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Abstract

Creating interactive software, such as websites or games, is a particularly engaging
way to learn computer science. However, teaching and giving feedback on such
software is hard — standard approaches require instructors to hand grade student-
implemented interactive programs. As a result, online platforms that serve millions,
like Code.org, are unable to provide any feedback on assignments for implementing
interactive programs, which critically hinders students’ ability to learn. Recent
work proposes to train reinforcement learning agents to interact with a student’s
program, aiming to explore states indicative of errors. However, this approach only
provides binary feedback of whether a program is correct or not, while students
require finer-grained feedback on the specific errors in their programs to understand
their mistakes. In this work, we show that exploring to discover errors can be cast as
a meta-exploration problem. This enables us to construct a principled objective for
discovering errors and an algorithm for optimizing this objective, which provides
fine-grained feedback. We evaluate our approach on a set of 700K real anonymized
student programs from a Code.org interactive assignment. Our approach provides
feedback with 94.3% accuracy, improving over existing approaches by over 17.7%
and coming within 1.5% of human-level accuracy.

1 Introduction

Agent plays student program to find bugs Agent provides feedback

The program is
incorrect

Existing work (Nie et al., ‘21):
Coarse binary feedback

This work:  Fine-grained feedback

The ball incorrectly 
bounces off the goal

!!
Score 0 : 0

Figure 1: A learned Play-to-Grade agent for the Bounce program-
ming assignment. The agent tests what happens when the ball is hit
into the goal, and finds that the ball incorrectly bounces out instead
of scoring a point. Whereas prior work provides coarse feedback
of whether the program is correct or not, our goal is to provide
fine-grained feedback of the specific mistakes a student has made.

Feedback plays a critical role in
high-quality education, but can
require significant time and expertise
to provide [7]. We focus on one
area where providing feedback is
particularly burdensome: modern
computer science education, where
students are often tasked with devel-
oping interactive programs, such as
websites or games (e.g., see Figure 1).
While developing such programs
is highly engaging [31] and has
become ubiquitous in contemporary
classrooms [12], these programs
can include stochastic or creative
elements, so they cannot be graded
with traditional unit tests, and must
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instead be manually graded. However, such manual grading is increasingly infeasible with the
growing demand for computer science education and rise of massive online learning platforms.
For example, one popular platform, Code.org has enrolled over 72M students [7]. As manually
grading a submission can take up to 6 minutes, a single assignment creates decades of grading
labor. Consequently, Code.org cannot yet provide feedback about whether an interactive assignment
submission is correct or not, let alone more fine-grained feedback.

To alleviate this enormous grading burden, Nie et al. [27] introduce the Play-to-Grade paradigm for
automatically providing feedback by training a reinforcement learning agent to grade a program the
same way humans do: by interacting or playing with the program. The idea is for the agent to visit
states that reveal errors in the program, and then aggregate this information as feedback. Such an agent
is trained on a set of training programs labeled with feedback (e.g., provided by an instructor), and the
goal is to generalize to new student programs. Figure 1 shows an example learned agent that tests what
happens when the ball is hit into the goal, exposing an error where the ball bounces off the goal instead
of entering and scoring a point. The state-of-the-art approach in this paradigm provides highly accurate
coarse feedback of whether the program is completely correct or not [27]. However, to understand
their mistakes, students usually require feedback about what specific errors are in their programs.

Learning an agent to explore and discover the errors in a program to provide such fine-grained
feedback is challenging: Most errors cannot be discovered with simple random exploration, and
instead require targeted exploration, such as deliberately hitting the ball into the goal. In addition, the
agent must be able to adapt its exploration to different programs, which each behave differently and
may present unexpected obstacles, such as multiple balls. Our key technical insight is that learning
to discover errors connects with the meta-exploration problem in meta-reinforcement learning (meta-
RL). This insight enables us to leverage techniques from the meta-exploration literature to construct
and optimize a principled objective for producing fine-grained feedback. Specifically, we follow the
Play-to-Grade paradigm and assume access to 3500 training programs, labeled with the errors in the
program. Then, we formulate the problem as maximizing the mutual information between states vis-
ited by our agent and the label. Finally, we use techniques from the DREAM meta-RL algorithm [22]
to decompose this objective into shaped rewards that enable learning sophisticated exploration.

Overall, the main contribution of this work is to connect the Play-to-Grade paradigm with the
meta-RL literature, and consequently, to provide an effective method for providing fine-grained
feedback for interactive student programs, which we call DREAMGRADER. Additionally, we release
our code to propose automatic feedback as a new meta-RL benchmark that fulfills an unmet need
in the community for a meta-RL benchmark that is simultaneously readily accessible and directly
impactful. We evaluate our system on 711,274 anonymized student submissions of the Bounce
assignment from Code.org [27]. Trained on 3500 programs, DREAMGRADER achieves an accuracy
of 94.3%, which improves over existing approaches by 17.7% and comes within 1.5% of human-level
grading accuracy. In addition, our approach can significantly reduce instructor grading burden: while
manually grading all student submissions would require 4 years of work, our system can grade the
same set of programs in only 3 hours on a single GPU.

2 Related Works
Educational feedback. We consider the problem of automatically providing feedback, which plays
an important role in student learning and motivation [29]. Though we specifically focus on feedback,
other works also leverage machine learning for other aspects of education, including tracking what
students know [42, 8, 32], predicting student retention [9, 4, 37, 3], and building intelligent tutoring
systems [1, 28]. Work on automatically providing feedback for computer science assignments focuses
on two main approaches: analyzing either the code or behavior of a program. Methods that analyze
code provide feedback by passing the code through a neural network [33, 6, 23, 47], or by constructing
syntax trees [39, 45], e.g., to predict useful next implementation steps [35, 30]. Analyzing code
works well for shorter programs (e.g., under 50 lines of code) and has even been deployed in online
courses [48]. However, this approach struggles to scale to lengthier or more complex programs.
Hence, we instead opt for the second approach of analyzing program behavior, which conveniently
does not depend on program length, though it requires the program to be executable.

Arguably, the simplest method of analyzing program behavior is unit testing. Unit testing can
provide automatic feedback to some extent when the desired output of each input is known, but this
is typically not the case with interactive programs, such as websites or games. Instead, work on
automated testing can provide feedback by generating corner-case inputs that reveal errors via input
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fuzzing [13], symbolic generation [20], or reinforcement learning exploration objectives [50, 14].
However, this line of work assumes that errors are easy to detect when revealed, while detecting
a revealed error itself can be challenging [27].

Consequently, Nie et al. [27] propose the Play-to-Grade paradigm to both learn an agent to discover
states that reveal errors, and a model to detect and output the revealed errors. Our work builds upon
the Play-to-Grade paradigm, but differs from Nie et al. [27] in the provided feedback. While Nie
et al. [27] only provide coarse binary feedback of whether a program is correct, we introduce a
new principled objective to provide fine-grained feedback of what specific errors are present to help
students understand their mistakes.

Meta-reinforcement learning. To provide fine-grained feedback, we connect the problem of
discovering errors with the meta-exploration problem in meta-RL. There is a rich literature of
approaches that learn to explore via meta-RL [15, 40, 34, 36, 51, 52, 18, 16, 19, 22]. We specifically
leverage ideas from the DREAM algorithm [22] to construct a shaped reward function for learning
exploration. Our work has two key differences from prior meta-RL research. First, we introduce
a novel factorization of the DREAM objective that better generalizes to new programs. Second,
and more importantly, we focus on the problem of providing feedback on interactive programs.
This differs from a large body of meta-RL work that focuses on interesting, yet synthetic problems,
such as 2D and 3D maze navigation [10, 24, 52, 22], simulated control problems [11, 34, 49], and
alchemy [44]. While meta-RL has been applied to realistic settings in robotics [26, 2, 38], this work
provides a new benchmark meta-RL problem that is both realistic and readily accessible.

3 The Fine-Grained Feedback Problem
We consider the problem of automatically providing feedback on programs. During training, we
assume access to a set of programs labeled with the errors made in the program (i.e., ground-truth
instructor feedback). During testing, the grading system is presented with a new student program
and must output feedback of what errors are in the program. To produce this feedback, the grading
system is allowed to interact with the program.

More formally, we consider a distribution over programs p(µ), where each program µ defines a
Markov decision process (MDP) µ = ⟨S,A, T ,R⟩ with states S, actions A, dynamics T , and
rewards R. We assume that the instructor creates a rubric: an ordered list of K potential errors that
can occur in a program. Each program µ is associated with a ground-truth label y ∈ {0, 1}K of
which errors are made in the program. The kth index yk denotes that the kth error of the rubric is
present in the program µ.

During training, the grading system is given a set of N labeled training programs {(µn, yn)}Nn=1.
The goal is to learn a feedback function f that takes a program µ and predicts the label ŷ = f(µ) to
maximize the expected grading accuracy Jgrade(f) over test programs µ with unobserved labels y:

Jgrade(f) = Eµ∼p(µ)

[
1

K

K∑
k=1

I[f(µ)k = yk]

]
, (1)

where I is an indicator variable. Effectively, Jgrade measures the per-rubric item accuracy of predicting
the ground-truth label y. To predict the label y, the feedback function may optionally interact with
the MDP µ defined by the program for any small number of episodes.

Bounce programming assignment. Though the methods we propose in this work generally apply
to any interactive programs with instructor-created rubrics, we specifically consider the Bounce
programming assignment from Code.org, a real online assignment that has been completed nearly
a million times. As providing feedback for interactive assignments is challenging, the assignment
currently provides no feedback whatsoever on Code.org, and instead relies on the student to discover
their own mistakes by playing their program. This assignment is illustrated in Figure 1. Each student
program defines an MDP, where we use the state representation from Nie et al. [27] — each state
consists of the (x, y)-coordinates of the paddle and balls, as well as the (x, y)-velocities of the balls.
There are three actions: moving the paddle left or right, or keeping the paddle in the current position.
In the dynamics of a correct program, the ball bounces off the paddle and wall. When the ball hits the
goal or floor, it disappears and launches a new ball, which increments the player score and opponent
score respectively. However, the student code may define other erroneous dynamics, such as the ball
passing through the paddle or bouncing off the goal. The reward function is +1 when the player
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score increments and −1 when the opponent score increments. An episode terminates after 100 steps
or if either the player or opponent score exceeds 30.

Our experiments use a dataset of 711,274 real anonymized student submissions to this assignment,
released by Nie et al. [27]. We use 0.5% of these programs for training, corresponding to N = 3556
and uniformly sample from the remaining programs for testing.

Table 1: Possible event and consequence types of program errors.

Event Consequence

Ball hits paddle

×
Ball bounces / does not bounce

Increments / does not increment player score
Increments / does not increment opponent score

Launches / does not launch a new ball
Moves the paddle

Ball hits wall
Ball hits goal
Ball hits floor
Paddle moves
Program starts

Possible errors in a student program
take the form of “when event occurs,
there is an incorrect consequence,”
where the list of all events and con-
sequences is listed in Table 1. For
example, Figure 1 illustrates the error
where the event is the ball hitting the
goal, and the consequence is that the
ball incorrectly bounces off the goal, rather than entering the goal. For simplicity, we consider a
representative rubric of K = 8 errors, spanning all event and consequence types, listed in Appendix A.

Prior approach for program feedback. This problem is challenging because the agent must explore
in a targeted way to discover all potential errors and must be able to adapt to variability in the
programs. Prior work by Nie et al. [27] sidesteps this challenge by determining whether a student
program is distinct from a reference solution program, which only results in coarse feedback of
whether a program is correct or not. In the next section, we present a new approach that instead targets
exploration toward uncovering specific misconceptions to effectively provide fine-grained feedback.

4 Automatically Providing Fine-Grained Feedback with DREAMGRADER

In this section, we detail our approach, DREAMGRADER, for automatically providing fine-grained
feedback to help students understand their mistakes. From a high level, DREAMGRADER learns two
components that together form the feedback function f :

(i) An exploration policy π that acts on a program µ to produce a trajectory τ = (s0, a0, r0, . . .).
(ii) A feedback classifier g(y | τ) that defines a distribution over labels y given a trajectory τ .

The idea is to explore states that either indicate or rule out errors with the exploration policy, and then
summarize the discovered errors with the feedback classifier. To provide feedback on a new program
µ, we first roll out the exploration policy π on the program to obtain a trajectory τ , and then obtain
the predicted label argmaxy g(y | τ) by applying the feedback classifier. Under this parametrization
of the feedback function f , we can rewrite the expected grading accuracy objective in Equation 1 as:

JDREAMGRADER(π, g) = Eµ∼p(µ),τ∼π(µ)

[
1

K

K∑
k=1

I[argmax
ŷ

g(ŷ | τ)k = yk]

]
, (2)

where π(µ) denotes the distribution over trajectories from rolling out the policy π on the program µ.

After this rewriting of the objective, our approach is conceptually straightforward: we learn both
the exploration policy and classifier to maximize our rewritten objective. We can easily learn the
feedback classifier g by maximizing the probability of the correct label given a trajectory generated
by the exploration policy (i.e., cross-entropy loss), but learning the exploration policy π is more
challenging. Note that we could directly optimize our objective in Equation 2 by treating the inside
of the expectation as a reward received at the end of the episode and use this to learn the exploration
policy π with reinforcement learning. However, this reward signal makes credit assignment difficult
for learning the exploration policy, since it is given at the end of the episode, rather than at the states
where the exploration policy discovers errors. Consequently, we empirically find that learning from
this reward signal struggles to adequately explore (Section 5).

Hence, our goal is instead to construct a reward signal that helps assign credit for the exploration
policy and provides rewards at the states that indicate or rule out errors in the program. To do this,
we propose an alternative objective that is sufficient to maximize the Play-to-Grade objective, but
can be decomposed into per-timestep rewards that correctly assign credit (Section 4.1). Intuitively,
these rewards leverage the feedback classifier to provide high reward when an action leads to a new
state that causes the classifier to become very certain about whether an error is present. After, we
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Error observed: Ball in goal does not increment the score

Ball enters goal again, but no additional info gained4

No information observed about error2

1

1

2

3

3

Score 0 : 0

4

New ball launched

Error type: Does hitting the ball into the goal increment the score? 

𝚫

Score 0 : 0

Figure 2: DREAMGRADER provides credit assignment for learning exploration by leveraging the feedback
classifier g(y | τ). Here, we consider the error “when the ball enters the goal, the player score does not
increment.” At 1 and 2 , no information is observed that either rules out or indicates the error. Hence, no
exploration reward rexp

t is provided, and the classifier assigns 0.12 probability that the error is present, reflecting
the prior that 12% of the training programs have this error. At 3

4

, the ball enters the goal, but does not score a
point and a new ball is launched. This indicates that the error is present, so the classifier updates, which creates
high exploration reward and credit assignment for learning exploration. At 4 , the ball enters the goal again.
However, no additional information is gained, so the classifier does not change, and no reward is given. Overall,
this enables learning effective exploration that purposely hits the ball into the goal once.

detail practical design choices for implementing this approach with neural networks (Section 4.2) and
conclude by drawing a connection between learning to find errors and the meta-exploration problem,
which motivates our choice of alternative objective and its subsequent decomposition (Section 4.3).

4.1 Assigning Credit to Learn Exploration

We now obtain a reward signal to help assign credit for learning exploration. From a high level, we
first propose to maximize a mutual information objective that is sufficient to maximize our objective
JDREAMGRADER(π, g) in Equation 2. We then rewrite our mutual information objective in terms of
per-timestep exploration rewards related to the information gain of the feedback classifier on the true
label y when it observes the transition (st, at, rt). This helps assign credit for learning the exploration
policy, as the transitions that either indicate or rule out errors in the program are exactly those that
have high information gain. Figure 2 illustrates an example of the derived exploration rewards.

Objective. Intuitively, we want our exploration policy to visit states that either indicate or rule out
errors. We can formalize this intuition by maximizing the mutual information I(τ ; y) between the
trajectories τ ∼ π visited by the policy and the feedback label of the program y, which causes the
policy to visit states that make the feedback label highly predictable. Importantly, maximizing this
objective is sufficient to maximize the expected grading accuracy JDREAMGRADER(π, g) in Equation 2:
Let p(y | τ) be the true posterior over labels given trajectories τ ∼ π sampled from the policy.
Maximizing the mutual information I(τ ; y) produces trajectories that maximize the probability of
the label under the true posterior p(y | τ). Then, if the feedback classifier is learned to match
the true posterior g(y | τ) = p(y | τ) while I(τ ; y) is maximized, the expected grading accuracy
JDREAMGRADER(π, g) is also maximized.

Optimization. We can efficiently maximize our objective I(τ ; y) by maximizing a variational lower
bound [5] and decomposing the lower bound into a per-timestep reward that helps assign credit for
learning the exploration policy π. We derive this for the case of learning only a single exploration
policy π to uncover all errors, though we will later discuss how we can factorize this to learn N
exploration policies {πi}Ni=1 that each explore to uncover a single error type.

I(τ ; y) = H[y]−H[y | τ ] (3)
= H[y] + Eµ∼p(µ),τ∼π(µ) [log p(y | τ)] (4)

≥ H[y] + Eµ∼p(µ),τ∼π(µ) [log g(y | τ)] (5)

= H[y] + Eµ∼p(µ),τ∼π(µ)

[
log g(y | s0) +

T−1∑
t=0

rexp
t

]
, (6)

where rexp
t = log g(y | τ:t+1)− log g(y | τ:t) and

T is the length of the trajectory τ = (s0, a0, r0, . . . , sT ).
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The inequality in (5) holds for replacing the true posterior p(y | τ) with any distribution, and (6)
comes from expanding a telescoping series as done by DREAM [22], where τ:t = (s0, a0, r0, . . . , st)
denotes the the trajectory up to the tth state.

This derivation provides a shaped reward function rexp
t for learning the exploration policy. Intuitively,

this reward captures how much new information the transition (st, at, rt, st+1) provides to the
feedback classifier g on what errors are in the program: The reward is high if observing this transition
either indicates an error (e.g., the ball enters the goal, but does not score a point) or rules out an error
(e.g., the ball enters the goal and scores a point), and is low otherwise.

Additionally, we now have a recipe for maximizing the mutual information I(τ ; y) to learn both the
policy π and feedback classifier g. Only the second term in (6) depends on π and g. Hence, we can
maximize this lower bound on I(τ ; y) by maximizing the log-likelihood of the label with respect
to the feedback classifier Jfeedback(g) = Eµ∼p(µ),τ∼π(µ) [log g(y | τ)], and maximizing the rewards
rexp
t = log g(y | τ:t+1)− log g(y | τ:t) with respect to the policy π via reinforcement learning.

Factorizing our objective. So far, our approach learns a single exploration policy that must uncover
all error types in the rubric. However, learning such a policy can be challenging, especially if
uncovering different error types requires visiting very different states. We instead propose to learn a
separate exploration policy πk for each error index of the rubric k = 1, . . . ,K. We can accomplish
this by observing that maximizing the mutual information I((τ1, . . . , τK); y) between K trajectories
τi ∼ πi is also sufficient to maximize the expected grading accuracy. Furthermore, maximizing
the mutual information with each dimension of the label I(τk; yk), where τk ∼ πk for each k,
is sufficient to maximize the mutual information with the entire label I ((τ1, . . . , τK); y). We
therefore can derive exploration rewards for each term I(τk; yk) to learn each policy πk with rewards
rexp
t = log g(yk | τ:t+1) − log g(yk | τ:t). We find that this improves grading accuracy in our

experiments (Section 5) and enables parallel training and testing for the K exploration policies.

4.2 A Practical Implementation

Algorithm 1 Training episode for policy πk

1: Sample a training program µ with label y
2: Roll out policy to obtain trajectory τ ∼ πk(µ)
3: Compute rewards with feedback classifier

rexp
t = log g(yk | τ:t+1)− log g(yk | τ:t)

4: Update policy to maximize rewards rexp
t with RL

5: Update feedback classifier to max. log g(yk | τ)

Overall, DREAMGRADER consists of a feedback
classifier g and K exploration policies {πk}Kk=1,
where the kth policy πk tries to visit states indica-
tive of whether the kth error type is present in the
program. We learn these components by repeatedly
running training episodes for each policy πk with
Algorithm 1. We first sample a labeled training pro-
gram and follow the policy on the program (lines 1–
2). Then, we maximize our mutual information objective by updating the policy with our exploration
rewards (lines 3–4), and by updating the classifier to maximize the log-likelihood of the label (line 5).

In practice, we parametrize the exploration policies and feedback classifier as neural networks. Since
the exploration rewards rexp

t depend on the past and are non-Markov, we make each exploration
policy πk recurrent: At timestep t, the policy πk(at | (s0, a0, r0, . . . , st)) conditions on all past states,
actions, and observed rewards for each k. We parametrize each policy as a deep dueling double Q-
networks [25, 46, 41]. Consequently, our policy updates in line 4 consist of placing the trajectory in a
replay buffer with rewards rexp

t and sampling from the replay buffer to perform Q-learning updates. We
parametrize each dimension of the feedback classifier g(yk | τ) for k = 1, . . . ,K as a separate neural
network. We choose not to share parameters between the exploration policies and between the dimen-
sions of the feedback classifier for simplicity. See Appendix B for full architecture and model details.

4.3 Play-to-Grade as Meta-Exploration

Our choice to optimize the mutual information objective I(τ ; y) and decompose this objective into
per-timestep rewards using techniques from the DREAM meta-RL algorithm stems from the fact that
the Play-to-Grade paradigm can be cast as a meta-exploration problem. Specifically, meta-RL aims
to learn agents that can quickly learn new tasks by leveraging prior experience on related tasks. The
standard few-shot meta-RL setting formalizes this by allowing the agent to train on several MDPs
(tasks). Then, at time time, the agent is presented with a new MDP and is allowed to first explore the
new MDP for several episodes to gather information, before it must solve the MDP and maximize
returns. Learning to efficiently spending these allowed few exploration episodes to best solve the test
MDP is the meta-exploration problem.
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In our setting, we can view each student program as a 1-step task of predicting the feedback label.
To predict this label, the Play-to-Grade paradigm first explores the program for several episodes
to discover states indicative of errors, which is exactly the meta-exploration problem. This bridge
between identifying errors in programs and meta-exploration suggests that techniques from each
body of literature could mutually benefit each other. Indeed, DREAMGRADER leverages ideas from
DREAM and future work could explore other techniques to transfer across the two areas. Additionally,
this connection also offers a new benchmark for meta-exploration and meta-RL research. As discussed
in Section 2, while existing meta-RL benchmarks tend to be either readily accessible or impactful and
realistic, automatically providing feedback simultaneously provides both, and we release code for a
meta-RL wrapper of the Bounce programming assignment to spur further research in this direction.

5 Experiments
In our experiments, we aim to answer five main questions: (1) How does automated feedback grading
accuracy compare to human grading accuracy? (2) How does DREAMGRADER compare with Nie
et al. [27], the state-of-the art Play-to-Grade approach? (3) What are the effects of our proposed
factorization and derived exploration rewards on DREAMGRADER? (4) How much human labor is
saved by automating feedback? (5) Interactive programs can be particularly challenging to grade
because they can include unexpected creative elements not seen during training — how well do
automated feedback systems generalize to such creative elements? To answer these questions we
consider the dataset of 700K real anonymized Bounce student programs, described in Section 3.

Below, we first establish the points of comparison to necessary answer these questions (Section 5.1).
Then, we evaluate these approaches to answer the first four questions (Section 5.2). Finally, we
answer question (5) by evaluating DREAMGRADER on variants of Bounce student programs that
modify the ball and paddle speeds, including speeds not seen during training (Section 5.3).

5.1 Points of Comparison

We compare with the following four approaches. Unless otherwise noted, we train 3 seeds of each
automated approach for 5M steps on N = 3556 training programs, consisting of 0.5% of the dataset.

Human grading. To measure the grading accuracy of humans, we asked for volunteers to grade
Bounce programming assignments. We obtained 9 volunteers consisting of computer science under-
graduate and PhD students, 7 of whom had previously instructed or been a teaching assistant for a
computer science course. Each volunteer received training on the Bounce programming assignment
and then was asked to grade 6 randomly sampled Bounce programs. See Appendix C.1 for details.

Nie et al. [27] extended to provide fine-grained feedback. We extend the original Play-to-Grade
approach, which provides binary feedback about whether a program is completely correct or not, to
provide fine-grained feedback. Specifically, Nie et al. [27] choose a small set of 10 training programs,
curated so that each program exhibits a single error, and together, they span all errors. Then, for each
training program, the approach learns (i) a distance function d(s, a) that takes a state-action tuple
(s, a), trained to be large for tuples from the buggy training program and small for tuples from a
correct reference implementation; and (ii) an exploration policy that learns to visit state-actions where
d(s, a) is large. To provide feedback to a new student program, the approach runs each exploration
policy on the program and outputs that the program has an error if any of the distance functions is
high for any of the tuples visited by the exploration policies.

We extend this approach to provide fine-grained feedback by following a similar set up. We follow
the original procedure to train a separate policy and distance function on K = 8 curated training
programs, where the kth program exhibits only the kth error from the rubric we consider. Then, to
provide fine-grained feedback on a new program, we run each policy on the new program and predict
that the kth error is present (i.e., ŷk = 1) if the kth distance function is high on any state-action tuple.
We use code released by the authors without significant fine-tuning or modification. We emphasize
that this approach only uses 8 curated training programs, as opposed to the N = 3556 randomly
sampled programs used by other automated approaches, as this approach is not designed to use more
training programs, and furthermore cannot feasibly scale to many more training programs, as it learns
a distance function and policy for every training program.

DREAMGRADER (direct max). To study the effect of our derived exploration rewards rexp
t , we

consider the approach of directly maximizing the DREAMGRADER objective in Equation 2, described
at the beginning of Section 4.1. This approach treats the inside of the expectation as end-of-episode
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Figure 3: Average grading accuracy for each error type vs. number of training steps for DREAMGRADER with
1-stddev error bars. We plot the final grading accuracies of the other approaches as horizontal lines.

returns, and does not provide explicit credit assignment. This approach is equivalent to maximizing
the DREAMGRADER objective with the RL2 meta-RL algorithm [10, 43].

DREAMGRADER (unfactorized). Finally, to study the effect of our proposed factorization scheme,
described at the end of Section 4.1, we consider a variant of DREAMGRADER where we do not
factorize the objective and instead only learn a single exploration policy to uncover all errors.

5.2 Main Results

Table 2: Accuracy, precision, recall and F1 of grading systems, averaged across
the K = 8 errors of the rubric, with 1-standard deviation error bars.

Accuracy Precision Recall F1

Human 95.8 ± 3.9% 95.0 ± 13.2% 91.1 ± 10.0% 91.9 ± 8.3%
DREAMGRADER 94.3 ± 1.3% 93.5 ± 2.1% 94.0 ± 1.9% 93.7 ± 1.5%
DREAMGRADER (unfactorized) 91.3 ± 0.4% 72.9 ± 0.5% 68.9 ± 1.0% 70.8 ± 0.7%
DREAMGRADER (direct max) 84.8 ± 2.2% 36.3 ± 1.7% 37.8 ± 9.7% 36.6 ± 5.1%
Nie et al. [27] 75.5 ± 0.9% 24.9 ± 5.0% 27.7 ± 7.1% 26.1 ± 5.7%

We compare the approaches
based on grading accuracy,
precision, recall, and F1
scores averaged across the
8 error types in the rubric.
Table 2 summarizes the re-
sults. Overall, we find that
DREAMGRADER achieves
the highest grading accuracy of the automated grading approaches, providing feedback with 17.7%
greater accuracy than Nie et al. [27]. Furthermore, DREAMGRADER comes within 1.5% of human-
level grading accuracy and actually achieves slightly superhuman F1. DREAMGRADER achieves
this by learning exploration behaviors that probe each possible error event (see Appendix D for
visualizations of the learned behaviors).

Analysis. To further understand these results, we plot the training curves of the grading accuracy
on each error type in the rubric vs. the number of training steps of DREAMGRADER, as well as
the final grading accuracies of the other approaches in Figure 3. The performance of variants of
DREAMGRADER underscores the importance of our design choices: DREAMGRADER (direct max)
achieves significantly lower accuracy than DREAMGRADER across all error types, indicating the
importance of our shaped exploration rewards rexp

t for learning effective exploration. Additionally,
while DREAMGRADER (unfactorized) achieves relatively high average accuracy, it still performs
worse than DREAMGRADER. This illustrates the difficulty of learning a single exploration policy
to uncover all errors, which is alleviated by our factorization.

Additionally, we find that DREAMGRADER achieves human-level or even slightly superhuman
grading accuracy on 5 of the 8 error types, but relatively struggles on the 3 errors on the right of
the top row of Figure 3, which leads to overall lower average grading accuracy. For the errors
involving incrementing the opponent score, we qualitatively find that DREAMGRADER most com-
monly struggles when there are multiple balls, which makes it difficult to ascertain which events are
causing the opponent score to increment. DREAMGRADER similarly most frequently misclassifies
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the “no new ball after goal” error when multiple events launch balls. Human grading was able to
circumvent this issue, but humans required playing the program for up to 40 episodes, while we
limited DREAMGRADER to a single episode per error type.

Reduction in human grading burden. We found that our grading volunteers required between 1–6
minutes to grade each program, averaging around 3 minutes. At this grading speed, grading all of
the 700K Code.org submissions would take close to 4 years of human labor. In contrast, automatic
grading with DREAMGRADER requires only 1 second per program on a single NVIDIA RTX 2080
GPU, which grades all 700K submissions in only 3 hours.

5.3 Feedback in the Face of Creativity

A key challenge in providing feedback for interactive programs is that student programs may include
unexpected creative elements, requiring generalization to unseen behaviors at test time. The Bounce
assignment provides one simple way for students to express creativity in their programs by selecting
the speeds of the ball and paddle. There are five possible settings for the ball and paddle speeds: very
slow, slow, normal, fast, and very fast. To test the ability of DREAMGRADER to generalize to unseen
behaviors at test time, we train DREAMGRADER on programs where we hold out the normal ball and
paddle speeds, and then test DREAMGRADER on programs with the held out speeds. Specifically, we
use the same N = 3556 training programs as before, but we uniformly randomize the ball and paddle
speeds independently to be one of the four non-held out speeds. Then we evaluate on test programs
with (1) held out ball and paddle speeds; (2) held out ball speed with random training paddle speed;
(3) held out paddle speed with random training ball speed; and (4) training ball and paddle speeds.

Table 3: DREAMGRADER’s results under held out ball and paddle speeds.
DREAMGRADER generalizes to ball and paddle speeds not seen during training.

Both held out Held out ball speed Held out paddle speed No held out speed

Accuracy 88.0% 88.8% 88.2% 88.4%
Precision 38.8% 41.6% 44.9% 38.6%

Recall 82.1% 87.2% 91.4% 85.6%
F1 52.8% 56.3% 60.2% 53.2%

DREAMGRADER success-
fully generalizes to unseen
ball and paddle speeds at
test time. Compared to the
standard training in the pre-
vious section, where all ball
and paddles had the “nor-
mal” speed, performance drops. However, accuracy remains relatively high, and DREAMGRADER
performs about the same on test programs regardless of whether the ball and paddle speeds were
seen during training or not. This indicates some ability to generalize to unseen behaviors at test time.
Table 3 displays the full results.

6 Conclusion

In this work, we introduced DREAMGRADER, an automatic grading system for interactive programs
that provides fine-grained feedback at near human-level accuracy. The key insight behind our system
is connecting the problem of automatically discovering errors with the meta-exploration problem
in meta-RL, which yields important benefits for both sides. On the one hand, this connection offers
a powerful and previously unexplored toolkit to computer science education, and more generally,
to discovering errors in websites or other interactive programs. On the other hand, this connection
also opens impactful and readily accessible applications for meta-RL research, which has formerly
primarily focused on synthetic tasks due to the lack of more compelling accessible applications.

While DREAMGRADER nears human-level grading accuracy and even achieves superhuman grading
accuracy on many error types, we caution against blindly replacing instructor feedback with auto-
mated grading systems, such as DREAMGRADER, which can lead to potentially negative educational
and societal impacts without conscientious application. For example, practitioners must ensure that
automated feedback is equitable and not biased against certain classes of solutions that may be cor-
related with socioeconomic status. One option to mitigate the risk of potential negative consequences
while still reducing instructor labor is to use automated feedback systems to assist instructors, e.g.,
by querying the instructor on examples where the system has low certainty, or presenting videos
of exploration behavior from the system for the instructor to provide the final feedback.

Finally, this work takes an important step to reduce teaching burden and improve education, but
we also acknowledge DREAMGRADER still has important limitations to overcome. Beyond the
remaining small accuracy gap between DREAMGRADER and human grading, DREAMGRADER also
requires a substantial amount of training data. Though we only use 0.5% of the Bounce dataset for
training, it still amounts to 3500 labeled training programs, and labeling this many programs can be
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prohibitive for smaller-scale classrooms, though feasible for larger online platforms. We hope that
future work on meta-exploration via our released benchmark can help overcome these limitations.
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A Dataset Details
We use the Bounce programming assignment dataset from Code.org, released by Nie et al. [27]. We
release code that packages this dataset as an easy-to-use meta-RL benchmark.

Rubric. Our rubric contains the following 8 error types, spanning all of the events and consequences
listed in Table 1.

1. When the ball hits the goal, it incorrectly bounces off.

2. When the ball hits the goal, the opponent score is incorrectly incremented.

3. When the ball hits the goal, no new ball is launched.

4. When the ball hits the floor, the opponent score is not incorrectly incremented.

5. When the ball hits the wall, the opponent score is incorrectly incremented.

6. When the left or right action is taken, the paddle moves in the wrong direction.

7. When the ball hits the paddle, the player score is incorrectly incremented.

8. When the program starts, no ball is launched.

Some errors in the program make it impossible to uncover other errors. For example, if no ball
is launched at the start of the program, it is impossible to check whether error 7. is present in
the program, because there is no ball to hit on the paddle. In these situations, we label all of the
impossible to check errors as not present in the program.

Future work could investigate iteratively providing feedback on a program to a student in order to
provide feedback about all errors, including those that are initially impossible to uncover. Such a
system could work as follows: First, the grading system provides feedback about all of the errors
it can currently find in the program. Then, the student updates their program to fix all of the errors
found by the program. Finally, the student re-submits their updated program to the grading system
for another round of evaluation. This process continues until there are no more errors in the program.

Statistics. The dataset consists of 711,274 submissions from 453,211 students — some students
created multiple submissions. Amongst the 711,274 submissions, there are 111,773 unique programs.
The error labels y assigned to each program were programmatically generated by Nie et al. [27].

B DREAMGRADER Details
Our implementation of DREAMGRADER builds off the DREAM code released by Liu et al. [22] at
https://github.com/ezliu/dream.

B.1 Model Architecture

DREAMGRADER consists of K recurrent exploration policies {πk}Kk=1 and a feedback classifier
g(y | τ).
Exploration policies. Each exploration policy πk is parametrized as a double dueling deep
Q-network [25, 46, 41], consisting of a recurrent Q-function Q(τ:t, at) and a target network
Qtarget(τ:t, at) with the same architecture as the Q-function, where τ:t = (s0, a0, r0, . . . , st) de-
notes the trajectory so far up to timestep t. To parametrize these Q-functions, we first embed the
trajectory τ:t as e(τ:t) ∈ R64. Then, we apply two linear layers with output size 1 and |A| respec-
tively. These represent the state-value function V (τ:t) and advantage A(τ:t, at) respectively. Finally,
following the dueling architecture [46], we compute the Q-value as:

Q(τ:t, at) = V (τ:t) +A(τ:t, at)−
1

|A|
∑
a∈A

A(τ:t, a). (7)

To compute the trajectory embedding e(τ:t), we embed each tuple (st′ , at′ , rt′ , st′+1) for t′ =
0, . . . , t − 1 and then pass an LSTM [17] over the embeddings of the tuples. The embedding of
(st′ , at′ , rt′ , st′+1) is computed by embedding each component and applying a final linear layer with
output dimension 64 to the concatenation of the embedded components. We embed st′ and st′+1

with the same network, using the architecture from Nie et al. [27], consisting of two linear layers
with output dimensions 128 and 64, respectively, with an intermediate ReLU activation. We embed
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Hyperparameter Value

Discount Factor γ 0.99
Learning Rate 0.0001
Replay buffer batch size 32
Target parameters syncing frequency 5000 updates
Update frequency 4 steps
Grad norm clipping 10

Table 4: Hyperparameters used for DREAMGRADER.

the action at with an embedding matrix with output dimension 16. We embed the scalar reward rt
with a single linear layer of output dimension 32.

Each exploration policy πk is trained to maximize the expected discounted exploration rewards via
standard DQN updates:

Jexp(π) = Eµ∼p(µ),τ∼π(µ)

[
T∑

t=0

rexp
t

]
, (8)

where rexp
t = log g(yk | τ:t+1 − log g(yk | τ:t). (9)

Feedback classifier. The feedback classifier g(y | τ) outputs a distribution over predicted labels
y ∈ {0, 1}K . We parametrize each dimension of the feedback classifier g(yk | τ) with a separate
neural network for simplicity. To parametrize g(yk | τ), we embed the trajectory τ as e(τ) using a
network similar to the one for the exploration policy. Then, we apply three linear layers with output
dimensions 128, 128, and 2 respectively to e(τ) with intermediate ReLU activations. Finally, we
apply a softmax layer to the output of the linear layers, which forms the distribution over yk ∈ {0, 1}.

To embed the trajectory τ as e(τ), we embed each (st, at, rt, st+1)-tuple for each timestep t in the
trajectory τ . Then, we pass an LSTM with output dimension 128 over the embeddings of the tuples,
and take the last hidden state of the LSTM as e(τ). To embed each (st, at, rt, st+1)-tuple, we embed
each component separately, and then apply two final linear layers with output dimensions 128 and 64
respectively and an intermediate ReLU activation. We use the same networks architectures used in
the exploration policy trajectory embeddings to embed the state, action, and reward components.

Each dimension of the feedback classifier g(yk | τ) is trained to maximize:

Jfeedback(g) = Eµ∼p(µ),τ∼π(µ) [log g(yk | τ)] . (10)

B.2 Hyperparameters

We use the hyperparameters listed in Table 4 for all of our experiments. We chose values based
on those used in Liu et al. [22] used for DREAM, and did not tune these values. We optimize the
objectives written above using the Adam optimizer [21]. During training, we anneal the ϵ for ϵ-greedy
exploration from 1 to 0.01 over 250,000 steps. We use ϵ = 0 during evaluations.

C Experiment Details
C.1 Human Grading

Grading details. We obtained 9 volunteers to measure the grading accuracy of humans by soliciting
volunteers from a university research group, consisting of computer science undergraduate, master’s
and PhD students involved in machine learning research. Each volunteer first received training about
the Bounce programming assignment by reading a document describing the behavior of a correct
Bounce program and all potential errors that may occur in incorrect implementations. Additionally,
each volunteer was allowed to play a correct implementation for as long as they desired. After
receiving training, each volunteer was presented with the same set of 6 randomly sampled Bounce
programs, but in a randomized order. For each program, each volunteer was allowed to play the
program for as long as they needed and was asked to list the errors they found in the program on a
checklist including all possible errors. The reported human grading accuracy in Table 2 is the mean
accuracy of the 9 volunteers on these 6 programs.
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Score 0 : 0

Miss ball Hit paddle / wall Score goal
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Score 0 : 0

Figure 4: The exploration behaviors learned by DREAMGRADER. These exploration behaviors probe all of
the possible events associated with errors, enabling DREAMGRADER to uncover all errors. Crucially, these
exploration behaviors are robust to different programs. For example, the illustrated “score goal” exploration
behavior succeeds in hitting a ball into the goal, even when there are multiple balls.

Compensation. Volunteers took 30–45 minutes total to familiarize themselves with the Bounce
programming assignment and to grade the 6 programs. They were each compensated with a $10 gift
card, amounting to a compensation of roughly $15 per hour.

Institutional Review Board. The grading process did not expose grading volunteers to any risks
beyond that of normal life. It was reviewed by the Institutional Review Board (IRB) and it was
determined that it did not constitute human subjects research and did not require IRB approval. Below
is the final determination of the IRB.

After further review, the IRB has determined that your research does not involve
human subjects as defined in 45 CFR 46.102(f) and therefore does not require
review by the IRB.

D Additional Results
Visualizations of DREAMGRADER exploration behavior. We visualize the exploration behaviors
learned by DREAMGRADER’s exploration policies in Figure 4. Qualitatively analyzing these behav-
iors shows that DREAMGRADER exploration behaviors that probe each possible event type listed in
Table 1. Specifically, DREAMGRADER learns to hit the ball into the goal; hit the ball into the wall;
hit the ball with the paddle; deliberately miss the ball; and move the paddle in various directions.
Crucially, we find that behaviors are fairly robust to different programs. For example, we find that
the exploration policies for bugs related to hitting the ball into the goal still successfully hit the ball
into the goal most of the time, even when there are multiple balls, or when the actions are reversed,
so that the left action moves the paddle right, and vice-versa. This indicates that DREAMGRADER
can handle the key challenge of our problem setting: learning diverse and adaptable exploration
behaviors.
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