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ABSTRACT

We consider one of the most relevant problems of distributed learning, i.e., the se-
lection of the learning nodes to include in the training process as well as the selec-
tion of the samples from each of the learning nodes’ local datasets, so as to make
learning sustainable. Traditional approaches rely on pursuing a balanced label
distribution, which requires label statistics from all datasets, including those not
selected for learning. This may be costly and may raise privacy concerns. To cope
with this issue, we aim at selecting few and small datasets. To this end, we propose
a new metric, called loneliness, which is defined on unlabelled training samples.
First, through both a theoretical and an experimental analysis, we show that lone-
liness is strongly linked with learning performance (i.e., test accuracy). Then, we
propose a new node- and data-selection procedure, called Goldilocks, that uses
loneliness to make its decisions. Our performance evaluation, including three
state-of-the-art datasets and both centralized and federated learning, demonstrates
that Goldilocks outperforms approaches based upon a balanced label distribution
by providing over 70% accuracy improvement, in spite of using information that
is both less sensitive privacy-wise and less onerous to obtain.

1 INTRODUCTION

Node and data selection are two of the foremost issues in distributed machine learning, e.g., fed-
erated learning (FL), requiring to strike a difficult balance between having enough data to properly
learn, and limiting the resource consumption and cost of the overall learning process. Such issues are
especially relevant in scenarios where dependable, sustainable learning is required, e.g., for safety-
critical applications at the network edge. In these scenarios, it is important to guarantee a given
level of learning quality (e.g., test accuracy) while being able to involve in the training process het-
erogeneous nodes with different memory and computing capabilities. It follows that selecting only
few, small local datasets becomes crucial, since including additional nodes in the model training—
or using more data from the already-included nodes—may increase resource consumption whilst
resulting in longer training times, poorer learning performance, or both. Avoiding these issues—
intuitively, identifying the nodes and data that are worth the additional expense and effort—is the
overarching goal of all node and data selection strategies.

The problem is compounded by the fact that evaluating the quality of the local dataset of a potential
learning node is a very hard problem. Consider for simplicity a classification problem. The vast
majority of current approaches (Wu & Wang, 2022; Li et al., 2021; 2022) use as discriminant the
labels of data. Specifically, they associate a higher quality to balanced datasets in which all classes
are equally represented, and they combine local datasets from different nodes in such a way that the
resulting global training data is as close to balanced (often also referred to i.i.d.) as possible. How-
ever, sharing label information impinges the learning nodes’ privacy, which might be problematic
in the case of highly sensitive data. Additionally, in practical scenarios, labels can be expensive to
obtain. While this is unavoidable for datasets that will eventually be used for training, going through
the expense and hassle of labeling a dataset only to find it unsuited for the current learning task
would again result in a waste of time and resources.

In this paper, we address the above issues by proposing a new metric, called loneliness, that can
be effectively used to evaluate the quality of unlabelled datasets, hence, how suited they are to the
learning task being carried out, while preserving data privacy. Loneliness is linked to how far away
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Figure 1: A qualitative depiction of how using loneliness improves testing accuracy. The figure
compares the information accounted for by state-of-the-art approaches based on label balance (left)
and Goldilocks (right); each plot illustrates pictorially the empirical distribution of test accuracy
achievable by training sets with a given level of loneliness and label balance. Accounting for label
distribution only provides partial information on the learning outcome. On the contrary, loneliness
has a much stronger correlation with accuracy; therefore, by leveraging on it, Goldilocks is able to
make better decisions, hence, achieving higher accuracy.

samples within a dataset are from each other, or, intuitively, to how many stand apart from the other
samples of the dataset, with higher levels of loneliness corresponding to larger numbers of such
samples.

Through a set of experiments, we show that (i) loneliness exhibits a stronger correlation than label
balance with the testing performance of a learning task, and that (ii) the best performance is asso-
ciated with intermediate loneliness values. As a theoretical explanation of this second finding, we
provide a probably-approximately correct (PAC) Bayes bound, based on adaptive subspace com-
pression (Lotfi et al., 2022). Through this bound, we illustrate that while the training error increases
monotonically with the loneliness, the number of compressed bits to represent the weights of the
deep neural network (DNN) (which we use as complexity term in the PAC-Bayes bound) decreases
with the loneliness.

Inspired by our theoretical and experimental findings, we propose a node- and data-selection pro-
cedure, called Goldilocks, that exploits loneliness to make the inter-related decisions of (i) which
nodes to include in the process, and (ii) which of their local data to use for the model training. By
making such decisions jointly, Goldilocks is able to explore a wide range of high-quality trade-offs
between the effectiveness of the learning process and the resources this necessitates. Furthermore,
Goldilocks does not require the use of label information, but it can leverage it if available. Finally,
and very remarkably, it can identify the most promising datasets for which it is worth it to obtain
labels.

A pictorial sketch of how our approach and the Goldilocks procedure improve over the state of
the art is provided in Fig. 1. The traditional approach, represented on the left, is geared towards
scenarios where we must select tens or hundreds of learning nodes and makes decisions based on
how balanced labels are. While it is true that better-balanced datasets yield better performance,
there is still a significant variability within the accuracy yielded by similarly-balanced datasets. Our
approach, represented on the right, leverages the loneliness metric (along with label information,
if available), resulting in a much more accurate knowledge of which datasets yield the best test
accuracy, especially when datasets are small and only a small number thereof can be selected.

We evaluate the performance of Goldilocks in both centralized and federated scenarios, using state-
of-the-art DNN models and datasets, and find it to consistently outperform approaches only consid-
ering label information. Importantly, the performance metrics we consider go beyond mere classifi-
cation accuracy, and include the number of learning nodes to involve in the learning process and the
quantity of data therein to exploit.
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In summary, our main contributions can be summarized as follows:

• We propose a new metric, called loneliness, estimating the suitability of an unlabeled
dataset (and, hence, of the learning node owning the data) for a given learning task;

• We perform a set of experiments, demonstrating that a strong link exists between loneliness
and learning performance;

• We provide a theoretical explanation for the effectiveness of loneliness, based on model
compression and a PAC-Bayes bound;

• We leverage loneliness and the insights provided by the theoretical analysis to design a
procedure, called Goldilocks, that makes high-quality node and data selection decisions;

• We evaluate the performance of Goldilocks under both centralized and FL tasks using mul-
tiple datasets and neural networks, demonstrating that it consistently finds the best trade-
offs between the resources needed for training and the resulting test accuracy. Notably,
Goldilocks yields over 70% better accuracy improvement, while requiring to disclose no
data about labels or label distribution.

2 THE LONELINESS METRIC

We consider a typical distributed ML task where a set of learning nodes {nk} ∈ N , equipped with
local datasets Xk and labels yk, have to optimize the average value of loss function L by choosing
the weights W of a parameterized learning model, i.e.,

min
W

1

|N |
X

nk∈N
L(Xk, yk,W ).

Weights themselves can be set through any distributed learning algorithm, e.g., the classic FedAvg.

To characterize the quality of each local dataset, we start by introducing a sample-specific quantity.
Specifically, we define the loneliness ℓ(i, k) of sample xk

i in dataset Xk as the distance between xk
i

and the closest other sample in Xk:

ℓ(i, k) = min
xk
j∈Xk\{xk

i }

xk
i − xk

j

 . (1)

It follows from (1) that the farther away a sample is from the others, the higher its loneliness is.
Samples with high loneliness might be outliers. On the contrary, samples with low loneliness are
very similar to other samples—in the extreme case, repeated samples have zero loneliness.

We further extend the notion of loneliness to the dataset Xk owned by node nk ∈ N , by considering
the smallest sample-wise loneliness in Xk:

ℓ̂(Xk) = min
xk
i ∈Xk

ℓ(i, k). (2)

Note that the loneliness metric does not depend on the label of the points in the datasets. The
relationship between sample- and dataset-wise loneliness is exemplified in Fig. 2.

To illustrate the usefulness of the loneliness metric, we conduct in the next section an experiment
illustrating its impact on the performance of learning algorithms operating on small training sets.

3 EXPERIMENTAL ANALYSIS

The micro-datasets. To ascertain the effect of loneliness on the learning performance and to com-
pare it with the traditionally used label balance, we start from the popular MNIST dataset and create
a total of 90 micro-datasets, according to the following rules:

• all micro-datasets have 500 samples, extracted from the 60 000 samples of the MNIST
training set; every micro-dataset has a different combination of label balance and loneliness
level as specified below;

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

dataset dataset 

Figure 2: The relationship between distance between samples (e.g., x1
1 and x1

2) in a dataset, repre-
sented as a yellow box, and loneliness values. The distance from each sample to the closest sample
to it corresponds to the sample-wise loneliness defined in (1); the smallest sample-wise loneliness
corresponds to the dataset-wise loneliness as defined in (2).

• in each micro-dataset, one of the 10 classes is over-represented, and α ∈ [1, 5] is the unbal-
ance factor, i.e., the ratio between the number of samples of the most and least represented
classes;

• each micro-dataset k has a loneliness level λ(Xk) ranging between 1 and 10 and defined
as

λ(Xk) = 1 +

$
10

ℓ̂(Xk)−minnh∈N ℓ̂(Xh)

maxnh∈N ℓ̂(Xh)−minnh∈N ℓ̂(Xh)

%
. (3)

The micro-datasets so obtained reproduce those cases where there is a large number of potential
learning nodes, all equipped with datasets that are (i) small and (ii) defective in different ways.
In such scenarios, it is often impractical or impossible to query a large number of learning nodes.
Hence, choosing them wisely is crucial, especially considering the need for dependable, sustainable
learning in sensitive applications, involving heterogeneous nodes with different capabilities.

In view of the relative simplicity of the MNIST dataset, we use the LeNet5 DNN for our tests; such
DNN includes three convolutional layers and two fully-connected ones. Additional details on the
data and DNN models used for all tests conducted in the paper can be found in Appendix A.

Loneliness and test accuracy. Fig. 3 summarizes the main results of our MNIST tests. We start
from the relationship between label distribution and learning performance: in Fig. 3(a) and Fig. 3(b),
each line corresponds to one value of the unbalance factor α (in Fig. 3(a)) and loneliness level λ (in
Fig. 3(b)), and depicts the empirical cumulative density function (ECDF) of the test accuracy yielded
by the corresponding micro-datasets. The value of α or λ tells us on which of the ECDFs the actual
accuracy is; as an example, for a loneliness level equal to 2, the accuracy is between 76% and 78%
with 90% probability, and its expected value is 77.4%.

The difference between the two plots is striking: ECDFs corresponding to different values of the
unbalance factor α in Fig. 3(a) almost always overlap and cover virtually all accuracy values on
the x-axis. Furthermore, the mean values (i.e., the dots) are very concentrated. All values of α
result in accuracy levels between 77% and 88% with a mean around 83%. We note that knowing the
exact value of α does not help make that information more specific. On the other hand, the ECDFs
corresponding to different values of loneliness level λ are much more far apart, and overlap to a very
limited extent. Similarly, the mean values are also far from each other (also note that we depict ten
levels of loneliness, but only five values of α). It is thus evident that loneliness offers more detailed
information on where the resulting accuracy will be. Hence, it is not only a less expensive metric to
compute, since it does not require labeling. It is also more useful.

Fig. 3(c) and Fig. 3(d) provide a more detailed view of this effect. Each marker in the plots corre-
sponds to a dataset, and its position along the x- and y-axis corresponds to the value of the metric
(unbalance factor α in the former plot, loneliness level λ in the latter) and resulting accuracy, respec-
tively. We note that the shaded area is almost rectangular for the unbalance factor, which confirms
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Figure 3: MNIST experiments with the LeNet DNN: loneliness is more useful than label balance as
a metric to predict accuracy. Distribution of the test accuracy for different values of the unbalance
factor α (a) and loneliness level λ (b), with dots representing mean values; test accuracy levels
achieved by micro-datasets with different unbalance factors (c) and loneliness (d).

how different values of α correspond to similar values of accuracy; for loneliness, instead, we ob-
serve a much more narrow, arch-like shape.

The narrowness of the shaded area in Fig. 3(d) further indicates that λ serves as an excellent proxy
for the resulting accuracy. Interestingly, the arch-like shape of the area shows that the best accuracy
is achieved for intermediate levels of loneliness (between 5 and 7). The behavior in Fig. 3(d) makes
intuitive sense if we consider that high levels of loneliness might be associated with the presence of
outliers. A whole dataset composed of outliers is in fact harder to generalize from than one with a
more balanced composition.

In summary, we can conclude that loneliness has a much stronger correlation with test accuracy.
Hence, it is much more useful than class balance when predicting it. Furthermore, the best
accuracy is reached for intermediate levels of loneliness.

4 LONELINESS THROUGH THE LENSES OF A COMPRESSION-BASED
PAC-BAYES BOUND

In this section, we use a PAC-Bayes generalization bound to explain why the test accuracy of micro-
datasets peaks at intermediate loneliness ℓ̂. Let Z be the instance space and PZ be the unknown
distribution on Z that generates the training data Z=(Z1, . . . , Zm) ∈ Zm independently. Let W
be the hypothesis space and PW |Z be a probabilistic learning algorithm that takes Z and outputs a
hypothesis W∈W . Finally, let c : W ×Z → R+ be the loss function. Then the population loss of
w is defined as LPZ

(w)=EPZ
[c(w,Z)] and the training loss is defined as LZ=

1
m

Pm
i=1 c(w,Zi).

Given a prior distribution QW and a posterior distribution PW |Z over W , McAllester (1999) states
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that with probability at least 1−δ under PZ,

EPW |Z [LPZ
(W )] ≤ EPW |Z [LZ(W )] +

s
KL(PW |Z∥QW ) + log(m/δ) + 2

2m− 1
. (4)

In words, the population loss can be upper-bounded by the sum of a training loss and a complex-
ity term that quantifies, via the Kullback-Leibler (KL) distance, the penalty incurred in assuming
W∼PW |Z when W∼QW . Bounds on the population error similar to (4) are usually referred to as
PAC-Bayes bounds.

To shed lights on the impact of the loneliness on the PAC-Bayes bound (4), we experimentally
evaluate EPW |Z [LZ(W )] and KL(PW |Z∥QW ) for datasets with different loneliness. Specifically,
following Lotfi et al. (2022), we select the universal prior QW (W )=2−K(W )/γ where K is the
prefix Kolmogorov complexity of W (Sunehag & Hutter, 2015) and γ ≤ 1. The learning algorithm
PW |Z is chosen to be the point mass distribution on W ⋆, which is the hypothesis obtained by training
on Z. Training is performed in two steps, according to the adaptive subspace compression algorithm
introduced in Lotfi et al. (2022): (i) first, we learn a low-dimensional linear embedding of the model
weights; then (ii) we quantize the embedded weights to a fixed number of levels. The training loss
is computed using the 0–1 loss function. The KL term for the selected posterior and prior is upper-
bounded by an expression containing the length of the shortest program needed to reproduce W ⋆.
This is computed as the number of bits required to represent the quantized model weights extracted
from step (ii) of the training procedure, using an arithmetic code.

We construct 50 micro-datasets from MNIST with varying loneliness values ℓ̂ and fixed unbalance
factor α=1 (i.e., balanced datasets). The experimental details are provided in Appendix A. In Fig. 4,
we plot the training loss and the KL term for three different values of dataset size. Each dot rep-
resents the training loss and the KL term for one dataset, respectively. We also report the linear
regression line for each plot, the corresponding Pearson correlation coefficient r-value, and the two-
sided p-value.

We see that for all dataset sizes m considered in the figure, the training loss appears to increase as a
function of the loneliness value. Intuitively, as the samples in the dataset become more dissimilar, the
training process becomes slower, and the training error achieved after a fixed number of iterations,
increases. On the contrary, the KL term appears to decrease monotonically with the loneliness. This
suggests that the model complexity decreases. Intuitively, a dataset with a higher loneliness can be
classified using a more compressible neural network.

As a result of these two opposite trends, intermediate loneliness values are preferable. Unfortunately,
this cannot be demonstrated by evaluating the PAC-Bayes bound in (4) directly, since the training
procedure suggested in Lotfi et al. (2022) yields vacuous results whenever the dataset size m is below
2000. For m ≥ 2000, the variation in loneliness across the generated datasets is not significant and
no trends can be inferred. Indeed, this is the reason why the slope of the linear regression curve in
Fig. 4 decreases when m increases.

5 NODE AND DATASET SELECTION: GOLDILOCKS

In this section, we describe our Goldilocks node- and data-selection procedure. For the sake of
simplicity, we first focus on the node selection part (i.e., we assume that all local data of selected
nodes will be used), and then we will discuss data selection.

Node selection: The node selection problem can be stated as follows: given a set N curr⊂N of
currently-selected learning nodes, we want to identify a new node n∗∈N\N curr to add to the training
process, so as to optimize the learning outcome, e.g., maximize the test accuracy. Such outcome is
estimated through a proxy metric µ̂(Q), taking as input a set Q of selected datasets, i.e., Q=

S
q X

q;
we are also given a target value τ̂ for the metric µ̂. The metric µ̂ itself can correspond to any
metric taking as an input a set of datasets, including the loneliness ℓ̂ defined in (2) and the unbalance
factor α. In all cases, the value of the metric of a set of datasets Q corresponds to the value of that
metric computed over the union of all datasets therein.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

��� ����

�����������

���

���

���

�
��

��
��
�
��
�
��

�������������

���������������
�

(a) m = 500

��� ����

�����������

���

���

���

�
��

��
��
�
��
�
��

�������������

���������������
�

(b) m = 1000

��� ����

�����������

���

���

���

�
��

��
��
�
��
�
��

�������������

���������������
�

(c) m = 2000

��� ����

�����������

���

���

���

���

�
�
��
�
�
��
��

��������������

���������������
�

(d) m = 500

��� ����

�����������

���

���

���

���

�
�
��
�
�
��
��

��������������

���������������
�

(e) m = 1000

��� ����

�����������

���

���

���

���

�
�
��
�
�
��
��

��������������

���������������
�

(f) m = 2000

Figure 4: Training loss and KL terms in (4) for different micro-datasets generated from MNIST.
The parameter m indicates the size of the micro-dataset.

Given all the above, the selected node according to the Goldilocks procedure is simply the one that
results in the metric µ̂ being closest to the target τ̂ , i.e.,

n∗ ← arg min
n∈N\N curr

|µ̂(N curr ∪ {n})− τ̂ | . (5)

It is worth emphasizing that the Goldilocks procedure just outlined can be performed for arbitrary
metrics, including the unbalance factor α introduced in Sec. 3, the loneliness level λ(Xk) defined
in (3), as well as other metrics defined in the literature, e.g., the normalized entropy used in (Bansal
et al., 2023). Furthermore, Goldilocks supports arbitrary target values, i.e., it can be applied to
metrics that do not need to be maximized or minimized: this is fundamental in situations like those
depicted in Fig. 3(right), where the best performance is associated with intermediate loneliness
values. In these cases, Goldilocks is able to select the nodes that are just right (hence the name of
the procedure) for the task at hand.

Data selection: Goldilocks follows a similar approach when selecting samples x within a given
dataset Xk. Specifically, given a number T of samples to select, and assuming a per-sample ver-
sion µ(i, k) of the metric µ̂ and the corresponding target value τ , Goldilocks proceeds as follows:

1. Associate with each sample xi ∈ Xk a score s(i, k) = |µ(i, k)− τ |;
2. Take the T samples with the lowest score.

As mentioned earlier, the steps above can be applied only if the metric to use is defined for individual
samples, i.e., if µ(i, k) does exist. This is the case of loneliness (as per (1)), but not, as an example,
for the label balance. We can thus remark again that, by combining the loneliness metric and the
Goldilocks procedure, we are able to make fine-grained, joint node and data selection decisions.

Scope and goals of Goldilocks: As per (5), Goldilocks selects nodes solely based on the met-
ric µ̂, ignoring such factors as node connectivity, resources, and costs. All these factors need to
be weighted against sheer learning performance (e.g., training accuracy) in real-world situations,
as also discussed in Sec. 7. It is worth stressing that Goldilocks is not meant to give a complete,
self-contained solution to the node and data selection problem in FL. Rather, it helps assessing the
usefulness of (i) making node and data selection decisions jointly, and (ii) comparing different met-
rics, and combining them if appropriate. Such an approach can then be integrated within any of the
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Figure 5: Goldilocks performance on the CIFAR dataset: distribution of test accuracy (a) and
of accuracy improvement (b), under different metrics and for different numbers of micro-datasets;
relationship between initial accuracy and accuracy improvement when adding one (c) and two (d)
micro-datasets.

alternative approaches discussed in Sec. 7, leaving the remaining parts thereof (dealing, for example,
with connectivity) in place.

6 PERFORMANCE EVALUATION

In the experiment reported below, we verify the usefulness of the Goldilocks procedure in the context
of node selection, especially when loneliness is chosen as metric. To this end, we perform a set of
experiments using the CIFAR10 dataset (Krizhevsky et al., 2009) and the MobileNetV2 DNN (Dong
et al., 2020). Specifically, (i) We generate from the CIFAR10 training set 100 micro-datasets with
500 samples each, following the same procedure as in Sec. 3; every micro-dataset has different
loneliness and label unbalance factor. (ii) For each micro-dataset, we use the Goldilocks procedure
described in Sec. 5, in combination with either the label unbalance factor α or the loneliness level λ,
to select one or two additional datasets. (iii) We train the model using each combination of datasets,
in a centralized manner, for 50 epochs, tracking the resulting test accuracy. For further details about
the experiments, see Appendix A.

Fig. 5(a) shows the distribution of accuracy for one (dashed line), two (solid lines), and three (dotted
lines) micro-datasets. The color of the lines reflects the metric employed to select the additional
data: red for the label unbalance α (for which a target of τ̂=1 is set), and blue for the loneliness
level λ (for which we set, based upon Fig. 3, τ̂=8). As expected, adding more data results in better
accuracy. More interestingly, using loneliness in lieu of label unbalance results in a significantly
better accuracy, for the same quantity of data.

Fig. 5(b), which summarizes the accuracy improvement, offers a more detailed view. We can observe
that adding one micro-dataset to the training yields an average accuracy improvement of 4% when
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Figure 6: Distribution of the test accuracy achieved for different numbers of micro-datasets and
metrics in a FL scenario using the CIFAR dataset (left), a centralized scenario using the CINIC10
dataset (center), and a centralized scenario using the GTSRB dataset (right).

the micro-dataset is chosen considering the label unbalance factor α, and over 7% when loneliness
level λ is accounted for. In a situation where the datasets are not labeled and labeling is expensive, a
Goldilocks procedure based on loneliness has the additional advantage that only the selected datasets
will need to be labeled. On the contrary, a procedure based on the class imbalance factor would
require one to label all datasets. This is especially advantageous in training scenarios where only
few datasets can be used due to complexity constraints.

Next, in Fig. 5(c) and Fig. 5(d), we look in more detail at when extra data result in the largest
accuracy improvement. Each marker in the plots corresponds to a micro-dataset, and its position
along the x- and y-axes corresponds to the accuracy obtained using that micro-dataset alone and
combining that dataset with additional one(s) using the Goldilocks procedure, respectively; the color
of the marker corresponds to the metric employed. We can observe that datasets with lower accuracy
tend to benefit the most from extra data. It is also interesting to observe how the improvement yielded
by loneliness over label unbalance factor is larger when we have to select two micro-datasets than
three. This confirms that loneliness is especially useful when the quantity of data (and the number
of nodes) that can be selected is small.

6.1 FL AND ADDITIONAL DATASETS

To better assess how general our results are, we extend our performance evaluation to:

• A FL scenario still using CIFAR, where each micro-dataset belongs to a different learning
node and learning nodes cooperate via the FedAvg algorithm;

• A centralized scenario using the CINIC10 dataset (Darlow et al., 2018), developed as a
more diverse, drop-in alternative to CIFAR;

• A centralized scenario using the GTSRB dataset (Stallkamp et al., 2011), including real-
world pictures of road signs.

In FL, nodes cooperate through the FedAvg algorithm as implemented by the flwr library. Addi-
tional details on the datasets and implementation can be found in Appendix A.

The test accuracy achieved in the aforementioned cases is summarized in Fig. 6. Consistently with
Fig. 5(a), more data always result in better accuracy; also, using loneliness as a metric yields con-
sistently a better accuracy. In agreement with Fig. 5(c) and Fig. 5(d), the effect is more significant
when choosing two micro-datasets than when choosing three. We refer the reader to Appendix B for
more details on the FL, CINIC10, and GTSRB experiments and results.

7 RELATED WORK

The problem of node selection in distributed learning and of dataset selection in conventional learn-
ing is well investigated. We provide below some relevant works while highlighting the difference
with the present contribution.

Node selection: The problem of node selection in cross-device FL is particularly relevant in the
presence of data heterogeneity, which causes FedAvg to suffer from client drift (Karimireddy et al.,
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2020). Data heterogeneity, combined with sporadic client participation, causes also a participation
gap, on top of the usual generalization gap in statistical learning (Yuan et al., 2022). To estimate
this participation gap, Yuan et al. (2022) suggest to let each client share some held-out data with the
aggregator. The availability of held-out data at the aggregator enables the implementation of sophis-
ticated client-selection strategies, which, as shown in Singhal et al. (2024), improve communication
efficiency. However, sharing such data seems to defy one of the main purposes of FL, which is to
maintain data privacy at the clients. Cho et al. (2022) propose a different approach, in which client
selection at the aggregator is performed on the basis of the local training loss computed at each
client, which does not require sharing held-out data. Note that, differently from our much-simpler
loneliness based approach, both solutions require one to label all datasets, including the ones that
will not be used.

Data selection: This is often referred to as data pruning in the literature (Sachdeva & McAuley,
2023), and involves pruning low-quality data, typically during the training process. An extensive
review of data pruning methods can be found in Guo et al. (2022). Among the existing solutions,
Ghorbani & Zou (2019) uses the Shapely-value of a subset of data to estimate their utility. Toneva
et al. (2019) remove from the training set unforgettable examples, i.e., examples whose predicted
label is correct and does not change over the training process. Paul et al. (2021), instead, retains
“hard” examples, i.e., examples that have large ℓ2-norm scores on trained models. A different
approach is used in CRAIG (Mirzasoleiman et al., 2020), which selects a subset of the training data
that closely approximates the full gradient. Unlike these approaches, the much simpler loneliness-
based method proposed in this paper does not require knowledge of the sample labels and/or of the
learning algorithm.

8 CONCLUSION

We have considered the problems of node and data selection in cooperative learning scenarios where
only a small number of small datasets can be used. In this scenario, it is especially advantageous
to select the datasets (and, hence, the nodes) without using label information, for both efficiency
and privacy reasons. To this end, we proposed a metric called loneliness, which, using unlabelled
data, computes the distance between samples of the same dataset. We integrated loneliness with a
node- and data-selection strategy called Goldilocks, and found – across multiple datasets and in both
centralized and federated schemes – that using loneliness consistently results in higher improvement
of training accuracy, by over 70%, in spite of requiring no label information.

REPRODUCIBILITY STATEMENT

All datasets used for all experiments are publicly available. The complete code (Python and Jupyter
notebooks) needed to obtain all the results of this paper (including the Appendix) is available at the
anonymized repository
https://anonymous.4open.science/r/Choose-Before-You-Label-5701/.
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A EXPERIMENT DETAILS

Datasets, architectures, meta-parameters: For our experiments, we consider the following
datasets:

1. MNIST (Kayed et al., 2020), including 70 000 28 × 28 black-and-white images of hand-
written digits. The dataset is divided into a training set of 60 000 images and a testing set
of 10 000 images, and comprises 10 classes, one per digit.

2. CIFAR (Krizhevsky et al., 2009), including 60 000 32×32 color images of different objects
and animals (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks). The
dataset is divided into a training set of 50 000 images and a testing set of 10 000 images,
and comprises 10 classes, one per object.

3. CINIC (Darlow et al., 2018), including 270 000 32×32 color images: the 60 000 ones from
CIFAR, plus 210 000 coming from ImageNet. It includes the same classes as CIFAR and
is divided into train, test, and validation splits, each including 90 000 images. It is meant
as a drop-in, more challenging replacement to CIFAR.

4. GTSRB (Stallkamp et al., 2011) (German Traffic Sign Recognition Benchmark), including
over 38 000 color, real-world images of road signs, belonging to 40 classes. Different
images may have different size, hence, we need to resize them to 32 × 32; the dataset is
divided into a training set of 26 640 images and a testing set of 12 630 images.

For MNIST, we use the LeNet5 convolutional network (Kayed et al., 2020), including three convolu-
tional layers and two fully-connected ones. For all other datasets, we use MobileNetV2 (Dong et al.,
2020). In all scenarios, we train for 50 epochs, and consider the one yielding the best performance.
Stochastic gradient descent is used as an optimizer, with a learning rate of 10−3. All experiments
are performed with PyTorch, and training employs the lightning library.

Evaluation of the PAC-Bayes bound in (4): We use the LeNet model (LeCun et al., 1998) as
the base model. Following (Lotfi et al., 2022, Sections 4.1 & 4.2), we train a compressed model
(compressed size = 1000) for 1000 epochs using the Adam optimizer with a learning rate of 0.001.
Then a quantized model (quantization levels = 7) is trained for 30 epochs using the Adam optimizer
with a learning rate of 0.0001. The cross-entropy loss is used during training, and the 0–1 loss is
used to compute the training loss in (4). The KL term in (4) is approximated as follows. Let W ∗

be the trained model obtained after the compression and quantization. Then the posterior is set as
PW |Z = IW=W∗ , where I is the indicator function. The KL term is then bounded as

KL(PW |Z∥QW ) = KL(IW=W∗∥2−K(W )/γ) = log

�
1

2−K(W∗)/γ

�

≤ K(W ∗) log 2
(†)
≤ ρ(W ∗) log 2 + 2 log ρ(W ∗), (6)

where ρ(W ∗) is the number of bits required to represent the weights of W ∗ and to obtain (†) we
proceeded as in (Cover & Joy, 2006, Theorem 14.2.3). We use arithmetic coding to compute ρ(W ∗).

B FULL RESULTS FOR THE FL, CINIC, AND GTSRB EXPERIMENTS

B.1 FULL RESULTS FOR THE FL EXPERIMENTS

The full results of the FL experiments, using micro-datasets drawn from the CIFAR10 dataset, are
reported in Fig. 7, and are consistent with those of Fig. 5 in the main paper.

B.2 FULL RESULTS FOR THE CINIC AND GTSRB EXPERIMENTS

The full results of the CINIC and GTSRB experiments, are reported in Fig. 8 and Fig. 9, and are
consistent with those of Fig. 5 in the main paper.
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(d)

Figure 7: Goldilocks performance on the CIFAR dataset for a FL scenario: distribution of test
accuracy (a) and of accuracy improvement (b) under different metrics and for different numbers of
micro-datasets; relationship between initial accuracy and accuracy improvement when adding one
(c) and two (d) micro-datasets.
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(d)

Figure 8: Goldilocks performance on the CINIC dataset: distribution of test accuracy (a) and
of accuracy improvement (b) under different metrics and for different numbers of micro-datasets;
relationship between initial accuracy and accuracy improvement when adding one (c) and two (d)
micro-datasets.
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Figure 9: Goldilocks performance on the GTSRB dataset: distribution of test accuracy (a) and
of accuracy improvement (b) under different metrics and for different numbers of micro-datasets;
relationship between initial accuracy and accuracy improvement when adding one (c) and two (d)
micro-datasets.
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