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ABSTRACT

Direct Preference Optimization (DPO) is gaining popularity as an alternative
to Proximal Policy Optimization (PPO) for aligning Large Language Models
(LLMs). Recent research on aligning LLMs iteratively with synthetic or partially
synthetic data has shown promising outcomes, facilitating the scalability of DPO
training in both academic settings and proprietary models such as Llama 3. De-
spite its success, we observe that the issue of length exploitation in DPO becomes
more pronounced during iterative preference optimization, with the severity es-
calating progressively with each iteration. This observation prompts an in-depth
examination of iterative preference optimization with synthetic data. In this pa-
per, we present our findings and analyses in building our iterative preference opti-
mization pipeline. Specifically, we analyze the issue of length exploitation in this
iterative process and propose a novel training objective for iterative preference op-
timization, namely Agreement-aware Iterative Preference Optimization (AIPO).
To demonstrate the effectiveness of our proposed method, we conduct extensive
experiments and show that it achieves state-of-the-art performance on MT-Bench,
AlpacaEval 2.0, and Arena-Hard.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Stiennon et al.,
2020a) has emerged as a crucial technique to align Large Language Models (LLMs) with human
preferences. Although RLHF is effective compared to Supervised Fine-Tuning (SFT) (Ouyang
et al., 2022a), it encounters scalability challenges due to its training inefficiency and multistage
process. Recently, Direct Preference Optimization (DPO) has gained attention due to its scalabil-
ity to large-scale models and its superior performance compared to Proximal Policy Optimization
(PPO), thus serving as a good alternative to the conventional RLHF pipeline (Dubey et al., 2024).
The key success of DPO derives from re-parameterizing the reward model using optimal policy ob-
tained from the reinforcement learning phase, enabling direct training of the language model via
reward modeling. Consequently, DPO facilitates efficient scaling for training large-scale models to
learn human feedback. Nonetheless, DPO still faces challenges due to the labor intensive labeling
process required for preference data collection. Currently, advances in both proprietary and open-
source LLMs have demonstrated human-level performance across various tasks (Dubey et al., 2024;
Achiam et al., 2023; Yang et al., 2024), indicating their potential to autonomously generate pref-
erence data. Based on this fact, replacing human annotation with LLM-generated data becomes a
popular solution to the aforementioned scalability challenge.

Recent studies (Yuan et al., 2024; Wu et al., 2024a; Tran et al., 2023; Chen et al., 2024) show
that aligning LLMs with synthetic data in an iterative manner can effectively achieve continuous
improvement in performance and allow for a higher performance ceiling. However, despite their
success, the length exploitation issue that exists in the generic DPO setting (Park et al., 2024) has a
strong impact on performance, as observed in our research and noted in recent works (Yuan et al.,
2024; Tran et al., 2023). Current benchmarks for preference optimization exhibit a common bias
toward lengthy responses, which are less efficient for users to consume and require more hardware
resources to generate. Additionally, creating and training on synthetic data for lengthy responses
consume more hardware resources. Therefore, we argue that high scores on existing benchmarks are
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insufficient to reflect alignment performance accurately, and the length exploitation issue needs more
attention. Moreover, due to the complexity of multistage iterative training, numerous combinations
of training procedures remain unexplored. These include the detailed steps for creating synthetic
preference pairs, the data amount to be trained on each iteration, the tuning of hyperparameters for
each training stage, data selection and cleaning, and the combination with other training methods,
etc. Despite the success of existing works, these questions remain unanswered. We thus argue
that research in the area of iterative preference optimization is still in its early stages and that the
fundamental building blocks for iterative preference optimization are still under explored.

In this work, we showcase our training recipe for aligning LLMs with purely synthetic data itera-
tively by carefully examining the design choices for each component in iterative preference opti-
mization, serving as a good starting point for investigating iterative preference optimization. During
this process, we reveal the severe length issue in iterative preference optimization, which we believe
significantly limits the potential application of this method. Through our analysis, we propose so-
lutions to overcome the length issue in training stages and introduce our own training objective for
iterative preference optimization. Our contributions can be summarized as follows:

• Data: a Synthetic Data Curation Pipeline for Preference Optimization. We examine the
validity of preference optimization with synthetically generated data. The pipeline includes in-
struction creation, response generation, and preference ranking. We conclude that models trained
with synthetic data yield better performance and have the potential to scale up at a low cost. §3.1

• Finding: Length Exploitation Issue in Iterative Training Strategy. We define our iterative
preference optimization training strategy and perform ablations in different configurations. We
observe a more severe length exploitation issue during iterative training with synthetic data. §3.2

• AIPO: Optimized Training Objective for Iterative Preference Optimization. We dive deep
into the length exploitation issue and discover that one of the potential causes is related to the
DPO loss. To remedy this, we introduce a new optimized training objective, AIPO, which is more
suitable for iterative preference optimization scenarios. §4

Altogether, we propose an effective training recipe for iterative preference optimization, including
the AIPO training objective for iterative training. By leveraging this new training recipe, we achieve
state-of-the-art performance on benchmarks including MT-Bench, AlpacaEval 2.0 and Area-Hard.

2 PRELIMINARIES AND RELATED WORK

2.1 DIRECT PREFERENCE OPTIMIZATION

Direct Preference Optimization (DPO) (Rafailov et al., 2024) is derived from the reinforcement
learning (RL) phase of the RLHF pipeline (Thoppilan et al., 2022; Stiennon et al., 2020b; Bai et al.,
2022; Ouyang et al., 2022b). The objective of the RL phase is formulated as follows:

max
πθ

Ex∼D,y∼πθ(y|x) [rϕ(x, y)]− βDKL [πθ(y | x)∥πref(y | x)] , (1)

where πθ is the policy model, πref is the reference policy, rϕ is the reward model, and β is a hyper-
parameter to control the deviation from the reference policy. Instead of training an explicit reward
model and employing RL, DPO reparameterizes the reward utilizing an implicit optimal reward
function:

r(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x), (2)

where Z(x) is the partition function. Incorporating the reward function into the Bradley-Terry
model (Bradley & Terry, 1952),

p(yw ≻ yl|x) = σ(r(x, yw)− r(x, yl)), (3)
cancels the partition function and yield the DPO training objective:

LDPO (πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

)]
, (4)

where yw and yl are the chosen and rejected responses, respectively. Consequently, DPO train-
ing can be directly applied to binarized preference datasets, which include ternary preference pairs
(x, yw, yl). DPO eliminates the need for an explicit reward model and RL during training, making
it more suitable for scaling up the RLHF training stage.
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2.2 PREFERENCE OPTIMIZATION OBJECTIVES

Several preference optimization objectives have been developed in addition to DPO. One line of
research is to study preference optimization without relying on a reference model (Xu et al., 2023;
Hong et al., 2024; Meng et al., 2024). Other methods try to add a margin between the chosen
and rejected responses (Gheshlaghi Azar et al., 2023; Zhao et al., 2023; Zheng et al., 2023a). R-
DPO (Park et al., 2024) and SimPO (Meng et al., 2024) also explore length-controlled approaches
by leveraging length regularization and length normalization, respectively. RPO (Liu et al., 2024)
proposes a training objective that incorporates a weighted SFT loss as the regularization term. It is
worth noting that, despite the effectiveness of certain methods, the validation of the majority of these
improved DPO losses has been primarily limited to non-iterative settings, with a lack of validation
in iterative contexts.

2.3 ITERATIVE ALIGNMENT METHODS

Iterative alignment is gaining popularity for achieving continuous improvement through successive
training iterations. Self-Rewarding (Yuan et al., 2024) focuses on self-involvement of large language
models, utilizing the LLM-as-a-Judge mechanism (Zheng et al., 2023b) to score their own responses,
thus mitigating the performance bottlenecks that can arise from a frozen judge model. It leverages
iterative training to generate self-judgement using an up-to-date model. Based on Self-Rewarding,
Iterative RPO (Pang et al., 2024) aims to improve reasoning ability through iterative preference op-
timization by utilizing Chain-of-Thought (CoT) (Wu et al., 2023) reasoning. Meta-Rewarding (Wu
et al., 2024a) focuses on improving the self-judging ability in self-rewarding by adding a role of
meta-judge to judge the model’s own judgement. sDPO (Kim et al., 2024) suggests dividing the
available preference datasets into multiple subsets and training on each subset iteratively. Snorkel-
Mistral-PairRM-DPO (Tran et al., 2023) is trained iteratively, starting from an initial prompt pool
sampled from UltraFeedback. The model is prompted with instructions from UltraFeedback to gen-
erate several candidate responses and then uses PairRM (Jiang et al., 2023b) as reward model to
rank the responses. Finally, it trains on the top and bottom responses with DPO. SPPO (Wu et al.,
2024b) approximates the Nash equilibrium iteratively by pushing the chosen rewards to be close to
1/2 and the rejected rewards to be -1/2. Although all these methods involve iterative training, they do
not explain the differences between non-iterative and iterative preference optimization. In addition,
they lack a detailed analysis of the design choices and properties involved in the iterative preference
optimization.

3 ITERATIVE PREFERENCE OPTIMIZATION WITH SYNTHETIC DATA

In this section, we detail the step-by-step development of a state-of-the-art training recipe for itera-
tive preference optimization, examining the design choices for each component. We start with the
non-iterative baseline, which is trained on the existing pairwise preference dataset, and then move
on to synthetic preference pairs and iterative training. Finally, we present our refined training recipe
for subsequent experiments and emphasizing the challenges posed by the iterative training approach.

3.1 SYNTHETIC DATA CURATION

The training data for DPO consists of a large number of preference pairs (x, yw, yl). Previous
works (Yuan et al., 2024; Wu et al., 2024a; Tran et al., 2023; Chen et al., 2024) have suggested
various methods for creating synthetic preference pairs for preference optimization, but there is a
lack of detailed comparison. To study the roles and effects of different components in the data
curation pipeline within preference optimization, we conducted a thorough analysis of all aspects,
including instructions, responses, and preference rankings.

Self-Generated Responses vs. External Model Responses. Recent works (Tran et al., 2023;
Meng et al., 2024; Wu et al., 2024b; Yuan et al., 2024; Pang et al., 2024; Wu et al., 2024a) suggest
leveraging self-generated responses and existing state-of-the-art reward models to build preference
pairs, despite the presence of existing responses and rewards in preference datasets. To explore this
difference, we conduct experiments on the UltraFeedback dataset. We begin with vanilla DPO train-
ing by training for a single epoch on the 60K preference pairs from UltraFeedback Binarized. We

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: The ablation of the synthetic preference pairs for DPO training. UF indicates the instructions
and responses from UltraFeedback, SI(·) indicates generating self instruct based on the inputs,
Gen(·) indicates generating candidate responses with policy model by taking inputs as prompts, and
PairRM(·) indicates ranking responses by PairRM.

Training Data Arena-Hard AlpacaEval 2.0 MT-Bench
Instruction Response WR (%) Avg. Token LC (%) WR (%) Avg. Len GPT-4-Turbo

(1) UF UF 14.4 535 20.4 16.5 1664 6.3
(2) UF PairRM(UF) 13.6 512 20.8 16.4 1623 6.2
(3) UF PairRM(Gen(UF)) 17.6 649 23.7 25.2 2198 6.5
(4) SI(UF) PairRM(Gen(SI(UF))) 19.6 615 26.0 28.2 2130 6.4

Table 2: Comparison of methods for ranking candidate responses. We generate candidate responses
for 60K instructions from UltraFeedback. For LLM judge, we use the LLM-as-a-Judge prompt from
Self-Rewarding and employ Mixtral-8x7B-Instruct-v0.1 as the external LLM judge model.

Response
Ranking

Arena-Hard AlpacaEval 2.0 MT-Bench

WR (%) Avg. Token LC (%) WR (%) Avg. Len GPT-4-Turbo

Self-Reward 14.5 729 21.0 22.5 2225 6.1
External LLM 13.9 603 20.5 19.6 1890 6.1
PairRM 17.6 649 23.7 25.2 2198 6.5

then replace GPT-4 with PairRM as the ranking method for candidate responses to ensure a fair com-
parison. Finally, we replace existing responses with self-generated ones, using PairRM to rank them
and select the best and worst responses as yw and yl, following Snorkel-Mistral-PairRM-DPO (Tran
et al., 2023). The results in Tab. 1 show that replacing GPT-4 annotations with PairRM rankings
(row (1) vs. row (2)) is not crucial for performance, while the use of self-generated responses
(row (3)) contributes the most to the performance gap. We also highlight that the average response
length significantly increases when using self-generated responses (row (3) and (4)) compared to
externally-generated ones.

Synthetic Instructions vs. Human Instructions As suggested in Self-Rewarding (Yuan et al.,
2024), we employ Self-Instruct (Wang et al., 2023) to build a fully synthetic training pipeline, start-
ing from synthetic instructions. Subsequently, the same pipeline is used to generate candidate re-
sponses and rank them using PairRM, as mentioned above. As shown in Tab. 1 (row 4), training
with fully synthetic instructions generated by self-instruct achieves performance competitive to hu-
man instructions in UltraFeedback.

Reward Models vs. LLM Judges Existing works primarily use two methods to rank candidate
responses: 1) using pre-existing reward models (e.g., PairRM) (Meng et al., 2024; Park et al., 2024;
Tran et al., 2023), and 2) prompting LLMs with a judge prompt to score responses (Yuan et al., 2024;
Pang et al., 2024; Wu et al., 2024a). The LLM judge model can either be external or the LLM itself.
Although this novel approach shows promise in incorporating self-involvement in iterative training,
our experimental results reveal that LLM judges underperform compared to dedicated reward mod-
els such as PairRM. As shown in Tab. 2, despite having only 0.4B parameters, PairRM outperforms
the LLM judge across all benchmarks. Moreover, prompting LLMs to generate scores and rank re-
sponses is computationally expensive. Thus, we opted for pre-existing reward models like PairRM
to ensure simplicity and optimal performance. We also note that the reward model largely deter-
mines the upper limit of preference optimization, and a stronger reward model can further improve
performance (Wu et al., 2024a). We leave this analysis for future work.

3.2 TOWARDS ITERATIVE PREFERENCE OPTIMIZATION

Through the detailed comparative experiments described above, we have developed our synthetic
data curation pipeline by integrating the optimal design choices identified through ablation studies,
comprising: (1) creating synthetic instructions using self-instruction, (2) generating candidate re-
sponses using the model from the current iteration, and (3) ranking the responses with an existing
state-of-the-art reward model. We emphasize that this pipeline is entirely synthetic: starting from
an initial prompt pool, we are capable of generating a substantial amount of data until the model

4
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Algorithm 1: Iterative Training Pipeline.
Input: Xpool: Initial prompt pool, θ0: Base model, T : Number of iterations, P : Number of new

instructions, N : Number of candidate responses.
for t = 0, . . . , T − 1 do

for i = 1, . . . , P do
Generate new instruction: xi = SelfInstructθt(X

pool).
for j = 1, . . . , N do

Generate candidate responses: yi
j ∼ pθt(· | xi).

end
Rank responses and obtain preference pairs: (xi, yi

w, y
i
l ) = PairRM(xi, yi

1, . . . , y
i
N ).

end
Update model weights: θt+1 = argmin

θ

∑P
i=1 LAIPO(x

i, yi
w, y

i
l , θt, θ)

end
Output: θT

converges. Utilizing our synthetic data curation pipeline, we have extended the alignment process
in an iterative manner, as delineated in Algorithm 1.

To investigate the properties and impact of iterative training on performance, we maintain a constant
total volume of training data while varying the data size per iteration. The results, as shown in
Fig. 1, reveal that increasing the number of iterations with smaller data sizes per iteration leads to
a higher performance ceiling, highlighting the importance of iterative training. We hypothesize that
iterative training improves preference optimization by updating both the data generation model and
the reference model for the training objective in each iteration, providing timely feedback. However,
using smaller data sizes per iteration requires frequent transitions between training phases, which
demands a more sophisticated implementation to maintain training efficiency. Moreover, we observe
that further reducing the number of training data per iteration yields only marginal improvements.
Therefore, in subsequent experiments, we set the iterative training parameters to 20K preference
pairs per iteration, with a default batch size of 256.

Compared to the non-iterative preference optimization presented in Tab. 1, we emphasize that, de-
spite performance improvements, iterative preference optimization leads to server length exploita-
tion. Our objective is to continuously improve performance through iterative preference optimiza-
tion. Although this approach effectively achieves a high win rate across benchmarks, the issue of
length exploitation is particularly evident in this scenario: increased length results in significantly
longer training times, ultimately causing performance degradation due to excessive verbosity. To
address this apparent and critical issue, we begin by analyzing the problem of length exploitation in
iterative training and have managed to resolve it from the perspective of the training objective, as
detailed in the following section.

4 REVISITING TRAINING OBJECTIVES

4.1 ANALYZING DPO IN ITERATIVE TRAINING

Our experiments reveal a significant length exploitation issue in iterative DPO when using self-
generated responses, prompting us to investigate the root cause of this undesired behavior. One ad-
vantage of using self-generated responses is that they are generated directly by the model produced
in the most recent iteration. They represent the model’s best capability in following the provided
instructions and both the quality and format of the responses generated for each instruction are very
similar. To verify this, we analyze the similarity and log probabilities of the responses from different
sources, as shown in Tab. 3. Compared to the externally generated responses, the self-generated ones
have 1) a much higher average value of the log probabilities for both chosen and rejected responses
and 2) a significantly higher similarity between the chosen responses and the rejected responses.
When combined with iterative training, in each iteration, new candidate responses are generated us-
ing the latest model checkpoint from the previous iteration, and the reference model is also updated.
This process makes the training resemble online RLHF to some extent, wherein the LLM receives
semi-real-time AI feedback from the reward model based on its generated completions. We hypoth-
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Figure 1: Ablation of iterative training. The horizontal axis represents the training iterations. We
train for T iterations, generating P preference pairs in each iteration. In this ablation, we ensure that
the number of total generated pairs T × P remains constant.

esize that this is the primary reason iterative training performs better than non-iterative training, as
demonstrated in Sec. 3.2.

However, the similarity of self-generated responses, as indicated in Tab. 3, poses a challenge in
distinguishing their quality. Since the candidate responses are similar to each other, it becomes
difficult for the reward model to rank them accurately. Moreover, the training objective in Eq. 4 aims
to increase the log-likelihood of the chosen responses and decrease that of the rejected responses,
while ignoring the intrinsic relationship between them. Forcing the model to distinguish between
very similar chosen and rejected responses with high log probabilities can lead to an overestimated
gradient value. We hypothesize this makes the DPO training objective susceptible to self-generated
preference pairs, consequently degrading the model’s learning and resulting in responses that are
lengthy and less informative.

4.2 AIPO: AGREEMENT-AWARE ITERATIVE PREFERENCE OPTIMIZATION

We propose to address the difficulty of learning from self-generated responses by leveraging the
feedback from the reference model. To achieve this, we first rewrite the DPO training objective in
Eq. 4 as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β
(
sθ − sref

))]
, (5)

where sθ = log πθ(yw|x)
πθ(yl|x) and sref = log πref (yw|x)

πref (yl|x) . We note that sref represents the extent to which
the reference model tends to generate the chosen response yw with a higher probability than the
rejected response yl, i.e., the agreement between the reference model and the reward model. We
introduce an additional coefficient α to sref in Eq. 5. The new training objective is defined as:

Lα-DPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β
(
sθ − (1 + α)sref

))]
, (6)

where we set α > 0. We note that sref is not related to the policy model πθ, thus it is equivalent to
adding an additional dynamic target reward margin term to the Bradley-Terry model in Eq. 3, which
can be written as:

p(yw ≻ yl|x) = σ
(
r(x, yw)− r(x, yl)− αβ · sref

)
, (7)

where αβ · sref is a dynamic target margin for adjusting the distribution of reward margin. As
investigated in previous works (Meng et al., 2024), a larger target margin value produces a larger
reward margin by flattening the reward difference distribution. Intuitively, αβ · sref resulting in a
larger reward margin when the preference of the reference model agrees with that of the reward
model according to the selected chosen and rejected responses, and pose resistance when there is a
preference mismatch between the reference model and the reward model. This ensures a scaling of
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Table 3: The similarity and log probabilities of chosen and rejected responses. We use Sentence
Transformers1 to calculate similarity, and Mistral-7B-Instruct-v0.2 to generate responses and com-
pute the log probabilities. We also include the length-normalized log probabilities in parentheses.

Type of Responses Sentence
Similarity

Log Probabilities

Chosen Rejected

Externally-Generated (UltraFeedback) 0.64 -361.5 (-1.140) -461.1 (-1.927)
Self-Generated 0.86 -107.8 (-0.268) -110.4 (-0.271)
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Figure 2: Chosen and rejected rewards during training. The chosen and rejected rewards are drawn
from the first iteration of each method.

rewards by considering the agreement between the reference model and the reward model, which
helps eliminate the aforementioned problem of using self-generated responses. Next, we analyze
the gradient of Lα-DPO. The gradient with respect to θ can be written as:

∇θLα-DPO (πθ;πref) = −βE(x,yw,yl)∼D

[
wθ ·

(
∇θ log π (yw | x)︸ ︷︷ ︸
increase likelihood of yw

− ∇θ log π (yl | x)︸ ︷︷ ︸
decrease likelihood of yl

)]
, (8)

where
wθ = σ

(
β
(
sref − sθ︸ ︷︷ ︸
weighted by

reward estimate

+ α · sref︸ ︷︷ ︸
weighted by
agreement

))
(9)

is the gradient weight. The gradient of the loss function Lα-DPO preserves the core properties of
DPO: it increases the likelihood of preferred responses yw and decreases the likelihood of dispre-
ferred responses yl, weighted by the reward estimate sref − sθ. Importantly, α-DPO adds an addi-
tional weighting term αβ · sref , which weights the gradient by how much more the reference model
prefers the chosen response over the rejected response, i.e., the agreement between the preferences
of the reference model and the reward model.

In Fig. 2, we investigate the trend of chosen and rejected rewards during training with α-DPO. The
results show that α-DPO leads to a decrease in both chosen and rejected response log probabilities,
which might be harmful as noted in previous work (Pang et al., 2024). However, it is interesting that
the performance of α-DPO improves despite the decrease in log probabilities for both the chosen
and rejected responses by the policy model. We highlight that the decrease in probabilities of self-
generated responses also indicates the shift of policy model’s output distribution, reflecting that α-
DPO provides a clear target for learning preferences, thereby making it easier for the model to learn
preferences. Since rapid changes in the output distribution may be unstable, we employ Negative
Log Likelihood (NLL) loss as a compensatory measure, following previous works (Pang et al., 2024;
Dubey et al., 2024). The NLL term is defined as:

LNLL = − 1

|yw|
log

(
πθ(yw | x)

)
. (10)

Combining α-DPO with NLL term, our AIPO training objective for iterative preference optimization
is defined as:

LAIPO = Lα-DPO + λ · LNLL (11)
where λ balances the relative importance of LNLL.

1https://sbert.net/
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Figure 3: Comparison of different training objectives under iterative alignment setting. The hori-
zontal axis represents the training iterations.
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Figure 4: The performance-to-length chart comparing different training objectives, evaluated using
length-controlled win rate of AlpacaEval 2.0.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Following previous works (Tran et al., 2023; Meng et al., 2024; Wu et al., 2024b), we use Ultra-
Feedback (Cui et al., 2023) as the data source for all experiments. We evaluate our model on three
benchmarks: MT-Bench (Zheng et al., 2023b), AlpacaEval 2.0 (Li et al., 2023; Dubois et al., 2024),
and Arena-Hard (Li et al., 2024), all using GPT-4-Turbo (11/06) as an automatic annotator. Our ex-
periments focus on AlpacaEval 2.0 and Arena-Hard due to their better separability, while MT-Bench
results are included for comparison. For more detailed settings, please refer to Sec. A.1 in appendix.

5.2 COMPARISONS WITH PREFERENCE OPTIMIZATION METHODS

We conducted extensive experiments to compare various methods within our iterative settings, val-
idating (1) the hyperparameters in vanilla DPO and DPO+NLL, (2) the effectiveness of α-DPO in
length control, (3) the role of NLL term in training, and (4) the overall performance of AIPO and its
generalization to base LLM models. Specifically, we compare our approach to DPO and DPO+NLL,
which serve as baselines, SimPO, a state-of-the-art training objective in non-iterative settings, and
R-DPO, which is tailored for length control in non-iterative settings. To ensure the stability of the
results, we conducted training for a total of 10 iterations, evaluating performance on benchmarks
with the consideration of length increment.

Analysis of DPO and DPO+NLL. For each method, we perform comprehensive hyperparameter
searches to (1) identify the optimal combination of hyperparameters and (2) analyze the attributes

8
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Table 4: The detailed comparison with other iterative preference optimization methods and pro-
prietary models. To ensure a fair comparison with other methods, for iterative training, we select
models based on both win rate and response length on AlpacaEval 2.0 and Arena-Hard.

Methods Arena-Hard AlpacaEval 2.0 MT-Bench

WR (%) Avg. Token 2.0 LC (%) 2.0 WR (%) Avg. Len GPT-4-Turbo

Baselines
Mistral-7B-Instruct-v0.2 12.8 526 22.0 16.8 1610 6.2
Llama-3-8B-Instruct 20.7 584 30.4 30.3 1955 6.8
Gemma-2-9B-It 42.3 567 48.4 34.4 1568 7.5

Mistral-7B-Instruct-v0.2, UltraFeedback, PairRM
Snorkel-Mistral-PairRM-DPO (Tran et al., 2023) 20.7 564 26.4 30.2 2736 6.2
SPPO (Wu et al., 2024b) 21.8 572 28.5 31.0 2163 6.5
AIPO 16.7 468 26.2 21.3 1669 6.3

Llama-3-8B-Instruct, Open Assistant dataset
Self-Rewarding (Yuan et al., 2024) 28.2 - 34.9 34.6 1967 -
Meta-Rewarding (Wu et al., 2024a) 29.1 - 39.4 39.5 2003 -

Llama-3-8B-Instruct, UltraFeedback, PairRM
SPPO (Wu et al., 2024b) 34.0 597 38.8 39.9 2066 6.8
AIPO 33.8 585 46.2 45.3 1977 6.9

Gemma-2-9B-It, UltraFeedback, PairRM
SPPO (Wu et al., 2024b) 51.1 609 53.3 47.7 1803 7.6
AIPO 53.0 637 59.1 49.6 1809 7.6

of various methods regarding length-related issues under our iterative settings. Due to space con-
straints, we present the detailed results in Sec. A.5 of the appendix. Through a thorough ablation
study, we conclude that adjusting the value of β in DPO and the value of α to control the coeffi-
cient of the NLL term in DPO+NLL, while limiting the increase in response length with training
iterations, also constrains performance improvements, leaving the performance-to-length ratio un-
changed. Thus, we emphasize that merely controlling length growth is insufficient. It is crucial to
consider the performance-to-length ratio along with a steeper slope, as depicted in Fig. 4.

α-DPO for length control. As illustrated in Fig. 3, although the performance of SimPO improves
significantly with training iterations, it generates considerably longer responses compared to other
methods. This result contradicts the aim of length normalization employed in the SimPO training
objective, suggesting that length normalization is not suitable for controlling length exploitation in
our iterative settings. Conversely, α-DPO demonstrates competitive performance with substantially
shorter responses in iterative contexts. Designed specifically for length control, R-DPO achieves
performance comparable to α-DPO in length control within iterative settings. Fig. 4 provides a
clearer visualization of the performance-to-length ratio and demonstrates that α-DPO remains supe-
rior (with a steeper slope) in mitigating the increase in response length during iterative training.

NLL term for stable training. The results further indicate that including the NLL term in the DPO
offers only marginal performance improvement, implying that its primary function is to stabilize
the distribution of the policy model throughout the training process. However, incorporating the
NLL term into α-DPO, resulting in AIPO, effectively mitigates the trend of decline in rewards,
as demonstrated in Fig. 2, and further improves performance at equivalent length. As shown in
Fig. 3, AIPO maintains a nearly constant response length throughout iterative training, albeit with
an acceptable reduction in performance compared to DPO and SimPO. From the evaluation on
Arena-Hard, it is evident that, compared to R-DPO, AIPO exhibits less variation in response length,
indicating greater stability in length control than direct regularization by response length. This
underscores the importance of incorporating the NLL term in AIPO to stabilize the output log-
likelihood distributions of the winning and losing pairs of the policy model, ultimately leading to
better performance.

AIPO for various LLM base models. In Tab. 4, we further compare AIPO with other iterative
preference optimization methods. Using Mistral-7B-Instruct-v0.2 as the base model, we observe
that the performance ceiling is significantly constrained without increasing the response length, un-
derscoring the difficulty of improving the win rate without increasing the response length when the
base model’s capacity is limited. This suggests a potential issue of length gameability in AlpacaE-
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Table 5: Results of our model size scaling experiment and comparison with proprietary models.

Methods Parameters Arena-Hard AlpacaEval 2.0 MT-Bench

WR (%) Avg. Token 2.0 LC (%) 2.0 WR (%) Avg. Len GPT-4-Turbo

Mistral-Large-Instruct-2407-AIPO 123B 82.6 (+12.2) 659 63.0 (+6.9) 66.2 (+22.6) 2266 8.5 (+0.1)

GPT-4-Turbo (04/09) - 82.6 662 55.0 46.1 1802 -
Claude 3.5 Sonnet (06/20) - 79.3 567 52.4 40.6 1488 -
GPT-4 Omni (05/13) - 79.2 696 57.5 51.3 1873 -
GPT-4o Mini - 74.9 668 50.7 44.7 1861 -
Mistral-Large-Instruct-2407 123B 70.4 623 56.1 43.6 1700 8.4
Llama-3-70B-Instruct-AIPO 70B 63.5 (+16.9) 616 60.5 (+26.1) 60.1 (+26.9) 2081 8.2 (+0.3)

Gemma-2-27B-It-AIPO 27B 63.5 (+8.3) 643 57.8 (+7.7) 48.5 (+11.0) 1768 8.0 (+0.3)

Claude 3 Opus (02/29) - 60.4 541 40.5 29.1 1388 -
Gemma-2-27B-It 27B 55.2 594 50.1 37.5 1628 7.7
Mistral-Nemo-Instruct-2407-AIPO 12B 51.4 (+12.0) 551 60.3 (+13.9) 57.5 (+15.8) 1978 7.4 (+0.0)

Claude 3 Sonnet (02/29) - 46.8 552 34.9 25.6 1420 -
Llama-3-70B-Instruct 70B 46.6 591 34.4 33.2 1919 7.9
Mistral-Nemo-Instruct-2407 12B 39.4 556 46.4 41.7 1883 7.4
GPT-4 (06/13) - 37.9 354 30.2 15.8 1140 -
GPT-3.5 Turbo (06/13) - 24.8 401 22.7 14.1 1328 -

val 2.0 and Arena-Hard. Despite this, we achieve competitive performance without increasing the
response length, underlining the short response length of our method. Conversely, training on robust
LLMs (e.g., Llama-3-8B-Instruct) tends to yield greater performance improvements even without
increasing the response length, highlighting the potential for continuous enhancements in iterative
preference optimization. The results on Llama-3-8B-Instruct and Gemma-2-9B-It demonstrate that,
due to our iterative training pipeline and the AIPO training objective, we achieve state-of-the-art
performance across all benchmarks compared to other iterative preference optimization methods.
Additionally, length exploitation is effectively controlled.

5.3 COMPARISONS WITH SCALED-UP LLMS

To facilitate comparisons with the most advanced proprietary models, we scaled our base model
from 13B to a maximum of 123B. As shown in Tab. 5, our 13B model, Mistral-Nemo-Instruct-2407-
AIPO, achieves a 12% improvement in win rate on Arena-Hard compared to the base model, without
any increase in average response length. Gemma-2-27B-It-AIPO and Llama-3-70B-Instruct-AIPO
achieve improvements in win rates of 8.3% and 16.9% respectively on Arena-Hard, with about 8%
and 4% of increasements in response length. When training the 123B base model, Mistral-Large-
Instruct-2407, we managed to achieve an additional 12.2% improvement of win rate, despite the
base model already attaining a 70.4% win rate, while the average response length is shorter than
GPT-4 Omni (05/13) and GPT-4o Mini. These results highlight the effectiveness of our approach in
balancing performance gains with response length in preference optimization, further demonstrat-
ing the scalability and robustness of iterative training pipeline and AIPO training objective across
different model sizes.

6 CONCLUSION

In this study, we investigate the transition from non-iterative DPO training to iterative alignment
of LLMs using synthetic data. Our research addresses a significant gap in the existing literature
by providing a comprehensive comparison and analysis of iterative preference optimization training
methodologies and presenting a robust framework for iterative preference optimization. Building
upon this foundation, we examine the phenomenon of length exploitation in iterative training, which
significantly degrades performance. We examine the characteristics of self-generated responses and
introduce AIPO, an approach designed to incorporate agreement-aware adjustments in the training
objective to mitigate the length issue and ensure stability in iterative preference optimization. By
integrating these techniques, we achieve state-of-the-art performance on MT-Bench, AlpacaEval
2.0, and Arena-Hard without compromising on length.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Base Model In our experiments, we use Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a) as the base
model for investigating synthetic data curation and iterative training in Sec. 3.1 and 3.2 due to limited
computation resources. We then use Mistral-Nemo-Instruct-2407 (Mistral AI team, 2024b), a more
advanced LLM, in Sec. 4 for developing our training objective to demonstrate the capability of our
method. Note that Mistral Nemo is a 12B model, which acts as a drop-in replacement for Mistral
7B with more capable performance. To provide a detailed comparison with other iterative training
methods and proprietary models, we trained on Llama 3 (Dubey et al., 2024), Gemma 2 (Team et al.,
2024) and Mistral-Large-Instruct-2407 (Mistral AI team, 2024a), as shown in Tab. 4.

Training Data We use UltraFeedback as the data source for all experiments. UltraFeedback is
a large-scale preference dataset containing approximately 64K prompts from various sources. The
responses in UltraFeedback are generated by multiple LLMs and annotated by GPT-4 based on
four different aspects: instruction-following, truthfulness, honesty, and helpfulness. There is also a
binarized version2, which is created by selecting the highest score as the chosen response and one
of the remaining as the rejected response. For training directly on UltraFeedback (row 1 in Tab.1),
we utilize the binarized version. In contrast, for ranking responses on UltraFeedback with PairRM
(row 2 in Tab.1), we employ the instructions and responses from the original UltraFeedback dataset.
In the remaining experiments, we focus solely on the instructions from UltraFeedback, omitting the
responses altogether.

Hyperparameters For both data curation and training, we set the maximum prompt length to 512
tokens and the maximum response length to 2048 tokens. For data curation ablations in Sec. 3.1,
we train on 60K preference pairs sourced from either UltraFeedback or synthetic data, with a batch
size of 128. For iterative training in Sec. 3.2 and 4, we set the batch size to 256. After performing
ablations for iterative training in Sec. 3.2, we chose to train on 20K preference pairs per iteration
by default for the iterative training in Sec. 4. For all experiments, we train for one epoch for each
training stage using the AdamW optimizer with a learning rate of 5e−7. We apply a cosine learning
rate schedule with 10% warmup.

Evaluation We evaluate on three benchmarks: MT-Bench Zheng et al. (2023b), AlpacaEval
2.0 Dubois et al. (2024); Li et al. (2023) and Arena-Hard Li et al. (2024). MT-Bench has 80
questions across 8 categories, with responses rated on a 10-point scale. We report the average scores
assigned by GPT-4-Turbo. AlpacaEval 2.0 includes 805 questions, with GPT-4-Turbo acting as
both baseline and judge. It calculates win rate against baseline and includes a length-controlled win

2https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
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Table 6: Effect of rule-based filtering on training with synthetic data.

Filtering Arena-Hard AlpacaEval 2.0 MT-Bench

WR (%) Avg. Token LC (%) WR (%) Avg. Len GPT-4-Turbo

w/o Filtering 19.0 679 25.5 27.9 2250 6.3
w/ Filtering 19.6 615 26.0 28.2 2130 6.4
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Figure 5: The ablation of base model for iterative preference optimization.

rate, which aims to mitigate the impact of length gameability of the LLM judge. We report the win
rate (WR), the length-controlled win rate (LC), and the average character length (Avg. Len). Arena-
Hard is an improved version of MT-Bench, featuring 500 high-quality prompts selected from user
queries. GPT-4 (03/14) is used as the baseline model, with GPT-4-Turbo serving as the annotator. It
calculates the win rate against the baseline model. We report the win rate (WR) and average token
number (Avg. Token).

A.2 FILTERING FOR SYNTHETIC PREFERENCE DATA

Our training pipeline relies heavily on synthetic data, making it sensitive to the characteristics of the
base model, such as response style, diversity, and capacity. For smaller-scale models, the synthetic
data often contains more biases and unexpected responses due to their limited capacity. To address
this, we implement some basic rule-based filtering and data cleaning strategies during the self-
instruct creation and candidate response generation stages to stabilize training and mitigate biases.
This includes removing self-asked instructions, filtering out URLs from responses, and eliminating
excessively long responses. Following the experimental settings in Sec. 3.1, we conduct experiments
to verify the effectiveness of filtering. As shown in Tab. 6, applying filtering slightly improves
overall performance. We thus apply filtering by default for all experiments in the main paper.

A.3 MODEL ABLATION FOR ITERATIVE PREFERENCE OPTIMIZATION

To investigate how the base model affects length issue in iterative preference optimization, we per-
form model ablation in iterative settings, and employ vanilla DPO as the training objective in the
training phase. The results are shown in Fig. 5. Our conclusion is that a stronger base model gen-
erally experiences fewer length issues. At the same time, length exploitation also appears to be
influenced by training methods and training data. For example, both Mistral-7B-Instruct-v0.2 and
Mistral-7B-Instruct-v0.3 exhibit severe length problems during iterative preference optimization.
The pretraining and instruction tuning of LLMs is a broad topic that extends beyond the scope of
this work. Additionally, many details of the training processes are often opaque. Therefore, we only
highlight the potential impact of the base model based on our observations.

A.4 STUDYING THE RELATION OF AGREEMENT-AWARENESS TO LENGTH REGULARIZATION

We perform a statistical analysis of the response lengths and log probabilities, the results are shown
in Fig. 6a. The results indicate that the response length has a strong correlation with log probabilities:
as the response length increases, the log probabilities tend to decrease. This is due to the inherent
diversity of the model during the generation process.
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(a) The distribution of response lengths and the
corresponding log probabilities by the reference
model.
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Figure 6: Statistical analysis for the training stage.

Examining the gradient weight in Eq. 9, we observe that after expressing sref as the difference in
log probabilities of the reference model for chosen and rejected responses, the gradient weight can
be written as:

wθ = σ
(
β
(
sref − sθ + α

(
log πref(yw | x)− log πref(yl | x)

)))
. (12)

When combined with the relationship between log probabilities and response length, Eq. 12 appears
to resemble the length regularization used in R-DPO (Park et al., 2024). The additional term αβ ·sref
gives a higher gradient weight when the chosen response is shorter than the rejected one, and a lower
gradient weight when the chosen response is longer. This suggests the need to further analyze the
relationship between sref and the length difference |yw| − |yl|. In Fig. 6b, we plot the distribution of
sref and |yw| − |yl|. We can see that although there is some correlation between sref and the length
difference, its value is lower than that presented in Fig. 6a (from ρ = −0.69 to ρ = −0.47). This
is mainly because AIPO takes into account the preferences of the reference model, which explains
why alpha-DPO and AIPO perform better than R-DPO, as shown in Fig. 4.

A.5 HYPERPARAMETER TUNING

Previous work suggests that the choice of hyperparameters is crucial for the training of non-iterative
preference optimization models (Meng et al., 2024). We also observe the same phenomenon in itera-
tive preference optimization. To ensure a fair comparison and analyze the impact of hyperparameters
in α-DPO and AIPO, we perform detailed hyperparameter tuning for the experiments presented in
Sec. 4. We detailed the range of hyperparameter search for each method in Tab. 7. As depicted
in Fig. 3, the response length on the AlpacaEval 2.0 benchmark continuously increases across all
methods with each training iteration. This trend facilitates the examination of length exploitation in
iterative preference optimization by concurrently considering the win rate on AlpacaEval 2.0 and re-
sponse length. We thus compare the tend of length-controlled win rate growth with response length
on AlpacaEval 2.0, as shown in Fig. 7. For each method, we select the best-performing model
(positioned in the top left corner of the figure) to be included in the main paper, considering its
performance on AlpacaEval 2.0 while taking into account the response length.

Fig. 7a illustrates that although a higher beta value limits the increase in length with training iter-
ations, it also restricts performance, thereby failing to improve the model’s efficiency in utilizing
the response length. Similarly, augmenting DPO with the NLL term also limits both the increase
in length and performance concurrently, as shown in Fig. 7b, thus proving ineffective in resolving
length exploitation in iterative settings. Both adjustments appear to constrain the increase in length
with respect to training iteration but leave performance unchanged for equivalent response length,
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Table 7: The range of hyperparameter search for each training objective.

Method Objective Hyperparameter
DPO
(Rafailov et al., 2024) − log σ

(
β log πθ(yw|x)

πref (yw|x) − β log πθ(yl|x)
πref (yl|x)

)
β ∈ [0.1, 0.5, 1.0]

DPO+NLL
(Pang et al., 2024) − log σ

(
β log πθ(yw|x)

πref (yw|x) − β log πθ(yl|x)
πref (yl|x)

)
− α

|yw| log
(
πθ(yw | x)

) β ∈ [0.1]

α ∈ [0.2, 0.4, 0.6]

SimPO
(Meng et al., 2024) − log σ

(
β

|yw| log πθ(yw | x)− β
|yl| log πθ(yl | x)− γ

)
β ∈ [2.0, 3.0]

γ ∈ [0.5, 1.0]

R-DPO
(Park et al., 2024) − log σ

(
β log πθ(yw|x)

πref (yw|x) − β log πθ(yl|x)
πref (yl|x) + (α|yw| − α|yl|)

)
β ∈ [0.1, 0.5]

γ ∈ [0.001, 0.002]

α-DPO − log σ
(
β log πθ(yw|x)

πθ(yl|x) − (1 + α)β log πref (yw|x)
πref (yl|x)

)
β ∈ [0.1]

α ∈ [0.04, 0.05, 0.06, 0.07, 0.08]

AIPO − log σ
(
β log πθ(yw|x)

πθ(yl|x) − (1+α)β log πref (yw|x)
πref (yl|x)

)
− λ

|yw| log
(
πθ(yw | x)

) β ∈ [0.1]

α ∈ [0.03, 0.05, 0.07, 0.09]

λ ∈ [0.2, 0.5]
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(a) Results for DPO.
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(b) Results for DPO+NLL.
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(c) Results for SimPO.
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(d) Results for R-DPO.
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(e) Results for α-DPO.
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(f) Results for AIPO.

Figure 7: The results of hyperparameter tuning for each method.

thus having no impact on mitigating the length issue. Additionally, modifying the β and γ values
in SimPO does not affect length efficiency either. Unlike DPO, SimPO lacks a reference model,
hence adjusting the β value has no effect on the increase in response length. Conversely, R-DPO,
which directly regularizes based on response length, performs more effectively in this scenario by
improving performance for equivalent response lengths. Although α-DPO does not directly target
response length, it serves as a good alternative to R-DPO by further reducing response length with-
out compromising the upper bound of performance. The results in Fig. 7e and 7f indicate that the
value of α acts as a proxy for controlling response verbosity, where a higher α value leads to more
concise responses, resulting in a higher win rate under equivalent lengths. However, a stability issue
arises with α-DPO due to the decrease in implicit reward value. As discussed in the main paper, we
incorporate the NLL term to further enhance performance. Fig. 7f demonstrates that the addition of
the NLL term significantly enhances performance at the same response length when α is high, while
reducing length fluctuations during training.

16


	Introduction
	Preliminaries and Related Work
	Direct Preference Optimization
	Preference Optimization Objectives
	Iterative Alignment Methods

	Iterative Preference Optimization with Synthetic Data
	Synthetic Data Curation
	Towards Iterative Preference Optimization

	Revisiting Training Objectives
	Analyzing DPO in Iterative Training
	AIPO: Agreement-Aware Iterative Preference Optimization

	Experiments
	Experimental Setup
	Comparisons with Preference Optimization Methods
	Comparisons with Scaled-up LLMs

	Conclusion
	Appendix
	Implementation Details
	Filtering for Synthetic Preference Data
	Model Ablation for Iterative Preference Optimization
	Studying the Relation of Agreement-Awareness to Length Regularization
	Hyperparameter Tuning


