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Abstract

The wide adoption of deep neural networks (DNNs) in mission-critical applications
has spurred the need for interpretable models that provide explanations of the
model’s decisions. Unfortunately, previous studies have demonstrated that model
explanations facilitate information leakage, rendering DNN models vulnerable to
model inversion attacks. These attacks enable the adversary to reconstruct original
images based on model explanations, thus leaking privacy-sensitive features. To
this end, we present Generative Noise Injector for Model Explanations (GNIME),
a novel defense framework that perturbs model explanations to minimize the risk
of model inversion attacks while preserving the interpretabilities of the generated
explanations. Specifically, we formulate the defense training as a two-player
minimax game between the inversion attack network on the one hand, which aims
to invert model explanations, and the noise generator network on the other, which
aims to inject perturbations to tamper with model inversion attacks. We demonstrate
that GNIME significantly decreases the information leakage in model explanations,
decreasing transferable classification accuracy in facial recognition models by up
to 84.8% while preserving the original functionality of model explanations.

1 Introduction

The recent widespread adoption of deep neural networks (DNNs) in building practical real-world
applications has led to a surge of interest in explainable Al (XAI) since mission-critical tasks (e.g.,
medical diagnosis) often request explanations of the model’s predictions. Such explanations are
not only helpful in debugging the model but also in providing explanations to end-users on how
predictions are made. They are often provided in the form of a feature attribution map, which shows
the importance of each feature computed based on the gradients of a target model.

Unfortunately, recent studies have demonstrated that such explanations cause additional information
leakage, which can be exploited by an adversary [[1, 18, [19} 22, 32]. Specifically, Zhao et al. [32]
presented a novel black-box model inversion (MI) attack which reconstructs an input image given
its prediction vector and the model explanation from a target DNN model. They demonstrated that
additional information leaked through model explanations (e.g., Grad or Grad-CAM) increases the
performance of MI attacks by a factor of 2.4 in terms of transferable classification accuracy, enabling
high-fidelity attacks.

Figure [I| compares the result of MI attacks using model predictions alone (PredMI) and explanation-
aware MI attacks using model predictions and explanations together (ExpMI). The examples re-
constructed via ExpMI show high-quality faces compared to those via PredMI, leaking additional
information, such as facial expressions and accessories. However, previous works have only proposed
the attacks exploiting the information leakage, without providing any defenses against them.
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Thus, to defend against MI attacks exploiting model explanations, we propose GNIME, which
generates inversion-resistant model explanations. Figure [2] shows the overall GNIME pipeline.
GNIME consists of two phases: training and deployment. In the training phase, GNIME trains a noise
generator that injects perturbations into the explanations provided by the model under protection to
minimize the MI threat. To train this noise generator, GNIME trains an MI attack network to compete
against each other. Then, in the deployment phase, we deploy the trained noise generator to obfuscate
the explanations generated for each test instance.

Target Image LRP PredMI ExpMI ExpMI w/ GNIME

The key idea of our approach is to establish
a two-player minimax game between the MI
attack (INV) network and the noise generator
(NG) network. We design the NG network to
inject perturbations into the model’s explana-
tions (i.e., attribution map); the noise-injected
model explanation is then fed into the INV net-
work to reconstruct the inverted image. GNIME
conducts an alternating training of these net-
works. During the NG’s turn, the NG network is
trained to tamper with the inversion performance
of the INV network while minimizing the pertur-
bations to the model explanations. During the
INV’s turn, we train the INV network to max-
imize its model inversion performance. These
alternating training procedures improve the INV
network to better invert the given model’s expla-
nations while the NG network learns to inject
perceptually imperceptible inversion-resistant
perturbations to the provided explanations. Af-
ter training is complete, the GNIME owner de-
ploys the NG network to inject perturbations into the original explanations before releasing them.

Figure 1: Qualitative comparison of the face re-
construction results of PredMI and ExpMI attacks
using LRP explanations. The last column shows
the ExpMI attack results when a target ML system
is under protection with GNIME.

We evaluate the efficacy of GNIME, by measuring 1) how effective the model is in decreasing the
risk of information leakage from the model explanations and 2) how well the perturbed explanations
preserve the semantics of the original explanations. For different types of explanations (i.e., Grad [24],
Grad-CAM [21]], and LRP [3]), we demonstrate that GNIME consistently generates infinitesimal
inversion-resistant noises that significantly impede explanation-aware MI attacks. To facilitate further
research, we publish GNIME at https://github.com/WSP-LAB/GNIME.

In summary, our contributions are as follows:

* We propose the very first defense framework against explanation-aware MI attacks, which
learns to suppress inversion-critical features from model explanations.

* We evaluate GNIME on diverse datasets and demonstrate its efficacy in decreasing the MI
risk while preserving the interpretability of the original explanations.

2 Related Work

Explainable AI for CNN models. Previous XAI research has introduced diverse methods of
computing an attribution map (i.e., saliency map) that explains the decision of a DNN classifier.
Specifically, given an input image, its attribution map highlights important features that heavily
influence the classifier’s decision. A straightforward approach is to calculate the gradient of the
DNN model’s output with respect to each input pixel [24], which we refer to as Grad. Grad thus
produces an attribution map of which the size is identical to that of input images. The larger the
absolute Grad value of a pixel, the greater influence the corresponding pixel has in deriving a model’s
decision. Numerous variants have been proposed to supplement or extend the explainability of
Grad [23} 125, 26]). In this paper, we use Grad as a basic type of for model explanations. The class
activation map (CAM) [33] is also a prevalent means of computing model explanations. It provides a
coarse-grained activation map that represents the state of intermediate convolutional layers. Gradient-
weighted CAM or Grad-CAM [21] is an extension of CAM. Unlike CAM, Grad-CAM does not
require a specific model architecture. It performs partial back-propagation until reaching the final
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Figure 2: Overview of the GNIME pipeline.

convolutional layer before the fully-connected (FC) layers. The activation maps are then aggregated
by globally pooling all existing channels, thus constituting a heatmap, which can be overlaid upon the
original image. The layer-wise relevance propagation (LRP) takes a holistic approach to explaining a
model’s decision [3]. It performs importance decomposition by redistributing relevance scores along
the backward pass and derives the relative contribution of each pixel of the input image.

Model Inversion Attacks. An MI attack refers to an attempt to invert a given model’s output, thus
computing its approximate input. The first MI attack targeted simple linear models to reconstruct
certain genetic markers from medical dosage predictions [[10]. Fredrikson ez al. [9]] expanded this
idea to target other types of machine learning (ML) algorithms, such as decision trees and shallow
neural networks, which enable the attack to target facial recognition models. These studies leveraged
the maximum a posteriori principle to construct input features that maximize the likelihood of a given
model’s response. However, their reconstructed images were blurry and of low-resolution; these
methods are unfit for reconstructing input images against complicated DNN models.

Yang et al. [29] proposed the idea of utilizing a dedicated DNN model to perform MI attacks. They
pretrained this inversion model with inputs that the attacker generates and their corresponding outputs
from a target DNN model. This training-based MI attack drastically improved the model inversion
performance. Follow-up works have demonstrated the use of generative adversarial networks (GANs)
to improve the inversion performance [2| 15, 27, [31]. Recently, Zhao et al. [32] showed that the
additional information leakage from XAI models can be further exploited to enhance the effectiveness
of the MI attack. While previous GAN-based attacks focus on producing generic images of a target
class, the explanation-aware attack by Zhao et al. [32] is able to reconstruct features specific to test
instances, such as face images with hats, glasses, or earrings. However, to our knowledge, no defense
mechanism has been proposed to defend against such explanation-aware MI attacks.

3 Explanation-aware Model Inversion Attack

Previous studies have demonstrated the critical threat that generative MI attacks impose. In this
section, we describe the threat model for conducting state-of-the-art generative MI attacks against
which GNIME is designed to protect model explanations. We then explain the state-of-the-art
explanation-aware MI attacks using generative networks along with notations.

3.1 Threat Model

We consider a target classifier f providing black-box access whereby an adversary can query f to
obtain its output ¢ in the form of a prediction vector. Each vector value indicates the predicted
probability for the corresponding class. Furthermore, the target service leveraging f also provides
a model explanation e (e.g., a Grad, Grad-CAM, or LRP saliency map) that illustrates important
features contributing to f emitting g.

We assume a man-in-the-middle adversary who observes a pair of e and y for an input image
inaccessible to the adversary. Thus, the adversary’s goal is to reconstruct a high-fidelity input image
given e and ¢. Furthermore, we assume that the adversary is able to obtain an auxiliary dataset D,
whose underlying data distribution is similar to that of the training data D for the target classifier f.
The adversary leverages this auxiliary dataset to train her inversion networks f4. Since the adversary
can collect (3, ) by querying f for each input € Dy, she exploits both ¢ and e to train f4.

Note that our adversary model is analogous to that of Zhao et al. [32]], which constitutes a strong
black-box adversary model. Also, Yang et al. [29] assumes a similar man-in-the-middle adversary



who reconstructs input images from prediction vectors observed from f. Our goal is to protect the
model explanations from this strong black-box adversary conducting MI attacks.

3.2 Model Inversion Attacks Using Model Explanations

Zhao et al. [32] proposed a novel black-box MI attack (ExpMI) that exploits prediction vectors
generated from a target classifier f as well as the model explanations for each decision. To reconstruct
the input images, they trained a transposed CNN model f4 based on auxiliary data, each of which
was a prediction vector paired with its model explanation.

Consider a target classifier f that is a function f(x) — (e, %) that emits a prediction vector and
model explanation (i.e., an attribution map). The adversary’s goal is to compute f4 (e, §) — &, which
takes explanation e and § to produce Z, revealing sensitive attributes of x. Figure [3]illustrates a
simplified structure of the ExpMI model. To take advantage of structural information in activation
maps, ExpMI utilizes a U-Net-style bypass connection along with flattened inputs directly appended
to the intermediate embedding.

U-Net 7
The adversary takes advantage of e, which leaks & z

sensitive information pertaining to = and drasti-
cally improves the reconstruction performance Y
of fa. As Figure [I] shows, the quality of the y
reconstructed image & with e is significantly bet- Fiaton
ter than the MI attack using prediction vectors
alone generates.

Figure 3: DNN architecture of ExpMI models.

Considering that model explanation has become instrumental in identifying the reasons behind
the decisions of DNN models in various industry sectors, it becomes inevitable for corporations
to provide model explanations. However, providing such information also jeopardizes privacy by
revealing sensitive attributes of reconstructed images. To this end, we propose GNIME, a novel
defense framework that learns to inject noise into model explanations, thus minimizing the privacy
risk of ExpMI attacks and maximizing the utility of noise-injected model explanations.

4 Learning to Generate Noise for Model Explanations

Figure 2| depicts the overall workflow of GNIME. Phase I trains the noise injector and MI attack
networks, thus inducing the noise injector network to inject inversion-resistant perturbations into
model explanations. Phase II then deploys the noise injector network in injecting noise into each
model explanation upon its release.

Given a target classifier f(z) — (e, ), GNIME learns to inject noise into e to minimize the MI
threat. Our approach utilizes the noise generator network (fy¢) and inversion network (71 ), both
of which are trained upon Dy = {z;,y;} Y, the original training data of f.

Let fyg(e,§) — € be the NG network that generates a new explanation attribution map é, which
includes noise. For the INV network, we design fryv (e, §) — & that takes e and ¢, then computes
an inversion image . For the loss functions of fy¢ and f7xyv, we use an explanation distortion loss
(L4q) to encourage minimum perturbation to the explanations and an image reconstruction loss (L)
to encourage inversion performance. We use the pixel-wise mean squared error (MSE) between e and
e for L4, and the MSE between x and Z for L,..

Inspired by Generative Adversarial Networks [11], we form a two-player minimax game in which
fne and fryy are trained together using two different objectives. Specifically, the training phase
consists of two steps for each epoch.

In the first step, we freeze fy¢ and train f;yy by minimizing the following loss:

»CINV - ['re(xa fINV(ev g)) + »Cre(xv fINV(é7 Q))v where € = fNG(ea g) (1)
The objective is to improve the inversion capability of f;nyv given (e, y) and (é, 7). Note that L7y
includes the reconstruction loss from the clean explanations in order to prevent the network from
overfitting to the perturbed explanations. For the second step, we freeze fryy and train fyg by
minimizing the following loss:

ENG = ﬁxd((%é) — )\Ere(x’fINV(é7g))' (2)



Algorithm 1 Training algorithm in Phase I

Input: target classifier f and input data X = {z1, ..., }
Output: noise generator network fng

Generate Y and E from each input X to f
for number of epochs do

Sample a batch of size m: {(x1,91,€1), ..., (Tm, Gm, €m )}, consisting of pairs from X, V,and E
Leté; = fNG(€i7 f/l) in

Update finv: oy, o m 2o [Cre(@is frnv(ei, §i) + Lre(xi, frnv (€i, §:))]

Update fxa:  osy o m oie [Lad(eiy &) = Alre(i, finy (€, §1))]

It aims to minimize the distortion between e and é, while maximizing the error between z and .
Therefore, we train fy¢ to generate a noise-injected attribution map that is similar to the original
attribution map but causes f7yy to generate an inversion image dissimilar from its original image.
Algorithm|[T]explains our training process. In £ ¢, we set A = 500 for CelebA models and A = 100
for MNIST, CIFAR-10, and ImageNet-100 models, then deploy the final model after 500 epochs.

In the worst case, fn g will merely cause a regularization effect on f7 v, rendering it robust to any
noisy explanation. However, as fy¢ is trained over epochs, it learns to capture and suppress features
inside explanations that contain exploitable information regarding the original input image. Once the
training is finished, we discard f7y and only make use of fy¢ for Phase II. For every attribution
map e, we use fn¢ to generate a noise-injected attribution map é, then release é instead of e upon a
given query x.

Additionally, GNIME service providers can inject less noise into the explanations with an arbitrary
MSE bound, ~. In this case, GNIME computes a new attribution map ¢’ (see Equation [3); we
normalize the noise difference n between é and e by dividing it by the square root of the variance of
n over « and then add this normalized difference to e:

e':e—i-L,wheren:é—e. 3)
o?(n)/v

02(n) denotes the pixel variance of n. Therefore, by controlling v, GNIME service providers can
utilize the trade-off and choose to preserve better explanation functionality in exchange for defensive
capability. Refer to the supplementary material for further analysis regarding the trade-off.

5 Experiments

5.1 Experimental Setup

Datasets. We evaluate GNIME using four datasets: (1) CelebA [17], (2) MNIST [14], (3) CIFAR-
10 [13]], and (4) ImageNet [6] , each of which is freely available for research purposes. For CelebA,
we use its balanced subset consisting of 30,000 face images of 1000 individuals. To obtain a tighter
bound for the faces, we crop the center and resize each CelebA image to 128 x 128. MNIST consists of
70,000 images of handwritten digits, and CIFAR-10 has 60,000 images of 10 different objects. Both
MNIST and CIFAR-10 images were resized to 32x32. We note that previous studies [29, 31} 32]
adopted the same datasets to demonstrate how effectively their frameworks mitigate the MI threat.
In addition, we evaluate GNIME on ImageNet-100 [[6], which is a large scale dataset of higher
resolution, consisting of 100 classes randomly selected classes from ImageNet; each image is resized
to 256 x 256.

We split each dataset into two disjoint sets of the same size: the target and attack datasets. The target
dataset is used to train a target model f and GNIME. The attack dataset is used to train the inversion
networks for explanation-aware MI attacks and to test GNIME. Specifically, we split this attack
dataset with an 80/20 ratio for the train/test split.

Note that we assume an adversary capable of training f4 upon a dataset of which the underlying
distribution is nearly identical to that of the target network’s training data. We intentionally assume
this strong adversary to demonstrate how good GNIME is in mitigating the MI threat. Moreover,
we also assess the performance of GNIME against a weaker but more practical adversary using
an auxiliary dataset that has a different underlying distribution (i.e., a separately collected set for



conducting a similar task) [29]. For instance, when attacking the CelebA model, we randomly sample
face images from FaceScrub [20] to train f4. Note that the overlapping identities from FaceScrub
which also appear in CelebA are removed before the sampling process. We extract a tighter bound of
each FaceScrub face according to its official bounding box information.

Target Models. We implement different target models for different datasets. For CelebA, the target
model consists of three convolutional layers followed by two fully-connected (FC) layers. We employ
dropout before each FC layer to avoid overfitting. For MNIST and CIFAR-10, we use a target
model with two convolutional layers followed by two FC layers. We selected the same models that
Zhao et al. [32] used to demonstrate their MI attacks. For ImageNet-100, we used the model from
CelebA with an additional convolutional layer.

Inversion Methods. We use two MI attack methods (ExpMI and PredMI) as baselines in our
experiments. Specifically, we compare the efficacy of various defense mechanisms against the state-
of-the-art ExpMI attack [32]]. In addition, we consider the prediction-only MI attack using no model
explanations (PredMI), suggested by Yang et al. [29]. Note that the inversion results via PredMI
form an upper bound that represents the ideal case for any defenses in which model explanations
leak no additional knowledge that the adversary is able to exploit. We conducted each MI attack five
times and reported average metrics with standard deviations. All experiments took place on a system
equipped with 512GBs of RAM, two Intel Xeon Gold 6258R CPUs, and four RTX 3090 GPUs.

5.2 Evaluation Metrics

We assess whether the reconstructed image is close to its original image by leveraging four metrics:
MSE, SSIM, TCA, and DeePSiM, which have been extensively used for quantitative evaluations in
previous studies [29} 311 [32]].

Mean Squared Error (MSE). The MSE is a metric that measures the distance between a recon-
structed image and its corresponding original image. A small MSE indicates that the reconstructed
image is close to its original image. For normalization, input pixel values of the inputs are scaled to
be within the range of [0, 1].

Structural Similarity Index Measure (SSIM). The SSIM computes the distortion of structural
information between two images [28]]. Since humans are good at recognizing structural differences
between two images, this metric shows human perceptual similarity between two images. An SSIM
score spans from 0 to 1, and the higher score indicates better reconstruction.

Deep Perceptual Similarity Metric (DeePSiM). The DeePSiM shows the similarity between
two images at an intermediate representation level [7]. Unlike SSIM, which illustrates perceptual
similarity, DeePSiM explains perceptual similarity from the neural network perspective. Specifically,
we trained a separate evaluation classifier f, which shares the same architecture and training dataset
with the target model. We then computed the feature distance between intermediate results from the
penultimate layer of fr, comparing the high-level features identified by fg [32]]. If f;nv accurately
reconstructs the high-level image features, it results in a high DeePSiM score.

Transferable Classification Accuracy (TCA). We also measure a TCA to evaluate whether inverted
images are generally recognizable by another DNN classifier of which the structure is the same as that
of the target model. This metric indirectly shows whether the reconstructed image incorporates the
key features of its original image. We measured this metric using fz. Note that fr would correctly
predict the reconstructed image if the reconstructed image successfully incorporates the key features
of the original image, rather than to overfit to unimportant details captured only by the target classifier.

5.3 Experiment Results

5.3.1 Defending against MI Attacks

We evaluate the performance of vanilla explanation-aware MI attacks and then measure the efficacy
of GNIME in decreasing information leakage from such MI attacks. Specifically, we compare five
settings (two baseline attacks and three defenses against ExpMI attacks): (1) MI attacks using the
model’s prediction outputs alone (PredMI); (2) MI attacks using both prediction outputs and model
explanations (ExpMI); (3) ExpMI attacks against a defense that injects Gaussian noise into saliency
maps (RND); (4) ExpMI attacks against a defense that injects optimized noise into saliency maps



Table 1: Quantitative comparison between five different evaluation settings: PredMI, ExpMI, RND,
OND, and GNIME. Values inside brackets indicate the degradation in inversion performance com-
pared to ExpMI. The best results in mitigating ExpMI are highlighted in bold.

Grad Grad-CAM LRP

Metric PredMI
| ExpMI RND OND GNIME | ExpMI  RND OND  GNIME | ExpMI ~ RND OND GNIME

+0015 £0011 £0010 +0009 £0005 £0011  £0006  +0003  +0004 | 0008  £0002  £0011  +0007
MSEf 0287 0141 0184 0185 0222 | 0183 0191 0200 .0229 | 0069 0124 0155  .0234
(00431)  (00451)  (.00817) (00091) (00171) (.00461) (00561) (.00861) (.01657)

+.0242 +.0276 +.0302 +.0216 +.0060 +.0189 +.0144 +.0080 +.0046 +.0224 +.0022 +.0209 +.0130
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MSEf 0237 10051 10067 10070 0143 | 0021 0059 0061  .0177 | 0012 0037 0044  .0168
(00167)  (00191)  (.00927) (00381) (.00401) (.01567) (00251) (.00321) (.01567)

+.0068 +.0133 +.0249 +0115 +.0046 +.0068 +.0039 +.0150 +.0026 +.0009 +.0052 +.0064 +.0037
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(OND); and (5) ExpMI attacks against GNIME. When measuring the defensive capability of RND,
OND, and GNIME, each MI network was separately trained using the explanations perturbed by the
corresponding defense method. This resembles the real-world adversary in our black-box setting,
who has no way of obtaining clean model explanations.

Table [T compares the performance of GNIME against these experimental settings assuming a target
ML service providing Grad, Grad-CAM, and LRP, respectively. Recall from §3|that we assume a
strong adversary in possession of auxiliary data of which the distribution is the same as the training
dataset of the target model. We thus use the train split of our attack dataset for training GNIME and the
test split for measuring the metrics (§5.1). Considering that ExpMI shows better reconstruction quality
compared to PredMI in all the cases, exploiting model explanations to perform MI attacks indeed
contributes to additional information leakage. Surprisingly, the SSIM score significantly boosted
from 0.1688 to 0.8862 when targeting CIFAR-10-LRP. These results demonstrate the necessity
of defense against ExpMI attacks. We now compare the performance of GNIME against other
two defense settings (RND and OND) that add noise to achieve the same defensive goal. RND
corresponds to a naive approach that randomly adds Gaussian noise, which serves as our defense
baseline. For OND, instead of training fx¢, we use the projected gradient descent [[18]] to optimize
the input image towards increasing the loss function of f;ny. Note that adding huge noise can
prevent information leakage, but it would undermine the ability to explain the model’s decisions.
Hence, for fair comparison, we clip the perturbation magnitude of RND and OND to align with the
average perturbation size of GNIME.
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Figure 4: For each explanation type, we compare the ExpMI inversion results of four cases: no
defense, RND, OND, and GNIME (columns 2—5). The SSIM score of each reconstructed image
compared to the target image (column 1) is marked in white.

As shown in the table, GNIME succeeds in decreasing the information leakage threat for all the
explanations and data types. Although RND also slightly alleviates the MI threat by degrading the
inversion quality, GNIME significantly outperforms RND in all the cases. Furthermore, GNIME
shows superior performance compared to OND as well in all cases. For example, when targeting
CelebA-LRP, RND and OND lower the TCA by 0.0588 and 0.0940, respectively. On the other hand,
GNIME decreases the TCA by 0.1821, which corresponds to 3.10x of RND and 1.94x of OND.
From these observations, we conclude that noise optimized against the f7yy fails to generalize on
fa, which is independently trained for ExpMI attacks, and it requires a dedicated model fy¢g to
generate effective inversion-resistant noise.

PredMI serves as an upper bound for all the presented defense frameworks, which shows the case when
there exists no additional information leakage threat that stems from providing model explanations
(§5.1). Considering this upper bound shown in the table, we believe that the degree of GNIME
achieving its defensive goal is close to its upper bound. For instance, the DeePSiM score against
PredMI and ExpMI targeting CelebA-Grad with GNIME achieves 0.1851 and 0.1880, respectively.

Figure [] presents the qualitative experimental results. We observe that GNIME outperforms both
RND and OND in decreasing the reconstruction quality. When comparing all columns between
the third and fifth for each explanation type, GNIME clearly contributes to degrading the quality
of reconstructed images; ExpMI still reconstructs most features in the inversion images when the
explanations are under the protection of RND or OND, contrary to the inversion images with GNIME.

We further compare the inversion results with a more practical adversary. Here, the adversary cannot
train its inversion network f4 with the same dataset as the target model (CelebA). Instead, it draws
the training data from another generic distribution. Specifically, we use a subset of FaceScrub to train
fa. This auxiliary training set is arguably easier to obtain than the original dataset [29].

Table[2]summarizes the ExpMI attack performance with and without GNIME. The metrics consistently
report lower reconstruction performance even when the adversary leverages FaceScrub as the auxiliary
dataset. Interestingly, the defensive capability of GNIME was even greater in the practical setting
(e.g., using FaceScrub to attack CelebA-LRP, the degradation of TCA due to GNIME increased from
84.82% degradation (0.2147—0.0326) to 99.43% (0.2086—0.0012)). These results demonstrate that
GNIME is more effective against the practical adversary of conducting ExpMI attacks.

5.3.2 Preserving XAI Functionality

In this section, we further evaluate whether an attribution map é noised by GNIME still provides
interpretable explanations on the model’s decisions, thus preserving its functionality. The XAI
methods (e.g., Grad, Grad-CAM, and LRP) produce an attribution map that reflects the degree of
importance for each pixel contributing to a target model emitting a decision. Therefore, an input image
multiplied by this model explanation (z ® e) erodes unimportant pixels and leaves important pixels
intact. That is, we can indirectly evaluate whether the original functionality of a model explanation e
is preserved in its perturbed version é by comparing the pixels left in  © e and x © € using DeePSiM.
We compare the intermediate representation values in the penultimate layer of the target classifier



Table 3: DeePSiM score between
x®eand x ®é. Values within paren-
theses indicate the average perturba-
tion magnitude (in MSE).

Table 2: MI attack performance of an adversary exploiting
auxiliary dataset (FaceScrub) of which distribution is differ-
ent from that of the original training set (CelebA).
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f for each input:  ® e and = ® é. A higher DeePSiM score indicates a higher resemblance in the
high-level features captured by the target model.

Table [3|shows the average DeePSiM value of all z ® e and = ® ¢ pairs in which each x is from the
test split of the attack dataset. The model perceptual similarity between  ® e and = ® é is at least
0.6734, 0.9298, 0.8761, and 0.9097 for the CelebA, MNIST, CIFAR-10, and ImageNet-100 models,
respectively. This indicates that the original functionality of e largely remains intact.

Perturbation Magnitude. We analyze the dis- : . :
tribution of MSEs between e and é pairs for " !

CelebA depicted in Figure E} The figure shows > Z Al
two triples (x, e, €), each of which respectively o
represents a common case and an extreme case )
of perturbation magnitude (i.e., MSE = 0.0015 -
and MSE = 0.0055). Note that even the per- .
turbation of the extreme case is hardly percep- ou0ss
tible. These results Suggest that GNIME ap- %5000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
plies infinitesimal perturbations to e such that it Figure 5: Distribution of GNIME’s perturbation
preserves its original functionality. We include magnitude on CelebA-Grad explanations. Values
further visualization of perturbed model expla- marked white inside é indicate the perturbation
nations in the supplementary material. magnitude (in MSE).

In addition, recall from §4] that one can further vary  in Equation [3] to control the perturbation
magnitude. We observed a linear trade-off relationship between the defensive capability and the
explanation functionality of GNIME. GNIME service providers can use v of their choice with this in
mind. When choosing to use 0.0040 for v, GNIME achieves the 0.6340 DeePSiM. However, when
limiting the perturbation size to 0.0005, the DeePSiM score increases to 0.8497. Please refer to the
supplementary material for further experimental results.

Frequency

5.3.3 Investigating Additional Information Leakage.

Although GNIME significantly lowers the risk of information leakage to the degree to that of PredMI,
information leakage still remains to some extent even after its deployment. However, we stress that
GNIME focuses on preventing additional information leakage that stems from model explanations;
therefore, the inversion results of PredMI form an upper bound of our defense. Note that GNIME
is capable of obscuring several key attributes in the original images, providing inversion results
similar to those of PredMI. For instance, Figure|l|shows that GNIME removes critical features in the
reconstructed images, such as sunglasses, cap, or gender information.

We additionally evaluate whether GNIME is able to obscure several key attributes of reconstructed
images. Similar to Chen et al. [3]], we trained attribute classifiers using CelebA and evaluated whether
the attribute classifiers is able to correctly predict attributes when the reconstructed images are
provided. Specifically, we trained eight attribute classifiers, employing the ResNet50V2 architecture
from He et al. [12] with its final layer replaced for binary classification. Note that the training set
used to train these classifiers is disjoint from that we used in the input reconstruction. We report the
F1 score to measure the performance of these attribute classifiers. Figure[6] summarizes the evaluation
results. GNIME performed best in terms of deteriorating the attribute prediction performance for all
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Figure 6: F1 scores measured on eight attribute classifiers using reconstructed images.

attribute types. On average, ExpMI without defense reports an F1 score of 0.7672. Note that GNIME
decreases it to 0.3048, which is close to the F1 score of PredMI.

6 Discussions and Limitations

Constrained Obfuscation. The concept of obfuscating sensitive information while retaining useful
information has been explored in various fields in establishing privacy [4}[16] and fairness[30]. Their
common approach is to obfuscate given input instances and then jointly train a target model to retain
a high performance even for those obfuscated instances. By contrast, GNIME does not directly alter
the target model parameters and focuses only on obfuscating model explanations to minimize the MI
threat. This enables the deployment of legacy models without any retraining steps while preserving
the original model performance.

Model Extraction. Zhao et al. [32] proposed an ExpMI attack even when a target DNN model does
not provide any explanation (ExpMI-3), which we do not assume in the threat model. The core idea of
ExpMI-3 is to build a high-performing surrogate model through a successful model extraction (ME)
attack and then construct surrogate explanations based on this surrogate model. However, we stress
that once the adversary successfully constructs the surrogate model, the surrogate model exposes the
target model to numerous white-box attacks, not only limited to the ExpMI threat. We argue that a
defense against ExpMI-3 should focus on mitigating the ME threat. We implemented a simple ME
defense, reverse sigmoid perturbation (RSP) [[15], and evaluated its efficacy in terms of degrading
the inversion performance of ExpMI-3; the SSIM score of ExpMI-3 attack against RSP-equipped
CelebA was 0.4928, which is comparable to the SSIM of ExpMI attack against GNIME-equipped
CelebA-LRP, 0.4960. Further experimental results are given in the supplementary material.

Black-box Adversary. Previous MI attacks [5) [31] have been proposed assuming a white-box
adversary who can access the parameters and gradients of a target model. By contrast, we assume
the black-box adversary conducting ExpMI attacks, following Zhao et al. [32]. Therefore, GNIME
is designed to mitigate the ExpMI threat in a black-box manner in which a target model returns its
explanation and output upon a given input. Considering that many Machine-Learning-as-a-Service
(MLaaS) services operate in a black-box setting, we emphasize that addressing the ExpMI threat in
this setting is still important. To our knowledge, GNIME is the first defense approach to effectively
mitigate the ExpMI threat.

7 Conclusion

In this paper, we propose GNIME, the first defense framework against MI attacks using model expla-
nations. During the training of GNIME, we put together the noise generator and inversion networks
so that they compete with each other; the noise generator network learns to inject imperceptible noise
into model explanations that undermine model inversion, and the inversion network learns to excel
at reconstructing the original inputs from model explanations. GNIME then leverages the trained
noise generator network for every model explanation upon its release. Our evaluations across diverse
datasets and explanation types demonstrate that GNIME is effective in mitigating the privacy threat
that MI attacks impose while preserving the original functionality of model explanations.

Acknowledgements. This work was supported by the Institute of Information & communications Technology
Planning & evaluation (IITP) grant funded by the Korea government (MSIT) (No0.2020-0-00153, Penetration
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