ashkboos et al., 2024) introduces the concept of162

computational invariance, achieving compression163

by removing rows or columns corresponding to164

smaller principal components in the weight matrix.165

LaCo (Yang et al., 2024) proposes a concise layer166

pruning approach, reducing model size by merging167

layers while maintaining the overall model struc-168

ture. ShortGPT (Men et al., 2024) introduces a169

metric for measuring layer importance, achieving170

model compression by removing redundant layers.171

Although unstructured pruning can maintain per-172

formance at higher pruning ratios, it often requires173

additional hardware or library support, making174

model acceleration impractical. Current structured175

pruning methods typically require retraining the176

model after pruning to avoid performance collapse.177

While layer pruning techniques like LaCo eliminate178

the need for additional retraining, their disregard179

for fine-grained block redundancy makes it chal-180

lenging to avoid significant performance loss.181

Concurrent and independent of our research,182

FINERCUT (Zhang et al., 2024a) also presents183

a fine-grained block pruning algorithm. However,184

their study does not delve into the rationale behind185

treating Transformer layers as two distinct sublay-186

ers for pruning purposes. In contrast, we began by187

conducting preliminary experiments that unveiled188

the fine-grained block redundancy within Trans-189

former models. This discovery led us to propose190

the concept of minimal residual blocks. Addition-191

ally, we explored how pruning different types of192

blocks impacts model performance. While FINER-193

CUT assesses block importance by comparing the194

similarity between the output logits of the original195

and pruned models, this metric may fall short in196

ensuring that the pruned model produces coherent197

and semantically meaningful text, as it disregards198

semantic nuances. In our approach, we evaluate199

block importance using the perplexity of the pruned200

model, a metric that more effectively captures the201

fluency and quality of its outputs. To further sup-202

port our perspective, we present a detailed compar-203

ison of these two metrics in Appendix D.204

3 Methodology205

The proposed fine-grained block pruning method206

(BlockPruner) is depicted in Figure 3. It begins207

by decomposing each Transformer layer into two208

minimal residual blocks (§3.1). We then evaluate209

the importance of each block by leveraging per-210

Multi-head
Attention

+

Multi-layer
Perceptron

+

+

+MLP Block

MHA Block

Transformer
Layer

Split

Layer
Normalization

Layer
Normalization

Layer
Normalization

Multi-layer
Perceptron

Multi-head
Attention

Layer
Normalization

Figure 2: Illustration depicting that a Transformer layer
can be subdivided into two residual blocks.

plexity for our iterative block pruning framework 211

(§3.2). Finally, we iteratively prune the block with 212

the lowest importance (§3.3). 213

3.1 Minimal Residual Block 214

Most contemporary LLMs (Brown et al., 2020; 215

Touvron et al., 2023a,b) are built upon the GPT ar- 216

chitecture (Radford et al., 2019), which constitutes 217

a decoder-only model comprising multiple Trans- 218

former layers, an embedding layer, and a language 219

model head. As depicted in Figure 2, each Trans- 220

former layer can be decomposed into two primary 221

residual blocks: the multi-head attention (MHA) 222

block and the multi-layer perceptron (MLP) block. 223

Formally, consider the input hidden states of the 224

ith Transformer layer, denoted as Xi−1 ∈ Rn×d, 225

where n represents the length of the input sequence, 226

and d represents the hidden layer dimension of the 227

model. The computational process within the ith 228

Transformer layer can be represented as follows: 229

X ′
i = MHA(LN(Xi−1)) +Xi−1, (1) 230

231
Xi = MLP(LN(X ′

i)) +X ′
i. (2) 232

Here, LN(·) denotes the layer normalization mod- 233

ule and X ′
i ∈ Rn×d represents the intermediate 234

hidden states after the MHA block. 235

Equations (1) and (2) indicate that both types 236

of residual blocks can be abstracted into the same 237

computational formula. Hence, we argue that treat- 238

ing MLP and MHA blocks as the minimal units for 239

pruning is a reasonable choice, which is substanti- 240

ated by our subsequent experimental results. 241

3.2 Block Importance 242

While previous layer pruning methods (Men et al., 243

2024; Chen et al., 2024) rely solely on the simi- 244

3

MHA
MLP

Layer 1

MHA
MLP

MHA
MLP

MHA
MLP

Layer 2

Layer n-1

Layer n

...

...

MHA
MLP

MHA
MLP

MHA
MLP

MHA
MLP

...

Step 1Model

...
MHA
MLP

MHA
MLP

MHA
MLP

MHA
MLP

...

Step 2

...
MHA
MLP

MHA
MLP

MHA
MLP

MHA
MLP

...

Step 3

...Block Importance
Distribution

...

Figure 3: Overview of our BlockPruner. We iteratively calculate the importance score for each block (MHA or
MLP) to obtain the block importance distribution, and subsequently remove the block with the lowest importance.

larity between layer inputs and outputs to measure245

layer importance, we argue that this approach over-246

looks the layer’s contribution to the overall model247

performance, while our metric considers its broader248

impact on the final output. To address the draw-249

back, we introduce perplexity as a measure of block250

importance. Specifically, we determine the impor-251

tance score of each block by masking it and then252

computing the perplexity of the new model on a253

given dataset. Intuitively, a block with the lowest254

importance score indicates that its removal results255

in minimal performance degradation. This method256

more effectively captures each block’s overall im-257

pact on the model’s performance, thereby more258

accurately reflecting its significance.259

Mathematically, perplexity is defined as the ex-260

ponential of the average negative log-likelihood of261

a sequence of words. Given a sequence of words262

w1, . . . , wn and a language model that predicts the263

probability pθ(wi|w<i) for each word wi, the per-264

plexity PPL is calculated as:265

PPL = exp(− 1

n

n∑
i=1

logpθ(wi|w<i)), (3)266

where pθ(wi|w<i) denotes the probability of word267

wi given the preceding words in the sequence.268

3.3 Iterative Search for Block Pruning269

Unlike existing layer pruning techniques, which270

indiscriminately remove entire Transformer lay-271

ers, we propose a novel fine-grained pruning strat-272

egy. This strategy selectively prunes MHA or MLP273

blocks based on their defined importance. By em- 274

ploying this finer-grained pruning approach, we 275

aim to better preserve the critical components and 276

capabilities of the model while aggressively remov- 277

ing the less significant blocks. 278

For an LLMM with L layers, we first divide 279

them into 2L blocks, consisting of MHA and MLP 280

blocks. Then, we perform iterative pruning search 281

on a calibration dataset C to sequentially prune K 282

blocks. The steps are outlined as follows: 283

Step 1: Mask Block. For each block Bi (MHA 284

or MLP) inM, we generate a modified model M̂ 285

by masking out this block. 286

Step 2: Calculate Importance. We compute 287

the perplexity Pi for the modified model M̂ on the 288

calibration dataset C as the importance score for 289

the masked block Bi. 290

Step 3: Sort and Prune. After computing the 291

importance scores for all blocks, we sort these 292

scores and remove the block with the lowest impor- 293

tance score fromM to create a new model. 294

Step 4: Iterate. The aforementioned steps are 295

iteratively repeated until K blocks are removed. 296

By iteratively removing the blocks with the low- 297

est importance scores, we aim to prune the LLM 298

while minimizing performance degradation on the 299

calibration dataset C. This fine-grained block prun- 300

ing approach provides a more targeted method for 301

pruning LLMs compared to traditional layer-level 302

pruning techniques, thereby facilitating more effi- 303

cient model compression while better preserving 304

the model’s performance. The detailed procedure 305

for this pruning process is outlined in Algorithm 1. 306

4

Algorithm 1 Iterative Block Pruning

Input: Model M with L layers, calibration
dataset C, number of blocks to remove K

Output: Pruned modelM∗

1: M0←M
2: Split the modelM0 into 2L blocks
3: for j = 1 to K do
4: for i = 1 to 2L− j + 1 do
5: Create model M̂ by masking block Bi;
6: Compute the perplexity Pi for M̂ on the

calibration dataset C;
7: end for
8: Sort the blocks based on their perplexities;
9: Remove the block with the lowest perplexity

fromMj−1 and obtainMj ;
10: end for
11: M∗←MK

12: return Pruned modelM∗

4 Experiments307

4.1 Experimental Setups308

Models. To validate the widespread effectiveness309

of our pruning method, we experiment with three310

series of models: Llama2 (Touvron et al., 2023b),311

Baichuan2 (Yang et al., 2023), and Qwen1.5 (Bai312

et al., 2023). These models share analogous ar-313

chitectures as described in equations (1) and (2).314

Due to computational constraints, we employ 7B315

and 13B models for Llama2 and Baichuan2, respec-316

tively, and 7B and 14B models for Qwen1.5.317

Baselines. We compare our method with several318

state-of-the-art structured pruning methods. The319

specific baseline methods include SliceGPT (Ashk-320

boos et al., 2024), LaCo (Yang et al., 2024), Short-321

GPT (Men et al., 2024), and Relative Magnitude322

(Samragh et al., 2023; Men et al., 2024). SliceGPT323

achieves pruning by removing rows or columns324

corresponding to smaller principal components in325

the weight matrix. LaCo merges model layers from326

deep to shallow, using model output representa-327

tions to calculate thresholds to avoid over-merging.328

ShortGPT eliminates redundant layers by calcu-329

lating Block Influence. Relative Magnitude (RM)330

uses || f(x)
x+f(x) || as an importance metric for layers,331

where f(.) represents the non-residual part of the332

Transformer layer, and employs the same pruning333

method as ShortGPT. For SliceGPT, we used the of-334

ficial implementation2. For LaCo, we implemented 335

it based on their code and controlled the number of 336

pruned layers by adjusting the merging threshold. 337

For ShortGPT and RM, we reproduced the results 338

based on their manuscripts. More detailed imple- 339

mentation information is provided in Appendix A. 340

Data and GPUs. In our main experiment, we 341

utilize the Alpaca dataset (Taori et al., 2023) to 342

calculate importance scores. For our method, we 343

employ only 256 samples to compute perplexity, 344

and we discuss the influence of varying sample 345

sizes in Section 5.4. To ensure consistency, we use 346

the same number of samples for ShortGPT and Rel- 347

ative Magnitude methods as shown in Appendix A. 348

Moreover, the effect of sample size on ShortGPT 349

and Relative Magnitude is detailed in Appendix I. 350

All experiments are conducted on two RTX 4090 351

GPUs, and the execution times for different meth- 352

ods are reported in Appendix G. 353

Evaluations. Following SliceGPT, we use LM 354

Evaluation Harness (Gao et al., 2023) for evalua- 355

tion and validation on five well-known benchmarks: 356

PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi 357

et al., 2021), HellaSwag (Zellers et al., 2019), ARC- 358

e and ARC-c (Clark et al., 2018). We also utilize 359

Wikitext2 dataset (Merity et al., 2016) for evaluat- 360

ing the perplexity after pruning. More comprehen- 361

sive details of can be found in Appendix C. 362

4.2 Main Results 363

Prior studies (Yang et al., 2024; Ashkboos et al., 364

2024) have generally constrained the pruning ratio 365

to approximately 25%. In line with these studies, 366

we also restricted the pruning ratio to this range 367

in our main experiments. Since it is challenging 368

to achieve identical pruning ratios across different 369

methods and models, we select the closest avail- 370

able pruning ratios for comparison. The results are 371

presented in Table 1. 372

As shown in the results, our BlockPruner method 373

significantly outperforms previous structured prun- 374

ing baselines in terms of average performance and 375

achieves the best results across most benchmarks, 376

even though the pruning ratios in our method are 377

slightly higher than that of baselines. We also 378

observe that Llama2-13B maintains better per- 379

formance at higher pruning ratios compared to 380

Llama2-7B, with Baichuan2 and Qwen1.5 exhibit- 381

ing similar behavior. This suggests that as the 382

2As SliceGPT’s official code does not support Baichuan2
and Qwen1.5, we only employ it on the Llama2 series models.

5

Model Method Ratio (%) PPL (↓) PIQA WinoGrande HellaSwag ARC-e ARC-c Avg. Score

Llama2-7B

Dense 0 5.47 79.05 69.06 75.99 74.54 46.16 68.96
SliceGPT 21.45 30.74 72.42 59.91 56.04 63.64 37.12 57.83
LaCo 21.02 50.39 68.34 60.46 54.08 55.39 35.84 54.82
RM 21.02 676.80 54.46 49.25 29.22 34.43 22.53 37.98
ShortGPT 21.02 18.45 70.24 65.90 62.63 56.06 36.09 58.18
BlockPruner 21.99 11.51 74.21 62.43 65.87 61.07 37.29 60.17

Llama2-13B

Dense 0 4.89 80.52 72.14 79.36 77.36 49.23 71.72
SliceGPT 21.52 23.95 74.32 65.59 60.71 68.52 42.41 62.31
LaCo 24.37 13.97 72.42 59.27 60.44 54.34 34.56 56.21
RM 24.37 10.08 73.72 66.61 66.80 66.12 41.98 63.05
ShortGPT 24.37 20.06 72.74 70.80 67.80 60.35 41.30 62.60
BlockPruner 25.12 8.16 76.93 66.30 72.20 65.82 41.38 64.53

Baichuan2-7B

Dense 0 6.04 77.48 68.27 72.18 72.98 42.75 66.73
LaCo 21.57 26.46 68.28 58.56 51.50 52.90 28.50 51.95
RM 21.57 189.78 59.96 52.33 30.87 38.17 23.63 40.99
ShortGPT 21.57 31.05 63.71 62.67 50.01 47.31 30.72 50.88
BlockPruner 22.45 15.38 69.75 61.48 58.09 58.08 33.02 56.08

Baichuan2-13B

Dense 0 6.66 78.84 70.40 75.23 74.07 47.70 69.25
LaCo 22.68 27.07 70.89 58.01 54.00 57.11 32.94 54.59
RM 22.68 17.70 68.99 67.88 63.78 57.49 37.54 59.14
ShortGPT 22.68 20.69 69.31 68.27 61.71 56.52 36.69 58.50
BlockPruner 24.19 15.36 71.44 64.01 64.20 59.81 37.88 59.47

Qwen1.5-7B

Dense 0 7.95 79.22 66.46 76.92 62.16 42.66 65.48
LaCo 20.97 39.23 70.40 58.64 56.35 46.89 32.85 53.03
RM 20.97 2026.31 67.36 49.88 42.00 54.17 28.58 48.40
ShortGPT 20.97 49.88 69.53 62.12 58.87 43.60 32.17 53.26
BlockPruner 21.83 20.58 71.71 55.56 59.31 53.70 33.28 54.71

Qwen1.5-14B

Dense 0 7.44 79.87 70.56 79.41 68.48 47.01 69.07
LaCo 22.25 16.32 71.55 58.33 60.16 53.70 34.04 55.56
RM 22.25 55.99 67.08 53.28 42.08 50.72 29.01 48.43
ShortGPT 22.25 1237.21 58.60 55.96 36.16 38.09 34.81 44.72
BlockPruner 23.72 15.67 75.24 61.48 66.92 59.51 39.08 60.45

Table 1: Zero-shot downstream task performance of various models using different pruning methods. “Dense”
represents the original, unpruned models. “PPL” means the perplexity on Wikitext2.

model scale grows, so does the number of redun-383

dant blocks, allowing for more pruning space.384

Furthermore, it’s noteworthy that models with385

lower perplexity on the Wikitext2 dataset tend386

to perform better, highlighting the correlation be-387

tween perplexity and model effectiveness. This fur-388

ther supports the validity of perplexity as a reliable389

metric for evaluating model performance. Notably,390

despite our method conducting pruning searches391

on the Alpaca dataset, it achieves lower perplexity392

on the Wikitext2 dataset.393

Finally, we observe that while approaches such394

as ShortGPT and Relative Magnitude result in a395

significant decline in model performance across396

different tasks, BlockPruner stands out by avoid-397

ing such drastic reductions. This suggests that our398

proposed block pruning method effectively miti-399

gates performance degradation during the pruning400

process. Due to space constraints, we have moved401

the details of pruning baselines and comparisons402

across various pruning ratios to Appendix J.403

5 Analyses404

5.1 Ablation Study405

To assess the influence of various key operations406

within the proposed pruning algorithm on its per-407

formance, we undertake a thorough ablation study 408

across six models. In particular, we first remove all 409

blocks with the lowest importance scores at once, 410

without the iterative search procedure. Then, we 411

substitute the fine-grained block pruning with a 412

coarser-grained layer pruning approach. The re- 413

sults of these experiments are shown in Table 2. 414

The experimental findings highlight that solely 415

relying on the perplexity metric without incorpo- 416

rating a search component can result in subpar 417

pruning results and even performance deterioration. 418

This phenomenon may stem from the intrinsic na- 419

ture of perplexity, which, unlike other importance 420

metrics focusing solely on local block influence, is 421

inherently influenced by the interaction among mul- 422

tiple blocks due to its derivation from the model’s 423

output calculation. While perplexity aids in identi- 424

fying redundant blocks within the model, it doesn’t 425

directly yield an optimal pruning sequence. 426

Furthermore, pruning at the layer level rather 427

than the block level yields less robust performance. 428

This observation indicates that the model contains 429

fine-grained redundancies, and segmenting layers 430

into smaller blocks for pruning allows for more 431

efficient removal of this redundancy, thereby better 432

preserving the model’s capabilities. Additionally, 433

6

Model Method Ratio (%) Avg. Score

Llama2-7B
BlockPruner 21.99 60.17
- search 20.95 55.89 (-7.11%)
- block 21.02 58.63 (-2.56%)

Llama2-13B
BlockPruner 25.12 64.53
- search 25.08 58.58 (-9.21%)
- block 24.37 62.91 (-2.51%)

Baichuan2-7B
BlockPruner 22.45 56.08
- search 22.39 38.81 (-30.80%)
- block 21.57 54.76 (-2.36%)

Baichuan2-13B
BlockPruner 24.19 59.47
- search 24.19 55.95 (-5.92%)
- block 24.95 58.22 (-2.10%)

Qwen1.5-7B
BlockPruner 21.83 54.71
- search 20.90 37.72 (-31.06%)
- block 20.97 52.66 (-3.75%)

Qwen1.5-14B
BlockPruner 23.72 60.45
- search 22.98 40.80 (-32.51%)
- block 22.25 60.10 (-0.58%)

Table 2: Average score of ablation study of BlockPruner
on downstream tasks. “- search” indicates dropping the
iterative search procedure and directly removing blocks
with the lowest importance score. “- block” means we
substitute the fine-grained block pruning with a coarser-
grained layer pruning approach.

we provide ablation experiments at higher sparsity434

levels, with results presented in Appendix E.435

5.2 Redundancies Between MHA and MLP436

To investigate the significance and roles of the437

MHA and MLP modules in modern LLMs, we438

conduct pruning experiments focusing exclusively439

on MHA or MLP blocks. We apply this pruning440

strategy to two models of varying sizes, Llama2-441

7B and Llama2-13B, while keeping the pruning442

ratios below 33%. The results illustrated in Figure443

4 reveal several notable observations.444

Before reaching a pruning ratio of 17%, pruning445

only the MHA blocks results in less performance446

loss compared to pruning MLP blocks and even447

matches the performance of mixed pruning. This448

indicates that MHA modules in LLMs may pos-449

sess greater redundancy than initially anticipated,450

whereas MLP modules are relatively less redundant.451

However, when the pruning ratio surpasses 17%,452

further pruning of MHA blocks leads to a sharp453

decline in performance. This trend suggests that454

as pruning advances, the redundant MHA blocks455

are progressively removed, leaving only the crucial456

MHA blocks. Moreover, in the larger model, the457

sharp decline in performance occurs at higher prun-458

ing ratios, which is consistent with the finding that459

larger models contain more redundant blocks. Such460

redundancy may stem from factors like insufficient461

training, resulting in higher initial redundancy.462

We also examine the proportion of MHA blocks463

10 20 30
Pruning Ratio (%)

35

40

45

50

55

60

65

70

Av
g.

 S
co

re

Llama2-7B

MHA
MLP
MHA&MLP

10 20 30
Pruning Ratio (%)

35

40

45

50

55

60

65

70

Av
g.

 S
co

re

Llama2-13B

MHA
MLP
MHA&MLP

Figure 4: The impact of pruning MHA and MLP individ-
ually on model performance. “MHA&MLP” represents
the original BlockPruner algorithm.

removed during pruning. Specifically, we present 464

the number of MHA and MLP blocks removed at 465

different pruning stages. In Figure 5 (left), we set 466

the number of removed blocks to 60. In Figure 5 467

(right), the models have 22 and 28 blocks removed, 468

respectively, maintaining a pruning ratio of 30%. 469

The results in Figure 5 (left) for both models re- 470

veal a consistent tendency to initially remove only 471

MHA blocks. As the pruning process progresses 472

and more blocks are removed, the proportion of 473

MHA blocks being pruned follows a zigzag down- 474

ward trend. Notably, the curve for Llama2-13B 475

shifts to the right compared to Llama2-7B, suggest- 476

ing that the larger model contains more redundant 477

MHA blocks. This is further emphasized in Figure 478

5 (right), where, at the same pruning ratio, Llama2- 479

13B prunes more MHA blocks than Llama2-7B. 480

Additionally, given that our pruning method tends 481

to remove more MHA blocks at equivalent pruning 482

ratios, it can significantly reduce the usage of the 483

key-value (KV) cache (Pope et al., 2023) in MHA, 484

which potentially accelerate the inference process. 485

To validate this, we also conducted a comparison 486

of the inference speed among various models ob- 487

tained through different pruning methods, with the 488

results detailed in Appendix F. 489

5.3 Perplexity for Block Redundancy 490

In this section, we explore the impact of different 491

block importance metrics. Generally, Block Influ- 492

ence (BI) and Relative Magnitude (RM) measure 493

the importance of a block based solely on its in- 494

put and output hidden states, thereby reflecting the 495

block’s local influence. In contrast, perplexity is de- 496

rived from the model’s output representations and 497

thus can better measure a block’s overall influence. 498

However, as indicated in the ablation study, us- 499

ing perplexity without the iterative search proce- 500

dure leads to a significant decline in performance. 501

7

0 20 40 60
Number of Blocks Removed

0.5

0.6

0.7

0.8

0.9

1.0
Pr

op
. o

f M
H

A
 B

lo
ck

s
Llama2-7B
Llama2-13B

Llama2-7B Llama2-13B
Model

0

3

6

9

12

15

18

N
um

be
r o

f B
lo

ck
s R

em
ov

ed

MHA
MLP

Figure 5: Left: The proportion of MHA blocks removed
during the pruning process, relative to the total number
of removed blocks. Right: The number of different
blocks removed from models at a pruning ratio of 30%.

10 20 30
Pruning Ratio (%)

35

40

45

50

55

60

65

70

Av
g.

 S
co

re

Llama2-7B

BlockPruner-BI
BlockPruner-RM
BlockPruner-PPL

10 20 30
Pruning Ratio (%)

40

45

50

55

60

65

70

Av
g.

 S
co

re

Llama2-13B

BlockPruner-BI
BlockPruner-RM
BlockPruner-PPL

Figure 6: The impact of different block importance
metrics on the pruning performance of BlockPruner

This suggests that while perplexity alone may not502

be a strong block importance metric, our iterative503

search method allows for a more effective use of it.504

As illustrated in Figure 6, when BI and RM are505

applied in dynamic pruning algorithms, they some-506

times achieve performance comparable to perplex-507

ity at lower pruning ratios. However, as the pruning508

ratio increases, their limitations become evident,509

resulting in a sharp decline in model performance.510

This suggests that these local metrics do not ade-511

quately capture the impact of different blocks on512

the model’s overall performance.513

In summary, perplexity leverages global infor-514

mation to effectively measure block redundancy,515

especially when used with a dynamic pruning strat-516

egy. This combination captures the complex inter-517

actions among blocks. In contrast, local metrics518

like BI and RM are useful in specific scenarios but519

don’t reflect the overall contribution of blocks to520

the model, particularly at higher pruning ratios.521

5.4 Impact of Data on Pruning522

In the work on SliceGPT (Ashkboos et al., 2024),523

the authors also used the Wikitext2 (Merity et al.,524

2016) and Alpaca (Taori et al., 2023) datasets for525

pruning experiments. They observed that the Al-526

paca dataset often yielded better pruning results. In527

10 20 30
Pruning Ratio (%)

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

Av
g.

 S
co

re

Alpaca
Wikitext2

10 15 20 25 30 35
Pruning Ratio (%)

52.5

55.0

57.5

60.0

62.5

65.0

67.5

Av
g.

 S
co

re

BlockPruner-64
BlockPruner-256
BlockPruner-512

Figure 7: Left: The performance of BlockPruner on
the Alpaca and Wikitext2 datasets using a calibration
dataset of 256 samples. Right: Impact of sample sizes
on BlockPruner’s performance on Alpaca, with the num-
bers indicating the sample sizes used.

our study, we obtain similar findings. As shown in 528

Figure 7 (left), when pruning Llama2-7B, the per- 529

formance across different pruning ratios is signifi- 530

cantly higher when using the Alpaca dataset com- 531

pared to Wikitext2. We hypothesize that this may 532

be due to the Alpaca dataset being an instruction- 533

following dataset, which is more closely aligned 534

with downstream tasks. This suggests that the 535

choice of dataset has a significant impact on the 536

final pruning performance of the model. 537

To determine the appropriate sample size and 538

analyze its impact on the pruning performance of 539

BlockPruner, we extract varying numbers of in- 540

stances from the Alpaca dataset and conduct prun- 541

ing experiments using Llama2-7B. The results pre- 542

sented in Figure 7 (right) indicate that increasing 543

the sample size beyond 256 yields no significant 544

improvement in the pruning effect of BlockPruner. 545

Therefore, we set the number of samples to 256. 546

6 Conclusion 547

In this work, we introduce BlockPruner, a novel 548

structured pruning approach for efficiently pruning 549

LLMs. BlockPruner decomposes Transformer lay- 550

ers into two minimal residual blocks and leverages 551

a block importance metric based on perplexity in 552

conjunction with an iterative pruning search algo- 553

rithm, where the two components work together 554

to progressively eliminate redundant blocks. Ex- 555

tensive experiments across various models show 556

that our method outperforms other baselines in 557

post-pruning performance. Our findings uncover 558

fine-grained block redundancy in LLMs, highlight- 559

ing significant differences in redundancy levels 560

across different block types. We hope our work 561

contributes to a deeper understanding of the impor- 562

tance of different blocks within LLMs. 563

8

Limitations564

Our current work has three potential limitations.565

First, while perplexity serves as a useful indicator566

of block importance, it may not be the optimal met-567

ric. Second, while our proposed pruning search al-568

gorithm is effective, other combinatorial optimiza-569

tion algorithms might identify superior pruning570

sequences. Lastly, due to constraints in computa-571

tional resources, we did not apply our method to572

prune larger models. Nevertheless, our approach is573

highly scalable and readily adaptable for pruning574

larger models in future research.575

Ethics Statement576

The aim of this study is to provide a generalizable577

pruning method for large language models. All578

models and datasets used in our experiments are579

publicly accessible and do not contain any private580

information. We strictly adhere to the usage poli-581

cies of these resources and utilize them solely for582

research purposes.583

References584

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari585
do Nascimento, Torsten Hoefler, and James Hensman.586
2024. SliceGPT: Compress large language models587
by deleting rows and columns. In The Twelfth Inter-588
national Conference on Learning Representations.589

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,590
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei591
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,592
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,593
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,594
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong595
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-596
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,597
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,598
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-599
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang600
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang601
Zhu. 2023. Qwen technical report. arXiv preprint602
arXiv:2309.16609.603

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,604
et al. 2020. Piqa: Reasoning about physical com-605
monsense in natural language. In Proceedings of the606
AAAI conference on artificial intelligence, volume 34,607
pages 7432–7439.608

Tom Brown, Benjamin Mann, Nick Ryder, Melanie609
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind610
Neelakantan, Pranav Shyam, Girish Sastry, Amanda611
Askell, et al. 2020. Language models are few-shot612
learners. Advances in neural information processing613
systems, 33:1877–1901.614

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. 2024. 615
Compressing large language models by stream- 616
lining the unimportant layer. arXiv preprint 617
arXiv:2403.19135. 618

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 619
Ashish Sabharwal, Carissa Schoenick, and Oyvind 620
Tafjord. 2018. Think you have solved question an- 621
swering? try arc, the ai2 reasoning challenge. arXiv 622
preprint arXiv:1803.05457. 623

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 624
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun- 625
ing of quantized LLMs. In Thirty-seventh Confer- 626
ence on Neural Information Processing Systems. 627

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 628
sive language models can be accurately pruned in 629
one-shot. In International Conference on Machine 630
Learning, pages 10323–10337. PMLR. 631

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 632
Sid Black, Anthony DiPofi, Charles Foster, Laurence 633
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 634
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 635
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 636
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 637
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 638
2023. A framework for few-shot language model 639
evaluation. 640

Shangqian Gao, Feihu Huang, Jian Pei, and Heng 641
Huang. 2020. Discrete model compression with re- 642
source constraint for deep neural networks. In Pro- 643
ceedings of the IEEE/CVF conference on computer 644
vision and pattern recognition, pages 1899–1908. 645

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, 646
Paolo Glorioso, and Daniel A Roberts. 2024. The un- 647
reasonable ineffectiveness of the deeper layers. arXiv 648
preprint arXiv:2403.17887. 649

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024. 650
MiniLLM: Knowledge distillation of large language 651
models. In The Twelfth International Conference on 652
Learning Representations. 653

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 654
Sun. 2016. Deep residual learning for image recog- 655
nition. In Proceedings of the IEEE conference on 656
computer vision and pattern recognition, pages 770– 657
778. 658

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 659
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 660
Chen. 2022. LoRA: Low-rank adaptation of large 661
language models. In International Conference on 662
Learning Representations. 663

Yukun Huang, Yanda Chen, Zhou Yu, and Kathleen 664
McKeown. 2022. In-context learning distillation: 665
Transferring few-shot learning ability of pre-trained 666
language models. arXiv preprint arXiv:2212.10670. 667

9

https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://arxiv.org/abs/2309.16609
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2403.19135v1
https://arxiv.org/abs/2403.19135v1
https://arxiv.org/abs/2403.19135v1
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://proceedings.mlr.press/v202/frantar23a
https://proceedings.mlr.press/v202/frantar23a
https://proceedings.mlr.press/v202/frantar23a
https://proceedings.mlr.press/v202/frantar23a
https://proceedings.mlr.press/v202/frantar23a
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_Discrete_Model_Compression_With_Resource_Constraint_for_Deep_Neural_Networks_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_Discrete_Model_Compression_With_Resource_Constraint_for_Deep_Neural_Networks_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_Discrete_Model_Compression_With_Resource_Constraint_for_Deep_Neural_Networks_CVPR_2020_paper.html
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=5h0qf7IBZZ
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2212.10670
https://arxiv.org/abs/2212.10670
https://arxiv.org/abs/2212.10670
https://arxiv.org/abs/2212.10670
https://arxiv.org/abs/2212.10670

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,668
and Eduard Hovy. 2017. RACE: Large-scale ReAd-669
ing comprehension dataset from examinations. In670
Proceedings of the 2017 Conference on Empirical671
Methods in Natural Language Processing, pages 785–672
794, Copenhagen, Denmark. Association for Compu-673
tational Linguistics.674

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang,675
Pengcheng He, Weizhu Chen, and Tuo Zhao. 2023.676
Losparse: Structured compression of large language677
models based on low-rank and sparse approximation.678
In International Conference on Machine Learning,679
pages 20336–20350. PMLR.680

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.681
TruthfulQA: Measuring how models mimic human682
falsehoods. In Proceedings of the 60th Annual Meet-683
ing of the Association for Computational Linguistics684
(Volume 1: Long Papers), pages 3214–3252, Dublin,685
Ireland. Association for Computational Linguistics.686

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.687
LLM-pruner: On the structural pruning of large lan-688
guage models. In Thirty-seventh Conference on Neu-689
ral Information Processing Systems.690

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,691
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng692
Chen. 2024. Shortgpt: Layers in large language693
models are more redundant than you expect. arXiv694
preprint arXiv:2403.03853.695

Stephen Merity, Caiming Xiong, James Bradbury, and696
Richard Socher. 2016. Pointer sentinel mixture mod-697
els. arXiv preprint arXiv:1609.07843.698

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish699
Sabharwal. 2018. Can a suit of armor conduct elec-700
tricity? a new dataset for open book question answer-701
ing. In Conference on Empirical Methods in Natural702
Language Processing.703

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,704
Meysam Chenaghlu, Richard Socher, Xavier Am-705
atriain, and Jianfeng Gao. 2024. Large language706
models: A survey. arXiv preprint arXiv:2402.06196.707

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,708
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan709
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-710
ciently scaling transformer inference. Proceedings711
of Machine Learning and Systems, 5.712

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,713
Dario Amodei, Ilya Sutskever, et al. 2019. Language714
models are unsupervised multitask learners. OpenAI715
blog, 1(8):9.716

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-717
ula, and Yejin Choi. 2021. Winogrande: An adver-718
sarial winograd schema challenge at scale. Commu-719
nications of the ACM, 64(9):99–106.720

Mohammad Samragh, Mehrdad Farajtabar, Sachin 721
Mehta, Raviteja Vemulapalli, Fartash Faghri, De- 722
vang Naik, Oncel Tuzel, and Mohammad Rastegari. 723
2023. Weight subcloning: direct initialization of 724
transformers using larger pretrained ones. arXiv 725
preprint arXiv:2312.09299. 726

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. 727
2024. A simple and effective pruning approach for 728
large language models. In The Twelfth International 729
Conference on Learning Representations. 730

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 731
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 732
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 733
An instruction-following llama model. https:// 734
github.com/tatsu-lab/stanford_alpaca. 735

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 736
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 737
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 738
Azhar, et al. 2023a. Llama: Open and effi- 739
cient foundation language models. arXiv preprint 740
arXiv:2302.13971. 741

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 742
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 743
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 744
Bhosale, et al. 2023b. Llama 2: Open founda- 745
tion and fine-tuned chat models. arXiv preprint 746
arXiv:2307.09288. 747

Tycho F. A. van der Ouderaa, Markus Nagel, Mart Van 748
Baalen, and Tijmen Blankevoort. 2024. The LLM 749
surgeon. In The Twelfth International Conference on 750
Learning Representations. 751

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, 752
Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai, 753
and Xiaofei He. 2024. Model compression and effi- 754
cient inference for large language models: A survey. 755
arXiv preprint arXiv:2402.09748. 756

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi 757
Chen. 2024. Sheared LLaMA: Accelerating lan- 758
guage model pre-training via structured pruning. In 759
The Twelfth International Conference on Learning 760
Representations. 761

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, 762
Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao, 763
and Ping Luo. 2024. BESA: Pruning large language 764
models with blockwise parameter-efficient sparsity 765
allocation. In The Twelfth International Conference 766
on Learning Representations. 767

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, 768
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang, 769
Dong Yan, et al. 2023. Baichuan 2: Open large-scale 770
language models. arXiv preprint arXiv:2309.10305. 771

Yifei Yang, Zouying Cao, and Hai Zhao. 2024. Laco: 772
Large language model pruning via layer collapse. 773
arXiv preprint arXiv:2402.11187. 774

10

https://aclanthology.org/D17-1082
https://aclanthology.org/D17-1082
https://aclanthology.org/D17-1082
https://proceedings.mlr.press/v202/li23ap.html
https://proceedings.mlr.press/v202/li23ap.html
https://proceedings.mlr.press/v202/li23ap.html
https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2022.acl-long.229
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=J8Ajf9WfXP
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://aclanthology.org/D18-1260.pdf
https://aclanthology.org/D18-1260.pdf
https://aclanthology.org/D18-1260.pdf
https://aclanthology.org/D18-1260.pdf
https://aclanthology.org/D18-1260.pdf
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2211.05102
https://arxiv.org/abs/2211.05102
https://arxiv.org/abs/2211.05102
https://dcmpx.remotevs.com/net/cloudfront/d4mucfpksywv/SL/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://dcmpx.remotevs.com/net/cloudfront/d4mucfpksywv/SL/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://dcmpx.remotevs.com/net/cloudfront/d4mucfpksywv/SL/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://dl.acm.org/doi/abs/10.1145/3474381
https://dl.acm.org/doi/abs/10.1145/3474381
https://dl.acm.org/doi/abs/10.1145/3474381
https://arxiv.org/abs/2312.09299
https://arxiv.org/abs/2312.09299
https://arxiv.org/abs/2312.09299
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=DYIIRgwg2i
https://openreview.net/forum?id=DYIIRgwg2i
https://openreview.net/forum?id=DYIIRgwg2i
https://arxiv.org/abs/2402.09748
https://arxiv.org/abs/2402.09748
https://arxiv.org/abs/2402.09748
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=gC6JTEU3jl
https://openreview.net/forum?id=gC6JTEU3jl
https://openreview.net/forum?id=gC6JTEU3jl
https://openreview.net/forum?id=gC6JTEU3jl
https://openreview.net/forum?id=gC6JTEU3jl
https://arxiv.org/abs/2402.11187
https://arxiv.org/abs/2402.11187
https://arxiv.org/abs/2402.11187

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,775
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.776
Zeroquant: Efficient and affordable post-training777
quantization for large-scale transformers. In Ad-778
vances in Neural Information Processing Systems,779
volume 35, pages 27168–27183. Curran Associates,780
Inc.781

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh,782
Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,783
Yi Liang, Zhangyang Wang, and Shiwei Liu. 2024.784
Outlier weighed layerwise sparsity (OWL): A miss-785
ing secret sauce for pruning LLMs to high sparsity.786

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin787
Choi. 2018. SWAG: A large-scale adversarial dataset788
for grounded commonsense inference. In Proceed-789
ings of the 2018 Conference on Empirical Methods in790
Natural Language Processing, pages 93–104, Brus-791
sels, Belgium. Association for Computational Lin-792
guistics.793

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali794
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a795
machine really finish your sentence? arXiv preprint796
arXiv:1905.07830.797

Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin798
Ou, Xinyi Yu, Bohan Zhuang, et al. 2023. Prun-799
ing meets low-rank parameter-efficient fine-tuning.800
arXiv preprint arXiv:2305.18403.801

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen,802
Barbara Plank, Bernd Bischl, Mina Rezaei, and Kenji803
Kawaguchi. 2024a. Finercut: Finer-grained inter-804
pretable layer pruning for large language models.805
arXiv preprint arXiv:2405.18218.806

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao,807
Lu Hou, and Carlo Vittorio Cannistraci. 2024b. Plug-808
and-play: An efficient post-training pruning method809
for large language models. In The Twelfth Interna-810
tional Conference on Learning Representations.811

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,812
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen813
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A814
survey of large language models. arXiv preprint815
arXiv:2303.18223.816

A Details of Implementations817

In this section, we detail our experimental setup.818

We sampled from the Alpaca dataset with a fixed819

random seed of 42. For SliceGPT, we followed820

the original paper’s configuration, using 1024 sam-821

ples, a sparsity ratio set at 30%, and a maximum822

sequence length of 2048. For ShortGPT, RM, and823

BlockPruner, we sampled 256 samples from the824

dataset, with the same maximum sequence length825

of 2048. For LaCo, we adjusted the merging thresh-826

old using the provided code and data to achieve the827

corresponding pruning ratio.828

B Details of Datasets 829

B.1 Pruning Datasets 830

Alpaca (Taori et al., 2023) is a general instruction- 831

following dataset containing 52,000 questions. 832

Each sample comprises three fields: instruction, in- 833

put, and response. We selected 10% of the dataset 834

and utilized 256 samples for the main experiments. 835

Perplexity calculation was performed uniformly 836

across all text in the samples without differentia- 837

tion between fields. 838

B.2 Evaluation Datasets 839

All downstream task datasets were partitioned and 840

evaluated using the default configuration of LM 841

Evaluation Harness. 842

Wikitext-2 (Merity et al., 2016) is a collection 843

of over 100 million tokens extracted from verified 844

Good and Featured articles on Wikipedia. This 845

dataset is commonly used to measure the quality of 846

a model’s text generation. We employed samples 847

from the pre-split test set for calculating perplexity. 848

PIQA (Bisk et al., 2020) is a dataset designed to 849

evaluate natural language models’ understanding 850

of physical commonsense. It employs a multiple- 851

choice format where the model selects the most 852

appropriate solution from two options given a goal. 853

WinoGrande (Sakaguchi et al., 2021) is an ex- 854

tensive dataset to evaluate models’ commonsense 855

reasoning capabilities. It comprises 44,000 ques- 856

tions. The dataset features fill-in-the-blank tasks 857

with binary options, aiming to select the correct 858

option for a given sentence that requires common- 859

sense reasoning. 860

HellaSwag (Zellers et al., 2019) is also a dataset 861

designed to assess models’ commonsense reason- 862

ing abilities, specifically to highlight the limitations 863

of current models in handling commonsense nat- 864

ural language reasoning tasks. Despite being triv- 865

ial for humans (with >95% accuracy), the dataset 866

presents significant difficulties for models. The 867

evaluation is conducted using four-way multiple- 868

choice questions. 869

ARC (Clark et al., 2018) dataset comprises 7,787 870

multiple-choice science exam questions sourced 871

from various origins. Each question typically of- 872

fers four answer options. These questions are cat- 873

egorized into two distinct difficulty sets: 2,590 874

questions for Challenge Set and 5,197 for Easy Set. 875

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://openreview.net/forum?id=pOBvr1PxFd
https://openreview.net/forum?id=pOBvr1PxFd
https://openreview.net/forum?id=pOBvr1PxFd
https://aclanthology.org/D18-1009
https://aclanthology.org/D18-1009
https://aclanthology.org/D18-1009
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2305.18403
https://arxiv.org/abs/2305.18403
https://arxiv.org/abs/2305.18403
https://arxiv.org/abs/2405.18218
https://arxiv.org/abs/2405.18218
https://arxiv.org/abs/2405.18218
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

Model Method Ratio(%) Avg.Score

Llama2-7B SliceGPT 21.45 57.93
SliceGPT∗ 21.45 57.83

Llama2-13B SliceGPT 21.52 62.34
SliceGPT∗ 21.52 62.31

Table 3: Comparison of average performance on down-
stream tasks between the official SliceGPT results and
our reproduced results (indicated by “∗” for our results).

C Details of Evaluations876

Ensuring a fair and comprehensive comparison,877

we employed the same version of the LM Evalua-878

tion Harness as used in the SliceGPT experiments,879

obtaining evaluation scores under identical experi-880

mental configurations. These scores closely match881

those reported in the SliceGPT paper, as detailed882

in Table 3. For consistency, we present our repro-883

duced results in the main experiments.884

For evaluating the performance of pruned mod-885

els on downstream tasks, we utilized five multiple-886

choice QA datasets: PIQA, WinoGrande, Hel-887

laSwag, ARC-e, and ARC-c. Additionally, to as-888

sess text generation quality, we calculated perplex-889

ity using the test set of the Wikitext2 dataset. For890

the downstream task evaluations, we adhered to891

the default evaluation parameters and zero-shot set-892

tings, with a batch size set to 1. For perplexity893

calculations, the maximum text length was set to894

2048, maintaining a batch size of 1 as well.895

D Perplexity and JS-Divergence in Block896

Evaluation897

Perplexity’s ability to capture semantic-level im-898

pacts aligns with our objective of optimizing lan-899

guage model pruning without sacrificing practical900

utility. This metric reliably reflects output fluency901

and quality, making it better suited for evaluating902

pruning effects. By contrast, JS-Divergence fo-903

cuses on changes in output distributions and may904

lead to pruning decisions that inadvertently com-905

promise model fluency and coherence.906

To validate this perspective, we conducted ex-907

periments using both metrics across various model908

scales and pruning ratios. The results, summa-909

rized in Table 4, indicate that PPL consistently910

outperforms JS-Divergence under different config-911

urations. These findings demonstrate that PPL bet-912

ter reflects the fluency and quality of the pruned913

model’s outputs, reinforcing its suitability as a914

block importance metric for LLM pruning.915

Model Metric Ratio(%) Avg.Score

Llama2-7B PPL 16.98/24.99/30.00/37.02 64.33/57.65/55.01/49.36
JS 14.99/26.00/29.01/37.02 63.76/57.08/53.71/49.04

Llama2-13B PPL 14.54/25.12/31.62/34.88 69.38/64.52/61.52/60.13
JS 14.54/26.75/32.45/34.88 69.28/64.36/61.00/59.61

Table 4: Comparison of PPL and JS-Divergence across
different pruning ratios and model scales.

Model Unit Ratio(%) PPL(↓) Avg.Score

Llama2-7B Block 30.00/37.02/43.03 16.28/27.47/49.65 55.02/49.36/46.95
Layer 30.03/36.04/42.05 16.58/27.05/60.85 53.04/47.32/43.91

Llama2-13B Block 31.62/36.52/41.39 9.64/12.54/17.02 61.52/59.34/54.15
Layer 31.68/36.56/41.43 10.48/13.29/18.04 59.31/56.17/51.61

Table 5: Average score of BlockPruner at different prun-
ing granularities under higher sparsity.

E Ablation Experiments under Higher 916

Sparsity 917

BlockPruner is motivated by the goal of preserv- 918

ing model performance more effectively through 919

fine-grained block pruning. Evaluating how block 920

pruning performs at different levels of granular- 921

ity, particularly under higher sparsity, is crucial for 922

supporting our motivations and claims. In light 923

of this, we conducted ablation experiments with 924

higher sparsity ratios on Llama2-7B and Llama2- 925

13B models. The results, shown in Table 5, confirm 926

that our approach remains effective, further validat- 927

ing the motivations behind BlockPruner. 928

F Inference Speed after Pruning 929

In this section, we evaluated the inference speed 930

by measuring the time required to generate 128 to- 931

kens using models from different pruning methods, 932

all employing KV caches. Each configuration was 933

repeated 20 times to ensure robust results, and the 934

average inference time was taken. As shown in Ta- 935

ble 6, our method consistently achieves the greatest 936

speedup at comparable pruning ratios. This im- 937

provement stems from the fact that our approach 938

prunes more MHA blocks at the same pruning ratio 939

compared to other methods, leading to a signifi- 940

cant reduction in KV cache usage. As a result, this 941

reduction helps accelerate the inference speed of 942

large language models (LLMs). 943

G Time Costs of Various Pruning 944

Methods 945

Our approach relies on PPL to determine block im- 946

portance, which requires calculating PPL before 947

pruning, making it challenging to design a more 948

efficient pruning strategy. We have compared other 949

12

Model Method Ratio(%) Inference Time (ms) Speedup

Llama2-7B

Original 0.00 4044.30 1.00
BlockPruner 24.00 2747.88 1.47
SliceGPT 24.47 3226.68 1.25
ShortGPT 24.03 3094.36 1.31

Llama2-13B

Original 0.00 7285.73 1.00
BlockPruner 21.05 3873.20 1.88
SliceGPT 21.52 4099.08 1.78
ShortGPT 21.93 4111.65 1.77

Table 6: The inference speed differences among models
obtained using different pruning methods, where “Orig-
inal” denotes the unpruned model.

Model BlockPruner SliceGPT ShortGPT RM LaCo

Llama2-7B 45 mins 2 hours 9 mins 2 mins < 1 mins 2 mins

Llama2-13B 2 hours 27 mins 3 hours 30 mins 2 mins < 1 mins 24 mins

Table 7: Execution time of BlockPruner and other prun-
ing methods in the main experiment.

block importance metrics (in Section 5.3) but found950

that PPL still preserves the model’s performance951

best. Moreover, since our method better maintains952

model performance and pruning is one-time with-953

out increasing subsequent inference overhead, so954

we believe the trade-off is worthwhile. The compar-955

ison results of pruning times between BlockPruner956

and other methods are presented in Table 7.957

H Post-training after Pruning958

We sampled 8,000 instances from the Alpaca959

dataset and conducted post-training on the pruned960

Llama2-7B and Llama2-13B models obtained via961

BlockPruner using LoRA. All linear layers, exclud-962

ing the embedding layer and the language model963

head, were trained. The LoRA rank and LoRA964

α parameters were set to 32 and 10, respectively,965

with a learning rate of 2e-4 and a batch size of 1.966

Additionally, we configured the gradient accumula-967

tion steps to 4 and employed a linear learning rate968

scheduler. We controlled the pruning ratios within969

the range of 24% to 33%. The results are shown970

in Figure 8. It can be seen that after training, our971

models showed further improvement at different972

pruning ratios. The Llama2-7B and Llama2-13B973

models recovered to 89% and 92% of the perfor-974

mance of the unpruned models, respectively, when975

pruned by approximately 1/4.976

I Sensitivity to Sample Size977

ShortGPT uses Block Influence as the importance978

metric for layers, while RM uses Relative Magni-979

tude. The former calculates the similarity between980

the input and output hidden states of a layer, while981

24 26 28 30 32
Pruning Ratio (%)

20

30

40

50

60

70

80

Av
g.

 S
co

re

Llama2-7B

BlockPruner
BlockPruner+Post train
Dense

26 28 30 32
Pruning Ratio (%)

20

30

40

50

60

70

80

Av
g.

 S
co

re

Llama2-13B

BlockPruner
BlockPruner+Post train
Dense

Figure 8: Average score of BlockPruner with varying
pruning ratios before and after post-training.

the latter utilizes the input and the non-residual 982

part of the output. In our preliminary experiments, 983

we found that these two metrics are not sensitive 984

to sample size. We sampled different numbers of 985

instances from the test set of the Alpaca dataset 986

to observe their impact on these metrics, and the 987

results are shown in Figure 9. We can see that all 988

the lines almost overlap, indicating that Block In- 989

fluence and Relative Magnitude are not sensitive to 990

the sample size. We speculate that this may be due 991

to the limited information provided by the changes 992

in the input and output of a single layer. 993

J Varying Pruning Ratios 994

To broadly demonstrate the superiority of our 995

method, we present the pruning effects of Block- 996

Pruner, ShortGPT, and Relative Magnitude on six 997

representative large models at different pruning 998

ratios. As depicted in Figure 10, our method ef- 999

fectively minimizes performance loss throughout 1000

the pruning process, avoiding any sudden drops in 1001

performance. In contrast, RM exhibits significant 1002

instability and is prone to performance collapse. 1003

ShortGPT performs relatively well, but in the prun- 1004

ing experiments on Qwen1.5-14B, it also leads to 1005

severe performance degradation at higher pruning 1006

ratios. Overall, the advantages of our method be- 1007

come more pronounced as both model size and 1008

pruning ratio increase. 1009

K Evaluation on a Broader Range of 1010

Datasets 1011

We extended the primary experiment by incorpo- 1012

rating four additional well-established evaluation 1013

datasets: SWAG (Zellers et al., 2018), TruthfulQA 1014

(Lin et al., 2022), OpenBookQA (Mihaylov et al., 1015

2018), and RACE (Lai et al., 2017). As illus- 1016

trated in Table 8, our proposed method consistently 1017

surpasses previous pruning baselines across this 1018

13

0 10 20 30
Block ID

0.1

0.2

0.3

0.4

B
lo

ck
 In

flu
en

ce
Llama2-7B

32
64
128
256

0 10 20 30
Block ID

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
M

ag
ni

tu
de

Llama2-7B

32
64
128
256

0 10 20 30 40
Block ID

0.0

0.1

0.2

0.3

0.4

B
lo

ck
 In

flu
en

ce

Llama2-13B

32
64
128
256

0 10 20 30 40
Block ID

0.5

1.0

1.5

2.0

R
el

at
iv

e
M

ag
ni

tu
de

Llama2-13B

32
64
128
256

Figure 9: The changes in Block Influence and Relative Magnitude of the model under different sample sizes.

5 10 15 20 25 30
Pruning Ratio (%)

40

50

60

70

Av
g.

 S
co

re

Llama2-7B

ShortGPT
RM
BlockPruner

5 10 15 20 25 30
Pruning Ratio (%)

40

45

50

55

60

65

Av
g.

 S
co

re

Baichuan2-7B

ShortGPT
RM
BlockPruner

5 10 15 20 25 30
Pruning Ratio (%)

45

50

55

60

65

Av
g.

 S
co

re

Qwen1.5-7B

ShortGPT
RM
BlockPruner

5 10 15 20 25 30
Pruning Ratio (%)

55

60

65

70

Av
g.

 S
co

re

Llama2-13B

ShortGPT
RM
BlockPruner

5 10 15 20 25 30
Pruning Ratio (%)

50

55

60

65

70

Av
g.

 S
co

re

Baichuan2-13B

ShortGPT
RM
BlockPruner

5 10 15 20 25 30
Pruning Ratio (%)

40

45

50

55

60

65

70

Av
g.

 S
co

re

Qwen1.5-14B

ShortGPT
RM
BlockPruner

Figure 10: Average score of BlockPruner with varying pruning ratios compared with ShortGPT and RM.

broader range of datasets, further demonstrating1019

the effectiveness and generalization capability of1020

BlockPruner.1021

14

Model Method Ratio (%) PIQA WinoGrande HellaSwag ARC-e ARC-c TruthfulQA RACE SWAG ObenBookQA Avg. Score

Llama2-7B

Dense 0 79.05 69.06 75.99 74.54 46.16 25.34 39.43 76.65 44.00 58.91
SliceGPT 21.45 72.42 59.91 56.04 63.64 37.12 25.34 37.22 61.57 33.20 49.61
LaCo 21.02 68.34 60.46 54.08 55.39 35.84 28.40 29.57 61.75 39.80 48.18
RM 21.02 54.46 49.25 29.22 34.43 22.53 26.07 22.58 38.60 27.60 33.86
ShortGPT 21.02 70.24 65.90 62.63 56.06 36.09 26.81 34.07 64.84 37.20 50.43
BlockPruner 21.99 74.21 62.43 65.87 61.07 37.29 22.03 34.83 69.81 37.20 51.64

Llama2-13B

Dense 0 80.52 72.14 79.36 77.36 49.23 26.07 40.77 78.04 45.40 60.99
SliceGPT 21.52 74.32 65.59 60.71 68.52 42.41 24.72 37.42 65.61 39.80 53.23
LaCo 24.37 72.42 59.27 60.44 54.34 34.56 23.62 31.87 67.93 41.00 49.49
RM 24.37 73.72 66.61 66.80 66.12 41.98 20.81 38.28 68.08 38.40 53.42
ShortGPT 24.37 72.74 70.80 67.80 60.35 41.30 24.60 37.80 68.67 41.00 53.90
BlockPruner 25.12 76.93 66.30 72.20 65.82 41.38 24.97 38.85 72.94 40.60 55.55

Baichuan2-7B

Dense 0 77.48 68.27 72.18 72.98 42.75 23.01 38.76 75.26 40.00 56.74
LaCo 21.57 68.28 58.56 51.50 52.90 28.50 21.42 31.10 62.37 33.60 45.36
RM 21.57 59.96 52.33 30.87 38.17 23.63 25.09 22.01 47.38 27.40 36.32
ShortGPT 21.57 63.71 62.67 50.01 47.31 30.72 24.60 30.62 55.81 31.20 44.07
BlockPruner 22.45 69.75 61.48 58.09 58.08 33.02 20.81 33.21 64.95 32.20 47.95

Baichuan2-13B

Dense 0 78.84 70.40 75.23 74.07 47.70 26.93 41.15 76.87 43.60 59.42
LaCo 22.68 70.89 58.01 54.00 57.11 32.94 20.69 29.38 67.79 33.80 47.18
RM 22.68 68.99 67.88 63.78 57.49 37.54 25.46 36.84 64.50 33.80 50.70
ShortGPT 22.68 69.31 68.27 61.71 56.52 36.69 26.93 36.27 64.14 34.40 50.47
BlockPruner 24.19 71.44 64.01 64.20 59.81 37.88 23.50 36.75 67.43 35.40 51.16

Qwen1.5-7B

Dense 0 79.22 66.46 76.92 62.16 42.66 34.76 42.11 76.22 41.60 58.01
LaCo 20.97 70.40 58.64 56.35 46.89 32.85 25.34 32.92 63.43 37.20 47.11
RM 20.97 67.36 49.88 42.00 54.17 28.58 21.66 23.54 58.32 35.40 42.32
ShortGPT 20.97 69.53 62.12 58.87 43.60 32.17 32.07 31.00 57.72 33.40 46.72
BlockPruner 21.83 71.71 55.56 59.31 53.70 33.28 25.70 34.74 61.32 33.80 47.68

Qwen1.5-14B

Dense 0 79.87 70.56 79.41 68.48 47.01 35.86 41.05 76.72 43.60 60.28
LaCo 22.25 71.55 58.33 60.16 53.70 34.04 22.28 33.78 65.79 35.00 48.29
RM 22.25 67.08 53.28 42.08 50.72 29.01 26.44 27.08 58.64 32.40 42.97
ShortGPT 22.25 58.60 55.96 36.16 38.09 34.81 27.05 26.99 39.89 31.40 38.77
BlockPruner 23.72 75.24 61.48 66.92 59.51 39.08 30.60 33.78 67.39 38.20 52.47

Table 8: Zero-shot downstream task performance of various models using different pruning methods. “Dense”
represents the original, unpruned models. All evaluations are conducted using the same configuration to ensure
comparability.

15

	Introduction
	Related Work
	Methodology
	Minimal Residual Block
	Block Importance
	Iterative Search for Block Pruning

	Experiments
	Experimental Setups
	Main Results

	Analyses
	Ablation Study
	Redundancies Between MHA and MLP
	Perplexity for Block Redundancy
	Impact of Data on Pruning

	Conclusion
	Details of Implementations
	Details of Datasets
	Pruning Datasets
	Evaluation Datasets

	Details of Evaluations
	Perplexity and JS-Divergence in Block Evaluation
	Ablation Experiments under Higher Sparsity
	Inference Speed after Pruning
	Time Costs of Various Pruning Methods
	Post-training after Pruning
	Sensitivity to Sample Size
	Varying Pruning Ratios
	Evaluation on a Broader Range of Datasets

