
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INCREMENTAL LEARNING OF VISION-LANGUAGE
MODELS VIA TASK SUBSPACE PROJECTION AND DY-
NAMIC LORA

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent pre-trained vision-language models usually face a Multi-Domain Task-
Incremental Learning (MTIL) scenario in practice, where a set of classes of multi-
modal tasks arrive incrementally. Due to privacy concerns and memory con-
straints, MTIL with pre-trained models encounters forgetting of knowledge from
old tasks, degradation of zero-shot transfer capability, and underfitting of new-
task knowledge. To overcome these challenges, previous MTIL methods attempt
to learn a discriminative cross-task identification (CTI) module and an effective
new-task adaptation (NTA) module. However, current CTI modules suffer from
severe task confusion between seen and unseen tasks, and NTA modules cannot
adaptively balance the performance and parameter cost while incorporating task-
specific knowledge. To alleviate the above dilemmas, we propose an effective and
efficient TSP-DLoRA method for MTIL, which consists of Task Subspace Projec-
tion (TSP) and Dynamic Low Rank Adapter (DLoRA) modules. Specifically, our
TSP module includes a task identifier classifier based on task-specific subspaces
and a feature projection strategy that can determine the identifier associated with
samples from both seen and unseen tasks. Our DLoRA improves the knowledge
adaptation from new tasks by dynamically assigning Low Rank Adapter (LoRA)
across transformer layers based on the task distributions. Experimental evalua-
tions across 11 datasets, using three performance metrics, demonstrate the effec-
tiveness of our proposed method.

1 INTRODUCTION

Deep neural networks have achieved remarkable performance in numerous multi-modal understand-
ing applications. Traditional supervised learning methods in multi-modal learning require access to
the entire dataset during the training phase, these models are no longer updated once training is
completed Van de Ven & Tolias (2019). However, real-world multi-modal applications often en-
counter a dynamic data stream and need to learn a sequence of tasks continuously, which is referred
to as the Multi-Domain Task-Incremental Learning (MTIL) benchmark. Due to privacy concerns or
memory constraints, multi-modal models cannot access the previously seen tasks and suffer from
severe catastrophic forgetting issue on MTIL benchmark.

With the powerful zero-shot capability of pre-trained multi-modal models (e.g., CLIP Radford et al.
(2021)), existing approaches on MTIL benchmark consist of two modules Tang et al. (2024); Yu
et al. (2024). 1) Cross-task identification (CTI) module: design a discriminative task identifier
classifier to determine which task the sample belongs to, covering both seen and unseen tasks. 2)
New-task adaptation (NTA) module: adapt the pre-trained model to different tasks by employing
appropriate parameter-efficient fine-tuning (PEFT) methods or completely retraining all parameters
of the model, as shown in Figure 1(a). Typically, the methods with pre-trained models on MTIL
benchmark focus on zero-shot transfer capability preservation (especially on unseen tasks), old-task
knowledge preservation, and new-task adaptation effectively and efficiently. However, we observe
that the task confusion among seen and unseen tasks of existing CTI modules results from the
degradation of the zero-shot transfer capability of the learned model. Moreover, prevalent NTA
modules utilize fixed PEFT architecture for different tasks and cannot make a good trade-off between
new-task performance and the task-specific parameter cost.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

80

75

70

65

60

1 10 102 103

ZSCL

ZSCL*

GIFT

MoE-Adatper
DIKI

S-Prompts, L2P …

Ours

Parameter number (M)

A
ve

ra
ge

 A
cc

u
ra

cy
 (

%
)

E
xi

st
 C

T
ISeen

Unseen

W
Exist
NTA T

S
P

Seen

Unseen

DLoRA

CLIP

Accuracy Parameter-efficient

Storage Light computation

Synthetic Data

CLIP

Distillation

Finetuning

GIFT

Accuracy Parameter-efficient

Storage Light computation

Prompts

CLIP

Training

Uncertain
Task ID

DIKI

Accuracy Parameter-efficient

Storage Light computation

Reference Dataset

CLIP

Distillation

Finetuning

ZSCL

Storage Light computation

Accuracy Parameter-efficient

LoRA

CLIP

Training

Precise
Task ID

Ours
Gate

(a) (c)

(b)

Figure 1: (a) Our method offers distinct advantages over existing methods. In comparison to meth-
ods ZSCL and GIFT, ours is more parameter-efficient, eliminating the need for additional storage to
retain representative features. Compared with DIKI method, ours not only achieves higher accuracy
but also demonstrates the ability to precisely determine whether samples belong to previously seen
tasks. (b) Existing training-free CTI employs the same NTA operation on both seen and unseen
tasks, and utilizes a weight “W ” to restrict it. In contrast, our TSP module identifies the boundary
of seen and unseen tasks, and employs original CLIP directly for samples from unseen tasks. (c)
Compared to existing methods, ours achieves optimal performance in average accuracy (both seen
and unseen tasks) and trainable parameters.

Motivated by the above observation, we propose the TSP-DLoRA method on MTIL benchmark.
The CTI related module terms Task Subspace Projection (TSP) decomposes the features of each
task into task subspaces and leverages an energy to derive the minimal subspace that captures the
task’s principal features. The task identifiers of test samples are determined by comparing the pro-
jections of corresponding features onto each seen tasks’ subspaces. Additionally, The TSP module
establishes a static threshold as the decision boundary to distinguish between seen and unseen tasks.
As shown in Figure 1(b), for samples identified as from seen tasks, the corresponding task-specific
module is employed for classification. Conversely, for samples classified as from unseen tasks,
the zero-shot capability of the original CLIP model is utilized for classification. The NTA related
module called Dynamic Low Rank Adapter (DLoRA) leverages Low Rank Adapter (LoRA) Hu
et al. (2022) and incorporates a gating mechanism to dynamically determine whether to engage the
LoRA module based on the complexity of the task distribution. By integrating the TSP and DLoRA
modules, our method maintains high performance in both task identification and class classification
while fine-tuning only a minimal number of parameters, as shown in Figure 1(c).

The contributions of this work are threefold: 1) We propose the TSP module, which accurately
identifies sample identifiers by maintaining subspaces for seen tasks. It achieves over 93% accu-
racy across both seen and unseen tasks. 2) We propose the DLoRA module, which dynamically
activates LoRA modules based on task distributions, enabling the model to adaptively learn from
and perform inference on samples from different tasks. 3) Extensive experiments on benchmark
datasets demonstrate that the TSP-DLoRA method achieves state-of-the-art (SOTA) results across
all three evaluation metrics on the MTIL benchmark, while training only 0.86% of the parameters
and requiring no additional storage.

2 RELATED WORKS

2.1 INCREMENTAL LEARNING

Incremental learning approaches can be classified into four categories: 1) Regularization-based in-
cremental learning, which leverages regularization terms to guide the model’s optimization process.
Notable methods include EWC Kirkpatrick et al. (2017) and LwF Li & Hoiem (2017). 2) Rehearsal-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

based incremental learning Li & Hoiem (2017); Rebuffi et al. (2017); Wu et al. (2019); Hou et al.
(2018); Lee et al. (2019); Hou et al. (2019); Park et al. (2021). These methods aim to preserve
knowledge by retaining or generating representative samples or features from seen tasks, which are
then trained together with data from unseen tasks. Prominent works include iCaRL Rebuffi et al.
(2017), ZSCL Zheng et al. (2023), and GIFT Wu et al. (2025). 3) Network expansion-based in-
cremental learning Ostapenko et al. (2019); Yoon et al. (2017); Xu & Zhu (2018); Li et al. (2019).
This approach accommodates new tasks by dynamically expanding the model architecture. The
representative method is DEN Yoon et al. (2017). 4) Incremental learning via parameter-efficient
fine-tuning (PEFT) Jung et al. (2023); Tang et al. (2023); Zhou et al. (2025); Chen et al. (2024); Gao
et al. (2023). Leveraging the robust zero-shot transfer capability of pre-trained models, this cate-
gory has emerged as a prevalent strategy in incremental learning. These methods typically freeze
the backbone of pre-trained models and fine-tune a small subset of parameters using techniques
such as LoRA Meral et al. (2024), Adapters Gao et al. (2024), or Prompt Wang et al. (2022c). The
well-known approaches to incremental learning via PEFT include L2P Wang et al. (2022c), Du-
alPrompt Wang et al. (2022b), S-Prompt Wang et al. (2022a), MoE-Adapter Yu et al. (2024), and
DIKI Tang et al. (2024). Unlike existing approaches that rely on a fixed structure, our method in-
troduces a novel framework by dynamically adjusting the PEFT structure based on the input, which
achieves superior performance compared to all traditional PEFT techniques in incremental learning.

2.2 MULTI-DOMAIN TASK-INCREMENTAL LEARNING

The multi-domain task-incremental learning (MTIL) benchmark is first introduced in the
work Zheng et al. (2023). This work proposes the ZSCL method, which leverages knowledge dis-
tillation, utilizing a reference dataset to transfer knowledge from the old models to the new one. A
related method , GIFT Wu et al. (2025), adopts a similar strategy by generating representative fea-
tures to substitute for the reference dataset. Nevertheless, both techniques rely on full fine-tuning,
resulting in significant computational cost. Existing PEFT related methods in MTIL include MoE-
Adapter Yu et al. (2024) and DIKI Tang et al. (2024). The MoE-Adapter approach, while training
a quarter of its parameters, still incurs considerable computational cost when applied to parameter-
heavy models like CLIP. DIKI trains a model with fewer parameters; however, its static fine-tuning
architecture struggles to accommodate tasks with pronounced distributional disparities, leading to
diminished performance. In contrast, our proposed method employs a dynamic fine-tuning struc-
ture with only 0.86% of total trainable parameters, while adapting to varying task distributions and
offering an efficient and effective solution for the MTIL benchmark.

2.3 DISCRIMINATIVE CROSS-TASK IDENTIFICATION

On the MTIL benchmark, the model is required to determine the task identifier of a test sample
initially during inference, and infer the specific class based on the identifier. This process requires
a highly effective Cross-Task Identification (CTI) module. Currently, two CTI modules, i.e., DDAS
module in MoE-Adapter and DAIC module in DIKI are proposed to improve the efficacy of task
identification. Specifically, DDAS involves maintaining a distinct linear classifier for each new task,
optimized according to its specific distribution before training the model. During inference, task
identifiers for test samples are predicted using the linear classifiers. However, DDAS module intro-
duces a substantial number of learnable parameters, resulting in significant computational overhead
during both training and inference. Moreover, it requires task-specific adjustments to the classifier
hyperparameters. DAIC avoids the introduction of additional trainable parameters; instead, it stores
the mean and variance of each new task’s distribution. During inference, it models each seen task as
a Gaussian distribution and computes the similarity between the test sample and these distributions.
Existing CTI modules encounter the task confusion among seen and unseen tasks. To achieve an
effective CTI module, we propose a TSP method to learn a distinct subspace for each task.

3 APPROACH

3.1 PRELIMINARIES

Benchmark. Consider a pre-trained VLM that undergoes incremental learning through a sequence
of tasks, which originate from T distinct domains, denoted as D = {D1, D2, . . . , DT }. Each

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

CLIP

𝑆௠௔௫ = {{𝑆௡}௡ୀଵ
ே }𝑚𝑎𝑥

P1 Pn-1P2 PN…
S1 S2 Sn-1 Sn

𝑆௠௔௫ ? 𝒕𝒉𝒓𝒆𝒔.

𝑆௠௔௫ < 𝒕𝒉𝒓𝒆𝒔.

Original
CLIP

𝑆௠௔௫ ≥ 𝒕𝒉𝒓𝒆𝒔.

CLIP +
DLoRA

classification zero-shot

Frozen Trainable

G Gate R LoRA

…F/A-18, DHC-6,
…, E-195

bibimbap, beet
salad, …, baklava

frangipa, rose,
…, wallflower

LayerNorm

MLP

LayerNorm

…

LayerNorm

LayerNorm

MLP

LayerNorm

A photo of {cls}.
A toy {cls}.
…

L1L1 G1 R1 R1

L2L2 G2 R2

Lt-1Lt-1 Gt-1 Rt-1

LtLt Gt Rt Rt

Lt+1Lt+1

LnLn

… …

… …

N

LayerNorm Projection LayerNormProjectionNCE loss

𝐹௩
ᇱ(𝑥)

Multi-Head
Attention

Multi-Head
Attention

F௩(𝑥) F௧(𝑥)

N

…

𝑋ே×ௗ 𝑆 Σ 𝑉் task subspace

𝑟

TSP

DLoRA

Figure 2: Left: The training process of our method. The TSP module decomposes image features
by SVD technology and selects top r ranks from the right singular vector matrix to be the task
subspace. DLoRA module integrates LoRA into the first Lt transformer layers of both the image and
text encoders. The gating mechanism before the LoRA modules in the image encoder determines
whether to activate the LoRA based on the feature F ′

v(x) derived from the original CLIP. Only the
LoRA and the gating mechanism modules are trained, while the remaining parts are kept frozen.
Right: Inference period. We compute the angle between the raw feature extracted from original
CLIP and the subspaces associated with each seen task. The resulting similarity is compared against
a threshold, denoted as “thres.”. The sample is classified using the corresponding DLoRA module if
the similarity exceeds the “thres.”. Otherwise, classification relies on the original CLIP model.

domain Dt comprises N samples, represented as (xt
n, y

t
n)

Nt

n=1, where xt
n denotes a raw image and

ytn represents its corresponding one-hot encoded ground truth label. There also exists an associated
class set, defined as Ct = {cti}

Mt
i=1, where each cti is a textual label describing a specific class, and

Mt is the label space size of task t. On the MTIL benchmark, access to the data of domain Dt is
restricted exclusively to the t-th phase of incremental learning. Furthermore, the class sets across
domains are pairwise disjoint, such that Ci ∩ Cj = ∅ for all i ̸= j, ensuring that each domain
possesses a unique collection of classes. Additionally, the data distributions differ across domains,
expressed as Pi ̸= Pj for i ̸= j, where Pi signifies the data distribution of domain Di. During
the inference phase, the model requires performing inference in a specific label space (e.g., Ct).
Consequently, obtaining an accurate task identifier t for each test sample is a crucial aspect of the
MTIL task.

CLIP Models. Pre-trained VLMs (e.g., CLIP Radford et al. (2021)) typically comprise two en-
coders: image encoder Fv and text encoder Ft. These pre-trained VLMs consistently perform a
preprocessing step that converts the class name cti into a sentence using a set of predefined tem-
plates, such as “{a photo of {cti}.}”. This sentence is subsequently encoded into a text embedding ti
by the tokenizer. CLIP models are trained by contrastive loss Park et al. (2020), where the optimize
objective can be denoted as:

L = −
Nt∑
i=1

log

(
exp (sim (Fv(xi), Ft(ti)) /τc)∑Nt

j=1 exp (sim (Fv(xi), Ft(tj)) /τc)

)
, (1)

Fv(xi), Ft(ti) are the features extracted by the visual and text encoders, τc represents the temper-
ature, and sim(u, v) = uT ·v

∥u∥∥v∥ is the cosine similarity function. The contrastive loss facilitates the
CLIP model in capturing the inter-modal similarity between the image and text embeddings.

3.2 FRAMEWORK OVERVIEW

In this work, we propose a parameter-efficient framework aimed at enhancing the incremental learn-
ing capability of CLIP models from two key perspectives. First, to facilitate the acquisition of new

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tasks, we introduce the Dynamic LoRA (DLoRA). It dynamically adapts the fine-tuning modules,
which enables the model to learn new tasks with a minimal number of trainable parameters and ef-
fectively accommodate a diverse range of tasks. Second, to preserve the zero-shot transfer capability
of the pre-trained model, we develop the Task Subspace Projection (TSP) module, a newly designed
CTI module that leverages projection on task subspace to determine the identifier of each sample.

3.3 DYNAMIC LORA

New knowledge injection strategy via LoRA. When the pre-trained model is trained on new tasks,
for the image encoder Fv and the text encoder Ft of the CLIP model, we assume that each encoder
comprises Ln transformer layers. The LoRA module is applied to the first t layers, which can be
denoted as Rt, (t ≤ n), as depicted in Figure 2. Specifically, for the weight matrix W of a linear
layer, we decompose it into the product of two smaller matrices:

△W = WdownWup , (2)

where Wdown ∈ Rd×r and Wup ∈ Rr×d. In the self-attention mechanism of the first Lt layers,
we follow Liang & Li (2024) and incorporate LoRA into the key and value, which are updated
according to the following operations:

Kr = (Wk + e ∗ △Wk)Kinit + bk

Vr = (Wv + e ∗ △Wv)Vinit + bv
, (3)

e represents a scaling factor, Wk, Wv , Kinit, Vinit, b are the initial weight, key, value, bias of
transformer layers. We employ LoRA for both the visual and text encoders, while keeping the
model’s backbone parameters entirely frozen.

Is injecting LoRA to all top Lt layers always the optimal choice? Conventional LoRA-based
methods typically involve injecting learnable modules at predetermined fixed positions, relying on
the assumption that training datasets are consistently drawn from the same distribution. However,
on the MTIL benchmark, models must dynamically adapt to datasets exhibiting diverse distribu-
tions Tang et al. (2024). Moreover, these datasets also vary in terms of data volume and number
of classes. Employing a static learning strategy across such heterogeneous datasets may result in
overfitting to simpler datasets or underfitting to more complex ones. In this work, we observe this
challenge and propose a dynamic LoRA injection strategy to deal with the unique properties of each
dataset. Specifically, we enhance the capability of LoRA in the top Lt transformer layers by intro-
ducing a Gumbel-based gating mechanism, which dynamically determines whether to inject LoRA
to the corresponding layer based on the input feature, as shown in the left of Figure 2.

Gumbel-based gating mechanism. During the training phase, to avoid the feature space instability
arising from parameter optimization, we utilize the feature outputs of the original, frozen, pre-trained
CLIP model F ′

v(x) as inputs to the Gumbel-based gating mechanism. We employ a linear layer H
in the transformer layer, which maps the original image features F ′

v(x) to a K-dimensional feature
space, as well as a Gumbel distribution which is used to generate the samples uniformly. The overall
Gumbel logit for every sample can be denoted as:

Gi =
exp(log (H(F ′

v(x)) + ui)/τg)∑K
j=1 exp(log (H(F ′

v(x)) + uj)/τg)
, (4)

ui = −log(−log(Ui)) is randomly sampled from a normal distribution, where Ui ∼ U(0, 1). τg
represents the temperature. Our gating mechanism operates with only two values, 1 and 0. 1 denotes
injecting LoRA at this layer and 0 represents not. To facilitate this binary decision process, we set
K = 2 to generate hard-coded representations that guide the LoRA injection strategy as follows:

K ′
r = G1Kinit +G2Kr

V ′
r = G1Vinit +G2Vr

, (5)

By leveraging features from a stable space to guide its gating mechanism, our proposed DLoRA
module dynamically tailors its LoRA injection strategy to each sample based on the complexity of
the task distribution.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 TASK SUBSPACE PROJECTION

Why and what is TSP? On the MTIL benchmark, the model incrementally learns new tasks and
performs inference across all tasks. Because of the significant differences between distributions of
these tasks, the performance of the CTI module is pivotal to the overall effectiveness of the model.
Current approaches typically adopt two strategies: 1) Train an additional classifier to identify the task
identifier Yu et al. (2024), which introduces extra trainable parameters and elevates training costs. 2)
Identify all samples as from seen tasks directly but apply weights to restrict the use of task-specific
modules Tang et al. (2024); however, this introduces additional uncertainty for samples from both
seen and unseen tasks. To overcome these challenges, we introduce Task Subspace Projection (TSP),
a novel training-free CTI module that leverages singular value decomposition (SVD) to extract each
seen task’s subspace and differentiates which task a test sample belongs to by the subspaces. For
samples identified as from seen tasks, the model employs the corresponding task-specific module
for classification. Conversely, for samples identified as from unseen tasks, the model relies entirely
on the untrained original CLIP model for inference, fully utilizing the zero-shot capability of the
pre-trained model.

Construction of task-specific subspaces. When acquiring a new task, the TSP module first extracts
features from all samples of the new task using the original CLIP model, X = [F ′

v(x1), F
′
v(x2), . . . ,

F ′
v(xN)] ∈ RN×d, where N is the total number of samples from new task and d is the feature

dimension. As shown in Figure 2, these features are then subjected to SVD to extract the subspace
associated with the new task:

X = UΣV T , (6)

where U ∈ RN×N is the left singular vector matrix, Σ ∈ RN×d is the singular values matrix and
V ∈ Rd×d is the right singular vector matrix.

The value of rank r during SVD directly determines the dimension of the task subspace, which is
critical to the TSP module. To maximize principal component retention within the task subspace
while minimizing computational costs, we propose an adaptive energy-based selection strategy to
ensure consistent representation across diverse tasks. The diagonal elements in singular values ma-
trix correspond to the singular value vectors, thus we determine the number of ranks r by analyzing
the energy proportion of each singular value vector. Specifically, we calculate the variance of the
singular value matrix and then compute the cumulative sum of the energy proportions for the top k
ranks:

Ek =

∑k
i=1 σ

2
i∑q

i=1 σ
2
i

, (7)

where σi is the i-th diagonal element of the matrix, and q = min(N, d) is the smaller of the number
of image features N and the feature dimension d. We then select the smallest k such that the
cumulative energy of the first k singular values reaches or exceeds the preset threshold energy:

k = min{k|Ek ≥ energy} , (8)

where energy is a hyperparameter. We set the final selected r to k + 1 to ensure that the chosen
rank exists.

Our aim is to ensure that the distribution of the task-specific subspace maximally reflects the dis-
tribution of the new task. To this end, we select the first r rows of the right singular value matrix
to represent the feature distribution of the task, denoted as Vr = V[:,0:r], Vr ∈ Rd×r. To facilitate
efficient computation during inference, we store the orthogonal projection operator of this subspace:

P = VrV
T
r , (9)

where P ∈ Rd×d. We store a P for every seen task. Therefore, during the t-th incremental learning
period, {P1,P2, . . . ,Pt} are available.

Inference. In the inference phase, for a test image x with unknown task identifier, we extract F ′
v(x)

using the original CLIP model, ensuring consistency with the task subspaces. For each seen task,
we compute the projection of F ′

v(x) onto its corresponding specific task subspace as follows:

F̃ ′
v(x)t = PtF

′
v(x) , (10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Subsequently, we calculate the angle between F ′
v(x) and F̃ ′

v(x) using cosine similarity as follows:

St =
F ′
v(x)F̃

′
v(x)t

||F ′
v(x)|| · ||F̃ ′

v(x)t||
, (11)

We focus exclusively on the vector that forms the smallest angle with the feature subspace of the
seen tasks, which corresponds to the maximum value in St. To intuitively determine whether a given
test sample belongs to a seen or unseen task, we define a threshold, denoted as “Thres.”. As shown
in Figure 2, by comparing the maximum value in St with “Thres.”, the task identifier of the test
sample is derived:

task id =

{
argmaxi∈{1,2,...,t} Si for Smax ≥ Thres.

−1 for Smax < Thres.
, (12)

where Smax = max{S1, S2, ..., St}, and −1 represents the test sample belongs to unseen tasks.

The TSP module accurately assigns a task identifier to each sample during the inference phase. If
the task identifier is classified as seen tasks, the model applies the corresponding DLoRA module to
infer the specific label. Otherwise, the model directly employs the original CLIP model, leveraging
its robust pre-trained knowledge to determine the label.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Dataset and metrics. We follow Zheng et al. (2023) and evaluate our method on the MTIL bench-
mark, which comprised 11 datasets: Aircraft Maji et al. (2013), Caltech101 Fei-Fei et al. (2004),
CIFAR100 Krizhevsky et al. (2009), DTD Cimpoi et al. (2014), EuroSAT Helber et al. (2019),
Flowers Nilsback & Zisserman (2008), Food Bossard et al. (2014), MNIST Deng (2012), Oxford-
Pet Parkhi et al. (2012), StanfordCars Krause et al. (2013) and SUN397 Xiao et al. (2010), with a
total of 1201 classes across distinct distributions. The model’s performance is assessed using three
primary metrics: “Transfer”, “Last”, and “Avg”. Further details regarding both the datasets and
theses evaluation metrics are provided in the supplementary materials.

Comparison methods. We compare our method with two categories of SOTA methods, which
are full parameter fine-tuning (FPFT) and PEFT methods. FPFT methods leverage rehearsal-based
techniques and knowledge distillation to retain the old knowledge, necessitating updating all pa-
rameters and external storage during training. The comparison methods in our experiments include
Continual-FT, iCaRL, LwF-VR Ding et al. (2022), WiSE-FT Wortsman et al. (2022), ZSCL and
GIFT. PEFT methods learn new tasks by updating only a small set of trainable parameters. Such
methods include L2P, DualPrompt, S-Prompt, MoE-Adapter and DIKI. Our proposed method falls
within this category.

Implementation details. As in Zheng et al. (2023), we utilize CLIP ViT-B/16 as our backbone
for all the experiments. We apply our DLoRA module to the first 8 transformer layers of both visual
and text encoders and fix the rank at 4. For the gating mechanism, we employ a learning rate of 2.0
and set the temperature to 1.0. Additionally, we conduct an ablation study on the learning rate and
temperature of the gating mechanism, details are provided in the supplementary materials. Both the
DLoRA and gating mechanism modules adopt stochastic gradient descent (SGD) as the optimizer,
coupled with cosine annealing to adjust the learning rate. For the TSP module, we establish a static
energy level of 95% across all 11 tasks to dynamically determine the rank. The threshold is set to
0.96 to serve as the decision boundary between seen and unseen tasks. The model is trained for 10
epochs on each task using an NVIDIA 4090 GPU.

4.2 EXPERIMENTAL RESULTS

The main experimental results are presented in Table 1. “Extra.” denotes whether external data is
required during the training process. “Param.” refers to the total number of trainable parameters.
“Zero-shot” represents the inference performance using only the pre-trained knowledge, serving as
the lower bound of the current benchmark. “Full Fine-tune” involves fully fine-tuning the CLIP

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison with SOTA on MTIL benchmark in terms of “Transfer”, “Average”, and “Last”
metrics (%). “Ours” denotes our method. The presented results are derived from the Order-I, for
Order-II results, please refer to the supplemental materials.

Method

E
xt

ra
.

Pa
ra

m
.

A
ir

cr
af

t

C
al

te
ch

10
1

C
IF

A
R

10
0

D
T

D

E
ur

oS
A

T

Fl
ow

er
s

Fo
od

M
N

IS
T

O
xf

or
dP

et

St
an

fo
rd

C
ar

s

SU
N

39
7

Average

C
L

IP Zero-shot % - 24.3 88.4 68.2 44.6 54.9 71.0 88.5 59.4 89.0 64.7 65.2 65.3
Full Fine-tune % 211M 62.0 95.1 89.6 79.5 98.9 97.5 92.7 99.6 94.7 89.6 81.8 89.2

Tr
an

sf
er

Continual-FT ! 211M - 67.1 46.0 32.1 35.6 35.0 57.7 44.1 60.8 20.5 46.6 44.6
iCaRL ! 211M - 56.6 44.6 32.7 39.3 46.6 68.0 46.0 77.4 31.9 60.5 50.4
LwF-VR ! 211M - 77.1 61.0 40.5 45.3 54.4 74.6 47.9 76.7 36.3 58.6 57.2
WiSE-FT ! 211M - 73.5 55.6 35.6 41.5 47.0 68.3 53.9 69.3 26.8 51.9 52.3
ZSCL ! 211M - 86.0 67.4 45.4 50.4 69.1 87.6 61.8 86.8 60.1 66.8 68.1
GIFT % 211M - 88.5 69.8 46.0 49.4 68.5 87.1 69.9 88.9 57.7 67.7 69.3

L2P % 0.5M - 65.6 50.9 30.4 41.4 49.3 71.8 36.3 77.5 55.3 53.4 53.2
DualPrompt % 1.8M - 56.7 51.4 28.7 33.7 45.6 70.9 59.5 77.7 49.5 50.4 52.4
S-Prompts % 0.5M - 67.3 49.4 26.7 39.7 47.1 70.2 34.3 78.9 56.7 52.2 52.2
MoE-Adapter ! 59.8M - 87.9 68.2 44.4 49.9 70.7 88.7 59.7 89.1 64.5 65.5 68.9
DIKI % 1.8M - 92.9 69.1 43.2 43.9 65.4 85.3 56.0 88.4 64.0 65.6 67.4
Ours % 1.8M - 93.5 68.5 43.5 48.5 70.8 86.1 64.7 89.1 66.4 62.6 69.4

Av
er

ag
e

Continual-FT ! 211M 25.5 81.5 59.1 53.2 64.7 51.8 63.2 64.3 69.7 31.8 49.7 55.9
iCaRL ! 211M 35.5 89.2 72.2 60.6 68.8 70.0 78.2 62.3 81.8 41.2 62.5 65.7
LwF-VR ! 211M 29.6 87.7 74.4 59.5 72.4 63.6 77.0 66.7 81.2 43.7 60.7 65.1
WiSE-FT ! 211M 26.7 86.5 64.3 57.1 65.7 58.7 71.1 70.5 75.8 36.9 54.6 60.7
ZSCL ! 211M 45.1 92.0 80.1 64.3 79.5 81.6 89.6 75.2 88.9 64.7 68.0 75.4
GIFT % 211M 51.9 93.9 81.4 67.7 80.3 82.8 89.3 80.6 90.3 63.1 68.9 77.3

L2P % 0.5M 38.0 85.2 78.2 61.3 72.9 74.9 79.7 59.1 82.0 59.7 55.4 67.9
DualPrompt % 1.8M 37.8 84.3 78.6 60.1 71.1 73.2 79.1 73.9 82.3 55.1 52.8 68.0
S-Prompts % 0.5M 37.5 92.5 77.5 58.2 76.4 74.1 78.8 57.9 83.0 60.8 54.4 68.3
MoE-Adapter ! 59.8M 50.2 91.9 83.1 69.4 78.9 84.0 89.1 73.7 89.3 67.7 66.9 76.7
DIKI % 1.8M 45.4 95.7 83.0 65.0 78.2 82.5 87.1 71.7 90.0 67.2 66.6 75.7
Ours % 1.8M 50.4 96.3 83.3 67.5 80.2 85.7 87.5 77.3 90.8 69.6 63.9 77.5

L
as

t

Continual-FT ! 211M 31.0 89.3 65.8 67.3 88.9 71.1 85.6 99.6 92.9 77.3 81.1 77.3
iCaRL ! 211M 35.8 93.0 77.0 70.2 83.3 88.5 90.4 86.7 93.2 81.2 81.9 80.1
LwF-VR ! 211M 20.5 89.8 72.3 67.6 85.5 73.8 85.7 99.6 93.1 73.3 80.9 76.6
WiSE-FT ! 211M 27.2 90.8 68.0 68.9 86.9 74.0 87.6 99.6 92.6 77.8 81.3 77.7
ZSCL ! 211M 40.6 92.2 81.3 70.5 94.8 90.5 91.9 98.7 93.9 85.3 80.2 83.6
GIFT % 211M 47.9 95.6 82.8 75.1 97.3 94.2 91.7 99.2 94.2 87.0 80.9 86.0

L2P % 0.5M 38.0 87.1 84.2 72.9 86.0 96.1 89.2 99.0 94.1 79.6 76.0 82.0
DualPrompt % 1.8M 37.8 87.1 84.6 71.8 89.2 96.3 89.1 99.1 94.5 79.9 76.5 82.3
S-Prompts % 0.5M 37.5 95.1 83.7 70.2 97.5 96.5 89.0 99.1 94.0 79.5 75.8 83.4
MoE-Adapter ! 59.8M 49.8 92.2 86.1 78.1 95.7 94.3 89.5 98.1 89.9 81.6 80.0 85.0
DIKI % 1.8M 45.4 95.9 86.0 73.0 97.8 96.8 89.3 99.3 94.4 81.8 76.4 85.1
Ours % 1.8M 50.4 96.6 86.7 76.5 98.3 98.2 89.3 99.6 94.6 84.3 77.1 86.5

model with 11 tasks, establishing the upper bound of performance. Among all the methods, our
proposed method, which integrates the DLoRA and TSP modules, achieves SOTA performance
on all the average of “Transfer”, “Average”, and “Last” metrics. The method most comparable to
ours is GIFT. However, our approach requires only 0.86% of the training parameters used by GIFT,
while achieving comparable or even superior performance across all three metrics. Furthermore, our
approach eliminates the need to store additional representative samples from previous seen tasks.

We also follow Tang et al. (2024) and evaluate our method on the Order-II and 16-shot MTIL-FS
benchmark. Our method achieves optimal results compared to the baseline. Details are provided in
the supplementary materials.

4.3 ANALYSIS

Effect of TSP module. To assess the effectiveness of the TSP module, we replace the task identi-
fier classifier in DIKI with the TSP module while keeping the fine-tuning strategy unchanged. The
results are demonstrated in Table 2. Asterisk (*) denotes the experimental results obtained from
our experiments, which may differ from the original paper Tang et al. (2024) due to variations in
implementation or experimental conditions. The TSP module improves performance across all the
“Transfer”, “Average”, and “Last” metrics. This suggests that TSP not only enhances task identifi-
cation accuracy but can also serve as a plug-and-play component for various methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: The ablation experiments for DLoRA
and TSP modules of our proposed method. As-
terisk (*) denotes the practical results obtained
from our experiments.

Method Trans. Avg. Lst.
DIKI* 67.4 75.7 85.1
DIKI*+TSP 68.9 76.3 85.3
LoRA+TSP 69.3 76.5 85.4
DLoRA+TSP 69.4 77.5 86.5

Table 3: Computational cost of three PEFT
methods. “GPU.” denotes the GPU memory re-
quirement, “Train.” and “Infer” are the training
and inference speeds.

Method Time. GPU. Train. Infer.

MoE-Adapter 5.3h 48 GB 1.58s/it 0.63s/it
DIKI 2.6h 24 GB 0.36s/it 0.33s/it
Ours 2.4h 24 GB 0.38s/it 0.23s/it

Effect of DLoRA module. To investigate the effectiveness of the dynamic gating mechanism in
DLoRA, we conduct experiments combining TSP with standard LoRA. As shown in Table 2, our
proposed DLoRA module outperforms the baseline of using LoRA alone across all three metrics,
with notable improvements exceeding 1.0% and 1.1% on the “Average” and “Last” metrics respec-
tively. These results align with our expectations, as DLoRA is designed to enhance the capability of
learning new tasks.

0 1 2 3 4 5 6 7 8 9 10
Task

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Si

m
ila

ri
ty

threshold = 0.96

Figure 3: The distribution of similarity scores for the TSP
module across different tasks. The red line denotes a thresh-
old set at 0.96. Most of the samples exhibit similarity scores
above this threshold. The dense similarity scores distribu-
tion also reveals the TSP module’s capability to effectively
integrate and extract critical information from each task.

Visualization of TSP module. Fig-
ure 3 illustrates the similarity distri-
butions between the features of 500
random test samples and their projec-
tions onto each seen tasks’ subspace,
with an energy of 0.95. A threshold,
represented by the red line in the fig-
ure, is set at 0.96. Most of the test
samples (93% in our experiments)
exhibit similarities that exceed the
threshold, indicating that they are
correctly classified for their corre-
sponding tasks, with median similar-
ity values around 0.97. The height
of the boxes indicates that the simi-
larity distributions of the test samples
are highly concentrated; this demon-
strates that our TSP module can ef-
ficiently extract critical task-specific
information. We also present the distribution for each individual task and the influence of energy
and threshold values on the TSP module in the supplementary materials, which shows that the iden-
tifiers for most samples are correctly assigned, with only a small fraction misclassified as “unseen”
and an even smaller number incorrectly assigned to other tasks.

Computational Cost. We evaluate our method against two representative PEFT methods, MoE-
Adapter and DIKI, on the MTIL benchmark. As shown in Table 3, our method consistently out-
performs MoE-Adapter across three key metrics, including total time, GPU memory, and inference
speed. Notably, our method significantly boosts the inference speed, this is due to the TSP module,
which enables the model to leverage the native zero-shot capability of the original CLIP model for
a subset of samples.

5 CONCLUSION

In this work, we introduce TSP-DLoRA, a parameter-efficient method composed of two key mod-
ules. The TSP module, operates as a training-free discriminative CTI module, accurately identifying
task identifiers for samples from both seen and unseen tasks, effectively preserving the zero-shot
transfer capabilities of pre-trained models. The NTA module termed DLoRA leverages a gating
mechanism to dynamically determine the activation of the LoRA module based on the task distri-
bution, thereby facilitating the model’s ability to adapt to new tasks. Extensive experimental results
demonstrate that both modules perform well independently but also, when integrated, surpass all
existing methods at a remarkably low training cost.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer vision–ECCV 2014: 13th European conference, zurich,
Switzerland, September 6-12, 2014, proceedings, part VI 13, pp. 446–461. Springer, 2014.

Haoran Chen, Zuxuan Wu, Xintong Han, Menglin Jia, and Yu-Gang Jiang. Promptfusion: Decou-
pling stability and plasticity for continual learning. In European Conference on Computer Vision,
pp. 196–212. Springer, 2024.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606–3613, 2014.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Yuxuan Ding, Lingqiao Liu, Chunna Tian, Jingyuan Yang, and Haoxuan Ding. Don’t stop learning:
Towards continual learning for the clip model. arXiv preprint arXiv:2207.09248, 2022.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In 2004 conference
on computer vision and pattern recognition workshop, pp. 178–178. IEEE, 2004.

Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A
unified continual learning framework with general parameter-efficient tuning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 11483–11493, 2023.

Xinyuan Gao, Songlin Dong, Yuhang He, Qiang Wang, and Yihong Gong. Beyond prompt learning:
Continual adapter for efficient rehearsal-free continual learning. In European Conference on
Computer Vision, pp. 89–106. Springer, 2024.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Lifelong learning via pro-
gressive distillation and retrospection. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 437–452, 2018.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 831–839, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Dahuin Jung, Dongyoon Han, Jihwan Bang, and Hwanjun Song. Generating instance-level prompts
for rehearsal-free continual learning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 11847–11857, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee. Overcoming catastrophic forgetting with
unlabeled data in the wild. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 312–321, 2019.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In International conference
on machine learning, pp. 3925–3934. PMLR, 2019.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learn-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 23638–23647, 2024.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Tuna Han Salih Meral, Enis Simsar, Federico Tombari, and Pinar Yanardag. Clora: A contrastive
approach to compose multiple lora models. arXiv preprint arXiv:2403.19776, 2024.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen, and Moin Nabi. Learning to
remember: A synaptic plasticity driven framework for continual learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 11321–11329, 2019.

Jaeyoo Park, Minsoo Kang, and Bohyung Han. Class-incremental learning for action recognition
in videos. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
13698–13707, 2021.

Taesung Park, Alexei A. Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for condi-
tional image synthesis. In ECCV, 2020.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Longxiang Tang, Zhuotao Tian, Kai Li, Chunming He, Hantao Zhou, Hengshuang Zhao, Xiu Li, and
Jiaya Jia. Mind the interference: Retaining pre-trained knowledge in parameter efficient continual
learning of vision-language models. In European Conference on Computer Vision, pp. 346–365.
Springer, 2024.

Yu-Ming Tang, Yi-Xing Peng, and Wei-Shi Zheng. When prompt-based incremental learning does
not meet strong pretraining. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 1706–1716, 2023.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
An occam’s razor for domain incremental learning. Advances in Neural Information Processing
Systems, 35:5682–5695, 2022a.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European conference on computer vision, pp. 631–648.
Springer, 2022b.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 139–149,
2022c.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 7959–7971, 2022.

Bin Wu, Wuxuan Shi, Jinqiao Wang, and Mang Ye. Synthetic data is an elegant gift for continual
vision-language models. arXiv preprint arXiv:2503.04229, 2025.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 374–382, 2019.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485–3492. IEEE, 2010.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. Advances in neural information processing
systems, 31, 2018.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
continual learning of vision-language models via mixture-of-experts adapters. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23219–23230, 2024.

Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing
zero-shot transfer degradation in continual learning of vision-language models. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 19125–19136, 2023.

Da-Wei Zhou, Yuanhan Zhang, Yan Wang, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu.
Learning without forgetting for vision-language models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2025.

A APPENDIX

B EXPERIMENTAL DETAILS

Experimental settings. All experimental results are derived utilizing PyTorch Paszke et al. (2019).
The batch size is set to 128 during the training phase, and set to 256 for the inference. To reduce
the computational burden associated with both training and inference, experiments are performed
with FP16 precision. In the context of our proposed DLoRA module, a perturbation of 1 × 10−6

is applied to all values sampled via Gumbel sampling to address potential numerical instability.
Both the DLoRA and gating mechanism modules adopt stochastic gradient descent (SGD) as the
optimizer, coupled with cosine annealing to adjust the learning rate.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 4: Detailed information of 11 datasets.

Dataset Classes Train Test Recognition Task

Aircraft Maji et al. (2013) 100 3334 3333 aircraft series
Caltech101 Fei-Fei et al. (2004) 101 6212 2465 real-life object
CIFAR100 Krizhevsky et al. (2009) 100 50000 10000 real-life object
DTD Cimpoi et al. (2014) 47 2068 1692 texture recognition
EuroSAT Helber et al. (2019) 10 18800 8100 satellite location
Flowers Nilsback & Zisserman (2008) 102 4706 2463 flower species
Food Bossard et al. (2014) 101 70700 30300 food type
MNIST Deng (2012) 10 60000 10000 digital number
OxfordPet Parkhi et al. (2012) 37 3680 3669 animal species
StanfordCars Krause et al. (2013) 196 8144 8041 car series
SUN397 Xiao et al. (2010) 397 88904 19850 scene category

Total 1201 316548 99913

Details of datasets. We utilize the same datasets as Tang et al. (2024) to validate our approach. The
detailed information for all datasets are demonstrated in Table 4.

Metrics. The “Transfer” metric focuses on assessing the forgetting of the model’s zero-shot transfer
capability, known as forward forgetting Tang et al. (2024), for task i, it is computed as the average
performance over unseen tasks i + 1, i + 2, . . . , T . The “Last” metric measures the model’s abil-
ity to learn new tasks while mitigating catastrophic forgetting of seen tasks, which corresponds to
backward forgetting, for task i, it is determined by averaging the performance across the seen tasks
i, i − 1, . . . , 1. The “Avg” metric considers both forward forgetting and backward forgetting. At
each incremental learning step, it is computed as the average performance across all tasks T .

C EXPERIMENTAL RESULTS

Results on Order-II setting. Table 5 demonstrates the comparison of SOTA PEFT methods with
ours on MTIL benchmark in terms of “Transfer”, “Average”, and “Last” metrics (%). We label the
best average results with bold styles.

0.1 0.5 1.0 1.5 2.0 2.5 3.0
Learning Rate

65

70

75

80

85

90

95

A
cc

ur
ac

y
(%

)

Transfer Average Last

(a) Temperature is 1.0.

0.1 0.5 1.0 1.5 2.0 2.5 3.0
Temperature

65

70

75

80

85

90

95

A
cc

ur
ac

y
(%

)

Transfer Average Last

(b) Learning rate is 2.0.

Figure 4: The effects of the learning rate and tem-
perature within the DLoRA module. We fix one and
test the other. The DLoRA module exhibits robust-
ness and insensitive to changes in two parameters.

Learning rate and temperature of the gat-
ing mechanism. The learning rate for the
gating mechanism module is fixed at a sin-
gle value across 11 tasks and the temperature
during the sampling process governs the dis-
creteness of the Gumbel logits, potentially in-
fluencing the model performance. To investi-
gate this, we conduct ablation experiments on
both learning rate and temperature of the gat-
ing mechanism, while keeping the remaining
modules frozen. The results are presented in
Figure 4. The results reveal that our method
achieves optimal performance with a learning
rate of 2.0 and a temperature of 1.0. The sta-
bility of the performance curves suggests that
our approach consistently delivers high per-
formance across a wide range of settings, which indicates that the DLoRA module possesses a
degree of robustness, remaining relatively insensitive to variations in learning rate and temperature.

Details of experimental results on few-shot. Table 6 demonstrates the comparison of SOTA meth-
ods with ours on 16-shot MTIL benchmark in terms of “Transfer”, “Average”, and “Last” metrics
(%). “Ours” denotes our method. We label the best average results with bold styles.

Complete results. We present the detailed results of Order-I and Order-II in Table 7 and Table 8,
which represent the classification accuracy of tasks in each incremental session.

Visualization of individual tasks. Figure 5 presents the distribution for 6 individual tasks. The TSP
module correctly assigns task identifiers for most samples, with only a small fraction misclassified

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

as “unseen” (denoted by task identifier -1 in the figure) and an even smaller number incorrectly
assigned to other tasks. Across all tasks, including both seen and unseen, the TSP achieves an
accuracy exceeding 93%.

Table 5: Comparison with SOTA on MTIL benchmark in terms of “Transfer”, “Average”, and “Last”
metrics (%). “Ours” denotes our method. The presented results are derived from the Order-II.

Method
E

xt
ra

.

Pa
ra

m
.

A
ir

cr
af

t

C
al

te
ch

10
1

C
IF

A
R

10
0

D
T

D

E
ur

oS
A

T

Fl
ow

er
s

Fo
od

M
N

IS
T

O
xf

or
dP

et

St
an

fo
rd

C
ar

s

SU
N

39
7

Average

C
L

IP Zero-shot % - 64.7 88.5 59.4 89.0 71.0 65.2 24.3 88.4 44.6 54.9 68.2 65.3
Full Fine-tune % 211M 89.6 92.7 99.6 94.7 97.5 81.8 62.0 95.1 79.5 98.9 89.6 89.2

Tr
an

sf
er

ZSCL % 211M - 88.3 57.5 84.7 68.1 64.8 21.1 88.2 45.3 55.2 68.2 64.1

L2P % 0.5M - 70.6 30.7 78.3 42.8 38.3 17.4 75.3 27.4 23.1 20.7 42.5
DualPrompt % 1.8M - 79.9 46.9 85.2 51.3 45.1 9.3 82.7 29.9 42.9 47.2 52.1
S-Prompts % 0.5M - 59.8 46.2 67.7 47.5 43.8 13.5 76.8 31.4 22.6 43.5 45.3
MoE-Adapter ! 59.8M - 88.8 59.5 89.1 69.9 64.4 18.1 86.9 43.7 54.6 68.2 64.3
DIKI % 1.8M - 85.8 55.3 89.5 71.1 62.9 23.7 93.6 42.1 43.4 67.9 63.5
Ours % 1.8M - 85.7 64.1 89.1 70.7 62.6 24.8 93.3 43.3 48.4 68.4 65.0

Av
er

ag
e

ZSCL % 211M 81.7 91.3 91.1 91.0 82.9 72.5 33.6 89.7 53.3 62.8 69.9 74.5

L2P % 0.5M 80.1 87.4 86.7 89.6 76.8 59.1 27.7 79.5 39.9 34.6 26.5 62.5
DualPrompt % 1.8M 78.6 88.4 89.7 91.7 80.0 62.4 23.2 85.0 41.3 51.6 50.7 67.5
S-Prompts % 0.5M 79.2 86.5 89.5 87.0 78.2 61.5 25.5 83.6 41.9 36.3 47.2 65.1
MoE-Adapter ! 59.8M 84.9 89.9 89.3 91.4 86.2 72.2 33.4 89.4 53.3 61.4 69.9 74.7
DIKI % 1.8M 81.8 89.0 91.3 93.2 87.8 70.5 34.0 94.5 50.9 53.3 69.6 74.2
Ours % 1.8M 82.8 88.7 93.1 93.0 87.8 70.5 36.3 94.4 52.3 57.4 70.0 75.1

L
as

t

ZSCL % 211M 78.2 91.1 97.6 92.5 87.4 78.2 45.0 92.3 72.7 96.2 86.3 83.4

L2P % 0.5M 80.1 89.1 99.1 93.8 96.2 76.5 40.1 86.9 73.5 86.3 84.2 82.3
DualPrompt % 1.8M 78.6 89.3 99.2 94.1 96.5 76.8 39.8 89.0 71.6 90.7 84.9 82.8
S-Prompts % 0.5M 79.2 89.1 99.1 94.3 95.8 76.3 39.9 95.5 70.1 97.6 84.4 83.8
MoE-Adapter ! 59.8M 84.1 88.5 94.0 91.8 94.1 77.8 50.4 93.3 77.1 87.7 86.6 84.1
DIKI % 1.8M 81.8 89.3 99.3 94.7 97.4 76.8 46.4 96.0 74.2 98.0 86.0 85.4
Ours % 1.8M 82.8 89.0 99.5 94.5 97.6 77.0 50.1 96.3 76.2 98.0 85.7 86.1

Table 6: Comparison with SOTA on 16-shot MTIL-FS benchmark in terms of “Transfer”, “Average”,
and “Last” metrics (%). “Ours” denotes our method. The presented results are derived from the
Order-II.

Method

A
ir

cr
af

t

C
al

te
ch

10
1

C
IF

A
R

10
0

D
T

D

Fl
ow

er
s

Fo
od

St
an

fo
rd

C
ar

s

SU
N

39
7

Average

C
L

IP Zero-shot 24.8 92.9 68.4 43.8 71.4 85.8 65.8 62.6 64.4
Full Fine-tune 62.0 96.2 89.6 79.5 97.5 92.7 89.6 81.8 86.1

Tr
an

sf
er

ZSCL 87.3 67.7 45.4 67.8 86.6 59.7 63.4 68.3
L2P 66.7 54.3 30.6 47.3 71.5 54.6 52.4 53.9
DualPrompt 78.8 64.4 32.0 51.7 77.5 49.4 51.3 57.9
S-Prompts 70.3 52.7 31.5 54.8 74.0 55.4 50.0 55.5
DIKI 92.7 68.8 44.1 70.0 86.2 65.1 65.5 70.3
Ours 93.3 68.9 44.4 70.7 86.5 66.2 64.8 70.7

Av
er

ag
e

ZSCL 33.5 90.5 74.7 58.5 79.7 87.7 64.8 64.8 69.3
L2P 30.2 84.5 70.1 51.9 69.6 77.1 60.0 55.2 62.3
DualPrompt 36.5 89.5 72.5 52.7 72.3 80.8 56.1 54.2 64.3
S-Prompts 30.6 86.8 70.0 51.7 74.3 78.5 60.7 53.0 63.2
DIKI 41.3 95.3 76.5 58.5 82.2 86.4 68.2 66.6 71.9
Ours 45.0 94.9 75.7 59.7 83.8 86.8 70.1 64.1 72.5

L
as

t

ZSCL 27.7 90.9 74.4 64.7 90.2 89.2 80.6 74.6 74.0
L2P 30.2 87.1 75.4 64.7 91.9 86.4 76.1 74.7 73.3
DualPrompt 36.5 91.0 75.1 65.1 92.9 86.2 76.2 74.2 74.7
S-Prompts 30.6 89.2 75.8 63.8 93.9 86.2 76.7 73.9 73.8
DIKI 41.3 95.6 79.0 67.3 94.4 86.8 77.6 74.4 77.1
Ours 45.0 95.4 78.3 68.7 95.7 87.4 79.4 75.4 78.2

Energy and threshold. Table 9 reveals the task identifier classification accuracy of TSP module. We
evaluate the TSP module under 10 energies and 10 thresholds. The TSP module reach the optimal
performance when the energy and threshold are set to 0.95 and 0.96 respectively. The results are the
average accuracy for both seen and unseen tasks in all 11 incremental learning processes.

Code. The reproduction code is provided in “code.tar.gz” of the supplementary files.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Accuracy (%) of our method on the MTIL benchmark with order-I. Each row represents
the performance on every dataset of the model trained after the corresponding task. Transfer ,
Average , and Last metrics are shown in color.

A
ir

cr
af

t

C
al

te
ch

10
1

C
IF

A
R

10
0

D
T

D

E
ur

oS
A

T

Fl
ow

er
s

Fo
od

M
N

IS
T

O
xf

or
dP

et

St
an

fo
rd

C
ar

s

SU
N

39
7

Transfer 93.5 68.5 43.5 48.5 70.8 86.1 64.7 89.1 66.4 62.6 69.4

Aircraft 50.4 93.3 68.4 43.5 48.5 70.8 86.1 64.7 89.1 66.4 62.6

Caltech101 50.4 96.6 68.4 43.5 48.5 70.8 86.1 64.7 89.1 66.4 62.6

CIFAR100 50.4 96.6 86.7 43.5 48.5 70.8 86.1 64.7 89.1 66.4 62.6

DTD 50.4 96.6 86.7 76.5 48.5 70.8 86.1 64.7 89.1 66.4 62.6

EuroSAT 50.4 96.6 86.7 76.5 98.3 70.8 86.1 64.7 89.1 66.4 62.6

Flowers 50.4 96.6 86.7 76.5 98.3 98.2 86.1 64.7 89.1 66.4 62.6

Food 50.4 96.6 86.7 76.5 98.3 98.2 89.3 64.7 89.1 66.4 62.6

MNIST 50.4 96.6 86.7 76.5 98.3 98.2 89.3 99.5 89.1 66.4 62.6

OxfordPet 50.4 96.6 86.7 76.5 98.3 98.2 89.3 99.5 94.6 66.4 62.6

StanfordCars 50.4 96.6 86.7 76.5 98.3 98.2 89.3 99.5 94.6 84.3 62.6

SUN397 50.4 96.6 86.7 76.5 98.3 98.2 89.3 99.5 94.6 84.3 77.1 86.5

Average 50.4 96.3 83.3 67.5 80.2 85.7 87.5 77.3 90.8 69.6 63.9 77.5

Table 8: Accuracy (%) of our method on the MTIL benchmark with order-II. Each row represents
the performance on every dataset of the model trained after the corresponding task. Transfer ,
Average , and Last metrics are shown in color.

St
an

fo
rd

C
ar

s

Fo
od

M
N

IS
T

O
xf

or
dP

et

Fl
ow

er
s

SU
N

39
7

A
ir

cr
af

t

C
al

te
ch

10
1

D
T

D

E
ur

oS
A

T

C
IF

A
R

10
0

Transfer 86.1 64.7 89.1 70.8 62.6 24.8 93.3 43.5 48.5 68.4 65.2

StanfordCars 82.8 86.1 64.7 89.1 70.8 62.6 24.8 93.3 43.5 48.5 68.4

Food 82.8 89.6 64.7 89.1 70.8 62.6 24.8 93.3 43.3 48.5 68.4

MNIST 82.8 89.6 99.5 89.1 70.8 62.6 24.8 93.3 43.3 48.5 68.4

OxfordPet 82.8 89.6 99.5 94.5 70.8 62.6 24.8 93.3 43.3 48.5 68.4

Flowers 82.8 89.6 99.5 94.5 97.7 62.6 24.8 93.3 43.3 48.5 68.4

SUN397 82.8 89.6 99.5 94.5 97.7 77.5 24.8 93.3 43.3 48.5 68.4

Aircraft 82.8 89.6 99.5 94.5 97.7 77.5 50.6 93.3 43.3 48.5 68.4

Caltech101 82.8 89.6 99.5 94.5 97.7 77.5 50.6 96.3 43.3 48.5 68.4

DTD 82.8 89.6 99.5 94.5 97.7 77.5 50.6 96.3 76.7 48.5 68.4

EuroSAT 82.8 89.6 99.5 94.5 97.7 77.5 50.6 96.3 76.7 98.2 68.4

CIFAR100 82.8 89.6 99.5 94.5 97.7 77.5 50.6 96.3 76.7 98.2 86.6 86.4

Average 82.8 89.3 93.2 93.0 87.9 70.7 36.5 94.4 52.4 57.5 70.1 75.3

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Accuracy: 0.9350

Task
-1
0
1
2
3
4
5
6
7
8
9
10

(a) Task 0 (threshold=0.96)

Accuracy: 0.9320

Task
-1
0
1
2
3
4
5
6
7
8
9
10

(b) Task 2 (threshold=0.96)

Accuracy: 0.9380

Task
-1
0
1
2
3
4
5
6
7
8
9
10

(c) Task 4 (threshold=0.96)

Accuracy: 0.9510

Task
-1
0
1
2
3
4
5
6
7
8
9
10

(d) Task 6 (threshold=0.96)

Accuracy: 0.9120

Task
-1
0
1
2
3
4
5
6
7
8
9
10

(e) Task 8 (threshold=0.96)

Accuracy: 0.9130

Task
-1
0
1
2
3
4
5
6
7
8
9
10

(f) Task 10 (threshold=0.96)

Figure 5: 6 task-specific distributions which are generated by the TSP module. We randomly select
1000 samples from each dataset. Most samples are correctly classified, as shown by their corre-
sponding colors. A small number of samples are misclassified as from unseen tasks, while an even
smaller number, though classified as from seen tasks, are incorrectly assigned to other seen tasks.
Overall, the TSP module achieves an accuracy exceeding 90% for each task.

Table 9: TSP module performance under different energy and threshold setting.

Threshold
0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

E
ne

rg
y

0.89 0.889 0.912 0.921 0.909 0.867 0.800 0.699 0.589 0.498 0.462
0.90 0.869 0.897 0.918 0.923 0.899 0.850 0.762 0.646 0.525 0.466
0.91 0.846 0.878 0.908 0.926 0.920 0.884 0.811 0.699 0.559 0.474
0.92 0.815 0.850 0.885 0.914 0.930 0.915 0.862 0.767 0.614 0.492
0.93 0.779 0.815 0.853 0.888 0.921 0.930 0.900 0.827 0.682 0.520
0.94 0.734 0.773 0.813 0.854 0.896 0.927 0.927 0.879 0.762 0.572
0.95 0.682 0.717 0.758 0.801 0.847 0.891 0.928 0.930 0.844 0.662
0.96 0.641 0.663 0.697 0.737 0.784 0.834 0.887 0.928 0.903 0.769
0.97 0.621 0.628 0.644 0.670 0.709 0.758 0.817 0.879 0.928 0.874
0.98 0.613 0.615 0.617 0.624 0.639 0.664 0.710 0.774 0.859 0.925

16

	Introduction
	Related works
	Incremental Learning
	Multi-Domain Task-Incremental Learning
	Discriminative Cross-Task Identification

	Approach
	Preliminaries
	Framework Overview
	Dynamic LoRA
	Task Subspace Projection

	Experiments
	Experimental Setting
	Experimental Results
	Analysis

	Conclusion
	Appendix
	Experimental Details
	Experimental Results

