
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE GEOMETRY OF REASONING: FLOWING LOGICS IN
REPRESENTATION SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

We study how large language models (LLMs) “think” through their representation
space. We propose a novel geometric framework that models an LLM’s reasoning as
flows—embedding trajectories evolving where logic goes. We disentangle logical
structure from semantics by employing the same natural deduction propositions
with varied semantic carriers, allowing us to test whether LLMs internalize logic
beyond surface form. This perspective connects reasoning with geometric quantities
such as position, velocity, and curvature, enabling formal analysis in representation
and concept spaces. Our theory establishes: (1) LLM reasoning corresponds
to smooth flows in representation space, and (2) logical statements act as local
controllers of these flows’ velocities. Using learned representation proxies, we
design controlled experiments to visualize and quantify reasoning flows, providing
empirical validation of our theoretical framework. Our work serves as both a
conceptual foundation and practical tools for studying reasoning phenomenon,
offering a new lens for interpretability and formal analysis of LLMs’ behavior.

“Reasoning is nothing but reckoning.”
— Thomas Hobbes

1 INTRODUCTION

The geometry of concept space, i.e., the idea that meaning can be represented as positions in a
structured geometric space, has long served as a unifying perspective across AI, cognitive science,
and linguistic philosophy (Gardenfors, 2004; Rickard, 2006; Gardenfors, 2014). Early work in this
tradition was limited by the absence of precise and scalable semantic representations. With the rise
of large language models (LLMs) (Hurst et al., 2024; OpenAI, 2025; Grattafiori et al., 2024; Guo
et al., 2025; Yang et al., 2025), we revisit this geometric lens: pretrained embeddings now offer
high-dimensional vector representations of words, sentences, and concepts (Mikolov et al., 2013;
Neelakantan et al., 2022; Zhang et al., 2025a; Lee et al., 2025; Kozlowski et al., 2025), enabling
geometric analysis of semantic and cognitive phenomena at scale.

A seminal recent work (Modell et al., 2025) formalizes the notion that learned representations
in LLMs lie on low-dimensional concept manifolds. Building on this view, we hypothesize that
reasoning unfolds as a trajectory, potentially a flow, along such manifolds. To explore this idea, we
draw on classical tools from differential geometry (Menger, 1928; Hicks, 1965; Guggenheimer, 2012;
Do Carmo, 2016) and propose a novel geometric framework for analyzing reasoning dynamics in
language models. Concretely, we view reasoning as a context-cumulative trajectory in embedding
space: at each step, the reasoning prefix is extended, and the model’s representation is recorded
to trace the evolving flow (Figures 1a and 1b). Our results suggest that LLM reasoning is not
merely a random walk on graphs (Wang et al., 2024a; Minegishi et al., 2025). At the isolated
embedding level, trajectories exhibit stochasticity reminiscent of graph-based views; however, when
viewed cumulatively, a structured flow emerges on a low-dimensional concept manifold, where local
velocities are governed by logical operations. To the best of our knowledge, this is the first work
to formalize and empirically validate such a dynamical perspective, offering quantitative evidence
together with broad insights and implications. We further rigorously define and formalize concept,
logic, and representation spaces (Figure 1c), and relate them through carefully designed experiments.
See the full theoretical definitions of flow, velocity, curvature, and the associated spaces in Section 4.
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Figure 1: Reasoning Flow. (a–b) Visualizations on a selected problem from MATH500 with six
distinct answers. (c) Our geometric framework of mapping relationships among input space X ,
concept space C, logic space L, and representation spaceR. See Section 4 for more details.

From Aristotle’s syllogistics to Frege’s predicate calculus and modern math foundations (Bochenski &
Thomas, 1961; Copi et al., 2016; Enderton, 2001), formal logic isolates validity as form independent
of content. Wittgenstein’s Tractatus sharpened this view—“the world is the totality of facts, not of
things” (Wittgenstein, 1922)—underscoring logical form as the substrate of language and reality. In
this spirit, we treat logic as a carrier-invariant skeleton of reasoning and test whether LLMs, trained on
massive corpora, have internalized such structural invariants on the embedding manifold, effectively
rediscovering in data the universal logic that took humans two millennia to formalize. We deliberately
construct a dataset that isolates formal logic from its semantic carriers (e.g., topics and languages) to
validate our geometric perspective.

Our experiments, conducted with Qwen3 (Yang et al., 2025) hidden states on our newly constructed
dataset, reveal that LLMs exhibit structured logical behavior. In the original (0-order) representation
space, semantic properties dominate, with sentences on the same topic clustering together. However,
when we analyze differences (1- and 2-order representations), logical structure emerges as the
dominant factor. Specifically, we find that velocity similarity and Menger curvature similarity remain
highly consistent between flows sharing the same logical skeleton, even across unrelated topics and
languages. In contrast, flows with different logical structures exhibit lower similarity, even when they
share the same semantic carrier. These findings provide quantifiable evidence for our hypothesis that
logic governs the velocity of reasoning flows.

While interpretability research on LLMs has made substantial empirical progress (Anthropic, 2021;
Rai et al., 2024; Nanda et al., 2023; Singh et al., 2024; Madsen et al., 2024; Ferrando et al., 2024),
rigorous theoretical understanding remains comparatively limited, with only a few recent efforts in
this direction (Jiang et al., 2023; Park et al., 2024b; Modell et al., 2025; Park et al., 2025). Our work
contributes to this emerging line by introducing a mathematically grounded framework with formal
definitions and analytic tools for quantifying and analyzing how LLMs behave and reason. We hope
our theory and empirical evidence open a new perspective for interpretability community and spark
practical applications. Our contributions are:

• We introduce a geometric perspective that models LLM reasoning as flows, providing formal
definitions and analytic tools to study reasoning dynamics.

• We design a formal logic dataset that disentangles logical structure from semantic surface, enabling
direct tests of whether LLMs internalize logic beyond semantics.

• We empirically validate our framework through experiments and analysis, demonstrating its utility
and offering practical insights.

2 RELATED WORK

Concept Space Geometry. The Linear Representation Hypothesis (LRH) proposes that concepts
align with linear directions in embedding space, a view supported by theoretical analyses and
empirically validated in categorical, hierarchical, and truth–false settings (Park et al., 2024b; Jiang
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et al., 2024; Park et al., 2025; Jiang et al., 2023; Marks & Tegmark, 2024). However, strict linearity
is limited: features may be multi-dimensional or manifold-like, as seen in concepts like colors, years,
dates, and antonym pairs. (Engels et al., 2025; Modell et al., 2025; Kozlowski et al., 2025). Other
works emphasize compositionality, showing that concepts require explicit constraints or algebraic
subspace operations to compose meaningfully (Stein et al., 2024; Wang et al., 2023). At a broader
scale, hidden-state geometry follows expansion–contraction patterns across layers and exhibits
training trajectories whose sharp shifts coincide with emergent capabilities and grokking (Valeriani
et al., 2023; Park et al., 2024a; Liu et al., 2022). Sparse autoencoders further reveal multi-scale
structure, from analogy-like “crystals” to anisotropic spectra (Li et al., 2025b). Collectively, these
results suggest that concept spaces are locally linear yet globally curved, compositional, and dynamic,
motivating our perspective of reasoning as flows on such manifolds.

Mechanistic Interpretability. LLMs have exhibited unprecedented intelligence ever since their
debut (OpenAI, 2022). Yet the underlying mechanisms remain opaque, as transformers are neural
networks not readily interpretable by humans—motivating efforts to uncover why such capabilities
emerge (Singh et al., 2024; Madsen et al., 2024). Mechanistic Interpretability (MI) pursues this goal
by reverse-engineering transformer internals into circuits, features, and algorithms (Rai et al., 2024;
Ferrando et al., 2024; Bereska & Gavves, 2024). The Transformer Circuits program at Anthropic
exemplifies this agenda, systematically cataloging reusable computational subroutines (Anthropic,
2021). Empirical studies reveal concrete algorithmic mechanisms: grokking progresses along
Fourier-like structures (Nanda et al., 2023), training can yield divergent solutions for the same
task (Clock vs. Pizza) (Zhong et al., 2023), arithmetic emerges via trigonometric embeddings on
helical manifolds (Kantamneni & Tegmark, 2025), and spatiotemporal structure is encoded through
identifiable neurons (Gurnee & Tegmark, 2024). Beyond circuits, in-context learning and fine-tuning
yield distinct representational geometries despite comparable performance (Doimo et al., 2024),
while safety studies reveal polysemantic vulnerabilities where small-model interventions transfer to
larger LLMs (Gong et al., 2025).

Understanding Reasoning Phenomenon. LLMs benefit from test-time scaling, where allocating
more inference compute boosts accuracy on hard tasks (Snell et al., 2025). Explanations span expres-
sivity—CoT enabling serial computation (Li et al., 2024), reasoning as superposed trajectories (Zhu
et al., 2025), and hidden planning in scratch-trained math models (Ye et al., 2025)—to inductive biases,
where small initialization favors deeper chains (Yao et al., 2025). Structural analyses view reasoning
as path aggregation or graph dynamics with small-world properties (Wang et al., 2024a; Minegishi
et al., 2025), while attribution highlights key “thought anchors” (Bogdan et al., 2025). Empirical
work shows inverted-U performance with CoT length and quantifiable reasoning boundaries (Wu
et al., 2025; Chen et al., 2024), and embedding-trajectory geometry supports OOD detection (Wang
et al., 2024b). Moving beyond text, latent-reasoning methods scale compute through recurrent depth,
continuous “soft thinking,” and latent CoT for branch exploration and self-evaluation (Zhang et al.,
2025b; Geiping et al., 2025; Hao et al., 2024; Wang et al., 2025). Applications exploit these insights
for steering and efficiency: steering vectors and calibration shape thought processes (Venhoff et al.,
2025; Chen et al., 2025), manifold steering mitigates overthinking (Huang et al., 2025), and adaptive
indices enable early exit (Fu et al., 2024).

Formal Logic with LLMs. Recent work links transformer computation directly to logic. Log-
precision transformers are expressible in first-order logic with majority quantifiers, providing an upper
bound on expressivity (Merrill & Sabharwal, 2023), while temporal counting logic compiles into
softmax-attention architectures, giving a constructive lower bound (Yang & Chiang, 2024). Beyond
these characterizations, pre-pretraining on formal languages with hierarchical structure (e.g., Dyck)
imparts syntactic inductive biases and improves efficiency (Hu et al., 2025). Synthetic logic corpora
and proof-generation frameworks further strengthen reasoning, though benefits diminish as proofs
lengthen (Morishita et al., 2024; Xia et al., 2025). Systematic evaluations, including LogicBench and
surveys, highlight persistent failures on negation and inductive reasoning, despite partial gains from
“thinking” models and rejection finetuning (Parmar et al., 2024; Jiang et al., 2025; Liu et al., 2025).
In contrast, our work employs formal logic not as an end task, but as a tool to validate our geometric
framework in LLMs’ representation space, distinguishing our contribution from prior lines of work.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

3.1 LARGE LANGUAGE MODELS

Let V denote a finite vocabulary of tokens, and let θ denote the parameters of a large language model
(LLM). An LLM defines a conditional probability distribution pθ(ut | u<t, P ), ut ∈ V, where
u<t := (u1, . . . , ut−1) is the prefix of previously generated tokens and P ∈ Vn is the tokenized
problem prompt. At each step t, inference proceeds by sampling ut ∼ pθ(· | u<t, P ).

Definition 3.1 (Chain-of-Thought Reasoning). Given a prompt P ∈ Vn, Chain-of-Thought (CoT)
reasoning is an iterative stochastic process that generates a sequence U = (u1, u2, . . . , uT ), ut ∈
V, via recursive sampling ut ∼ pθ(· | P, u<t), t = 1, . . . , T.

To enable geometric analysis of reasoning, we need a mapping from discrete token sequences into
continuous vectors, a transformation that modern LLMs naturally provide.

Definition 3.2 (Representation Operator). A Representation Operator is a mapping E : V∗×I → Rd,
where x = (x1, . . . , xn) ∈ V∗ is a token sequence and ι ∈ I is an index specifying the representation
type (e.g., a token position, a prefix, a pooling rule, or an internal layer state). The output E(x, ι) ∈ Rd

is the embedding/representaion of s under the selection rule ι. For notational simplicity, we omit the
index ι unless explicitly required.

The range of this operator defines the ambient space of reasoning:

Definition 3.3 (Representation Space). Given a representation operator E , the representation space
is R := {E(x) : x ∈ V∗} ⊆ Rd. Elements of R are continuous embeddings of discrete language
inputs, serving as the foundation and empirical proxy for our geometric analysis of reasoning.

In practice, E may be instantiated by a pretrained encoder such as Qwen3 Embedding (Zhang et al.,
2025a) or OpenAI’s text-embedding-3-large (Neelakantan et al., 2022), or by extracting
hidden states directly from an LLM. Typical choices of ι include mean pooling, the hidden state of
the final token, or a specific layer–position pair within the model (Zhang et al., 2025a; Lee et al.,
2025; Hessani, 2025; Nie et al., 2024). We interpret E as projecting discrete language sequences
into a continuous semantic space, potentially lying on a low-dimensional manifold embedded in Rd

(Modell et al., 2025; Engels et al., 2025; Kozlowski et al., 2025).

3.2 MENGER CURVATURE

We adopt Menger curvature (Menger, 1928) to quantitatively capture the geometric structure of
reasoning flows. As a metric-based notion of curvature, Menger curvature simultaneously reflects
both angular deviation and distance variation, making it particularly suitable for reasoning trajectories
represented as discrete embeddings. We leave more details to Appendix D.2.

Definition 3.4 (Menger Curvature). Let x1, x2, x3 ∈ Rn be three distinct points. The Menger
curvature of the triple (x1, x2, x3) is defined as the reciprocal of the radius R(x1, x2, x3) of the
unique circle passing through the three points: c(x1, x2, x3) = 1

R(x1,x2,x3)
.

4 REASONING AS GEOMETRIC FLOWS IN REPRESENTATION SPACE

We formalize the view that LLMs reason by tracing trajectories in their representation space. A central
question is whether LLMs exhibit intrinsic control over these flows, mirroring the human perspective.
We hypothesize semantic content as a curve on a concept manifold, and logical structure acts as
a local controller of the trajectory. In this section, we introduce the spaces, maps, and geometric
quantities that underpin the paper. We then rigorously formalize this construction and establish the
correspondence between the LLM’s representation space and the human concept space.

4.1 CONCEPT SPACE AND SEMANTIC TRAJECTORIES

Definition 4.1 (Concept Space). The concept space C is an abstract semantic space that models
human-level cognitive structures such as ideas, reasoning states, and problem-solving subtasks.

4
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We assume C is endowed with a smooth geometric structure, allowing continuous trajectories to
represent the evolution of conceptual content. This assumption can be traced back to the classical
insight of William James (James et al., 1890), who famously argued that consciousness does not
appear to itself “chopped up in bits.” Chains or trains of thought are, in his words, inadequate
metaphors; instead, “it is nothing jointed; it flows. A river or a stream are the metaphors by which it
is most naturally described.”
Definition 4.2 (Semantic Subspace as Cognitive Trajectories). Let M ⊆ C denote a semantic
subspace corresponding to a coherent domain of meaning (e.g., temporal concepts, colors, or causal
relations). Let X ∗ denote the set of all finite input sequences over X . We introduce a trajectory map

Γ : X ∗ → Curves(M), X 7→ γX ,

that assigns each sentence XT = (x1, . . . , xT ) to a continuous curve γX withinM. Formally,
γX : [0, 1]→M, s 7→ γX(s),

where s ∈ [0, 1] is a continuous progress parameter along the reasoning flow. For each discrete prefix
(x1, . . . , xt), we align it with the point γX

(
t
T

)
on the curve. The curve γX thus traces the gradual

unfolding of semantic content, formalizing the view that human cognition operates as a continuous
flow of concepts rather than as a sequence of isolated symbols.

We then define the logic space that mirrors the human view of logic.
Definition 4.3 (Formal Logical Space). The formal logical space L is an abstract domain that
captures structural dynamics of reasoning (natural deduction (Troelstra & Schwichtenberg, 2000;
Pelletier & Hazen, 2024); see Definition 5.1). Define the flow operator

FC : Curves(C) → Lform,

which maps a semantic trajectory to its formal counterpart. Semantically different expressions that
correspond to the same natural-deduction proposition map to the same element in Lform.

4.2 REPRESENTATION SPACE

We use LLM representations/embeddings as proxies to study human cognition and to investigate
why LLMs exhibit reasoning phenomenon. We build on the multidimensional linear representation
hypothesis (Modell et al., 2025), which posits that representations decompose linearly into a superpo-
sition of features. Each feature corresponds to a basis direction within a feature-specific subspace of
the embedding space, weighted by a non-negative activation coefficient encoding its salience.
Hypothesis 4.4 (Multidimensional Linear Representation Hypothesis (Modell et al., 2025)). Let X
denote the input space (e.g., natural language sentences). Let F be a set of semantic features. For
each feature f ∈ F , letWf ⊆ Rd denote a feature-specific subspace of the embedding space.

Then the representation map Ψ : X → Rd of an input x ∈ X is assumed to take the form

Ψ(x) =
∑

f∈F (x)

ρf (x)wf (x),

where F (x) = {f ∈ F : ρf (x) > 0} is the set of active features in x, ρf (x) ∈ R≥0 is a non-negative
scaling coefficient encoding the intensity or salience of feature f in x, wf (x) ∈ Wf is a unit vector
(∥wf (x)∥2 = 1) specifying the direction of feature f within its subspaceWf .

Building on this compositional picture, we now move from single inputs to growing contexts. As a
model reasons, its internal representation evolves. The next definition formalizes this evolution as a
cumulative flow in embedding space.
Definition 4.5 (Reasoning Trajectory / Context Cumulative Flow). Let X be the input space, and
Ψ : X → Rd the representation map from finite input sequences to the embedding space defined in
Hypothesis 4.4. Given a prompt P ∈ X and a Chain-of-Thought sequence XT = (x1, . . . , xT ) with
xt ∈ X , define

St := (P, x1, . . . , xt), ỹt := Ψ(St) ∈ Rd, t = 1, . . . , T.

When focusing solely on the reasoning process (ignoring the prompt), we set

yt := Ψ(Xt) ∈ Rd, t = 1, . . . , T.

The sequence Y = [y1, . . . , yT ] ∈ Rd×T is called the context cumulative flow. The construction of
Y follows Algorithm 1.

5
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Algorithm 1: Get Context Cumulative Reasoning Trajectory
V: vocabulary space; P ∈ Vn: tokenized problem prompt; T : number of reasoning steps;
xt ∈ V∗: tokens for step t; E : V∗ → Rd: representation operator; yt ∈ Rd: embedding at step t.
Input: P ∈ Vn; X = [x1, . . . , xT ] with xt ∈ V∗

Output: Y = [y1, . . . , yT ] ∈ Rd×T

Y ← [ ], S0 ← [P ];
for t← 1 to T do

St ← Concat(St−1, xt); // Concatenate with previous context
yt ← E(St); // Get embedding of current step
Append yt to Y ;

return Y ;

The embeddings we observe along a sentence are discrete, while reasoning itself is naturally under-
stood to unfold as a continuous process. It is therefore natural to posit an underlying smooth curve
from which these discrete points arise as samples, thereby enabling the use of geometric tools such as
velocity and curvature.
Hypothesis 4.6 (Smooth Representation Trajectory). The discrete representations {yt}Tt=1 produced
by context accumulation intrinsically lie on a C1 curve Ψ̃ : [0, 1]→ Rd satisfying

Ψ̃(st) = yt for an increasing schedule s1 < · · · < sT .

In other words, the sequence is not merely fitted by a smooth curve, but should be regarded as samples
from an underlying smooth trajectory. This assumption is reasonable: in Appendix D.1 we show an
explicit construction of such a C1 trajectory via a relaxed prefix-mask mechanism.

Once a smooth trajectory exists, we can canonically align symbolic progress (e.g., “how far along
the derivation we are”) with geometric progress in representation space. The following corollary
formalizes this alignment on domains where the symbolic schedule is well-behaved.

Corollary 4.7 (Canonical Alignment). On a domain where Γ is injective and Ψ̃ is defined, there
exists a canonical alignment

A : Curves(C)→ Curves(R), A := Ψ̃ ◦ Γ−1.

Remark 4.8 (Injectivity of Γ). In Corollary 4.7, Γ : X → Curves(C) (Definition 4.2) maps linguistic
inputs to conceptual trajectories. We do not assume that Γ is globally injective over all natural
language, as different surface forms may express essentially the same conceptual content. For the
purpose of defining the alignment map A = Ψ̃ ◦ Γ−1, it suffices that Γ be injective on a restricted
semantic domain (e.g., equivalence classes of paraphrases). Understanding global injectivity of Γ
remains a broader open problem in AI, semantics, and cognitive science research.

4.3 LOGIC AS DIFFERENTIAL CONSTRAINTS ON FLOW

We now turn from the structural hypotheses of representation trajectories to their dynamical regulation.
In particular, we view logic not as an external add-on, but as a set of differential constraints shaping
how embeddings evolve step by step. This perspective enables us to couple discrete reasoning
structure with continuous semantic motion.
Definition 4.9 (Representation-Logic Space). Given a representation trajectory Y = (y1, . . . , yT )
defined in Definition 4.5, define local increments ∆yt := yt−yt−1 for t ≥ 2. The representation-logic
space is

Lrep := { (∆y2, . . . ,∆yT ) | Y a context-cumulative trajectory }.

The above constructs a discrete object: a sequence of increments capturing how representations
change from one reasoning step to the next. To connect this discrete view with a continuous account
of semantic evolution, we next introduce the notion of velocity along embedding trajectories.

Definition 4.10 (Flow Velocity). Let Ψ̃ : [0, 1] → Rd be the continuous embedding trajectory
associated with a sentence. The flow velocity at progress s is defined as v(s) = d

ds Ψ̃(s), which
captures the instantaneous rate of change of the embedding w.r.t. the unfolding of the sentence.

6
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By relating local increments in representation space (Definition 3.3) to the derivative of a continuous
trajectory, we can interpret each discrete reasoning step as an integrated outcome of infinitesimal
semantic motion.

Proposition 4.11 (Logic as Integrated Thought). By the fundamental theorem of calculus, the
cumulative semantic shift between two successive reasoning steps st and st+1 is∫ st+1

st

v(s) ds = Ψ̃(st+1)− Ψ̃(st) = yt+1 − yt = ∆yt+1.

Thus, we could view each representation–logic step as the integration of local semantic velocity, which
aggregates infinitesimal variations of meaning into a discrete reasoning transition. Definition 4.10
captures the central principle that semantic representations evolve continuously, whereas logical
steps are inherently discrete: logic acts as the controller of semantic velocity, governing both its
magnitude and its direction.

Having established this conceptual implication of continuous–discrete correspondence, we emphasize
that it reflects the structural influence of logic on flow dynamics rather than a specific mapping
from inference rules (e.g., conjunction, negation) to vector-field operators. We can now ask:
what properties of reasoning flows should persist across changes in surface semantics? We posit
that reasoning instances sharing the same natural-deduction skeleton but differing in semantic
carriers (e.g., topics or languages) should yield reasoning flows whose trajectories exhibit highly
correlated curvature (Definition 3.4). If logic governs flow velocity (magnitude and direction) then
flows instantiated with different carriers may undergo translations or rotations, reflecting dominant
semantic components of the original space. Nevertheless, their overall curvature should remain
invariant. A more detailed discussion of curvature is provided in Appendix D.2. Such correlation
would indicate that the accumulation of semantic variation produces turning points aligned with
both LLM reasoning and human logical thought. This directly corresponds to the central research
objective of this paper, namely clarifying the relationship between the two logical spaces Lform and
Lrep as illustrated in Figure 1c. Empirical evidence for this claim will be provided later, where we
demonstrate cross-carrier similarity in both first-order differences and curvature.

In summary, logic functions as the differential regulator of semantic flow, discretizing continuous
variations into meaningful steps. For clarity and reference, all mappings and derivational relationships
introduced in this subsection are systematically summarized in Appendix C.

5 FORMAL LOGIC WITH SEMANTIC CARRIERS

5.1 LOGIC AND NATURAL DEDUCTION SYSTEM

We construct a dataset of reasoning tasks that instantiate the fundamental logical patterns formalized
in Definition 5.1. Each task is presented step by step in both formal symbolic notation and natural
language. To test whether reasoning relies on surface content or underlying structure, we express the
same logical skeletons across diverse carriers, e.g., topics such as weather, education, and sports, as
well as multiple languages (en, zh, de, ja). This design disentangles logics from linguistic surface
and provides a controlled setting for analyzing how reasoning flows behave under varying contexts.
Specifically, because all variants preserve the same abstract reasoning steps but change the words and
context, any similarities that persist across carriers must come from the underlying logic, whereas the
differences arise from surface semantics.

Definition 5.1 (Natural Deduction System (Troelstra & Schwichtenberg, 2000; Pelletier & Hazen,
2024)). A natural deduction system is a pair ND = (F,R) where:

• F : a formal language of formulas (e.g., propositional or first-order logic),

• R: a finite set of inference rules with introduction and elimination rules for each logical constant.

A derivation (or proof) in ND is a tree whose nodes are judgements of the form “a formula is derivable”
and whose edges follow inference rules from R. Temporary assumptions may be introduced in sub-
derivations and are discharged by certain rules (e.g.,→ I , ¬I). Each connective is governed by
paired introduction and elimination rules, which together determine its proof-theoretic meaning.

7
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Table 1: Comparison of reasoning-flow similarities across LLMs. We report mean cosine similarity
(position, velocity) and Pearson correlation (curvature) under 3 grouping criteria: logic, topic, and
language. Results show that position similarity is dominated by surface carriers, while velocity and
curvature highlight logical structure as the primary invariant. We also perform a random shuffle
baseline on the order of logical inferences using Qwen3 0.6B. See Section 6 for more details.

Model Position Similarity Velocity Similarity Curvature Similarity

Logic Topic Lang. Logic Topic Lang. Logic Topic Lang.

Qwen1.5 0.5B 0.26 0.30 0.80 0.17 0.07 0.08 0.52 0.11 0.15
Qwen2 0.5B 0.21 0.24 0.85 0.15 0.06 0.07 0.52 0.10 0.12
Qwen3 0.6B 0.26 0.30 0.85 0.17 0.07 0.08 0.53 0.11 0.13
Qwen3 1.7B 0.44 0.46 0.89 0.19 0.08 0.09 0.46 0.13 0.15
Qwen3 4B 0.33 0.35 0.86 0.16 0.07 0.08 0.53 0.11 0.13
LLaMA3 8B 0.31 0.34 0.74 0.15 0.06 0.07 0.58 0.13 0.17
Random Shuffle 0.30 0.33 0.81 0.02 0.02 0.04 0.02 0.03 0.04

5.2 DATA DESIGN

To test whether LLM reasoning trajectories are governed by logical structure rather than semantic
content, we generates parallel reasoning tasks that maintain identical logical scaffolding while
systematically varying superficial characteristics, specifically topical domain and linguistic realization.

Our dataset construction employs a principled two-stage generation pipeline using GPT-5 (OpenAI,
2025). It proceeds as follows: (i) abstract logical templates are first constructed, followed by (ii)
domain-specific and language-specific rewriting. Our final dataset comprises 30 distinct logical
structures, each containing between 8 and 16 reasoning steps. Each logical structure is instantiated
across 20 topical domains and realized in four languages (English, Chinese, German, and Japanese),
yielding a total corpus of 2,430 reasoning sequences. This controlled design enables direct comparison
of trajectories across logical forms and surface carriers, isolating the role of logical structure in
embedding dynamics. Full generation prompts and sampled data cases are provided in Appendix E.

6 PLAY WITH LLMS

6.1 EXPERIMENTAL SETUP

We employ the Qwen3 (Yang et al., 2025) family models and LLaMA3 (Grattafiori et al., 2024).
From the final transformer layer (before the LM head), we extract context-dependent hidden states
{h(L)

i }, where h
(L)
i ∈ Rd denotes the representation at layer L and position i. Each reasoning

step xt is a set of tokens indexed by St, and its step-level embedding is defined by mean pooling:
yt = 1

|St|
∑

i∈St
h
(L)
i , yt ∈ Rd. The resulting sequence Y = (y1, . . . , yT ) forms the reasoning

trajectory in representation space.

6.2 RESULTS ANALYSIS

Similarity Table. We evaluate LLMs (Qwen1.5 0.5B, Qwen2 0.5B, Qwen3 0.6B, 1.7B, 4B, and
LLaMA3 8B) by extracting hidden states across our dataset (Section 5) and computing similarities
under three criteria: (i) Logic, grouping by deduction skeleton and averaging across topics and
languages; (ii) Topic; and (iii) Language, both capturing surface carriers. This yields position,
velocity, and curvature similarities (Table 1). Results show that logical similarity is low at zeroth
order (position) but becomes dominant at first and second order (velocity and curvature), validating
our hypothesis. Topic and language exhibit low velocity similarity, suggesting they might occupy
orthogonal subspaces; by contrast, the high logical similarity at first and second order breaks this
orthogonality, indicating that logical structure transcends surface carriers.
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Figure 2: Similarity of reasoning flows on Qwen3 0.6B. Blocks correspond to logic templates (L:A–E)
instantiated with different topics and languages. (a) Position similarity (mean cosine): diagonals
correspond to topics (e.g., Network Security), showing that positions are dominated by surface
semantics. (b) Velocity similarity (mean cosine): semantic effects diminish, and flows with the same
logical skeleton align while differing logics diverge. (c) Curvature similarity (Pearson): separation
is further amplified, with logic emerging as the principal invariant and revealing close similarity
between logics B and C. See Section 6 for more details.

Random Shuffle. We include a random shuffle baseline with Qwen3 0.6B in Table 1, where the
order of logical steps is randomly permuted. The baseline performs poorly on velocity and curvature,
indicating that the sequence order of reasoning is crucial for reasoning flow. In contrast, position
similarity remains high, confirming that topic and language effects dominate surface semantics
regardless of order. This contrast reinforces our view that higher-order geometric quantities, not raw
embeddings, capture the invariant logical structure.

Scaling Effect. Moreover, Table 1 shows two scaling axes: (1) model size (Qwen3 0.6B →
1.7B→ 4B) and (2) model family (Qwen 1.5/2/3 and LLaMA3, varying in data and architecture).
The similarity patterns remain remarkably stable. Increasing scale or switching families does not
materially change the similarity measures. This consistency suggests the presence of a more general
and possibly universal property of how LLMs internalize logical structure, independent of size or
training recipe. We view this as a fascinating direction and plan to explore it further.

Similarity Heatmap. For visualization, we also analyze Qwen3 0.6B on a subset of our dataset
(Figure 2). At the position level, embeddings cluster by topic and language. First-order differences
reveal logical control: flows sharing the same skeleton align, while differing logics diverge even with
identical carriers. Second-order curvature further amplifies this separation, and its strong cross-carrier
consistency directly supports Proposition 4.11, confirming that logic governs reasoning velocity.
Additional experiments across broader model families are presented in Appendix B.

Significance. Together, these results show that LLMs internalize latent logical structure beyond
surface form. They are not mere stochastic parrots (Bender et al., 2021): whereas humans formalized
logic only in the 20th century (Bochenski & Thomas, 1961), LLMs acquire it emergently from
large-scale data—a hallmark of genuine intelligence. Specifically, the stochastic parrot argument
suggests that LLMs do not perform genuine natural language understanding and cannot acquire
meaning solely through next-token prediction (Bender et al., 2021; Bender & Koller, 2020). Our
results challenge this view. We provide evidence that learning from next-token prediction, augmented
by standard post-training such as instruction tuning, can be sufficient to elicit semantic structure and
support genuine NLU. Moreover, we show that logical structure manifests in higher-order geometry
of the representation space, which is difficult to explain under a purely surface-form view. These
findings suggest the presence of deeper, possibly universal, constraints governing the relationship
between linguistic form and meaning.
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7 DISCUSSION

Understanding, Not Generation. Our theoretical framework focuses exclusively on natural lan-
guage understanding. In NLP, generation presupposes understanding, so we restrict ourselves to the
component that is conceptually cleaner and more amenable to theoretical analysis. Our goal is to
articulate a post-hoc, model-agnostic, and training-algorithm-agnostic law describing how LLMs
reason. Explaining why or how these reasoning patterns arise during training or generation is substan-
tially more challenging and falls outside the scope of this work. Because we do not study generation,
we also cannot meaningfully relate our geometric measures to generation-specific properties such as
task output accuracy. Finally, uncovering the origins of these patterns would require analyzing the
learning process itself—for example, learnability, training dynamics, detailed case studies, and more
sophisticated experimental and dataset designs. These important questions are beyond the present
scope and are left for future exploration.

Contrast with Graph Perspective. Prior works have modeled chain-of-thought reasoning as a graph
structure (Minegishi et al., 2025; Wang et al., 2024a). While this provides a useful perspective, its
predictive power is limited: graphs naturally suggest random walks between discrete nodes, which
fits the noisy behavior of isolated embeddings but fails to capture the smooth, directed dynamics
we observe under cumulative context. Our results in Section 6 show that well-trained LLMs learn
flows governed by logical structure, transcending the surface semantics of language. Such continuity
and logic-driven trajectories cannot be explained within a purely graph-based framework, but arise
naturally in our differential-geometric view.

Other Components in Learned Representation. Beyond logical structure, learned representations
also encode a wide spectrum of factors such as semantic objects, discourse tone, natural language
identity, and even signals of higher-level cognitive behavior. Extending our framework to systemati-
cally isolate these components and characterize their interactions presents a major challenge for future
work. A promising direction is to develop methods that disentangle additional attributes, enabling
finer-grained insights into how language components co-evolve in representation space.

Practical Implications. Our results suggest that reasoning in LLMs unfolds as continuous flows,
opening multiple directions. First, trajectory-level control offers principled tools for steering, align-
ment, and safety, extending vector-based interventions to flow dynamics (Venhoff et al., 2025; Chen
et al., 2025; Gong et al., 2025; Huang et al., 2025; Bereska & Gavves, 2024). Second, our geometric
view provides a formal framework to study abstract language concepts, enabling first-principle
analyses of reasoning efficiency, stability, and failure modes. Third, it motivates new approaches
to retrieval and representation, where embeddings respect reasoning flows rather than mere simi-
larity, potentially improving RAG, reranking, and search (Weller et al., 2025). Finally, it hints at
architectural advances, as models parameterizing latent flows may enable more efficient reasoning
(Hao et al., 2024; Geiping et al., 2025; Zhang et al., 2025b; Shen et al., 2025).

8 CONCLUSION

We introduced a novel geometric framework that models LLM reasoning as smooth flows in rep-
resentation space, with logic acting as a controller of local velocities. By disentangling logical
structure from semantic carriers through a controlled dataset, we showed that velocity and curvature
invariants reveal logic as the principal organizing factor of reasoning trajectories, beyond surface
form. Our theory and experiments provide both a conceptual foundation and practical tools for
analyzing reasoning, opening new avenues for interpretability.

LLMS USAGE STATEMENT

We clarify that LLMs were used solely as auxiliary aids, restricted to refining the manuscript’s
exposition for clarity and conciseness.
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Appendix

A COMPARISON WITH PRIOR WORK

Comparison with Park et al. (2025). While Park et al. (2025) and our work both adopt a geometric
lens for semantic and theoretical interpretability, we address fundamentally different phenomena
using distinct mathematical frameworks:

• Objective (Static Semantics vs. Dynamic Reasoning): The primary motivation of Park et al.
(2025) is to map the static organization of semantic knowledge. They investigate how fixed concepts
(e.g., hierarchies like “animal”→ “dog”) are encoded relative to one another in the representation
space. In contrast, our work investigates the dynamic process of reasoning. We model how internal
representations evolve step-by-step as a model solves a logical problem, framing reasoning not as a
static location but as a flow over time.

• Geometric Nature (Structure vs. Motion): Consequently, the specific geometries differ. Park
et al. (2025) describe a structural geometry where hierarchical relations are encoded via orthogonal
subspaces and categorical concepts appear as polytopes (simplices). Our work describes a kinematic
geometry defined by smooth flows, analyzing properties of motion such as velocity and curvature
along a reasoning trajectory.

• Technique & Methodology: Methodologically, Park et al. (2025) rely on linear algebraic tools,
such as Linear Discriminant Analysis (LDA) and Causal Inner Products, to analyze static word
unembeddings. Conversely, we develop a differential-geometric framework to analyze context-
cumulative trajectories. By generating controlled datasets that isolate logical skeletons from
semantic carriers, we show that logic acts as a differential constraint on the flow’s velocity, rather
than determining a static position in the subspace.

Comparison with Li et al. (2025a). While Li et al. (2025a) and our work both analyze the
geometry of LLM representations, we diverge in our fundamental objects of study (understanding vs.
generation) and in analytical scope (post-hoc laws vs. training dynamics):

• Scope (Post-hoc Law of Reason vs. Training Dynamics): Our goal is to articulate a post-hoc,
model-agnostic law that describes how LLMs reason once fully trained. We treat the model as a
fixed dynamical system to derive differential-geometric constraints on its internal flows. In contrast,
Li et al. (2025a) focus on the origins of these patterns. They analyze the learning process itself,
tracing how geometric properties (such as effective rank) evolve through distinct training phases
like “entropy-seeking” and “compression-seeking”. While they ask how representations evolve
during training, we ask what invariant rules govern their trajectory during inference.

• Domain (Natural Language Understanding vs. Generation): Our framework focuses exclusively
on Natural Language Understanding. Conversely, Li et al. (2025a) explicitly link geometric
measures to generation-specific properties, correlating spectral shifts with n-gram memorization,
cross-entropy loss, and output accuracy (e.g., pass@k). Because we do not study generation, we do
not relate our measures to task output metrics, whereas validating these correlations is central to
their empirical contribution.

• Methodology (Theoretical Constraints vs. Empirical Correlations): Methodologically, Li et al.
(2025a) rely on empirical correlations between spectral metrics (RankMe, α-ReQ) and downstream
performance metrics across checkpoints. Our work is disjoint from this experimental design; we
employ differential geometry to formalize logic as a velocity constraint on the reasoning flow. We
leave the questions of learnability and training dynamics, central to Li et al. (2025a), outside our
scope to focus on the geometry of the reasoning process itself.
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B ADDITIONAL EXPERIMENTS

More Similarity Heatmap. We additionally evaluate LLaMA3 (Grattafiori et al., 2024) and more
Qwen3 (Yang et al., 2025) models (1.7B, 4B) to test robustness under the same experimental settings
as in Section 6. The results (Figures 3, 4 and 5) confirm that our findings generalize across model
sizes and families.

C1 Continuity Test. In Hypothesis 4.6, we posit that the discrete trajectory admits an underlying
C1 interpolation. This assumption serves to make the geometric framework well-defined; it does not
assert that the model’s internal computation unfolds in continuous time. Consequently, a rigorous
empirical verification of C1-regularity is impossible: language inputs are discrete, and the sequence
index cannot be made infinitesimally small, as differentiability would require. Instead, we provide
finite-difference–based smoothness diagnostics to illustrate that the observed embedding trajectory
behaves consistently with this assumption. For a context-cumulative trajectory Y = [y1, . . . , yT ]
(Definition 4.5), we form velocities vt = yt+1 − yt and examine their magnitudes ∥vt∥. As shown
in Figure 6, the velocity norm behave consistently across the same MATH500 problem with six
different answers presented in Figure 1, exhibiting no abrupt jumps. This provides visual support for
the plausibility of our smooth-flow assumption. A more precise and formal theoretical justification is
provided in Appendix D.
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Figure 3: Similarity of reasoning flows on Qwen3 1.7B.
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Figure 4: Similarity of reasoning flows on Qwen3 4B.

C SYMBOLIC GLOSSARY AND MAPPING RELATIONS

This section is a standalone roadmap that summarizes the spaces, maps, and commutative structure
underlying our geometric view of reasoning.
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Figure 5: Similarity of reasoning flows on Llama3 8B.
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C.1 SPACES

• Input space X (often specialized to a vocabulary V): discrete tokens/sentences.
• Concept space C: abstract semantic space. A sentence X is represented by a smooth

semantic trajectory
γX : [0, 1]→M⊆ C,

whereM is a semantic submanifold for a coherent domain of meaning.
• Representation spaceR ⊂ Rd: the model’s embedding space. Each prefix Xt yields

yt = Ψ(Xt) ∈ Rd,

sampling a continuous representation trajectory Ψ̃ : [0, 1]→ Rd.
• Formal logical space Lform: symbolic/human logic governed by a natural deduction system
ND = (F,R), with formulas F and rules R. Judgements and rule-based derivations live
here.
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• Representation-based logical space Lrep: the space of reasoning increments in the em-
bedding space, defined by local variations of the trajectory, ∆yt := yt+1 − yt. Geometric
descriptors such as the Menger curvature κt are evaluated here. This space is non-symbolic,
and serves as the model’s internal analogue of logic.

C.2 PRIMARY MAPS

• Semantic interpretation:

Γ : X → Curves(C), X 7→ γX .

• Neural representation:
Ψ : X → Curves(R),

realized by token embeddings E and a contextual encoder Φ, producing the continuous
trajectory Ψ̃ and sampled states Y = (y1, . . . , yT ).

• Canonical Alignment.

Definition C.1 (Canonical alignment map). Assume Γ and Ψ are injective on the domain of
interest. Define

A := Ψ ◦ Γ−1 : Curves(C)→ Curves(R).

Then A is a bijection between semantic curves and representation trajectories, and the
top-level diagram commutes exactly:

A ◦ Γ = Ψ.

• Flow vs. differential to logic. We distinguish a human flow operator on concepts from a
differential operator on representations:

FC : γ 7→ (human reasoning flow in C) ∈ Lform, DR : Ψ̃ 7→ (∆yt) ∈ Lrep.

The left operator FC is not a discrete difference; it encodes how a semantic trajectory induces
formal reasoning steps under ND. The right operator DR extracts local increments from the
representation trajectory.

C.3 REASONING INCREMENTS AND CURVATURE

• Formal side (concepts). Human reasoning flow is captured at the semantic level by FC ,
which maps a semantic curve γ into a sequence of formally valid steps in Lform per the rules
ND.

• Representation side (vectors). The local increment ∆yt = yt+1 − yt encodes a step of
representation flow in Lrep.

• Curvature as geometric intensity. For three consecutive states (yt−1, yt, yt+1), the Menger
curvature

κt = cM (yt−1, yt, yt+1) =
2
√
1− CosSim(u, v)2

∥yt+1 − yt−1∥
, u := yt− yt−1, v := yt+1− yt,

couples angular change with scale, providing a geometry-aware proxy for the “strength” of
a reasoning step in the representation.

C.4 ROADMAP DIAGRAM

The overall structure can be read from the commutative roadmap below. Here X sits at the center;
semantic and representation curves live to the left and right; formal and representation-based logics
sit below. The top arrow is strict by definition of A; the vertical arrows express how each curve
induces its respective notion of reasoning.
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X

Curves(C) Curves(R)

Lform Lrep

Γ Ψ

FC

A=Ψ◦Γ−1

DR

Reading guide. (1) Input sequences branch into a semantic curve (left) and a representation curve
(right). (2) The canonical alignment A = Ψ ◦ Γ−1 identifies the two curves one-to-one. (3) The
semantic curve induces human, rule-constrained steps in Lform via FC , while the representation curve
induces vector increments in Lrep via DR. (4) Curvature in Lrep quantifies the geometric intensity
of reasoning transitions and can be related back to formal steps under appropriate correspondences
established elsewhere in the paper.

D GEOMETRIC FOUNDATIONS OF REASONING TRAJECTORIES

In this section, we establish the geometric foundations for analyzing reasoning as smooth flows
in representation space. We first construct representation trajectories as C1 curves via a relaxed
prefix-mask mechanism, thereby justifying smoothness as a working principle. Then, we introduce
Menger curvature as a computable descriptor that couples angular deviation with distance variation,
providing a principled measure of the intensity of reasoning turns.

D.1 CONTINUITY OF REPRESENTATION TRAJECTORIES

In this section, we provide a rigorous and explicit construction of a C1 trajectory using a relaxed prefix-
mask mechanism. This construction justifies our working assumption that representation trajectories
are C1. Note that the symbol I (Definition 3.2) is defined with a slight variation compared to main
paper: here it is specialized to encode positional information, while the remaining complexities of the
model architecture are subsumed into a single mapping Φ.

Definition D.1 (Neural Encoding View of Sentence Representation). Let x = (u1, . . . , un) be a
sentence with tokens ui drawn from a vocabulary space V . Define an embedding map

E : V → Rd, ui 7→ E(ui),

which assigns each token a d-dimensional vector. Augmenting E(ui) with positional information
yields the input sequence

z0 =
(
E(u1), E(u2), . . . , E(un)

)
∈ (Rd)n.

Let Φ : (Rd)n × I → Rd denote a contextual encoder that maps a sequence of token embeddings
together with positional information to a global sentence-level representation, where I is the posi-
tional encoding space and In ⊂ I denotes the set of encodings for the first n positions. For a fixed
ι = (ι1, . . . , ιn) ∈ In, we define

Ψ(x) := Φ
(
z0, ιn

)
= Φ

(
E(u1), . . . , E(un), ι

)
∈ Rd.

In this view, Ψ subsumes both the static token embeddings and the contextual transformations carried
out by the neural network.

Hence the hidden state yt = Ψ(St) in Definition 4.5 should be interpreted not merely as a sum of
embeddings, but as the outcome of the full encoding process applied to the prefix St.
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Mask-aware realization (for later use). Fix a maximum length N ≥ n and consider the mask-aware
realization of the same encoder,

Φm : (Rd)N × IN × {0, 1}N → Rd,

such that for any length n ≤ N ,

Φm

(
(E(u1), . . . , E(un), 0, . . . , 0, ι),1{i≤n}

)
:= Φ

(
E(u1), . . . , E(un), (1{i≤n}ιi)

N
i=1

)
.

When the mask is all ones on {1, . . . , n}, this coincides with the above definition; when we pass a
mask explicitly we will write Φ(·,M).

Hypothesis D.2 (Smooth Trajectory Hypothesis). The sequence of representations yt = Ψ(Xt)
generated during a reasoning process lies on a smooth, differentiable trajectory in the embedding
space.

Definition D.3 (Relaxed-Mask Sentence Representation). Let each sentence in Hypothesis 4.4 be
xt = (ut,1, . . . , ut,nt

) for t = 1, . . . , T , and let the full token stream be

U1:N = (u1,1, . . . , u1,n1
, u2,1, . . . , u2,n2

, . . . , uT,1, . . . , uT,nT
),

with total length N =
∑T

t=1 nt and cumulative lengths Nt =
∑t

j=1 nj . Introduce a continuous
progress parameter s ∈ [0, 1] and a relaxed prefix mask

ms : {1, . . . , N} → [0, 1],

which specifies the fractional inclusion of each token at progress s.

Using the embedding map E and positional information IN from Definition D.1, define the masked
input sequence at progress s by

zs =
(
ms(i) E(ui)

)N
i=1

, ιs =
(
ms(i) ιi

)N
i=1

.

and the associated hard mask

Ms(i) := 1{ms(i)=1}, i = 1, . . . , N.

Let k(s) := ⌈sN⌉, denote the number of tokens included at progress s. The truncated masked
sequences are then defined as

z(≤k)
s := (zs(1), . . . , zs(k(s))) ∈ (Rd)k(s), ιs,(≤k) := (ιs(1), . . . , ιs(k(s))) ∈ Ik(s).

With the mask-aware encoder Φm : (Rd)N ×IN × {0, 1}N → Rd introduced above, the continuous
representation trajectory is defined by

Ψ̃(s) := Φm(zs, ι
s,Ms) ∈ Rd, where Φm(zs, ι

s,Ms) := Φ
(
z(≤k)
s , ιs,(≤k)

)
.

At sentence boundaries st := Nt/N , the hard prefix mask is recovered exactly by choosing a smooth
function with flat tails (see Proposition D.4); consequently,

yt = Ψ(St) = Φ
(
zst , ι

st ,Mst

)
= Ψ̃(st), t = 1, . . . , T.

Proposition D.4 (Continuity of the Relaxed-Mask Trajectory). Suppose the relaxed mask takes the
form

ms(i) = g(sN − i),

where g ∈ C∞(R) satisfies g(x) = 0 for x ≤ −δ, g(x) = 1 for x ≥ δ, with some 0 < δ < 1
2 (i.e., a

smoothstep/bump with flat tails). Assume the encoder Φ is C1. Then the mapping Ψ̃ : [0, 1]→ Rd

defines a C1 trajectory in embedding space. Moreover, the discrete sentence embeddings (yt)Tt=1 are
exactly samples of this trajectory at st = Nt/N :

yt = Ψ̃(st), t = 1, . . . , T.
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Proof. For each token Ui, we define the masked embedding and positional encoding as

(zs(i), ι
s(i)) = ms(i)

(
E(Ui), ιi

)
= g(sN − i)

(
E(Ui), ιi

)
.

Since g is C∞ and both E(Ui) and ιi are constant in s, each coordinate pair (zs(i), ιs(i)) varies
smoothly with s. Hence the entire masked sequence

(zs, ι
s) =

(
zs(1), . . . , zs(N); ιs(1), . . . , ιs(N)

)
is a smooth trajectory with respect to s. The mask Ms(i) = 1{ms(i)=1} is piecewise constant in s
and equals the all-ones indicator on indices where sN − i ≥ δ, and zeros where sN − i ≤ −δ; in
particular, it is locally constant on neighborhoods that avoid the transition band |sN − i| < δ.

By assumption, Φ is a composition of affine maps, matrix multiplications, LayerNorm, residual
connections, softmax attention, and smooth pointwise nonlinearities. As a function of its inputs, such
a network is smooth; thus, on any interval where Ms is fixed, the composite map

Ψ̃(s) = Φ
(
zs, ι

s,Ms

)
is C1 by the chain rule.

At sentence boundaries st = Nt/N , choose δ < 1
2 so that g(Nt − i) = 1 for i ≤ Nt and

g(Nt − i) = 0 for i ≥ Nt + 1. Hence mst(i) ∈ {0, 1} exactly and Mst(i) = 1{i≤Nt}. Substituting
into the definition,

Ψ̃(st) = Φ
(
(E(U1), . . . , E(UNt), 0, . . . , 0, ι),1{i≤Nt}

)
= Ψ(St) = yt,

which shows that the discrete embeddings (yt)Tt=1 are precisely samples of the continuous trajectory
Ψ̃(s).

Remark D.5. Since Φ(·) implemented with affine maps, matrix multiplications, LayerNorm, residual
connections, softmax attention, and smooth pointwise nonlinearities (e.g., GELU/SiLU/Swish), it’s
reasonable to assume that is C1. If ReLU activations (or other piecewise smooth nonlinearities)
are used instead of smooth ones, the mapping Ψ̃ remains continuous and is differentiable almost
everywhere. Since this does not affect the manifold-level geometric reasoning, we idealize Φ as
smooth throughout our discussion.

The construction above is merely one possible realization of a continuous and C1 trajectory Ψ̃(s).
In fact, many alternative constructions are possible. This abundance of realizations justifies our
assumption that the sentence Ψ(XT ), through its step-by-step variations, can be viewed as T points
lying on a smooth, differentiable curve. On this basis, we can consistently define the notion of flow
velocity in Definition 4.10.

D.2 MENGER CURVATURE

Definition D.6 (Menger Curvature). Let x1, x2, x3 ∈ Rn be three distinct points. The Menger
curvature of the triple (x1, x2, x3) is defined as the reciprocal of the radius R(x1, x2, x3) of the
unique circle passing through the three points:

c(x1, x2, x3) =
1

R(x1, x2, x3)
.

Proposition D.7 (Computation Formula). Let a = ∥x2 − x3∥, b = ∥x1 − x3∥, and c = ∥x1 − x2∥.
Denote by ∆(x1, x2, x3) the area of the triangle spanned by the three points. Then the circumradius
R and the Menger curvature c(x1, x2, x3) are given by

R(x1, x2, x3) =
abc

4∆(x1, x2, x3)
, c(x1, x2, x3) =

4∆(x1, x2, x3)

abc
.

Proof. The formula follows from classical Euclidean geometry: for a triangle with side lengths
a, b, c and area ∆, the circumradius satisfies R = abc

4∆ . Taking the reciprocal yields the Menger
curvature.
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x1

x2

x3

RCenter

Figure 7: Circumcircle through three points x1, x2, x3, with radius R and Menger curvature 1/R.

R

R′

yt−1 yt

y
(1)
t+1

y
(2)
t+1

Center

Center′

Figure 8: Two circumcircles through {yt−1, yt, y
(1)
t+1} and {yt−1, yt, y

(2)
t+1}, with radii R and R′.

Here y
(1)
t+1 and y

(2)
t+1 lie on the same ray from yt.

Proposition D.8 (Menger curvature from three consecutive states). Let yt−1, yt, yt+1 ∈ Rd be three
distinct points and set

u := yt − yt−1, v := yt+1 − yt.

Write the side lengths

a = ∥u∥, b = ∥v∥, c = ∥v − u∥ = ∥yt+1 − yt−1∥.

The Menger curvature of the triple (yt−1, yt, yt+1) equals

cM (yt−1, yt, yt+1) =
4∆(yt−1, yt, yt+1)

abc
=

2
√
1− CosSim(u, v)2

∥yt+1 − yt−1∥
,
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where CosSim(u, v) :=
⟨u, v⟩
∥u∥ ∥v∥

. (If the three points are collinear, cM := 0.)

Proof. By classical Euclidean geometry, for a triangle with side lengths a, b, c and area ∆, the

circumradius satisfies R =
abc

4∆
. The Menger curvature is the reciprocal cM = 1/R =

4∆

abc
.

It remains to express ∆ in terms of u and v. The (unsigned) area of the triangle spanned by u and v
can be written in a dimension-independent way via the Gram determinant:

∆ =
1

2
∥u ∧ v∥ = 1

2

√
det

(
⟨u, u⟩ ⟨u, v⟩
⟨v, u⟩ ⟨v, v⟩

)
=

1

2

√
∥u∥2∥v∥2 − ⟨u, v⟩2.

Substituting a = ∥u∥, b = ∥v∥, c = ∥v − u∥ into cM =
4∆

abc
gives

cM =
2
√
∥u∥2∥v∥2 − ⟨u, v⟩2
∥u∥ ∥v∥ ∥v − u∥

.

Divide the numerator and denominator by ∥u∥ ∥v∥ and denote s := CosSim(u, v) =
⟨u, v⟩
∥u∥ ∥v∥

. Then

cM =
2
√
1− s2

∥v − u∥
=

2 sin θ

c
,

where θ is the angle between u and v (so sin θ =
√
1− s2). If the three points are collinear, ∆ = 0

and hence cM = 0, consistent with the convention. This proves the claim.

Remark D.9. As illustrated in Figure 8, using the Menger curvature instead of cosine similarity is
significant. Cosine similarity only depends on the angle at yt, so the two triples {yt−1, yt, y

(1)
t+1} and

{yt−1, yt, y
(2)
t+1} would look identical. In contrast, their circumradii R and R′ are different, hence

the Menger curvatures distinguish two different curvature regimes. This demonstrates how Menger
curvature captures both angle and length information, enabling discrimination that cosine similarity
alone cannot provide.
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E DATA GENERATION

We provide the exact prompt templates and the representative sampled data instances used in our data
generation process. The two-stage pipeline is run with GPT-5.

E.1 PROMPTS FOR DATA GENERATION

The following prompts are used for abstract logical templates construction and domain-specific and
language-specific rewriting.

Prompt for Logic Pattern Generation

You are a formal logic pattern generator.
Goal: Create an abstract, domain-agnostic reasoning sequence of exactly N steps, written in
symbolic form, using standard propositional/first-order logic notation.
Strict output format:

• Exactly N lines, each line starts with a bracketed index and a single formula or
conclusion, e.g.:

[1] A -> B
[2] B -> C
[3] C -> D
[4] (D & E) -> F
[5] forall x(H(x) -> J(x))
[6] A
[7] E
[8] H(a)
[9] D (from [1-3] and [6])
[10] F & J(a) (from [4],[7],[5],[8],[9])

• Use only symbols from: ¬,∧,∨,→,↔,∀,∃, parentheses, predicate letters with
uppercase (A,B,C,. . . ) and predicate symbols like H(x), J(x).

• You may include brief justifications at the end of lines in parentheses referencing
earlier step indices (e.g., (from [2] and [5])).

• The sequence must be internally coherent (later steps can be derived from earlier
ones), but no proof of a fixed target is required.

• No extra commentary before or after the lines. No natural-language sentences.
Parameters (provided by caller):

• N: number of steps to output.
• logic: a label for this abstract logic (optional).

N = {N}
logic = {logic}
Now produce exactly N lines.
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Prompt for Reasoning Rewriter

You are a reasoning rewriter.
Task: Given an abstract N-step reasoning scaffold (formal symbolic lines) and a target topic,
rewrite the scaffold into a topic-specific natural-language reasoning sequence with exactly
the same number of steps and the same dependency structure.
Inputs (provided by caller):

• Topic: the target domain (e.g., weather, software).
• Abstract Steps (1..N): the neutral scaffold, numbered 1..N.
• N: the total number of steps.

Output requirements:
• Produce exactly N steps, each line begins with the same bracketed index as the

abstract: [1] ... to [N] ....
• Keep step count and ordering identical to the abstract. Do not merge, split, add, or

remove steps.
• Preserve the logical dependencies: if abstract step k enables k+1, your rewrite must

preserve that relationship in the topic.
• Use concrete domain terms appropriate to the topic, but keep sentences concise and

precise.
• No extra commentary before or after the steps.

Multilingual mode (when Languages: are specified by the caller):
• Create a separate section for each requested language code.
• Each section starts with a header line === <code> === (e.g., === en ===).
• Under each header, write the N steps with bracketed indices [1] .. [N] in that

language.
• Keep the content aligned across languages (same meaning per step index).

Inputs you will receive:
Topic: {topic}
Abstract Steps (1..N): {ABSTRACT STEPS}
N = {N}
Now perform the rewrite.

E.2 DATA EXAMPLES

Table 2 presents a 9-step logical scaffold from our dataset. We illustrate its instantiation in two
distinct domains, weather and finance, providing the corresponding statements in both English (EN)
and German (DE).
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Table 2: Logic Example (9-Step) with Weather and Finance Topics in English and German

Abstract Logic Topic: Weather Topic: Finance
[1] A → B EN: If moisture converges over the

city, then thunderclouds develop.
DE: Wenn über der Stadt Feuchte
konvergiert, dann bilden sich
Gewitterwolken.

EN: If the firm’s interest coverage ratio
exceeds 3.0x, then the firm is deemed able to
meet interest obligations.
DE: Wenn die Zinsdeckungskennzahl des
Unternehmens über 3,0x liegt, dann gilt das
Unternehmen als fähig, Zinszahlungen zu
leisten.

[2] B → C EN: If thunderclouds develop, then
heavy rain occurs.
DE: Wenn sich Gewitterwolken
bilden, dann tritt starker Regen auf.

EN: If the firm is deemed able to meet
interest obligations, then the bank will
approve a new term loan.
DE: Wenn das Unternehmen als fähig gilt,
Zinszahlungen zu leisten, dann wird die
Bank ein neues Laufzeitdarlehen
genehmigen.

[3] ∀x(H(x) →
J(x))

EN: For any location x, if a cold
front passes x, then temperatures
drop at x.
DE: Für jeden Ort x gilt: Wenn eine
Kaltfront x überquert, dann sinkt dort
die Temperatur.

EN: For any security x, if x is a U.S.
Treasury, then x is acceptable as repo
collateral.
DE: Für jedes Wertpapier x gilt: Wenn x
eine US-Staatsanleihe ist, dann ist x als
Repo-Sicherheit zulässig.

[4]H(a) EN: A cold front is passing the
airport.
DE: Eine Kaltfront überquert den
Flughafen.

EN: Bond A is a U.S. Treasury.
DE: Anleihe A ist eine US-Staatsanleihe.

[5] A EN: Moisture is converging over the
city.
DE: Über der Stadt herrscht
Feuchtekonvergenz.

EN: The firm’s interest coverage ratio
exceeds 3.0x.
DE: Die Zinsdeckungskennzahl des
Unternehmens liegt über 3,0x.

[6] B (from [1], [5]) EN: From [1] and [5], thunderclouds
develop.
DE: Aus [1] und [5] folgt, dass sich
Gewitterwolken bilden.

EN: The firm is deemed able to meet
interest obligations (from [1] and [5]).
DE: Daher gilt das Unternehmen als fähig,
Zinszahlungen zu leisten (aus [1] und [5]).

[7] C (from [2], [6]) EN: From [2] and [6], heavy rain
occurs.
DE: Aus [2] und [6] folgt, dass
starker Regen auftritt.

EN: The bank will approve a new term loan
(from [2] and [6]).
DE: Daher wird die Bank ein neues
Laufzeitdarlehen genehmigen (aus [2] und
[6]).

[8] J(a) (from [3], [4]) EN: From [3] and [4], temperatures
drop at the airport.
DE: Aus [3] und [4] folgt, dass am
Flughafen die Temperatur sinkt.

EN: Bond A is acceptable as repo collateral
(from [3] and [4]).
DE: Daher ist Anleihe A als
Repo-Sicherheit zulässig (aus [3] und [4]).

[9] C ∧
J(a) (from [7], [8])

EN: From [7] and [8], heavy rain
occurs and temperatures drop at the
airport.
DE: Aus [7] und [8] folgt: Es tritt
starker Regen auf und am Flughafen
sinkt die Temperatur.

EN: The bank will approve a new term loan
and Bond A is acceptable as repo collateral
(from [7] and [8]).
DE: Somit wird die Bank ein neues
Laufzeitdarlehen genehmigen und Anleihe A
ist als Repo-Sicherheit zulässig (aus [7] und
[8]).
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