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Abstract

Watermarking by altering token sampling prob-001
abilities based on red-green list is a promis-002
ing method for tracing the origin of text gener-003
ated by large language models (LLMs). How-004
ever, existing watermark methods often strug-005
gle with a fundamental dilemma: improving006
watermark effectiveness (the detectability of007
the watermark) often comes at the cost of re-008
duced text quality. This trade-off limits their009
practical application. To address this challenge,010
we first formalize the problem within a multi-011
objective trade-off analysis framework. Within012
this framework, we identify a key factor that in-013
fluences the dilemma. Unlike existing methods,014
where watermark strength is typically treated as015
a fixed hyperparameter, our theoretical insights016
lead to the development of MorphMark—a017
method that adaptively adjusts the watermark018
strength in response to changes in the identified019
factor, thereby achieving an effective resolu-020
tion of the dilemma. In addition, MorphMark021
also prioritizes flexibility since it is an model-022
agnostic and model-free watermark method,023
thereby offering a practical solution for real-024
world deployment, particularly in light of the025
rapid evolution of AI models. Extensive experi-026
ments demonstrate that MorphMark achieves a027
superior resolution of the effectiveness-quality028
dilemma, while also offering greater flexibility029
and time and space efficiency.030

1 Introduction031

The rapid development and widespread adoption of032

Large Language Models (LLMs) have raised con-033

cerns about the traceability of AI-generated text034

and copyright protection. Watermarking (Kirchen-035

bauer et al., 2023; Liu et al., 2024b; Dathathri et al.,036

2024), which embeds distinctive patterns into gen-037

erated content, has emerged as a critical solution to038

these challenges. However, the trade-off between039

watermark effectiveness (i.e., detectability and ro-040

bustness in this paper) and text quality remains a041

major barrier to practical adoption. A stronger wa- 042

termark enhances effectiveness but degrades text 043

quality (Kirchenbauer et al., 2023; Liu et al., 2024b; 044

Dathathri et al., 2024), while a weaker watermark 045

preserves text quality but becomes harder to detect 046

and more vulnerable to attacks, even simple para- 047

phrasing (Liu et al., 2024b; Dathathri et al., 2024; 048

Giboulot and Furon, 2024; Wu et al., 2024). There- 049

fore, developing a watermarking mechanism that 050

can effectively reconcile watermark effectiveness 051

and text quality is crucial. 052

KGW (Kirchenbauer et al., 2023) is the first wa- 053

termarking method based on red-green lists. Specif- 054

ically, during token generation, it partitions the 055

vocabulary into green and red lists and then in- 056

creases green tokens’ probabilities. As a result, 057

the generated sequence contains more green to- 058

kens, allowing it to be identified as watermarked. 059

However, KGW struggles to balance watermark ef- 060

fectiveness and text quality. Unbiased watermark- 061

ing (Kuditipudi et al., 2024; Hu et al., 2024; Wu 062

et al., 2024; Mao et al., 2024) ensures that the ex- 063

pected sampling distribution remains unchanged, 064

preserving text quality. However, current imple- 065

mentations often lack robustness. Low-entropy 066

watermarking (Lu et al., 2024; Lee et al., 2024; Liu 067

and Bu, 2024) targets low-entropy text generation. 068

While not explicitly designed for quality preser- 069

vation, it achieves this by avoiding watermarking 070

low-entropy tokens. However, it requires access to 071

the original model for detection, increasing com- 072

putational cost. Besides, some methods (Liu et al., 073

2024a; He et al., 2024a; Huo et al., 2024) attempt 074

to balance watermark effectiveness and text qual- 075

ity by training auxiliary models. However, these 076

approaches lack flexibility (model-agnostic and 077

model-free). First, they require training model- 078

specific auxiliary models for different LLMs. Sec- 079

ond, they disrupt end-to-end inference, increasing 080

the complexity of LLM deployment and increasing 081

inference latency since they adopt extra models. 082
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Therefore, in our paper, we argue that the water-083

mark methods should prioritize flexibility.084

In this paper, we first formulate the watermark085

effectiveness and text quality as a multi-objective086

trade-off analysis function to analyze the factors087

influencing this function. The watermark stud-088

ied here is also based on the green-red list ap-089

proach. Through this theoretical framework, we090

reveal that the cumulative probability of green-list091

tokens plays a key role in determining the overall092

multi-objective benefits of increasing watermark093

strength. Note that watermark strength refers to094

the parameter that indicates the intensity of the wa-095

termark, while watermark effectiveness reflects its096

practical detectability performance. Specifically,097

as the cumulative probability of the green list de-098

creases, the benefits of increasing watermarking099

strength diminish progressively and can even turn100

negative. Based on this theoretical insight, we pro-101

pose MorphMark, which can effectively address102

the dilemma between watermark effectiveness and103

text quality. The core idea of MorphMark is to104

dynamically adjust the watermarking strength in105

response to changes in the cumulative probability106

of the green list, aiming to increase the overall107

multi-objective benefits.108

We summarize our contributions as follows:109

1) We present a theoretical framework that cap-110

tures both watermark effectiveness and text quality.111

Based on this framework, we derive and reveal the112

critical role of the cumulative probability of green-113

list tokens in balancing watermark effectiveness114

and text quality. To the best of our knowledge,115

this is the first time this role has been revealed.116

2) We introduce MorphMark, a novel watermark-117

ing framework that dynamically adjusts watermark-118

ing strength based on the cumulative probability119

of green-list tokens. MorphMark is theoretically120

sound, effectively addressing the dilemma between121

text quality and watermark effectiveness. It also122

demonstrates excellent time and space efficiency.123

Moreover, it is highly flexible, supporting training-124

free and end-to-end operation. 3) Through compre-125

hensive empirical evaluation, we demonstrate the126

effectiveness and flexibility of MorphMark.127

2 Preliminaries128

Watermark injection aims to embed a detectable129

pattern into generated text by modifying the proba-130

bility distribution output by LLMs. We formalize131

watermarking in LLMs using KGW (Kirchenbauer132

et al., 2023) as an example below. 133

Let the vocabulary be denoted as V , and the 134

input token sequence as (x1, x2, . . . , xt−1) ∈ V∗. 135

The probability distribution for generating the next 136

token xt without a watermark is given by: 137

P (xt | x1, x2, . . . , xt−1) , (1) 138

which can be simplified as: 139

P (xt | x1:t−1) , (2) 140

where x1:t−1 = x1, x2, . . . , xt−1 represents the 141

input sequence. 142

KGW watermark injection operates as follows: 143

A hash value h is generated using a user-defined 144

private key k and a preceding token xt−1. This 145

hash value h serves as a random seed to partition 146

the vocabulary V into two subsets: the green list 147

G and the red list VR, where the green list VG 148

contains a fraction γ of the total vocabulary V , i.e., 149

|VG| = γ|V|. γ is set to 0.5 below by default. 150

Next, KGW increase the probability of tokens 151

in green list. For simplicity, we will only describe 152

the increase in the probability of green-list tokens, 153

while the probability of red-list tokens will natu- 154

rally decrease accordingly. Specifically, for a token 155

i, the probability pi is modified as follows: 156

p̂i =


pie

δ∑
j∈G pjeδ+

∑
j∈R pj

, Vi ∈ VG,

pi∑
j∈G pjeδ+

∑
j∈R pj

, Vi ∈ VR.
(3) 157

KGW uses a hyperparameter δ to control the wa- 158

termark strength. A larger δ results in improved 159

watermark effectiveness, but lower text quality. By 160

autoregressively sampling from this modified dis- 161

tribution, watermarked sequences can be generated, 162

where the presence of a watermark can be detected 163

based on the proportion of tokens selected from the 164

green list VG. 165

Specifically for watermark detection, to deter- 166

mine whether a sequence S = s1, s2, . . . , s|T | con- 167

tains a watermark, we calculate the z-score as: 168

z =
|S|G − γ|T |√
|T |γ(1− γ)

, (4) 169

where |T | is the total number of tokens and |S|G is 170

the number of tokens in the green list. By setting 171

a threshold of z-score, we can determine if the 172

sequence is watermarked. If z-score exceeds the 173

threshold, it indicates that the sequence contains a 174

watermark. 175
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Figure 1: Visualization of F across different PG and r.
The vertical axis represents F . A dashed dark gray line
is used to indicate the optimal r (i.e., r∗) that maximizes
F for a fixed PG. We can observe that as PG decreases,
r∗ also decreases.

3 Methodology176

In this section, we provide a detailed introduction177

to the proposed watermark method MorphMark.178

First, in § 3.1, we formalize the multi-objective179

analysis function F , which can comprehensively180

capture both text quality T and watermark effec-181

tiveness W . We then theoretically prove that as182

PG decreases, reducing r can lead to a larger F .183

Based on this insight, we describe our watermark184

algorithm detailedly in § 3.2.185

3.1 Multi-objective Trade-off Framework186

In this section, we will model the multi-objective187

trade-off framework during the proces of sampling188

the next token.189

Watermark Mechanism. During generating a new190

token, we have an original sampling distribution191

P = {pi}|V|1 . To watermark this token, we first192

split the vocabulary into a green list VG and a red193

list VR. Let PG represent the sum of probabilities194

of green tokens, i.e,195

PG =
∑
j∈G

pj . (5)196

Since the maximum increase of PG is 1−PG (as197

PG cannot exceed 1), we define the total increase198

of PG as r · (1− PG), where r is used to represent199

watermark strength and r ∈ (0, 1). The larger200

r, the greater the watermark strength. Formally,201

we have the watermarked sampling distribution202

P̂ = {p̂i}|V|1 :203

p̂i =

{
pi +

pi
PG

· r(1− PG), Vi ∈ VG,

pi − pi
1−PG

· r(1− PG), Vi ∈ VR.
(6)204

Text Quality. Following Zhao et al. (2024), we 205

define text quality as the similarity between origi- 206

nal and watermarked sampling distributions. Here 207

we use the Bhattacharyya Coefficient (BC) (Bhat- 208

tacharyya, 1946; Ramesh et al., 2023) for compu- 209

tational simplicity. Other metrics (e.g., KL diver- 210

gence) also yield same conclusion, as shown in 211

App. B.2. 212

T (r) = BC(P, P̂ ) =
∑
i∈V

√
pip̂i

= PG

√
1 +

r (1− PG)

PG
+ (1− PG)

√
1− r,

(7)

213

where T (r) represents the BC between P and P̂ . A 214

higher value of T indicates a smaller perturbation 215

introduced by the watermark, which corresponds 216

to better preservation of text quality. 217

Watermark Effectiveness. The effectiveness of 218

the watermark can be quantified by the difference 219

between the adjusted probabilities of tokens in the 220

green list and those in the red list. Specifically, it is 221

given by: 222

W(r) = (P̂G − P̂R)− (PG − PR)

= 2r(1− PG),
(8) 223

where P̂G and P̂R represent the summed probabil- 224

ity of tokens in the green and red lists, respectively, 225

under the watermarked sampling distribution, and 226

PG and PR correspond to the probabilities under 227

the original sampling distribution. 228

Multi-objective Trade-off Analysis Function. 229

Then, we can construct a multi-objective trade-off 230

analysis function F as a weighted sum of text qual- 231

ity and watermark effectiveness: 232

F(r) = T (r) + ω · W(r)

= PG

√
1 +

r(1− PG)

PG
+ (1− PG)

√
1− r

+ ω · 2r(1− PG),
(9) 233

where ω is the weight of watermark effectiveness. 234

We do not impose any restrictions on ω except 235

ω > 0. Crucially, our subsequent derivations and 236

analysis are valid regardless of the specific value 237

of ω. In other words, whether prioritizing text 238
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quality (ω is small) or watermark effectiveness (ω239

is large), our proposed method and conclusions are240

universally applicable. This can illustrate the wide241

applicability of our method, enabling it to adapt to242

various needs and preferences.243

Theorem 1. Consider the process of sampling a244

token from the watermarked probability distribu-245

tion described above, for any given ω > 0, there246

exists an optimal r∗ ∈ (0, 1) that maximizes F .247

Moreover, the optimal r∗ is positively correlated248

with PG, i.e., ∂r∗

∂PG
> 0.249

This theorem indicates that, whether prioritizing250

text quality or watermark effectiveness, adaptively251

adjusting r in a positively correlated manner with252

PG will lead to newly generated tokens achieving253

both higher text quality and stronger watermark254

effectiveness. This guides us to adaptively assign255

larger r when PG is high, and conversely, smaller256

r when PG is low, in order to achieve a larger F .257

The proof of Theorem 1 is provided in App. B.1.258

Visualization of Theoretical Insights. To provide259

a straightforward understanding of our insights, we260

visualize F in Fig. 1. We can clearly observe that261

no matter how the ω is set, the lager the PG, the262

lager the r that maximizes F (i.e., r∗).263

3.2 Adaptive Watermark264

In this section, we propose an instance of the func-265

tion r = ϕ(PG) that satisfies the design principle266

outlined above:267

ϕ(x) =

{
ϵ, x ≤ p0,

min(z(x), 1− ϵ), x > p0,
(10)268

z(x) = klinearx, (11)269

where ϵ is a negligibly small positive value ap-270

proaching 0. The function is a piecewise linear271

function defined over the domain (0, 1). The pa-272

rameter p0 is the threshold for watermarking, which273

we call watermarking threshold. We set ϕ(PG) = ϵ274

when x ≤ p0, ensuring a very little adjustment to275

tokens when probabilities in the green list are very276

small. For PG in (p0, 1), ϕ(x) increases linearly. A277

specific example of this adaptive mechanism used278

in MorphMark is illustrated in Fig. 2.279

We can also design a fast growth function280

z(x) = ekexpx − 1 and a slow growth function281

z(x) = ln(klogx+ 1), which we will explore later282

to determine which approach is better. For detec-283

tion, we use z-score as KGW (Kirchenbauer et al.,284
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Figure 2: An example illustrating the adaptive mech-
anism of MorphMark. During token generation, the
vocabulary is split into green and red lists. Since the
split is based on the preceding tokens and user-defined
keys, different tokens and users will have different splits.
MorphMark adjusts the watermark strength based on
the total probability of green tokens. High strength is
applied when this probability is high, while low strength
is used when this probability is low.

2023) described in § 2. Building on the formula 285

above, we outline the detailed watermark algorithm 286

for text generation in Alg. 1 of App. A. 287

4 Experiments 288

4.1 Experimental Setup 289

Following MarkLLM (Pan et al., 2024), we eval- 290

uate MorphMark using 400 samples from the 291

C4 (Raffel et al., 2020), with OPT-1.3B, -2.7B, and 292

-6.7B (Zhang et al., 2022) as the backbone models. 293

Our baselines include various flexible watermark 294

methods, including KGW (Kirchenbauer et al., 295

2023), UW (Hu et al., 2024), DiPmark (Wu et al., 296

2024), SWEET (Lee et al., 2024), and EWD (Lu 297

et al., 2024). We assess watermark effectiveness 298

in terms of detectability (TPR@1%, Best F1) and 299

robustness (assessed under the Word-S/30% attack, 300

where 30% of words are randomly replaced with 301

synonyms from WordNet), as well as text quality 302

via perplexity (PPL). Details are shown in App C.1. 303

4.2 Overall Performance 304

We summary the main results in Tab. 1. Besides 305

watermark effectiveness and text quality, we report 306

the time spent on generation (Generation Time (s)) 307
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Method TPR@1%↑ TPR@1%↑
(Word-S/30%) Best F1↑ Best F1↑

(Word-S/30%) PPL↓ Generation
Time (s)

Detection
Time (ms)

Memory
Usage (B)

OPT-1.3B
UnWM - - - - 10.4815 2.4374 - 0
KGW 0.9900 0.8050 0.9950 0.9268 11.4994 2.4901 33.81 0
UW 1.0000 0.7425 0.9975 0.9221 11.5854 2.5486 71.30 0
DiPmark 0.9975 0.7250 0.9975 0.9138 11.5042 2.5492 71.54 0
SWEET 0.9975 0.8225 0.9975 0.9501 11.5065 2.4667 44.27 1.3
EWD 1.0000 0.8450 1.0000 0.9549 11.4777 2.4526 44.52 1.3
MorphMarkexp 1.0000 0.9600 0.9975 0.9778 11.3569 2.6768 34.17 0
MorphMarklinear 1.0000 0.9275 0.9962 0.9727 11.2386 2.6537 33.99 0
MorphMarklog 1.0000 0.9375 1.0000 0.9660 11.3379 2.6889 34.45 0

OPT-2.7B
UnWM - - - - 9.6683 3.1573 - 0
KGW 0.9950 0.8275 0.9950 0.9098 10.9324 3.2353 33.01 0
UW 0.9950 0.6900 0.9962 0.9202 10.8593 3.3178 72.86 0
DiPmark 0.9900 0.7125 0.9913 0.9058 11.0013 3.3126 72.83 0
SWEET 0.9975 0.8350 0.9962 0.9566 10.8377 3.2605 49.46 2.7
EWD 1.0000 0.8500 0.9988 0.9588 10.6303 3.2180 49.56 2.7
MorphMarkexp 1.0000 0.9625 0.9987 0.9686 10.5144 3.5074 34.64 0
MorphMarklinear 1.0000 0.9300 0.9988 0.9701 10.3852 3.4149 34.00 0
MorphMarklog 0.9975 0.9250 0.9988 0.9628 10.6717 3.6792 34.63 0

OPT-6.7B
UnWM - - - - 9.0120 4.2656 - 0
KGW 0.9950 0.8150 0.9975 0.9058 9.9602 4.3163 32.30 0
UW 0.9950 0.7025 0.9899 0.8971 10.3701 4.4407 75.04 0
DiPmark 0.9975 0.6625 0.9925 0.9073 10.2747 4.4363 75.13 0
SWEET 0.9925 0.7925 0.9975 0.9539 10.0633 4.3931 62.20 6.7
EWD 1.0000 0.8350 0.9975 0.9523 9.9925 4.3393 61.74 6.7
MorphMarkexp 1.0000 0.9100 0.9975 0.9763 9.6618 4.5198 35.97 0
MorphMarklinear 0.9975 0.9250 0.9950 0.9637 9.7391 4.4456 35.15 0
MorphMarklog 0.9950 0.8975 0.9950 0.9602 9.8585 4.4537 35.45 0

Table 1: Performance comparison on different methods. The best results are in bold for each column.

and detection (Detection Time (ms)) (for 800 to-308

kens), as well as the size of models used for detec-309

tion (Memory Usage (B)) to highlight the time and310

space efficiency of different watermark methods.311

From the results, we can see that MorphMark312

outperforms all baselines in detectability, robust-313

ness, and text quality, demonstrating a superior314

effectiveness-quality trade-off. It spends nearly315

identical generation and detection time to that of316

KGW, indicating no significant additional delay.317

Additionally, MorphMark incurs no memory us-318

age during detection, as it does not require loading319

any model. In summary, MorphMark is an effi-320

cient method that effectively address the dilemma321

between watermark effectiveness and text quality.322

4.3 Performance on Robustness323

Malicious attackers may use paraphrasing attack324

methods to conduct watermark removal. Thus, we325

implement 5 paraphrasing attack methods to evalu-326

ate the robustness of different watermarking algo-327

rithms. (1) Word-S/ refers to randomly replacing328

words with synonyms from WordNet, where the329

number after "/" indicates the proportion of words330

modified. (2) Word-SC/ refers to randomly replac-331

ing words with synonyms from WordNet based on 332

context. (3) Word-D involves randomly deleting 333

30% of the words from the text. (4) Doc-P (GPT- 334

3.5) rewrites the text using GPT-3.5-Turbo (Ope- 335

nAI, 2024). Details are shown in App. C.2. (5) 336

Doc-P (Dipper) rewrites the text using a special- 337

ized paraphrasing model Dipper (Krishna et al., 338

2024). 339

We summarize the results in Fig. 1. As shown, 340

MorphMarkexp exhibits significantly superior ro- 341

bustness compared to all other methods across all 342

attack scenarios. This advantage is particularly 343

evident when watermarked texts are paraphrased 344

by GPT-3.5 or Dipper, where MorphMarkexp 345

achieves a substantially higher TPR@1%. In addi- 346

tion, the other two variants, MorphMarklinear and 347

MorphMarklog, also outperform the selected base- 348

lines in most attack settings. In summary, these 349

results empirically demonstrate the strong robust- 350

ness of MorphMark, particularly MorphMarkexp, 351

making it a more practical and reliable choice. 352

4.4 Performance on Text Quality 353

Following previous work (Hu et al., 2024; Wu 354

et al., 2024), instead of using PPL only, we evalu- 355
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Figure 3: Robustness performance of each watermarking method under various attack scenarios.

ate text quality on two downstream tasks, specifi-356

cally machine translation and text summarization.357

For machine translation, we employ the nllb-200-358

distilled-600M (Costa-jussà et al., 2022) as our359

translation model and randomly sample 400 in-360

stances from the WMT16 (Bojar et al., 2016) cor-361

pus for the German-to-English translation task as362

our test dataset. For text summarization, we evalu-363

ate 400 randomly sampled instances from the CNN-364

DM dataset (Hermann et al., 2015) using the OPT-365

1.3B model (Zhang et al., 2022). To assess perfor-366

mance, we employ BLEU (Papineni et al., 2002),367

ROUGE (Lin, 2004), and BERTScore (Zhang et al.,368

2019) as evaluation metrics. Our experiments use369

the same parameters as the main study, ensuring370

that text quality is compared under the condition371

that MorphMark’s detectability and robustness sur-372

pass other watermarking methods.373
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Figure 4: Text quality on downstream tasks.

Fig. 4(a) presents the results for the machine374

translation task. In terms of the BLEU metric,375

all methods demonstrate comparable performance. 376

However, for BERTScore, our proposed method, 377

MorphMark’s three variants, consistently outper- 378

forms all other baseline methods by a small mar- 379

gin. Fig. 4(b) shows the results for the text sum- 380

marization task. According to the ROUGE met- 381

ric, the MorphMarkexp and MorphMarklinear vari- 382

ants exhibit slightly better performance than the 383

MorphMarklog variant, while all three significantly 384

outperform the baseline methods. For BERTScore, 385

the three MorphMark variants yield nearly identi- 386

cal performance, showing a minor improvement 387

over the unbiased watermarks (UW and DiPmark). 388

Furthermore, both MorphMark and unbiased water- 389

marks achieve a notable advantage over the other 390

baseline approaches. 391

Overall, in terms of text quality, MorphMark out- 392

performs unbiased watermarks (UW and DiPmark), 393

and these two unbiased watermarks surpasses all 394

other baseline approaches. 395

4.5 Ablation Study 396

In this section, we conduct ablation study on 397

the hyper-parameters of MorphMark, includ- 398

ing kexp, klinear and klog in MorphMarkexp, 399

MorphMarklinear, and MorphMarklog respectively, 400

as well as p0. The impact of these parameters 401

is clearly shown in Fig. 5. Specifically, as kexp, 402

klinear and klog increase, or as p0 decreases, water- 403

mark strength increase, so watermark effectiveness 404

improve, while text quality degrades. 405

Additionally, by combinating Fig.5(a), Fig.5(b), 406

and Fig. 5(c), we can conveniently com- 407

pare MorphMarkexp, MorphMarklinear, and 408

MorphMarklog. By fixing either watermark effec- 409

tiveness or text quality, we can assess the relative 410

performance of the three variants along the other di- 411
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Figure 5: Parameter ablation study of MorphMark. In (a), (b), and (c), we conduct an ablation study on k
across different variants of MorphMark, where the x-axis represents k. In (d), we perform an ablation study on the
watermarking threshold, where the x-axis represents p0.

mension. This analysis leads to the conclusion that412

across various levels of detectability, the text qual-413

ity ranking consistently follows MorphMarkexp414

> MorphMarklinear > MorphMarklog. This high-415

lights MorphMarkexp’s superior trade-off between416

watermark effectiveness and text quality, making it417

the strongest choice among the three designs.418

4.6 Further Analyses419

4.6.1 Different Sampling Parameters420

In this section, we test whether MorphMark re-421

mains effective under different sampling parame-422

ters. We consider several commonly used temper-423

ature and top-p combinations: (1.2, 1.0) for high424

creativity, (0.7, 0.95) and (0.9, 0.95) for general-425

purpose tasks, and (0.3, 1.0) for precision-oriented426

tasks.427

(Temp, TopP) UnWM PPL PPL TPR@1% TPR@1%↑
(Word-S/30%)

(0.3, 1.0) 4.1308 4.7605 0.9925 0.9200
(0.7, 0.95) 5.4809 6.1871 1.0000 0.9450
(0.9, 0.95) 7.3829 8.0190 0.9975 0.9550
(1.2, 1.0) 15.2175 16.8605 0.9975 0.9600

Table 2: Performance of MorphMarkexp with different
sampling parameters. UnWM refers to unwatermarked
output.

Table 2 presents the results of MorphMarkexp.428

From the results, we observe that as the tempera-429

ture increases, both the unwatermarked PPL and430

watermarked PPL increase, indicating that higher431

temperature leads to more diverse generations. Ad-432

ditionally, the TPR@1% remains consistently high433

across all settings, demonstrating the robustness434

of MorphMarkexp. Notably, the relative improve-435

ment in TPR@1% increases with temperature, with436

the highest improvement observed at (1.2, 1.0),437

suggesting that watermark detection benefits from438

more diverse text generation.439

These results indicate that MorphMarkexp per- 440

forms still reliably across different sampling set- 441

tings, maintaining high detection effectiveness 442

while adapting to different decoding parameters. 443

Results of MorphMarklinear and MorphMarklog 444

are present in Tab. 3 and Tab. 4 of App. C.4 445

4.6.2 In-Depth Analysis of PG Distribution 446

An important factor affecting the performance of 447

MorphMark is the distribution of PG within a se- 448

quence. For example, if the sequence’s entropy 449

is low, PG tends to concentrate around 0 and 1, 450

making it difficult for MorphMark to successfully 451

inject the watermark. 452

Since the distribution of PG within a sequence 453

is difficult to quantify with a single metric, we 454

present a case study in this section to shed light on 455

this aspect. To this end, we employ two contrasting 456

examples: a high-entropy task, specifically story 457

creation, and a low-entropy task, code generation in 458

Fig. 6. From these examples, we observe that when 459

the distribution of PG is extreme, the effectiveness 460

of the watermark is low. 461

To determine whether such extreme conditions 462

occur frequently, we examine the distribution of 463

PG across several popular benchmarks including 464

TruthfulQA (Lin et al., 2021), SQuAD (Rajpurkar, 465

2016; Rajpurkar et al., 2018), GSM8K (Cobbe 466

et al., 2021) and MBPP (Austin et al., 2021). The 467

statistical results are presented in Fig. 9. These re- 468

sults show that the PG’s distribution in most bench- 469

marks is relatively uniform—even in code tasks. 470

This uniformity is likely due to the fact that code 471

typically contains comments, and after alignment, 472

LLMs tend to output additional natural language 473

explanations rather than only code. Overall, since 474

such extreme cases occur infrequently, our method 475

remains effective in most scenarios. 476
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Green Token Ratio: 74.6%

The city slept under a veil of mist, its neon lights flickering like dying stars. Maria 
tightened her coat and stepped into the alley, unaware that someone was watching. Then, 
a voice emerged from the shadows—

"The narrator has forgotten the past."

Maria spun around, her heart racing. "Who's there?"

A figure emerged, dressed in a long coat with a fedora hat. "I am the collector. And 
you, Maria, have a story to return."

Maria's mind was a jumble of memories, but nothing concrete. "What story?"

The collector smiled, his eyes glinting with a knowing light. "The one you wrote. The 
one that changed the course of yo..., and the collector led her into the heart of the 
city, where the mist grew thicker and the lights dimmed. They walked through streets 
lined with old bookstores and libraries, until they reached a small, mysterious shop 
with a sign that read The Lost Pages.

"What do you think is going on? What is the

(a) Story creation task with widely balanced PG values.

Green Token Ratio: 60.4%

You are an AI coding assistant. Complete the following Python function to correctly 
calculate the factorial of a number using recursion. Return the code directly.
```
def factorial(n):
    \"""Calculates the factorial of a number recursively.\"""    if
```

Here's the completed Python function: 

``` def factorial(n):    if n == 0: return 1

               else: return n * factorial(n-1)```

Explanation:

The function takes an integer `n` as input and calculates its factorial using 
recursion.

(b) Code generation task with a high number of extreme PG values, most PG values being concentrated near 0 or 1.

Figure 6: Case Study on PG Distributions. In example (a), which illustrates a story creation task, the PG values
are well-balanced across a wide range. MorphMark performs effectively in this scenario, achieving a high ratio of
green tokens throughout the sequence. In contrast, example (b) presents a code generation task with an extreme
distribution, where most PG values are concentrated near 0 or 1. In this case, MorphMark proves less effective.

5 Related Work477

Backdoor-based watermarking has been widely478

studied before the rise of large language mod-479

els (Adi et al., 2018; Li et al., 2022; Wang et al.,480

2024). In the era of LLMs, due to the high cost481

of training models, researchers have shifted to482

injecting watermarks during the generation pro-483

cess (Kirchenbauer et al., 2023; Kuditipudi et al.,484

2024). Recent studies focus on low-entropy water-485

marking (Lu et al., 2024; Mao et al., 2024), water-486

mark security (Pang et al., 2024; Liu et al., 2024a;487

He et al., 2024a), watermark privacy (Jovanović488

et al., 2024; Christ et al., 2024), and watermark489

under different sampling methods (Hu and Huang,490

2024; Dathathri et al., 2024), with the most widely491

explored topic being the trade-off between water-492

mark effectiveness and text quality (Hu et al., 2024;493

Wu et al., 2024; Huo et al., 2024). The full related494

work is shown in App. D.495

6 Conclusion496

This work investigates the fundamental trade-off497

between watermark effectiveness and text quality498

when watermarking large language models (LLMs). 499

We first formally characterize this trade-off as a 500

multi-objective analysis function and identify the 501

cumulative probability of green-list tokens as a criti- 502

cal factor influencing this trade-off. Our theoretical 503

analysis reveals that increasing watermark strength 504

does not always lead to improved performance, par- 505

ticularly when the cumulative probability of the 506

green list is low. Motivated by this theoretical in- 507

sight, we introduce MorphMark, a dynamic water- 508

marking mechanism that adaptively adjusts water- 509

mark strength to improve both watermark effec- 510

tiveness and text quality. In addition, MorphMark 511

offers flexibility and efficiency (time and space). 512

Empirical results demonstrate MorphMark’s sub- 513

stantial improvement across diverse models and 514

scenarios. By integrating theoretical modeling, al- 515

gorithmic design and innovation, empirical valida- 516

tion, and practical deployment consideration, this 517

work propose a reliable and practical watermarking 518

mechanism. Our findings deepen the understanding 519

of watermarking mechanism based on green-red 520

list and provide the community with both theoreti- 521

cal analytical tool and practical methodology. 522
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Limitations523

While our empirical analysis demonstrates that524

MorphMark is effective in a wide range of sce-525

narios, it is important to acknowledge certain limi-526

tations. One notable constraint arises in extremely527

low-entropy text generation tasks, where the water-528

marking capability of MorphMark becomes nearly529

less effective. This issue is not unique to Mor-530

phMark but rather a fundamental limitation shared531

by all green-red list-based watermarking methods.532

The core reason behind this limitation lies in the533

nature of low-entropy text generation. When a534

model produces highly predictable sequences with535

minimal variation, the opportunities for embedding536

watermarks become significantly reduced. Since537

green-red list-based watermarking relies on a de-538

gree of token unpredictability to manipulate token539

selection probabilities, it struggles to function ef-540

fectively when entropy is too low.541

Addressing this challenge requires exploring al-542

ternative watermarking strategies that do not de-543

pend solely on token-level entropy. Potential direc-544

tions include integrating semantic or syntactic wa-545

termarking techniques, leveraging sentence-level546

perturbations, or incorporating watermark signals547

at deeper structural levels within the model.548

Despite this limitation, MorphMark remains549

highly effective in most practical applications. The550

broad distribution of PG observed in our experi-551

ments suggests that, under typical generation con-552

ditions, MorphMark consistently embeds reliable553

watermarks. Future work should focus on refining554

watermarking methods to enhance performance in555

extreme cases while maintaining MorphMark’s ef-556

ficiency and usability across diverse text generation557

tasks.558

References559

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny560
Pinkas, and Joseph Keshet. 2018. Turning your weak-561
ness into a strength: Watermarking deep neural net-562
works by backdooring. In 27th USENIX security563
symposium (USENIX Security 18), pages 1615–1631.564

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten565
Bosma, Henryk Michalewski, David Dohan, Ellen566
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.567
Program synthesis with large language models. arXiv568
preprint arXiv:2108.07732.569

Anil Bhattacharyya. 1946. On a measure of divergence570
between two multinomial populations. Sankhyā: the571
indian journal of statistics, pages 401–406.572

Ondrej Bojar, Rajen Chatterjee, Christian Federmann, 573
Yvette Graham, Barry Haddow, Matthias Huck, An- 574
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo- 575
gacheva, Christof Monz, et al. 2016. Findings of 576
the 2016 conference on machine translation (wmt16). 577
In First conference on machine translation, pages 578
131–198. Association for Computational Linguistics. 579

Miranda Christ, Sam Gunn, and Or Zamir. 2024. Un- 580
detectable watermarks for language models. In The 581
Thirty Seventh Annual Conference on Learning The- 582
ory, pages 1125–1139. PMLR. 583

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 584
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 585
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 586
Nakano, Christopher Hesse, and John Schulman. 587
2021. Training verifiers to solve math word prob- 588
lems. arXiv preprint arXiv:2110.14168. 589

Marta R Costa-jussà, James Cross, Onur Çelebi, Maha 590
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe 591
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, 592
et al. 2022. No language left behind: Scaling 593
human-centered machine translation. arXiv preprint 594
arXiv:2207.04672. 595

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po- 596
Sen Huang, Rob McAdam, Johannes Welbl, Vandana 597
Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana 598
Matejovicova, et al. 2024. Scalable watermarking 599
for identifying large language model outputs. Nature, 600
634(8035):818–823. 601

Eva Giboulot and Teddy Furon. 2024. Watermax: 602
breaking the llm watermark detectability-robustness- 603
quality trade-off. arXiv preprint arXiv:2403.04808. 604

Yuxuan Guo, Zhiliang Tian, Yiping Song, Tianlun Liu, 605
Liang Ding, and Dongsheng Li. 2024. Context-aware 606
watermark with semantic balanced green-red lists 607
for large language models. In Proceedings of the 608
2024 Conference on Empirical Methods in Natural 609
Language Processing, pages 22633–22646. 610

Zhiwei He, Binglin Zhou, Hongkun Hao, Aiwei Liu, 611
Xing Wang, Zhaopeng Tu, Zhuosheng Zhang, and 612
Rui Wang. 2024a. Can watermarks survive trans- 613
lation? on the cross-lingual consistency of text wa- 614
termark for large language models. In Proceedings 615
of the 62nd Annual Meeting of the Association for 616
Computational Linguistics (Volume 1: Long Papers), 617
pages 4115–4129. Association for Computational 618
Linguistics. 619

Zhiwei He, Binglin Zhou, Hongkun Hao, Aiwei Liu, 620
Xing Wang, Zhaopeng Tu, Zhuosheng Zhang, and 621
Rui Wang. 2024b. Can watermarks survive trans- 622
lation? on the cross-lingual consistency of text wa- 623
termark for large language models. arXiv preprint 624
arXiv:2402.14007. 625

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen- 626
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman, 627
and Phil Blunsom. 2015. Teaching machines to read 628
and comprehend. Advances in neural information 629
processing systems, 28. 630

9



Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu,631
Hongyang Zhang, and Heng Huang. 2024. Unbiased632
watermark for large language models. In The Twelfth633
International Conference on Learning Representa-634
tions.635

Zhengmian Hu and Heng Huang. 2024. Inevitable trade-636
off between watermark strength and speculative sam-637
pling efficiency for language models. In The Thirty-638
eighth Annual Conference on Neural Information639
Processing Systems.640

Mingjia Huo, Sai Ashish Somayajula, Youwei Liang,641
Ruisi Zhang, Farinaz Koushanfar, and Pengtao Xie.642
2024. Token-specific watermarking with enhanced643
detectability and semantic coherence for large lan-644
guage models. arXiv preprint arXiv:2402.18059.645
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A Algorithm783

We present the detailed algorithm in Alg. 1.784

Algorithm 1 Text Generation with Watermark
1: Input: prompt s−Np , . . . , s−1, a private key k, hyper-parameters used in Equation 10: p0, klinear and

ϵ.
2: Output: watermarked text.
3: for t = 0 to T do
4: Obtain the probability distribution vector p = P

(
st | s−Np:t−1

)
from the language model.

5: Compute a hash value of token st−1 using the private key k.
6: Randomly partition the vocabulary into a green list VG of size |V|/2 and a red list VR of size |V|/2,

with the hash value serving as the random seed.
7: Calculate total adjustment r = ϕ(

∑
j∈G pj) as defined in Equation 10.

8: Generate the watermarked probability distribution over the vocabulary:

p̂i =

pi +
pi∑

j∈G pj
· r

∑
j∈R pj , Vi ∈ VG,

pi − pi∑
j∈R pj

· r
∑

j∈R pj , Vi ∈ VR.

9: Sample the next token st based on the watermarked distribution p̂.
10: end for
11: return s0:T .

B Proof785

B.1 Proof of Theorem 1786

For simplicity in calculation, we define text quality as the Bhattacharyya coefficient coefficient (BC)787

between the original sampling distribution and the watermark sampling distribution. Note that using KL788

divergence also leads to the same conclusion, based on the same derivation process.789

T (r) = BC(P, P̂ ) =
∑
i∈V

√
pip̂i

=
∑
i∈G

√
pi

(
pi +

pi
PG

r (1− PG)

)
+
∑
i∈R

√
pi

(
pi −

pi
1− PG

r (1− PG)

)

=
∑
i∈G

pi

√
1 +

r (1− PG)

PG
+
∑
i∈R

pi
√
1− r

= PG

√
1 +

r (1− PG)

PG
+ (1− PG)

√
1− r

(12)790

Detection capability is defined as the difference of increased probability of green list and red list:791

W(r) = 2ωr(1− PG) (13)792

Thus, we define the multi-objective trade-off analysis function as a weighted sum of both:793

F = T + ω · W = PG

√
1 +

r (1− PG)

PG
+ (1− PG)

√
1− r + 2ωr(1− PG) (14)794
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where ω is the weight of detection capability and ω > 0. For generality, we impose no additional 795

restrictions on ω. That is, our following derivation is valid for any w. 796

The first derivative of F with respect to r is: 797

∂F
∂r

= (1− PG)

2ω +
1

2
√
1 + r(1−PG)

PG

− 1

2
√
1− r

 (15) 798

We only need the sign of the derivative later. To simplify the calculation, we use S to replace the 799

derivative above, as S has the same sign. 800

S = 2ω +
1

2
√
1 + r(1−PG)

PG

− 1

2
√
1− r

(16) 801

Next, we need to prove that F achieves its maximum at S = 0. The formula for the first derivative of S 802

with respect to r is: 803

∂S

∂r
=

1

4 ·
(
−r + 1 + r

PG

) 3
2

− 1

4 · (1− r)
3
2

− 1

4 · PG ·
(
−r + 1 + r

PG

) 3
2

= − 1− PG

4PG

(
1 + r

(
1
PG

− 1
)) 3

2

− 1

4 (1− r)
3
2

< 0

(17) 804

This derivative is negative, meaning that S is decreasing as r increases. 805

lim
r→0

S = 2ω > 0 (18) 806

lim
r→1

S = −∞ < 0 (19) 807

Since S is positive at r = 0 and negative at r = 1, by the continuity of S and the intermediate value 808

theorem, there must exist a value r∗ between 0 and 1 such that S(r∗) = 0. 809

By the implicit function theorem, substituting S = 0, we obtain the relationship between r∗ and PG: 810

∂r∗

∂PG
= −

∂S
∂PG

∂S
∂r∗

= −

r∗

4·P 2
G·

(
1+r∗

(
1

PG
−1

)) 3
2

− 1−PG

4PG

(
1+r∗

(
1

PG
−1

)) 3
2
− 1

4(1−r∗)
3
2

> 0 (20) 811

This shows that when PG is larger, the optimal r will also be larger, and when PG is smaller, the optimal 812

r will be smaller. In other words, increasing PG leads to an increase in the optimal parameter r∗. This 813

implies that in the optimization process, as the sampling distribution changes, the watermark optimization 814

parameter r needs to be adjusted accordingly to maintain optimal performance. 815

B.2 Proof for More Similarity Measurement Methods 816

Here, we use another similarity measurement method (KL divergence) to measure the text quality. And 817

we will prove that it also leads to the same conclusion. Since we need the similarity instead of divergence, 818

so we calculate −DKL(P ||P̂ ): 819
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T (r) = −DKL(P ||P̂ ) =
∑
i∈V

pilog
p̂i
pi

=
∑
i∈G

pilog
pi +

pi
PG

r(1− PG)

pi
+
∑
i∈R

pilog
pi − pi

1−PG
r(1− PG)

pi

= log(1 +
r(1− PG)

PG
) ·

∑
i∈G

pi + log(1− r) ·
∑
i∈R

pi

= PG · log(1 + r(1− PG)

PG
) + (1− PG) · log(1− r)

(21)820

Then, we define the multi-objective trade-off analysis function as:821

F(r) = T (r) + ωW(r)

= PG · log(1 + r(1− PG)

PG
) + (1− PG) · log(1− r) + 2ωr(1− PG)

(22)822

where ω is the weight of detection capability and ω > 0. For generality, we impose no additional823

restrictions on ω. That is, our following derivation is valid for any w.824

The first derivative of F with respect to r is:825

∂F
∂r

=
(1− PG)

1 + r(1−PG)
PG

− 1− PG

1− r
+ 2ω(1− PG)

= (1− PG)(
1

1 + r(1−PG)
PG

− 1

1− r
+ 2ω)

(23)826

We only need the sign of the derivative later. To simplify the calculation, we use S to replace the827

derivative above, as S has the same sign.828

S = 2ω +
1

1 + r(1−PG)
PG

− 1

1− r
(24)829

Next, we need to prove that F achieves its maximum at S = 0. The formula for the first derivative of S830

with respect to r is:831

∂S

∂r
=

P 2
G

(−rPG + PG + r)2
− PG

(−rPG + PG + r)2
− 1

(r − 1)2

= − PG(1− PG)

(PG + r − rPG)2
− 1

(1− r)2

(25)832

This derivative is negative, meaning that S is decreasing as r increases.833

lim
r→0

S = 2ω > 0 (26)834

lim
r→1

S = −∞ < 0 (27)835

Since S is positive at r = 0 and negative at r = 1, by the continuity of S and the intermediate value836

theorem, there must exist a value r∗ between 0 and 1 such that S(r∗) = 0.837

By the implicit function theorem, substituting S = 0, we obtain the relationship between r∗ and PG:838

∂r∗

∂PG
= −

∂S
∂PG

∂S
∂r∗

= −
r

(PG−r(PG−1))2

− PG(1−PG)
(PG+r−rPG)2

− 1
(1−r)2

> 0 (28)839

This shows that as PG increases, the optimal r should also increase. We verify the theorem.840
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C Supplementary Experimental Results 841

C.1 Detailed Experimental Setup 842

Datasets and Models. To ensure the reliability, we adapt the configurations provided by MarkLLM (Pan 843

et al., 2024), which currently is the most popular LLM watermarking toolkits. Specifically, for dataset, 844

we utilize 400 samples from the C4 dataset (Raffel et al., 2020). The first 30 tokens of each text serve as 845

prompts to generate new tokens. We set the output length to be at least 200 and at most 230 tokens. We 846

also follow MarkLLM and employ OPT-1.3B, -2.7B and -6.7B (Zhang et al., 2022) as our models. 847

Baselines. In this paper, we focus exclusively on flexible watermarking methods that do not require 848

training any additional models, as they offer more promising practical applicability. Consequently, we 849

exclude watermarking techniques that necessitate model training, such as SIR (Liu et al., 2024a) and 850

TS (Huo et al., 2024). The baseline methods include: (1) UnWM, representing the original unwatermarked 851

outputs; (2) KGW (Kirchenbauer et al., 2023), the fundamental method; (3) UW (Hu et al., 2024) 852

and DiPmark (Wu et al., 2024), which implement unbiased watermark techniques; (4) SWEET (Lee 853

et al., 2024) and EWD (Lu et al., 2024), both designed for watermarking in low-entropy scenarios. 854

Implementation details can be found in App. C.1. 855

Evaluation Metrics. We evaluate MorphMark and baselines in watermark effectiveness and text quality. 856

The evaluation of effectiveness focuses on both detectability and robustness. We assess detectability 857

using True positive rate at 1% false positive rate (TPR@1%). We also report the Best F1 Score (Best 858

F1) to present the highest F1 score achieved with the optimal balance of TPR and FPR during detection. 859

To assess the robustness of watermark methods, we employ the Word-S/30% attack, which randomly 860

replaces words with synonyms from WordNet (Miller, 1995). We report the TPR@1% and Best F1 of 861

watermarking methods against the Word-S/30% attack, denoted as TPR@1%(Word-S/30%) and Best 862

F1(Word-S/30%). From a text quality perspective, we evaluate the Perplexity (PPL) of generated texts, 863

computed using LLaMA-2-7B (Touvron et al., 2023). All experiments are performed on an Ubuntu 18.04 864

system with an AMD EPYC 7Y83 64-core CPU and a NVIDIA RTX 4090 GPU. 865

Implementation Details. For KGW, SWEET and EWD , and the δ in their methods is set to 1.25. For 866

SWEET, the entropy threshold is set to 0.9. For UW, we use γ-reweight. For DiPmark, α is set to 0.45. + 867

For MorphMarklinear, MorphMarkexp and MorphMarklog, we set klinear, kexp and klog to 1.55, 1.30 and 868

2.15, respectively. p0 in MorphMark is fixed to 0.15. ϵ is fixed to 10−10. For all methods, we set the green 869

list ratio to 0.5. 870

C.2 Configuration of Doc-P(GPT-3.5) Attack 871

For Doc-P(GPT-3.5) attack, we use the version gpt-3.5-turbo-0125 API. The prompt for paraphrasing is 872

shown in Fig. 7. 873

Please rewrite the following text (Only return the rewritten text): {Model Output}

Figure 7: Prompt used in Doc-P(GPT-3.5) paraphrasing attack.

C.3 Trade-off Curve Between Watermark Effectiveness and Text Quality 874

Here, we plot the trade-off curve and compare MorphMark’s three varients with KGW. By adjusting klinear, 875

kexp, klog, and δ, we obtain multiple points, which are visualized in Fig. 8. From the results, we observe 876

that the MorphMarkexp outperforms the MorphMarklinear, which in turn outperforms the MorphMarklog. 877

All three methods significantly surpass KGW. 878

C.4 Different Sampling Parameters of More Methods 879

We present more results on different sampling parameters in Tab. 3 and Tab. 4. 880

C.5 Statistical Distribution of PG in C4 Dataset 881

Before, we discuss an extreme case of code generation which make MorphMark low effectiveness. 882

To further explore the occurrence of extreme cases, we use the questions in four popular benchmarks, 883
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Figure 8: Comparing the performance of different watermark methods. We measure watermark effectiveness with
TPR@1%(Word-S/30%) and text quality with PPL.

(Temp, TopP) UnWM PPL PPL TPR@1% TPR@1%↑
(Word-S/30%)

(0.3, 1.0) 4.1308 4.6790 1.0000 0.9025
(0.7, 0.95) 5.4809 6.1147 0.9950 0.9325
(0.9, 0.95) 7.3829 7.9732 1.0000 0.9325
(1.2, 1.0) 15.2175 16.3252 1.0000 0.9625

Table 3: Performance of MorphMarklinear.

(Temp, TopP) UnWM PPL PPL TPR@1% TPR@1%↑
(Word-S/30%)

(0.3, 1.0) 4.1308 4.8056 0.9925 0.9475
(0.7, 0.95) 5.4809 6.2566 0.9950 0.9410
(0.9, 0.95) 7.3829 8.0720 1.0000 0.9400
(1.2, 1.0) 15.2175 16.3264 1.0000 0.9525

Table 4: Performance of MorphMarklog.
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Figure 9: Statistical Distribution of PG.

i.e., TruthfulQA (Lin et al., 2021), SQuAD (Rajpurkar, 2016; Rajpurkar et al., 2018), GSM8K (Cobbe884

et al., 2021) and MBPP (Austin et al., 2021). For each dataset, we randomly sample 400 questions and885

subsequently analyze the resulting PG distribution, as shown in Fig. 9. These empirical results indicate886

that the PG distribution is generally broad. Although the code generation dataset MBPP exhibits more887

values close to 0 and 1 compared to other datasets, its overall distribution remains broad. This observation888

suggests that MorphMark is effective in a wide range of scenarios.889
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D Full Related Work 890

Watermarking in the Era of LLMs Modern watermarking techniques for large language models (LLMs) 891

differ significantly from earlier backdoor-based approaches, primarily due to the high costs of training 892

such models. Instead of embedding watermarks during training, contemporary methods apply them during 893

the sampling phase of text generation. The pioneering method in this space is KGW (Kirchenbauer et al., 894

2023), which utilizes a user-defined key and the previous token as a random seed to split the vocabulary 895

into "green" and "red" lists. The model then increases the probabilities of green-list tokens to embed the 896

watermark. Since KGW’s introduction, numerous techniques have sought to enhance its performance 897

from various perspectives. 898

Unbiased Watermarking Unbiased watermarking ensures that the expected token distribution under 899

watermarking remains identical to the original. The first method to achieve this, EXP, is highly com- 900

putationally expensive. For example, Wu et al. (2024) reports that EXP can require up to 500 times 901

the generation time of KGW. More efficient alternatives, such as UW and DipMark, leverage inverse 902

sampling and permutation-based reweighting to strike a balance between detection efficacy and text 903

quality. However, their robustness has yet to be thoroughly validated. 904

Semantics-Based Watermarking A growing body of research (Ren et al., 2024; Liu et al., 2024a; He 905

et al., 2024b; Guo et al., 2024) has explored the use of semantic information, rather than previous tokens, 906

as keys for embedding watermarks. This approach enhances robustness without increasing watermark 907

strength, thereby preserving text quality. However, many of these methods require auxiliary models, 908

reducing their flexibility. Among them, SIR (Liu et al., 2024a) demonstrated the strongest performance in 909

the MarkLLM benchmark, making it a key baseline in our study. 910

Low-Entropy Watermarking Low-entropy contexts involve highly deterministic token generation—e.g., 911

completing The quick brown fox jumps over a lazy, where dog is the most probable next token. In such 912

cases, watermarking can degrade text quality. Methods like SWEET (Lee et al., 2024) and ATW (Liu and 913

Bu, 2024) mitigate this by setting entropy thresholds, embedding watermarks only when token uncertainty 914

is sufficiently high. EWD (Lu et al., 2024) takes a different approach, maintaining the KGW framework 915

but assigning higher detection weights to high-entropy tokens. However, these techniques often require 916

access to the original model during detection, limiting practicality—especially ATW, which relies on three 917

auxiliary models, making both watermarking and detection computationally expensive. 918

Other Watermarking Techniques Unigram (Zhao et al., 2024) improves robustness by using a fixed 919

vocabulary partition instead of dynamically adjusting token probabilities based on prior tokens. However, 920

this fixed division is vulnerable to watermark extraction techniques (Jovanović et al., 2024), making it 921

impractical for real-world applications. TS (Huo et al., 2024) converts the hyperparameters in KGW into 922

two neural networks and designs a loss function for training to enhance both watermark effectiveness 923

and text quality. However, this approach not only lacks interpretability, but also requires retraining a new 924

watermark parameter neural network for every new model. More importantly, in practical applications, the 925

watermark strength is difficult to control manually and becomes unpredictable due to its training-based 926

nature. 927
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