

INCREMENTAL LEARNING OF VISION-LANGUAGE MODELS VIA TASK SUBSPACE PROJECTION AND DYNAMIC LoRA

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

Recent pre-trained vision-language models usually face a Multi-Domain Task-Incremental Learning (MTIL) scenario in practice, where a set of classes of multi-modal tasks arrive incrementally. Due to privacy concerns and memory constraints, MTIL with pre-trained models encounters forgetting of knowledge from old tasks, degradation of zero-shot transfer capability, and underfitting of new-task knowledge. To overcome these challenges, previous MTIL methods attempt to learn a discriminative cross-task identification (CTI) module and an effective new-task adaptation (NTA) module. However, current CTI modules suffer from severe task confusion between seen and unseen tasks, and NTA modules cannot adaptively balance the performance and parameter cost while incorporating task-specific knowledge. To alleviate the above dilemmas, we propose an effective and efficient TSP-DLoRA method for MTIL, which consists of Task Subspace Projection (TSP) and Dynamic Low Rank Adapter (DLoRA) modules. Specifically, our TSP module includes a task identifier classifier based on task-specific subspaces and a feature projection strategy that can determine the identifier associated with samples from both seen and unseen tasks. Our DLoRA improves the knowledge adaptation from new tasks by dynamically assigning Low Rank Adapter (LoRA) across transformer layers based on the task distributions. Experimental evaluations across 11 datasets, using three performance metrics, demonstrate the effectiveness of our proposed method.

1 INTRODUCTION

Deep neural networks have achieved remarkable performance in numerous multi-modal understanding applications. Traditional supervised learning methods in multi-modal learning require access to the entire dataset during the training phase, these models are no longer updated once training is completed Van de Ven & Tolias (2019). However, real-world multi-modal applications often encounter a dynamic data stream and need to learn a sequence of tasks continuously, which is referred to as the Multi-Domain Task-Incremental Learning (MTIL) benchmark. Due to privacy concerns or memory constraints, multi-modal models cannot access the previously seen tasks and suffer from severe catastrophic forgetting issue on MTIL benchmark.

With the powerful zero-shot capability of pre-trained multi-modal models (e.g., CLIP Radford et al. (2021)), existing approaches on MTIL benchmark consist of two modules Tang et al. (2024); Yu et al. (2024). 1) Cross-task identification (CTI) module: design a discriminative task identifier classifier to determine which task the sample belongs to, covering both seen and unseen tasks. 2) New-task adaptation (NTA) module: adapt the pre-trained model to different tasks by employing appropriate parameter-efficient fine-tuning (PEFT) methods or completely retraining all parameters of the model, as shown in Figure 1(a). Typically, the methods with pre-trained models on MTIL benchmark focus on zero-shot transfer capability preservation (especially on unseen tasks), old-task knowledge preservation, and new-task adaptation effectively and efficiently. However, we observe that the task confusion among seen and unseen tasks of existing CTI modules results from the degradation of the zero-shot transfer capability of the learned model. Moreover, prevalent NTA modules utilize fixed PEFT architecture for different tasks and cannot make a good trade-off between new-task performance and the task-specific parameter cost.

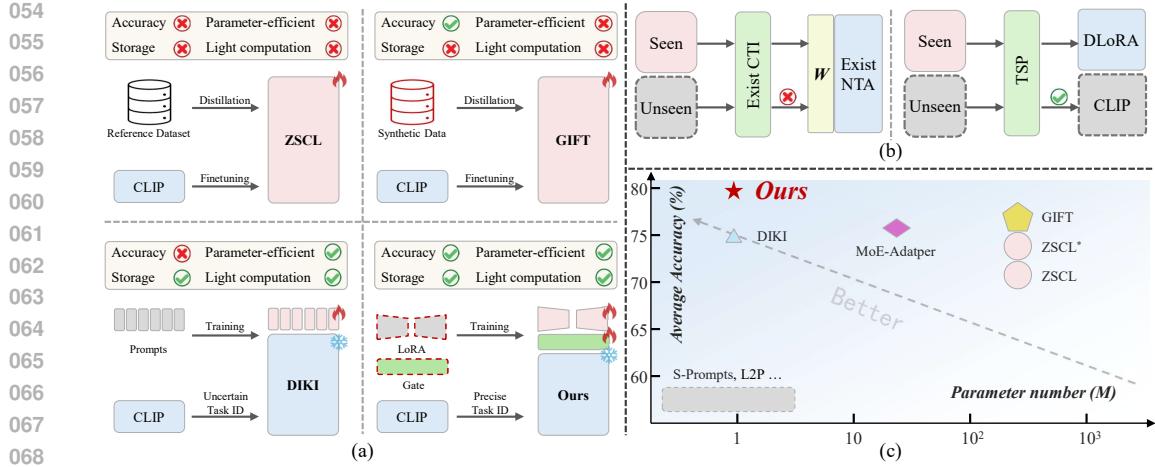


Figure 1: (a) Our method offers distinct advantages over existing methods. In comparison to methods ZSCL and GIFT, ours is more parameter-efficient, eliminating the need for additional storage to retain representative features. Compared with DIKI method, ours not only achieves higher accuracy but also demonstrates the ability to precisely determine whether samples belong to previously seen tasks. (b) Existing training-free CTI employs the same NTA operation on both seen and unseen tasks, and utilizes a weight “ W ” to restrict it. In contrast, our TSP module identifies the boundary of seen and unseen tasks, and employs original CLIP directly for samples from unseen tasks. (c) Compared to existing methods, ours achieves optimal performance in average accuracy (both seen and unseen tasks) and trainable parameters.

Motivated by the above observation, we propose the TSP-DLoRA method on MTIL benchmark. The CTI related module terms Task Subspace Projection (TSP) decomposes the features of each task into task subspaces and leverages an energy to derive the minimal subspace that captures the task’s principal features. The task identifiers of test samples are determined by comparing the projections of corresponding features onto each seen tasks’ subspaces. Additionally, The TSP module establishes a static threshold as the decision boundary to distinguish between seen and unseen tasks. As shown in Figure 1(b), for samples identified as from seen tasks, the corresponding task-specific module is employed for classification. Conversely, for samples classified as from unseen tasks, the zero-shot capability of the original CLIP model is utilized for classification. The NTA related module called Dynamic Low Rank Adapter (DLoRA) leverages Low Rank Adapter (LoRA) Hu et al. (2022) and incorporates a gating mechanism to dynamically determine whether to engage the LoRA module based on the complexity of the task distribution. By integrating the TSP and DLoRA modules, our method maintains high performance in both task identification and class classification while fine-tuning only a minimal number of parameters, as shown in Figure 1(c).

The contributions of this work are threefold: 1) We propose the TSP module, which accurately identifies sample identifiers by maintaining subspaces for seen tasks. It achieves over 93% accuracy across both seen and unseen tasks. 2) We propose the DLoRA module, which dynamically activates LoRA modules based on task distributions, enabling the model to adaptively learn from and perform inference on samples from different tasks. 3) Extensive experiments on benchmark datasets demonstrate that the TSP-DLoRA method achieves state-of-the-art (SOTA) results across all three evaluation metrics on the MTIL benchmark, while training only 0.86% of the parameters and requiring no additional storage.

2 RELATED WORKS

2.1 INCREMENTAL LEARNING

Incremental learning approaches can be classified into four categories: 1) Regularization-based incremental learning, which leverages regularization terms to guide the model’s optimization process. Notable methods include EWC Kirkpatrick et al. (2017) and LwF Li & Hoiem (2017). 2) Rehearsal-

108 based incremental learning Li & Hoiem (2017); Rebuffi et al. (2017); Wu et al. (2019); Hou et al.
 109 (2018); Lee et al. (2019); Hou et al. (2019); Park et al. (2021). These methods aim to preserve
 110 knowledge by retaining or generating representative samples or features from seen tasks, which are
 111 then trained together with data from unseen tasks. Prominent works include iCaRL Rebuffi et al.
 112 (2017), ZSCL Zheng et al. (2023), and GIFT Wu et al. (2025). 3) Network expansion-based in-
 113 cremental learning Ostapenko et al. (2019); Yoon et al. (2017); Xu & Zhu (2018); Li et al. (2019).
 114 This approach accommodates new tasks by dynamically expanding the model architecture. The
 115 representative method is DEN Yoon et al. (2017). 4) Incremental learning via parameter-efficient
 116 fine-tuning (PEFT) Jung et al. (2023); Tang et al. (2023); Zhou et al. (2025); Chen et al. (2024); Gao
 117 et al. (2023). Leveraging the robust zero-shot transfer capability of pre-trained models, this cate-
 118 gory has emerged as a prevalent strategy in incremental learning. These methods typically freeze
 119 the backbone of pre-trained models and fine-tune a small subset of parameters using techniques
 120 such as LoRA Meral et al. (2024), Adapters Gao et al. (2024), or Prompt Wang et al. (2022c). The
 121 well-known approaches to incremental learning via PEFT include L2P Wang et al. (2022c), Du-
 122 alPrompt Wang et al. (2022b), S-Prompt Wang et al. (2022a), MoE-Adapter Yu et al. (2024), and
 123 DIKI Tang et al. (2024). Unlike existing approaches that rely on a fixed structure, our method in-
 124 troduces a novel framework by dynamically adjusting the PEFT structure based on the input, which
 125 achieves superior performance compared to all traditional PEFT techniques in incremental learning.
 126

2.2 MULTI-DOMAIN TASK-INCREMENTAL LEARNING

128 The multi-domain task-incremental learning (MTIL) benchmark is first introduced in the
 129 work Zheng et al. (2023). This work proposes the ZSCL method, which leverages knowledge dis-
 130 tillation, utilizing a reference dataset to transfer knowledge from the old models to the new one. A
 131 related method , GIFT Wu et al. (2025), adopts a similar strategy by generating representative fea-
 132 tures to substitute for the reference dataset. Nevertheless, both techniques rely on full fine-tuning,
 133 resulting in significant computational cost. Existing PEFT related methods in MTIL include MoE-
 134 Adapter Yu et al. (2024) and DIKI Tang et al. (2024). The MoE-Adapter approach, while training
 135 a quarter of its parameters, still incurs considerable computational cost when applied to parameter-
 136 heavy models like CLIP. DIKI trains a model with fewer parameters; however, its static fine-tuning
 137 architecture struggles to accommodate tasks with pronounced distributional disparities, leading to
 138 diminished performance. In contrast, our proposed method employs a dynamic fine-tuning struc-
 139 ture with only 0.86% of total trainable parameters, while adapting to varying task distributions and
 offering an efficient and effective solution for the MTIL benchmark.

2.3 DISCRIMINATIVE CROSS-TASK IDENTIFICATION

140 On the MTIL benchmark, the model is required to determine the task identifier of a test sample
 141 initially during inference, and infer the specific class based on the identifier. This process requires
 142 a highly effective Cross-Task Identification (CTI) module. Currently, two CTI modules, i.e., DDAS
 143 module in MoE-Adapter and DAIC module in DIKI are proposed to improve the efficacy of task
 144 identification. Specifically, DDAS involves maintaining a distinct linear classifier for each new task,
 145 optimized according to its specific distribution before training the model. During inference, task
 146 identifiers for test samples are predicted using the linear classifiers. However, DDAS module intro-
 147 duces a substantial number of learnable parameters, resulting in significant computational overhead
 148 during both training and inference. Moreover, it requires task-specific adjustments to the classifier
 149 hyperparameters. DAIC avoids the introduction of additional trainable parameters; instead, it stores
 150 the mean and variance of each new task’s distribution. During inference, it models each seen task as
 151 a Gaussian distribution and computes the similarity between the test sample and these distributions.
 152 Existing CTI modules encounter the task confusion among seen and unseen tasks. To achieve an
 153 effective CTI module, we propose a TSP method to learn a distinct subspace for each task.
 154

3 APPROACH

3.1 PRELIMINARIES

161 **Benchmark.** Consider a pre-trained VLM that undergoes incremental learning through a sequence
 162 of tasks, which originate from \mathcal{T} distinct domains, denoted as $\mathcal{D} = \{D_1, D_2, \dots, D_{\mathcal{T}}\}$. Each

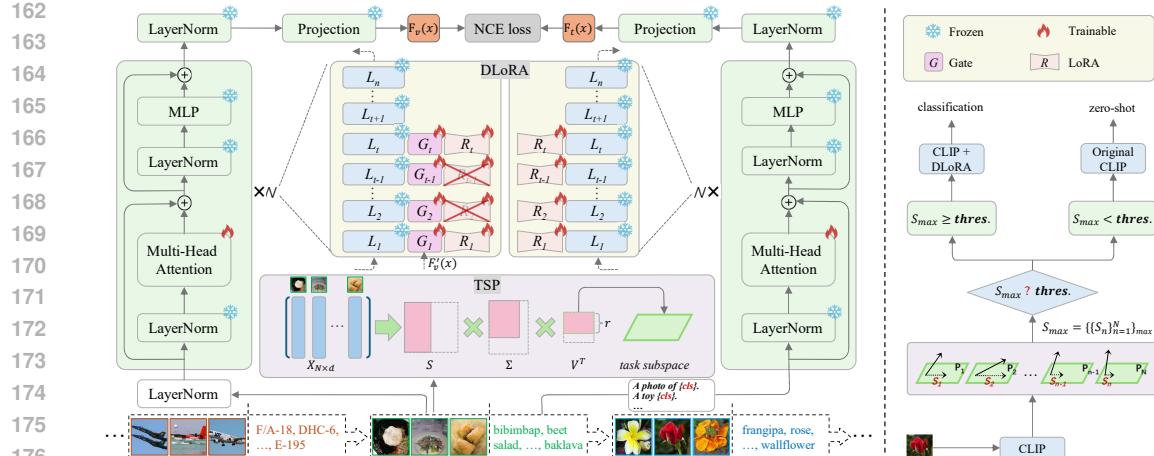


Figure 2: Left: The training process of our method. The TSP module decomposes image features by SVD technology and selects top r ranks from the right singular vector matrix to be the task subspace. DLoRA module integrates LoRA into the first L_t transformer layers of both the image and text encoders. The gating mechanism before the LoRA modules in the image encoder determines whether to activate the LoRA based on the feature $F'_v(x)$ derived from the original CLIP. Only the LoRA and the gating mechanism modules are trained, while the remaining parts are kept frozen. Right: Inference period. We compute the angle between the raw feature extracted from original CLIP and the subspaces associated with each seen task. The resulting similarity is compared against a threshold, denoted as “thres.”. The sample is classified using the corresponding DLoRA module if the similarity exceeds the “thres.”. Otherwise, classification relies on the original CLIP model.

domain D_t comprises N samples, represented as $(x_n^t, y_n^t)_{n=1}^{N_t}$, where x_n^t denotes a raw image and y_n^t represents its corresponding one-hot encoded ground truth label. There also exists an associated class set, defined as $C_t = \{c_i^t\}_{i=1}^{M_t}$, where each c_i^t is a textual label describing a specific class, and M_t is the label space size of task t . On the MTIL benchmark, access to the data of domain D_t is restricted exclusively to the t -th phase of incremental learning. Furthermore, the class sets across domains are pairwise disjoint, such that $C_i \cap C_j = \emptyset$ for all $i \neq j$, ensuring that each domain possesses a unique collection of classes. Additionally, the data distributions differ across domains, expressed as $\mathbb{P}_i \neq \mathbb{P}_j$ for $i \neq j$, where \mathbb{P}_i signifies the data distribution of domain D_i . During the inference phase, the model requires performing inference in a specific label space (e.g., C_t). Consequently, obtaining an accurate task identifier t for each test sample is a crucial aspect of the MTIL task.

CLIP Models. Pre-trained VLMs (e.g., CLIP Radford et al. (2021)) typically comprise two encoders: image encoder F_v and text encoder F_t . These pre-trained VLMs consistently perform a preprocessing step that converts the class name c_i^t into a sentence using a set of predefined templates, such as “{a photo of { c_i^t }.”. This sentence is subsequently encoded into a text embedding t_i by the tokenizer. CLIP models are trained by contrastive loss Park et al. (2020), where the optimize objective can be denoted as:

$$L = - \sum_{i=1}^{N_t} \log \left(\frac{\exp(\text{sim}(F_v(x_i), F_t(t_i)) / \tau_c)}{\sum_{j=1}^{N_t} \exp(\text{sim}(F_v(x_i), F_t(t_j)) / \tau_c)} \right) , \quad (1)$$

$F_v(x_i)$, $F_t(t_i)$ are the features extracted by the visual and text encoders, τ_c represents the temperature, and $\text{sim}(u, v) = \frac{u^T \cdot v}{\|u\| \|v\|}$ is the cosine similarity function. The contrastive loss facilitates the CLIP model in capturing the inter-modal similarity between the image and text embeddings.

3.2 FRAMEWORK OVERVIEW

In this work, we propose a parameter-efficient framework aimed at enhancing the incremental learning capability of CLIP models from two key perspectives. First, to facilitate the acquisition of new

216 tasks, we introduce the Dynamic LoRA (DLoRA). It dynamically adapts the fine-tuning modules,
 217 which enables the model to learn new tasks with a minimal number of trainable parameters and ef-
 218 fectively accommodate a diverse range of tasks. Second, to preserve the zero-shot transfer capability
 219 of the pre-trained model, we develop the Task Subspace Projection (TSP) module, a newly designed
 220 CTI module that leverages projection on task subspace to determine the identifier of each sample.
 221

222 **3.3 DYNAMIC LORA**

224 **New knowledge injection strategy via LoRA.** When the pre-trained model is trained on new tasks,
 225 for the image encoder F_v and the text encoder F_t of the CLIP model, we assume that each encoder
 226 comprises L_n transformer layers. The LoRA module is applied to the first t layers, which can be
 227 denoted as R_t , ($t \leq n$), as depicted in Figure 2. Specifically, for the weight matrix W of a linear
 228 layer, we decompose it into the product of two smaller matrices:

$$229 \quad \Delta W = W_{down} W_{up} \quad , \quad (2)$$

231 where $W_{down} \in \mathbb{R}^{d \times r}$ and $W_{up} \in \mathbb{R}^{r \times d}$. In the self-attention mechanism of the first L_t layers,
 232 we follow Liang & Li (2024) and incorporate LoRA into the key and value, which are updated
 233 according to the following operations:

$$234 \quad K_r = (W_k + \mathbf{e} * \Delta W_k) K_{init} + b_k \quad , \quad (3)$$

$$235 \quad V_r = (W_v + \mathbf{e} * \Delta W_v) V_{init} + b_v$$

237 \mathbf{e} represents a scaling factor, W_k , W_v , K_{init} , V_{init} , b are the initial weight, key, value, bias of
 238 transformer layers. We employ LoRA for both the visual and text encoders, while keeping the
 239 model’s backbone parameters entirely frozen.

240 **Is injecting LoRA to all top L_t layers always the optimal choice?** Conventional LoRA-based
 241 methods typically involve injecting learnable modules at predetermined fixed positions, relying on
 242 the assumption that training datasets are consistently drawn from the same distribution. However,
 243 on the MTIL benchmark, models must dynamically adapt to datasets exhibiting diverse distribu-
 244 tions Tang et al. (2024). Moreover, these datasets also vary in terms of data volume and number
 245 of classes. Employing a static learning strategy across such heterogeneous datasets may result in
 246 overfitting to simpler datasets or underfitting to more complex ones. In this work, we observe this
 247 challenge and propose a dynamic LoRA injection strategy to deal with the unique properties of each
 248 dataset. Specifically, we enhance the capability of LoRA in the top L_t transformer layers by intro-
 249 ducing a Gumbel-based gating mechanism, which dynamically determines whether to inject LoRA
 250 to the corresponding layer based on the input feature, as shown in the left of Figure 2.

251 **Gumbel-based gating mechanism.** During the training phase, to avoid the feature space instability
 252 arising from parameter optimization, we utilize the feature outputs of the original, frozen, pre-trained
 253 CLIP model $F'_v(x)$ as inputs to the Gumbel-based gating mechanism. We employ a linear layer H
 254 in the transformer layer, which maps the original image features $F'_v(x)$ to a K -dimensional feature
 255 space, as well as a Gumbel distribution which is used to generate the samples uniformly. The overall
 256 Gumbel logit for every sample can be denoted as:

$$257 \quad G_i = \frac{\exp(\log(H(F'_v(x)) + u_i) / \tau_g)}{\sum_{j=1}^K \exp(\log(H(F'_v(x)) + u_j) / \tau_g)} \quad , \quad (4)$$

260 $u_i = -\log(-\log(U_i))$ is randomly sampled from a normal distribution, where $U_i \sim U(0, 1)$. τ_g
 261 represents the temperature. Our gating mechanism operates with only two values, 1 and 0. 1 denotes
 262 injecting LoRA at this layer and 0 represents not. To facilitate this binary decision process, we set
 263 $K = 2$ to generate hard-coded representations that guide the LoRA injection strategy as follows:

$$264 \quad K'_r = G_1 K_{init} + G_2 K_r \quad , \quad (5)$$

$$265 \quad V'_r = G_1 V_{init} + G_2 V_r$$

268 By leveraging features from a stable space to guide its gating mechanism, our proposed DLoRA
 269 module dynamically tailors its LoRA injection strategy to each sample based on the complexity of
 the task distribution.

270 3.4 TASK SUBSPACE PROJECTION
271

272 **Why and what is TSP?** On the MTIL benchmark, the model incrementally learns new tasks and
273 performs inference across all tasks. Because of the significant differences between distributions of
274 these tasks, the performance of the CTI module is pivotal to the overall effectiveness of the model.
275 Current approaches typically adopt two strategies: 1) Train an additional classifier to identify the task
276 identifier Yu et al. (2024), which introduces extra trainable parameters and elevates training costs. 2)
277 Identify all samples as from seen tasks directly but apply weights to restrict the use of task-specific
278 modules Tang et al. (2024); however, this introduces additional uncertainty for samples from both
279 seen and unseen tasks. To overcome these challenges, we introduce Task Subspace Projection (TSP),
280 a novel training-free CTI module that leverages singular value decomposition (SVD) to extract each
281 seen task’s subspace and differentiates which task a test sample belongs to by the subspaces. For
282 samples identified as from seen tasks, the model employs the corresponding task-specific module
283 for classification. Conversely, for samples identified as from unseen tasks, the model relies entirely
284 on the untrained original CLIP model for inference, fully utilizing the zero-shot capability of the
285 pre-trained model.

286 **Construction of task-specific subspaces.** When acquiring a new task, the TSP module first extracts
287 features from all samples of the new task using the original CLIP model, $X = [F'_v(x_1), F'_v(x_2), \dots,$
288 $F'_v(x_N)] \in \mathbb{R}^{N \times d}$, where N is the total number of samples from new task and d is the feature
289 dimension. As shown in Figure 2, these features are then subjected to SVD to extract the subspace
290 associated with the new task:

$$291 \quad X = U \Sigma V^T, \quad (6)$$

292 where $U \in \mathbb{R}^{N \times N}$ is the left singular vector matrix, $\Sigma \in \mathbb{R}^{N \times d}$ is the singular values matrix and
293 $V \in \mathbb{R}^{d \times d}$ is the right singular vector matrix.

294 The value of rank r during SVD directly determines the dimension of the task subspace, which is
295 critical to the TSP module. To maximize principal component retention within the task subspace
296 while minimizing computational costs, we propose an adaptive energy-based selection strategy to
297 ensure consistent representation across diverse tasks. The diagonal elements in singular values
298 matrix correspond to the singular value vectors, thus we determine the number of ranks r by analyzing
299 the energy proportion of each singular value vector. Specifically, we calculate the variance of the
300 singular value matrix and then compute the cumulative sum of the energy proportions for the top k
301 ranks:

$$302 \quad \mathbb{E}_k = \frac{\sum_{i=1}^k \sigma_i^2}{\sum_{i=1}^q \sigma_i^2}, \quad (7)$$

303 where σ_i is the i -th diagonal element of the matrix, and $q = \min(N, d)$ is the smaller of the number
304 of image features N and the feature dimension d . We then select the smallest k such that the
305 cumulative energy of the first k singular values reaches or exceeds the preset threshold energy:

$$306 \quad k = \min\{k | \mathbb{E}_k \geq \text{energy}\}, \quad (8)$$

307 where energy is a hyperparameter. We set the final selected r to $k + 1$ to ensure that the chosen
308 rank exists.

309 Our aim is to ensure that the distribution of the task-specific subspace maximally reflects the dis-
310 tribution of the new task. To this end, we select the first r rows of the right singular value matrix
311 to represent the feature distribution of the task, denoted as $V_r = V_{[:,0:r]}$, $V_r \in \mathbb{R}^{d \times r}$. To facilitate
312 efficient computation during inference, we store the orthogonal projection operator of this subspace:
313

$$314 \quad \mathcal{P} = V_r V_r^T, \quad (9)$$

315 where $\mathcal{P} \in \mathbb{R}^{d \times d}$. We store a \mathcal{P} for every seen task. Therefore, during the t -th incremental learning
316 period, $\{\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_t\}$ are available.

317 **Inference.** In the inference phase, for a test image x with unknown task identifier, we extract $F'_v(x)$
318 using the original CLIP model, ensuring consistency with the task subspaces. For each seen task,
319 we compute the projection of $F'_v(x)$ onto its corresponding specific task subspace as follows:

$$320 \quad \widetilde{F'_v(x)}_t = \mathcal{P}_t F'_v(x), \quad (10)$$

324 Subsequently, we calculate the angle between $F'_v(x)$ and $\widetilde{F'_v(x)}$ using cosine similarity as follows:
 325

$$326 \quad S_t = \frac{F'_v(x) \widetilde{F'_v(x)_t}}{\|F'_v(x)\| \cdot \|\widetilde{F'_v(x)_t}\|}, \quad (11)$$

327
 328

329 We focus exclusively on the vector that forms the smallest angle with the feature subspace of the
 330 seen tasks, which corresponds to the maximum value in S_t . To intuitively determine whether a given
 331 test sample belongs to a seen or unseen task, we define a threshold, denoted as “*Thres.*”. As shown
 332 in Figure 2, by comparing the maximum value in S_t with “*Thres.*”, the task identifier of the test
 333 sample is derived:

$$334 \quad \text{task id} = \begin{cases} \arg \max_{i \in \{1, 2, \dots, t\}} S_i & \text{for } S_{\max} \geq \text{Thres.} \\ -1 & \text{for } S_{\max} < \text{Thres.} \end{cases}, \quad (12)$$

335
 336

337 where $S_{\max} = \max\{S_1, S_2, \dots, S_t\}$, and -1 represents the test sample belongs to unseen tasks.
 338

339 The TSP module accurately assigns a task identifier to each sample during the inference phase. If
 340 the task identifier is classified as seen tasks, the model applies the corresponding DLoRA module to
 341 infer the specific label. Otherwise, the model directly employs the original CLIP model, leveraging
 342 its robust pre-trained knowledge to determine the label.

343 4 EXPERIMENTS

344

345 4.1 EXPERIMENTAL SETTING

346

347 **Dataset and metrics.** We follow Zheng et al. (2023) and evaluate our method on the MTIL bench-
 348 mark, which comprised 11 datasets: Aircraft Maji et al. (2013), Caltech101 Fei-Fei et al. (2004),
 349 CIFAR100 Krizhevsky et al. (2009), DTD Cimpoi et al. (2014), EuroSAT Helber et al. (2019),
 350 Flowers Nilsback & Zisserman (2008), Food Bossard et al. (2014), MNIST Deng (2012), Oxford-
 351 Pet Parkhi et al. (2012), StanfordCars Krause et al. (2013) and SUN397 Xiao et al. (2010), with a
 352 total of 1201 classes across distinct distributions. The model’s performance is assessed using three
 353 primary metrics: “Transfer”, “Last”, and “Avg”. Further details regarding both the datasets and
 354 theses evaluation metrics are provided in the supplementary materials.

355 **Comparison methods.** We compare our method with two categories of SOTA methods, which
 356 are full parameter fine-tuning (FPFT) and PEFT methods. FPFT methods leverage rehearsal-based
 357 techniques and knowledge distillation to retain the old knowledge, necessitating updating all pa-
 358 rameters and external storage during training. The comparison methods in our experiments include
 359 Continual-FT, iCaRL, LwF-VR Ding et al. (2022), WiSE-FT Wortsman et al. (2022), ZSCL and
 360 GIFT. PEFT methods learn new tasks by updating only a small set of trainable parameters. Such
 361 methods include L2P, DualPrompt, S-Prompt, MoE-Adapter and DIKI. Our proposed method falls
 362 within this category.

363 **Implementation details.** As in Zheng et al. (2023), we utilize CLIP ViT-B/16 as our backbone
 364 for all the experiments. We apply our DLoRA module to the first 8 transformer layers of both visual
 365 and text encoders and fix the rank at 4. For the gating mechanism, we employ a learning rate of 2.0
 366 and set the temperature to 1.0. Additionally, we conduct an ablation study on the learning rate and
 367 temperature of the gating mechanism, details are provided in the supplementary materials. Both the
 368 DLoRA and gating mechanism modules adopt stochastic gradient descent (SGD) as the optimizer,
 369 coupled with cosine annealing to adjust the learning rate. For the TSP module, we establish a static
 370 energy level of 95% across all 11 tasks to dynamically determine the rank. The threshold is set to
 371 0.96 to serve as the decision boundary between seen and unseen tasks. The model is trained for 10
 372 epochs on each task using an NVIDIA 4090 GPU.

373 4.2 EXPERIMENTAL RESULTS

374

375 The main experimental results are presented in Table 1. “Extra.” denotes whether external data is
 376 required during the training process. “Param.” refers to the total number of trainable parameters.
 377 “Zero-shot” represents the inference performance using only the pre-trained knowledge, serving as
 the lower bound of the current benchmark. “Full Fine-tune” involves fully fine-tuning the CLIP

378
 379 Table 1: Comparison with SOTA on MTIL benchmark in terms of “Transfer”, “Average”, and “Last”
 380 metrics (%). “Ours” denotes our method. The presented results are derived from the Order-I, for
 381 Order-II results, please refer to the supplemental materials.

	Method	Extra.	Param.	Aircraft	Caltech101	CIFAR100	DTD	EuroSAT	Flowers	Food	MNIST	OxfordPet	StanfordCars	SUN397	Average	
Transfer	CLIP	Zero-shot	✗	-	24.3	88.4	68.2	44.6	54.9	71.0	88.5	59.4	89.0	64.7	65.2	65.3
	CLIP	Full Fine-tune	✗	211M	62.0	95.1	89.6	79.5	98.9	97.5	92.7	99.6	94.7	89.6	81.8	89.2
	Continual-FT		✓	211M	-	67.1	46.0	32.1	35.6	35.0	57.7	44.1	60.8	20.5	46.6	44.6
	iCaRL		✓	211M	-	56.6	44.6	32.7	39.3	46.6	68.0	46.0	77.4	31.9	60.5	50.4
	LwF-VR		✓	211M	-	77.1	61.0	40.5	45.3	54.4	74.6	47.9	76.7	36.3	58.6	57.2
	WiSE-FT		✓	211M	-	73.5	55.6	35.6	41.5	47.0	68.3	53.9	69.3	26.8	51.9	52.3
	ZSCL		✓	211M	-	86.0	67.4	45.4	50.4	69.1	87.6	61.8	86.8	60.1	66.8	68.1
	GIFT		✗	211M	-	88.5	69.8	46.0	49.4	68.5	87.1	69.9	88.9	57.7	67.7	69.3
	L2P		✗	0.5M	-	65.6	50.9	30.4	41.4	49.3	71.8	36.3	77.5	55.3	53.4	53.2
	DualPrompt		✗	1.8M	-	56.7	51.4	28.7	33.7	45.6	70.9	59.5	77.7	49.5	50.4	52.4
Average	S-Prompts		✗	0.5M	-	67.3	49.4	26.7	39.7	47.1	70.2	34.3	78.9	56.7	52.2	52.2
	MoE-Adapter		✓	59.8M	-	87.9	68.2	44.4	49.9	70.7	88.7	59.7	89.1	64.5	65.5	68.9
	DIKI		✗	1.8M	-	92.9	69.1	43.2	43.9	65.4	85.3	56.0	88.4	64.0	65.6	67.4
	Ours		✗	1.8M	-	93.5	68.5	43.5	48.5	70.8	86.1	64.7	89.1	66.4	62.6	69.4
	Continual-FT		✓	211M	25.5	81.5	59.1	53.2	64.7	51.8	63.2	64.3	69.7	31.8	49.7	55.9
	iCaRL		✓	211M	35.5	89.2	72.2	60.6	68.8	70.0	78.2	62.3	81.8	41.2	62.5	65.7
	LwF-VR		✓	211M	29.6	87.7	74.4	59.5	72.4	63.6	77.0	66.7	81.2	43.7	60.7	65.1
	WiSE-FT		✓	211M	26.7	86.5	86.3	57.1	65.7	58.7	71.1	70.5	75.8	36.9	54.6	60.7
	ZSCL		✓	211M	45.1	92.0	80.1	64.3	79.5	81.6	89.6	75.2	88.9	64.7	68.0	75.4
	GIFT		✗	211M	51.9	93.9	81.4	67.7	80.3	82.8	89.3	80.6	90.3	63.1	68.9	77.3
Last	L2P		✗	0.5M	38.0	85.2	78.2	61.3	72.9	74.9	79.7	59.1	82.0	59.7	55.4	67.9
	DualPrompt		✗	1.8M	37.8	84.3	78.6	60.1	71.1	73.2	79.1	73.9	82.3	55.1	52.8	68.0
	S-Prompts		✗	0.5M	37.5	92.5	77.5	58.2	76.4	74.1	78.8	57.9	83.0	60.8	54.4	68.3
	MoE-Adapter		✓	59.8M	50.2	91.9	83.1	69.4	78.9	84.0	89.1	73.7	89.3	67.7	66.9	76.7
	DIKI		✗	1.8M	45.4	95.7	83.0	65.0	78.2	82.5	87.1	71.7	90.0	67.2	66.6	75.7
	Ours		✗	1.8M	50.4	96.3	83.3	67.5	80.2	85.7	87.5	77.3	90.8	69.6	63.9	77.5
	Continual-FT		✓	211M	31.0	89.3	65.8	67.3	88.9	71.1	85.6	99.6	92.9	77.3	81.1	77.3
	iCaRL		✓	211M	35.8	93.0	77.0	70.2	83.3	88.5	90.4	86.7	93.2	81.2	81.9	80.1
	LwF-VR		✓	211M	20.5	89.8	72.3	67.6	85.5	73.8	85.7	99.6	93.1	73.3	80.9	76.6
	WiSE-FT		✓	211M	27.2	90.8	68.0	68.9	86.9	74.0	87.6	99.6	92.6	77.8	81.3	77.7
Last	ZSCL		✓	211M	40.6	92.2	81.3	70.5	94.8	90.5	91.9	98.7	93.9	85.3	80.2	83.6
	GIFT		✗	211M	47.9	95.6	82.8	75.1	97.3	94.2	91.7	99.2	94.2	87.0	80.9	86.0
	L2P		✗	0.5M	38.0	87.1	84.2	72.9	86.0	96.1	89.2	99.0	94.1	79.6	76.0	82.0
	DualPrompt		✗	1.8M	37.8	87.1	84.6	71.8	89.2	96.3	89.1	99.1	94.5	79.9	76.5	82.3
	S-Prompts		✗	0.5M	37.5	95.1	83.7	70.2	97.5	96.5	89.0	99.1	94.0	79.5	75.8	83.4
	MoE-Adapter		✓	59.8M	49.8	92.2	86.1	78.1	95.7	94.3	89.5	98.1	89.9	81.6	80.0	85.0
	DIKI		✗	1.8M	45.4	95.9	86.0	73.0	97.8	96.8	89.3	99.3	94.4	81.8	76.4	85.1
	Ours		✗	1.8M	50.4	96.6	86.7	76.5	98.3	98.2	89.3	99.6	94.6	84.3	77.1	86.5

414 model with 11 tasks, establishing the upper bound of performance. Among all the methods, our
 415 proposed method, which integrates the DLoRA and TSP modules, achieves SOTA performance
 416 on all the average of “Transfer”, “Average”, and “Last” metrics. The method most comparable to
 417 ours is GIFT. However, our approach requires only 0.86% of the training parameters used by GIFT,
 418 while achieving comparable or even superior performance across all three metrics. Furthermore, our
 419 approach eliminates the need to store additional representative samples from previous seen tasks.

420 We also follow Tang et al. (2024) and evaluate our method on the Order-II and 16-shot MTIL-FS
 421 benchmark. Our method achieves optimal results compared to the baseline. Details are provided in
 422 the supplementary materials.

423 4.3 ANALYSIS

424 **Effect of TSP module.** To assess the effectiveness of the TSP module, we replace the task identifi-
 425 erifier classifier in DIKI with the TSP module while keeping the fine-tuning strategy unchanged. The
 426 results are demonstrated in Table 2. Asterisk (*) denotes the experimental results obtained from
 427 our experiments, which may differ from the original paper Tang et al. (2024) due to variations in
 428 implementation or experimental conditions. The TSP module improves performance across all the
 429 “Transfer”, “Average”, and “Last” metrics. This suggests that TSP not only enhances task identifi-
 430 cation accuracy but can also serve as a plug-and-play component for various methods.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
Table 2: The ablation experiments for DLoRA
and TSP modules of our proposed method. As-
terisk (*) denotes the practical results obtained
from our experiments.

Method	Trans.	Avg.	Lst.
DIKI*	67.4	75.7	85.1
DIKI*+TSP	68.9	76.3	85.3
LoRA+TSP	69.3	76.5	85.4
DLoRA+TSP	69.4	77.5	86.5

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
Effect of DLoRA module. To investigate the effectiveness of the dynamic gating mechanism in DLoRA, we conduct experiments combining TSP with standard LoRA. As shown in Table 2, our proposed DLoRA module outperforms the baseline of using LoRA alone across all three metrics, with notable improvements exceeding 1.0% and 1.1% on the “Average” and “Last” metrics respectively. These results align with our expectations, as DLoRA is designed to enhance the capability of learning new tasks.

470
471
472
473
474
475
476
477
478
Visualization of TSP module. Figure 3 illustrates the similarity distributions between the features of 500 random test samples and their projections onto each seen tasks’ subspace, with an energy of 0.95. A threshold, represented by the red line in the figure, is set at 0.96. Most of the test samples (93% in our experiments) exhibit similarities that exceed the threshold, indicating that they are correctly classified for their corresponding tasks, with median similarity values around 0.97. The height of the boxes indicates that the similarity distributions of the test samples are highly concentrated; this demonstrates that our TSP module can efficiently extract critical task-specific information. We also present the distribution for each individual task and the influence of energy and threshold values on the TSP module in the supplementary materials, which shows that the identifiers for most samples are correctly assigned, with only a small fraction misclassified as “unseen” and an even smaller number incorrectly assigned to other tasks.

479
480
481
482
483
484
485
Computational Cost. We evaluate our method against two representative PEFT methods, MoE-
Adapter and DIKI, on the MTIL benchmark. As shown in Table 3, our method consistently out-
performs MoE-Adapter across three key metrics, including total time, GPU memory, and inference
speed. Notably, our method significantly boosts the inference speed, this is due to the TSP module,
which enables the model to leverage the native zero-shot capability of the original CLIP model for
a subset of samples.

5 CONCLUSION

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
In this work, we introduce TSP-DLoRA, a parameter-efficient method composed of two key mod-
ules. The TSP module, operates as a training-free discriminative CTI module, accurately identifying
task identifiers for samples from both seen and unseen tasks, effectively preserving the zero-shot
transfer capabilities of pre-trained models. The NTA module termed DLoRA leverages a gating
mechanism to dynamically determine the activation of the LoRA module based on the task distri-
bution, thereby facilitating the model’s ability to adapt to new tasks. Extensive experimental results
demonstrate that both modules perform well independently but also, when integrated, surpass all
existing methods at a remarkably low training cost.

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
80876
80877
80878
80879
80880
80881
80882
80883
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
80904
80905
80906
80907
80908
80909
80910
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
80928
80929
80930
80931
80932
80933
80934
80935
80936
80937
80938
80939
80940
80941
80942
80943
80944
80945
80946
80947
80948
80949
80950
80951
80952
80953
80954
80955
80956
80957
80958
80959
80960
80961
80962
80963
80964
80965
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
80981
80982
80983
80984
80985
80986
80987
80988
80989
80990
80991
80992
80993
80994
80995
80996
80997
80998
80999
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
802

486 REFERENCES
487

- 488 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
489 nents with random forests. In *Computer vision–ECCV 2014: 13th European conference, zurich,*
490 *Switzerland, September 6–12, 2014, proceedings, part VI 13*, pp. 446–461. Springer, 2014.
- 491 Haoran Chen, Zuxuan Wu, Xintong Han, Menglin Jia, and Yu-Gang Jiang. Promptfusion: Decou-
492 pling stability and plasticity for continual learning. In *European Conference on Computer Vision*,
493 pp. 196–212. Springer, 2024.
- 494
- 495 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
496 scribing textures in the wild. In *Proceedings of the IEEE conference on computer vision and*
497 *pattern recognition*, pp. 3606–3613, 2014.
- 498 Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
499 web]. *IEEE signal processing magazine*, 29(6):141–142, 2012.
- 500
- 501 Yuxuan Ding, Lingqiao Liu, Chunna Tian, Jingyuan Yang, and Haoxuan Ding. Don’t stop learning:
502 Towards continual learning for the clip model. *arXiv preprint arXiv:2207.09248*, 2022.
- 503
- 504 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
505 examples: An incremental bayesian approach tested on 101 object categories. In *2004 conference*
506 *on computer vision and pattern recognition workshop*, pp. 178–178. IEEE, 2004.
- 507
- 508 Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A
509 unified continual learning framework with general parameter-efficient tuning. In *Proceedings of*
510 *the IEEE/CVF International Conference on Computer Vision*, pp. 11483–11493, 2023.
- 511
- 512 Xinyuan Gao, Songlin Dong, Yuhang He, Qiang Wang, and Yihong Gong. Beyond prompt learning:
513 Continual adapter for efficient rehearsal-free continual learning. In *European Conference on*
514 *Computer Vision*, pp. 89–106. Springer, 2024.
- 515
- 516 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
517 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected*
518 *Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.
- 519
- 520 Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Lifelong learning via pro-
521 gressive distillation and retrospection. In *Proceedings of the European Conference on Computer*
522 *Vision (ECCV)*, pp. 437–452, 2018.
- 523
- 524 Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
525 incrementally via rebalancing. In *Proceedings of the IEEE/CVF conference on computer vision*
526 *and pattern recognition*, pp. 831–839, 2019.
- 527
- 528 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
529 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- 530
- 531 Dahuin Jung, Dongyoon Han, Jihwan Bang, and Hwanjun Song. Generating instance-level prompts
532 for rehearsal-free continual learning. In *Proceedings of the IEEE/CVF International Conference*
533 *on Computer Vision*, pp. 11847–11857, 2023.
- 534
- 535 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
536 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
537 ing catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*,
538 114(13):3521–3526, 2017.
- 539
- 540 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
541 categorization. In *Proceedings of the IEEE international conference on computer vision work-
542 shops*, pp. 554–561, 2013.
- 543
- 544 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
545 2009.

- 540 Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee. Overcoming catastrophic forgetting with
 541 unlabeled data in the wild. In *Proceedings of the IEEE/CVF international conference on computer*
 542 *vision*, pp. 312–321, 2019.
- 543
- 544 Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
 545 structure learning framework for overcoming catastrophic forgetting. In *International conference*
 546 *on machine learning*, pp. 3925–3934. PMLR, 2019.
- 547
- 548 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis*
 549 and *machine intelligence*, 40(12):2935–2947, 2017.
- 549
- 550 Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
 551 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 552 pp. 23638–23647, 2024.
- 553
- 554 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 555 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.
- 555
- 556 Tuna Han Salih Meral, Enis Simsar, Federico Tombari, and Pinar Yanardag. Clora: A contrastive
 557 approach to compose multiple lora models. *arXiv preprint arXiv:2403.19776*, 2024.
- 558
- 559 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 560 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 560 722–729. IEEE, 2008.
- 561
- 562 Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jähnichen, and Moin Nabi. Learning to
 563 remember: A synaptic plasticity driven framework for continual learning. In *Proceedings of the*
 564 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 11321–11329, 2019.
- 565
- 566 Jaeyoo Park, Minsoo Kang, and Bohyung Han. Class-incremental learning for action recognition
 567 in videos. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 567 13698–13707, 2021.
- 568
- 569 Taesung Park, Alexei A. Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for condi-
 570 tional image synthesis. In *ECCV*, 2020.
- 571
- 572 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012*
 572 *IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.
- 573
- 574 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 575 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 576 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
- 577
- 578 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 579 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 580 models from natural language supervision. In *International conference on machine learning*, pp.
 580 8748–8763. PMLR, 2021.
- 581
- 582 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 583 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on*
 583 *Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.
- 584
- 585 Longxiang Tang, Zhuotao Tian, Kai Li, Chunming He, Hantao Zhou, Hengshuang Zhao, Xiu Li, and
 586 Jiaya Jia. Mind the interference: Retaining pre-trained knowledge in parameter efficient continual
 587 learning of vision-language models. In *European Conference on Computer Vision*, pp. 346–365.
 588 Springer, 2024.
- 589
- 590 Yu-Ming Tang, Yi-Xing Peng, and Wei-Shi Zheng. When prompt-based incremental learning does
 591 not meet strong pretraining. In *Proceedings of the IEEE/CVF International Conference on Com-*
 591 *puter Vision*, pp. 1706–1716, 2023.
- 592
- 593 Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. *arXiv preprint*
 593 *arXiv:1904.07734*, 2019.

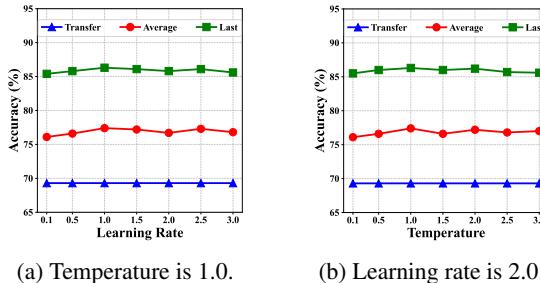
- 594 Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
 595 An occam’s razor for domain incremental learning. *Advances in Neural Information Processing*
 596 *Systems*, 35:5682–5695, 2022a.
- 597
- 598 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
 599 Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
 600 rehearsal-free continual learning. In *European conference on computer vision*, pp. 631–648.
 601 Springer, 2022b.
- 602
- 603 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
 604 cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Pro-
 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149,
 605 2022c.
- 606
- 607 Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
 608 Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
 609 fine-tuning of zero-shot models. In *Proceedings of the IEEE/CVF conference on computer vision
 and pattern recognition*, pp. 7959–7971, 2022.
- 610
- 611 Bin Wu, Wuxuan Shi, Jinqiao Wang, and Mang Ye. Synthetic data is an elegant gift for continual
 612 vision-language models. *arXiv preprint arXiv:2503.04229*, 2025.
- 613
- 614 Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
 615 Large scale incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision
 and pattern recognition*, pp. 374–382, 2019.
- 616
- 617 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 618 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on
 619 computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.
- 620
- 621 Ju Xu and Zhanxing Zhu. Reinforced continual learning. *Advances in neural information processing
 622 systems*, 31, 2018.
- 623
- 624 Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
 625 expandable networks. *arXiv preprint arXiv:1708.01547*, 2017.
- 626
- 627 Jiazu Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
 628 continual learning of vision-language models via mixture-of-experts adapters. In *Proceedings of
 629 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23219–23230, 2024.
- 630
- 631 Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing
 632 zero-shot transfer degradation in continual learning of vision-language models. In *Proceedings of
 633 the IEEE/CVF international conference on computer vision*, pp. 19125–19136, 2023.
- 634
- 635 Da-Wei Zhou, Yuanhan Zhang, Yan Wang, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu.
 Learning without forgetting for vision-language models. *IEEE Transactions on Pattern Analysis
 and Machine Intelligence*, 2025.
- 636
- 637
- 638 **A APPENDIX**
- 639
- 640 **B EXPERIMENTAL DETAILS**
- 641
- 642 **Experimental settings.** All experimental results are derived utilizing PyTorch Paszke et al. (2019).
 643 The batch size is set to 128 during the training phase, and set to 256 for the inference. To reduce
 644 the computational burden associated with both training and inference, experiments are performed
 645 with FP16 precision. In the context of our proposed DLoRA module, a perturbation of 1×10^{-6}
 646 is applied to all values sampled via Gumbel sampling to address potential numerical instability.
 647 Both the DLoRA and gating mechanism modules adopt stochastic gradient descent (SGD) as the
 648 optimizer, coupled with cosine annealing to adjust the learning rate.

648
649
Table 4: Detailed information of 11 datasets.
650

Dataset	Classes	Train	Test	Recognition Task
Aircraft Maji et al. (2013)	100	3334	3333	aircraft series
Caltech101 Fei-Fei et al. (2004)	101	6212	2465	real-life object
CIFAR100 Krizhevsky et al. (2009)	100	50000	10000	real-life object
DTD Cimpoi et al. (2014)	47	2068	1692	texture recognition
EuroSAT Helber et al. (2019)	10	18800	8100	satellite location
Flowers Nilsback & Zisserman (2008)	102	4706	2463	flower species
Food Bossard et al. (2014)	101	70700	30300	food type
MNIST Deng (2012)	10	60000	10000	digital number
OxfordPet Parkhi et al. (2012)	37	3680	3669	animal species
StanfordCars Krause et al. (2013)	196	8144	8041	car series
SUN397 Xiao et al. (2010)	397	88904	19850	scene category
Total	1201	316548	99913	

661
662 **Details of datasets.** We utilize the same datasets as Tang et al. (2024) to validate our approach. The
663 detailed information for all datasets are demonstrated in Table 4.
664665 **Metrics.** The “Transfer” metric focuses on assessing the forgetting of the model’s zero-shot transfer
666 capability, known as forward forgetting Tang et al. (2024), for task i , it is computed as the average
667 performance over unseen tasks $i + 1, i + 2, \dots, \mathcal{T}$. The “Last” metric measures the model’s abil-
668 ity to learn new tasks while mitigating catastrophic forgetting of seen tasks, which corresponds to
669 backward forgetting, for task i , it is determined by averaging the performance across the seen tasks
670 $i, i - 1, \dots, 1$. The “Avg” metric considers both forward forgetting and backward forgetting. At
671 each incremental learning step, it is computed as the average performance across all tasks \mathcal{T} .
672673

C EXPERIMENTAL RESULTS

674675 **Results on Order-II setting.** Table 5 demonstrates the comparison of SOTA PEFT methods with
676 ours on MTIL benchmark in terms of “Transfer”, “Average”, and “Last” metrics (%). We label the
677 best average results with **bold** styles.678 **Learning rate and temperature of the gating**
679 **mechanism.** The learning rate for the
680 gating mechanism module is fixed at a single
681 value across 11 tasks and the temperature
682 during the sampling process governs the
683 discreteness of the Gumbel logits, potentially
684 influencing the model performance. To
685 investigate this, we conduct ablation experiments on
686 both learning rate and temperature of the
687 gating mechanism, while keeping the remaining
688 modules frozen. The results are presented in
689 Figure 4. The results reveal that our method
690 achieves optimal performance with a learning
691 rate of 2.0 and a temperature of 1.0. The
692 stability of the performance curves suggests that
693 our approach consistently delivers high
694 performance across a wide range of settings, which
695 indicates that the DLoRA module possesses a
696 degree of robustness, remaining relatively
697 insensitive to variations in learning rate and
698 temperature.699 **Details of experimental results on few-shot.** Table 6 demonstrates the comparison of SOTA meth-
700 ods with ours on 16-shot MTIL benchmark in terms of “Transfer”, “Average”, and “Last” metrics
701 (%). “Ours” denotes our method. We label the best average results with **bold** styles.702 **Complete results.** We present the detailed results of Order-I and Order-II in Table 7 and Table 8,
703 which represent the classification accuracy of tasks in each incremental session.704 **Visualization of individual tasks.** Figure 5 presents the distribution for 6 individual tasks. The TSP
705 module correctly assigns task identifiers for most samples, with only a small fraction misclassified

(a) Temperature is 1.0. (b) Learning rate is 2.0.

Figure 4: The effects of the learning rate and temperature within the DLoRA module. We fix one and test the other. The DLoRA module exhibits robustness and insensitive to changes in two parameters.

702 as “unseen” (denoted by task identifier -1 in the figure) and an even smaller number incorrectly
703 assigned to other tasks. Across all tasks, including both seen and unseen, the TSP achieves an
704 accuracy exceeding 93%.

706 Table 5: Comparison with SOTA on MTIL benchmark in terms of “Transfer”, “Average”, and “Last”
707 metrics (%). “Ours” denotes our method. The presented results are derived from the Order-II.

		Method	Extra.	Param.	Aircraft	Caltech101	CIFAR100	DTD	EuroSAT	Flowers	Food	MNIST	OxfordPet	StanfordCars	SUN397	Average
Transfer	CLIP	Zero-shot	✗	-	64.7	88.5	59.4	89.0	71.0	65.2	24.3	88.4	44.6	54.9	68.2	65.3
	CLIP	Full Fine-tune	✗	211M	89.6	92.7	99.6	94.7	97.5	81.8	62.0	95.1	79.5	98.9	89.6	89.2
	ZSCL	✗	211M	-	88.3	57.5	84.7	68.1	64.8	21.1	88.2	45.3	55.2	68.2	64.1	
	L2P	✗	0.5M	-	70.6	30.7	78.3	42.8	38.3	17.4	75.3	27.4	23.1	20.7	42.5	
	DualPrompt	✗	1.8M	-	79.9	46.9	85.2	51.3	45.1	9.3	82.7	29.9	42.9	47.2	52.1	
	S-Prompts	✗	0.5M	-	59.8	46.2	67.7	47.5	43.8	13.5	76.8	31.4	22.6	43.5	45.3	
	MoE-Adapter	✓	59.8M	-	88.8	59.5	89.1	69.9	64.4	18.1	86.9	43.7	54.6	68.2	64.3	
	DIKI	✗	1.8M	-	85.8	55.3	89.5	71.1	62.9	23.7	93.6	42.1	43.4	67.9	63.5	
Average	Ours	✗	1.8M	-	85.7	64.1	89.1	70.7	62.6	24.8	93.3	43.3	48.4	68.4	65.0	
	ZSCL	✗	211M	81.7	91.3	91.1	91.0	82.9	72.5	33.6	89.7	53.3	62.8	69.9	74.5	
	L2P	✗	0.5M	80.1	87.4	86.7	89.6	76.8	59.1	27.7	79.5	39.9	34.6	26.5	62.5	
	DualPrompt	✗	1.8M	78.6	88.4	89.7	91.7	80.0	62.4	23.2	85.0	41.3	51.6	50.7	67.5	
	S-Prompts	✗	0.5M	79.2	86.5	89.5	87.0	78.2	61.5	25.5	83.6	41.9	36.3	47.2	65.1	
	MoE-Adapter	✓	59.8M	84.9	89.9	89.3	91.4	86.2	72.2	33.4	89.4	53.3	61.4	69.9	74.7	
	DIKI	✗	1.8M	81.8	89.0	91.3	93.2	87.8	70.5	34.0	94.5	50.9	53.3	69.6	74.2	
	Ours	✗	1.8M	82.8	88.7	93.1	93.0	87.8	70.5	36.3	94.4	52.3	57.4	70.0	75.1	
Last	ZSCL	✗	211M	78.2	91.1	97.6	92.5	87.4	78.2	45.0	92.3	72.7	96.2	86.3	83.4	
	L2P	✗	0.5M	80.1	89.1	99.1	93.8	96.2	76.5	40.1	86.9	73.5	86.3	84.2	82.3	
	DualPrompt	✗	1.8M	78.6	89.3	99.2	94.1	96.5	76.8	39.8	89.0	71.6	90.7	84.9	82.8	
	S-Prompts	✗	0.5M	79.2	89.1	99.1	94.3	95.8	76.3	39.9	95.5	70.1	97.6	84.4	83.8	
	MoE-Adapter	✓	59.8M	84.1	88.5	94.0	91.8	94.1	77.8	50.4	93.3	77.1	87.7	86.6	84.1	
	DIKI	✗	1.8M	81.8	89.3	99.3	94.7	97.4	76.8	46.4	96.0	74.2	98.0	86.0	85.4	
	Ours	✗	1.8M	82.8	89.0	99.5	94.5	97.6	77.0	50.1	96.3	76.2	98.0	85.7	86.1	

729 Table 6: Comparison with SOTA on 16-shot MTIL-FS benchmark in terms of “Transfer”, “Average”,
730 and “Last” metrics (%). “Ours” denotes our method. The presented results are derived from the
731 Order-II.

		Method	Aircraft	Caltech101	CIFAR100	DTD	Flowers	Food	StanfordCars	SUN397	Average
Transfer	CLIP	Zero-shot	24.8	92.9	68.4	43.8	71.4	85.8	65.8	62.6	64.4
	CLIP	Full Fine-tune	62.0	96.2	89.6	79.5	97.5	92.7	89.6	81.8	86.1
	ZSCL		87.3	67.7	45.4	67.8	86.6	59.7	63.4	68.3	
	L2P		66.7	54.3	30.6	47.3	71.5	54.6	52.4	53.9	
	DualPrompt		78.8	64.4	32.0	51.7	77.5	49.4	51.3	57.9	
	S-Prompts		70.3	52.7	31.5	54.8	74.0	55.4	50.0	55.5	
	DIKI		92.7	68.8	44.1	70.0	86.2	65.1	65.5	70.3	
	Ours		93.3	68.9	44.4	70.7	86.5	66.2	64.8	70.7	
Average	ZSCL		33.5	90.5	74.7	58.5	79.7	87.7	64.8	64.8	69.3
	L2P		30.2	84.5	70.1	51.9	69.6	77.1	60.0	55.2	62.3
	DualPrompt		36.5	89.5	72.5	52.7	72.3	80.8	56.1	54.2	64.3
	S-Prompts		30.6	86.8	70.0	51.7	74.3	78.5	60.7	53.0	63.2
	DIKI		41.3	95.3	76.5	58.5	82.2	86.4	68.2	66.6	71.9
	Ours		45.0	94.9	75.7	59.7	83.8	86.8	70.1	64.1	72.5
	ZSCL		27.7	90.9	74.4	64.7	90.2	89.2	80.6	74.6	74.0
	L2P		30.2	87.1	75.4	64.7	91.9	86.4	76.1	74.7	73.3
Last	DualPrompt		36.5	91.0	75.1	65.1	92.9	86.2	76.2	74.2	74.7
	S-Prompts		30.6	89.2	75.8	63.8	93.9	86.2	76.7	73.9	73.8
	DIKI		41.3	95.6	79.0	67.3	94.4	86.8	77.6	74.4	77.1
	Ours		45.0	95.4	78.3	68.7	95.7	87.4	79.4	75.4	78.2

749 **Energy and threshold.** Table 9 reveals the task identifier classification accuracy of TSP module. We
750 evaluate the TSP module under 10 energies and 10 thresholds. The TSP module reach the optimal
751 performance when the energy and threshold are set to 0.95 and 0.96 respectively. The results are the
752 average accuracy for both seen and unseen tasks in all 11 incremental learning processes.

753 **Code.** The reproduction code is provided in “code.tar.gz” of the supplementary files.

756
 757 Table 7: Accuracy (%) of our method on the MTIL benchmark with **order-I**. Each row represents
 758 the performance on every dataset of the model trained after the corresponding task. **Transfer**,
 759 **Average**, and **Last** metrics are shown in color.
 760

	Aircraft	Caltech101	CIFAR100	DTD	EuroSAT	Flowers	Food	MNIST	OxfordPet	StanfordCars	SUN397
Transfer	93.5	68.5	43.5	48.5	70.8	86.1	64.7	89.1	66.4	62.6	69.4
Aircraft	50.4	93.3	68.4	43.5	48.5	70.8	86.1	64.7	89.1	66.4	62.6
Caltech101	50.4	96.6	68.4	43.5	48.5	70.8	86.1	64.7	89.1	66.4	62.6
CIFAR100	50.4	96.6	86.7	43.5	48.5	70.8	86.1	64.7	89.1	66.4	62.6
DTD	50.4	96.6	86.7	76.5	48.5	70.8	86.1	64.7	89.1	66.4	62.6
EuroSAT	50.4	96.6	86.7	76.5	98.3	70.8	86.1	64.7	89.1	66.4	62.6
Flowers	50.4	96.6	86.7	76.5	98.3	98.2	86.1	64.7	89.1	66.4	62.6
Food	50.4	96.6	86.7	76.5	98.3	98.2	89.3	64.7	89.1	66.4	62.6
MNIST	50.4	96.6	86.7	76.5	98.3	98.2	89.3	99.5	89.1	66.4	62.6
OxfordPet	50.4	96.6	86.7	76.5	98.3	98.2	89.3	99.5	94.6	66.4	62.6
StanfordCars	50.4	96.6	86.7	76.5	98.3	98.2	89.3	99.5	94.6	84.3	62.6
SUN397	50.4	96.6	86.7	76.5	98.3	98.2	89.3	99.5	94.6	84.3	77.1
Average	50.4	96.3	83.3	67.5	80.2	85.7	87.5	77.3	90.8	69.6	63.9
											77.5

782
 783 Table 8: Accuracy (%) of our method on the MTIL benchmark with **order-II**. Each row represents
 784 the performance on every dataset of the model trained after the corresponding task. **Transfer**,
 785 **Average**, and **Last** metrics are shown in color.
 786

	StanfordCars	Food	MNIST	OxfordPet	Flowers	SUN397	Aircraft	Caltech101	DTD	EuroSAT	CIFAR100
Transfer	86.1	64.7	89.1	70.8	62.6	24.8	93.3	43.5	48.5	68.4	65.2
StanfordCars	82.8	86.1	64.7	89.1	70.8	62.6	24.8	93.3	43.5	48.5	68.4
Food	82.8	89.6	64.7	89.1	70.8	62.6	24.8	93.3	43.3	48.5	68.4
MNIST	82.8	89.6	99.5	89.1	70.8	62.6	24.8	93.3	43.3	48.5	68.4
OxfordPet	82.8	89.6	99.5	94.5	70.8	62.6	24.8	93.3	43.3	48.5	68.4
Flowers	82.8	89.6	99.5	94.5	97.7	62.6	24.8	93.3	43.3	48.5	68.4
SUN397	82.8	89.6	99.5	94.5	97.7	77.5	24.8	93.3	43.3	48.5	68.4
Aircraft	82.8	89.6	99.5	94.5	97.7	77.5	50.6	93.3	43.3	48.5	68.4
Caltech101	82.8	89.6	99.5	94.5	97.7	77.5	50.6	96.3	43.3	48.5	68.4
DTD	82.8	89.6	99.5	94.5	97.7	77.5	50.6	96.3	76.7	48.5	68.4
EuroSAT	82.8	89.6	99.5	94.5	97.7	77.5	50.6	96.3	76.7	98.2	68.4
CIFAR100	82.8	89.6	99.5	94.5	97.7	77.5	50.6	96.3	76.7	98.2	86.6
Average	82.8	89.3	93.2	93.0	87.9	70.7	36.5	94.4	52.4	57.5	75.3

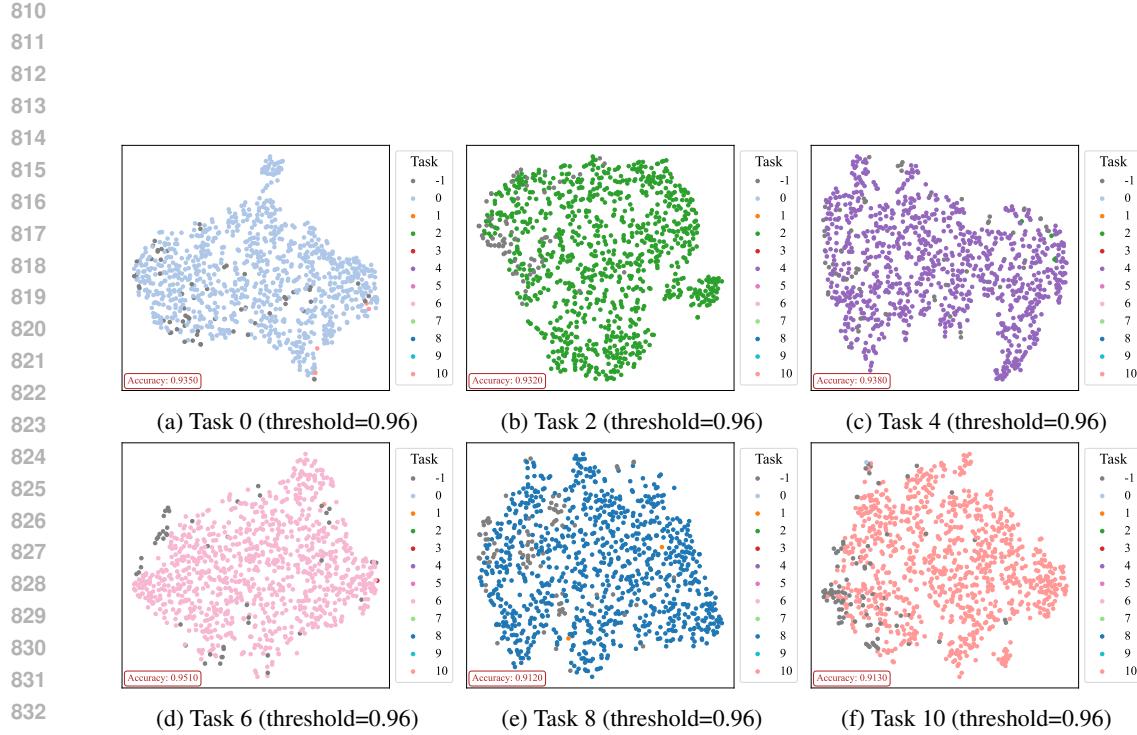


Figure 5: 6 task-specific distributions which are generated by the TSP module. We randomly select 1000 samples from each dataset. Most samples are correctly classified, as shown by their corresponding colors. A small number of samples are misclassified as from unseen tasks, while an even smaller number, though classified as from seen tasks, are incorrectly assigned to other seen tasks. Overall, the TSP module achieves an accuracy exceeding 90% for each task.

Table 9: TSP module performance under different energy and threshold setting.

		Threshold									
		0.89	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98
Energy	0.89	0.889	0.912	0.921	0.909	0.867	0.800	0.699	0.589	0.498	0.462
	0.90	0.869	0.897	0.918	0.923	0.899	0.850	0.762	0.646	0.525	0.466
	0.91	0.846	0.878	0.908	0.926	0.920	0.884	0.811	0.699	0.559	0.474
	0.92	0.815	0.850	0.885	0.914	0.930	0.915	0.862	0.767	0.614	0.492
	0.93	0.779	0.815	0.853	0.888	0.921	0.930	0.900	0.827	0.682	0.520
	0.94	0.734	0.773	0.813	0.854	0.896	0.927	0.927	0.879	0.762	0.572
	0.95	0.682	0.717	0.758	0.801	0.847	0.891	0.928	0.930	0.844	0.662
	0.96	0.641	0.663	0.697	0.737	0.784	0.834	0.887	0.928	0.903	0.769
	0.97	0.621	0.628	0.644	0.670	0.709	0.758	0.817	0.879	0.928	0.874
	0.98	0.613	0.615	0.617	0.624	0.639	0.664	0.710	0.774	0.859	0.925