
GPEX, A Framework For Interpreting Artificial
Neural Networks

Amir Akbarnejad
Department of Computing Science

University of Alberta
Edmonton, AB, Canada
ah8@ualberta.ca

Gilbert Bigras
Department of Laboratory Medicine and Pathology

University of Alberta
Edmonton, AB, Canada

Gilbert.Bigras@albertaprecisionlabs.ca

Nilanjan Ray
Department of Computing Science

University of Alberta
Edmonton, AB, Canada
nray1@ualberta.ca

Abstract

The analogy between Gaussian processes (GPs) and deep artificial neural networks
(ANNs) has received a lot of interest, and has shown promise to unbox the blackbox
of deep ANNs. Existing theoretical works put strict assumptions on the ANN (e.g.
requiring all intermediate layers to be wide, or using specific activation functions).
Accommodating those theoretical assumptions is hard in recent deep architectures,
and those theoretical conditions need refinement as new deep architectures emerge.
In this paper we derive an evidence lower-bound that encourages the GP’s posterior
to match the ANN’s output without any requirement on the ANN. Using our method
we find out that on 5 datasets, only a subset of those theoretical assumptions are
sufficient. Indeed, in our experiments we used a normal ResNet-18 or feed-forward
backbone with a single wide layer in the end. One limitation of training GPs is the
lack of scalability with respect to the number of inducing points. We use novel
computational techniques that allow us to train GPs with hundreds of thousands of
inducing points and with GPU acceleration. As shown in our experiments, doing
so has been essential to get a close match between the GPs and the ANNs on 5
datasets. We implement our method as a publicly available tool called GPEX:
https://github.com/amirakbarnejad/gpex. On 5 datasets (4 image datasets, and 1
biological dataset) and ANNs with 2 types of functionality (classifier or attention-
mechanism) we were able to find GPs whose outputs closely match those of
the corresponding ANNs. After matching the GPs to the ANNs, we used the
GPs’ kernel functions to explain the ANNs’ decisions. We provide more than 200
explanations (around 30 explanations in the paper and the rest in the supplementary)
which are highly interpretable by humans and show the ability of the obtained GPs
to unbox the ANNs’ decisions.

1 Introduction

Artificial neural networks (ANNs) are widely adopted in machine learning. Despite their benefits,
ANNs are known to be black-box to humans, meaning that their inner mechanism for making
predictions is not necessarily interpretable/explainable to humans. ANN’s black-box property impedes
its deployment in safety-critical applications like medical imaging or autonomous driving, and makes
them hard-to-troubleshoot for machine learning researchers.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/amirakbarnejad/gpex

Attribution-based explanation methods like LIME[31], SHAP[21] and most gradient-based expla-
nation methods like DeepLIFT [5] presume a linear surrogate model. Given a test instance xtest,
this simpler surrogate model is encouraged to have the same output "locally" around xtest. Because
of this "local assumptions", explanations from these methods might be unreliable, and can be easily
manipulated by an adversary model [11][28]. Moreover, these models may produce discordant
explanations for a fixed model and test instance [16].

Considering Gaussian processes (GPs) [26] as the explainer model is beneficial, because: 1. Gaussian
processes are highly interpretable. 2. Researchers have long known that GP’s posterior has the
potential to match an ANN’s output "globally". More precisely, given an ANN and some requirements
on it [24][8], there might exist a GP whose posterior matches the ANN’s output all over the input-
space X (as opposed to the local explanation models for which the match happens only locally
around a test instance xtest ∈ X). Not many explainer models can globally match the ANN’s output.
Among gradient-based methods, with the best of our knowledge only Integrated Gradients [33] has a
weak sense of ANN’s global behaviour over the input space. Having some conditions on an ANN,
representer point selection [37] finds a "globally faithfull" explainer model that, similar to GPs, works
with a kernel function. As we will elaborate upon in Sec. 4.3 and Sec. S6 of the supplementary,
the GP’s kernel that we find in this paper is superior due to a technical point in the formulation of
representer point selection [37]. All in all, using GPs to explain ANNs is quite promissing and has
advantages over other approaches to explain ANNs.

The contributions of this paper are as follows:

• Theoretical results on ANN-GP analogy impose some restrictions on ANNs under which
the ANN will be equivalent to a GP. These conditions are too restrictive for recently used
deep architectures. Moreover, those theoretical conditions need refinement as new deep
architectures emerge. In this paper we derive an ELBO for training GPs which encourages
GP’s posterior to match ANN’s output. Our formulation and method doesn’t impose any
restriction on the ANN and the method used to train it.

• Using our method, we empirically show that on 5 datasets (4 image datasets, and 1 biological
dataset) and ANNs with 2 types of functionality (classifier or attention-mechanism) the
ANN needs to fulfill only a subset of those theoretical conditions. Indeed, in our experiments
we used a normal ResNet-18 or feed-forward backbone with a single wide layer in the end.

• Scalability is a major issue in training GPs. To address this issue, we adopted computational
techniques recently used for fast spectral clustering [13] as well as a novel method to learn
the GPs using mini-batches of inducing points and training instances. These computational
techniques allow us to train GPs with hundreds of thousands of inducing points. According
to our analysis, increasing the inducing points has been essential to get a good match between
the trained GPs and ANNs. Indeed, without many inducing points GPs posterior cannot be
a complex function (a function with many ups and downs [36]) and fails to match ANNs’
output.

• With the best of our knowledge, our work is the first method that performs knowledge
distillation between GPs and ANNs.

• We implement our method as a public python library called GPEX (Gaussian Processes for
EXplaining ANNs). GPEX takes in an arbitrary PyTorch module, and replaces any ANN
submodule of choice by GPs. Our package makes use of GPU-accelaration, and enables
effortless application of GPs without getting users involved in details of the inference
procedure. GPEX can be used by machine learning researchers to interpret/troubleshoot
their artificial neural networks. Moreover, GPEX can be used by researchers working on the
theoretical side of ANN-GP analogy to empirically test their hypotheses.

2 Proposed Method

2.1 Notation

In this article the function g(.) always denotes an ANN. The kernel of a Gaussian process is denoted by
the double-input functionK(., .). We assume the kernel similarity between two instances xi and xj is
equal to f(xi)

T f(xj), where f(.) maps the input-space to the kernel space. In this paper u (resp. v)
denotes a vector in the kernel-space (resp. the posterior mean) of a GP. In some sense u and v denote

2

a
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Observed Data
GP's mean
GP's mean ± covariance

b

Figure 1: a) A general feed-forward pipeline, with an ANN sub-module to be explained by GPEX. b)
Typical behaviour of Guassian process posterior given a set of observed values.

the input and the output of a GP, respectively. We have that: K(xi,xj) = f(xi)
T f(xj) = ui

Tuj .
The number of GPs is equal to the number of the outputs from the ANN. In other words, we consider
one GP per scalar output-head from the ANN. We use index ℓ to specify the ℓ-th GP as follows:
Kℓ(xi,xj) = fℓ(xi)

T fℓ(xj) = ui
(ℓ)Tuj

(ℓ). We parameterize the ℓ-th GP by a set of M inducing
points {(ũ(ℓ)

m , ṽ
(ℓ)
m)}Mm=1. The tilde in (ũ(ℓ)

m , ṽ
(ℓ)
m) indicates that ũ is one of the M inducing points in

the kernel space. However, u (without tilde) can be an arbitrary point in the continuous kernel-space.

2.2 The Proposed Framework

To make our framework as general as possible, we consider a general feed-forward pipeline that
contains an ANN as a submodule. In Fig. 1a the bigger square illustrates the general module. The
input-output of the general pipeline are denoted in Fig. 1a by X and Y . The general pipeline has
at least one ANN submodule to be explained by GPEX. Fig. 1a illustrates this ANN by the small
blue rectangle within the general pipeline. The input-output of the ANN are denoted in Fig. 1a by x
and v. Note that X and Y can be anything, including without any limitation, a set of vectors, labels,
and meta-information. However, input-output of the ANN (i.e. x and y) are required to be in tensor
format. The exact requirements are provided in the online documentation for GPEX. Moreover, the
general module can have other arbitrary submodules, which are depicted by the blue clouds. The
relations between the submodules, as illustrated by the dotted-lines in Fig. 1a, can also be quite
general. Our probabilistic formulation only needs access to the conditional distributions p(x|X) and
p(Y|x,X). Similarly, the proposed GPEX is completely agnostic about the general pipeline and
it only requires the ANN’s input-output to be in the tensor format. Given a PyTorch module, the
proposed GPEX tool automatically grabs the distributions p(x|X) and p(Y|x,X) from the main
module it is given.

The inducing points {ũ(ℓ)
m , ṽℓm}Mm=1 parameterize the ℓ-th GP. Note that ũ(ℓ)

m = fℓ(x̃m). A feature
point like x is first mapped to the kernel-space as u(ℓ) = fℓ(x). Note that the kernel functions
{fℓ(.)}Lℓ=1 are implemented as separate neural networks, or for the sake of efficiency as a single
neural network backbone with L different heads. Afterwards, the GP’s posterior on x depends on the
kernel similarities between u(ℓ) and the inducing points {ũ(ℓ)

m }Mm=1. More precisely, the posterior of
the ℓ-th GP on x is a random variable v(ℓ) whose distribution is as follows [26]:

p(v(ℓ)|u(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M) = N

(
v(ℓ) ; µv(u

(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M), covv(u

(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M)

)
, (1)

where µv(., ., .) and covv(., ., .) are the mean and covariance of a GP’s posterior computed as:

µv(u
(ℓ), ũ

(ℓ)
1:M , ṽ

(ℓ)
1:M) = K(u(ℓ), ũ

(ℓ)
1:M)

[
K(ũ(ℓ)

1:M , ũ
(ℓ)
1:M) + σ2

gpIM×M

]−1
ṽ
(ℓ)
1:M (2)

and
covv(u

(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M) =K(u(ℓ),u(ℓ))−

K(u(ℓ), ũ
(ℓ)
1:M)×

[
K(ũ(ℓ)

1:M , ũ
(ℓ)
1:M) + σ2

gpIM×M

]−1K(ũ(ℓ)
1:M ,u(ℓ)). (3)

As the variables {v(ℓ)m }Mm=1 and v are latent or hidden, we train the model parameters by optimizing a
variational lower-bound. We consider the following variational distributions:

q1(v
(ℓ) |x) = N

(
v(ℓ) ; gℓ(x) , σ

2
g

)
, q2

(
ṽ(ℓ)m

)
= N

(
ṽ(ℓ)m ;φ(ℓ)

m , σ2
φ

)
. (4)

3

In Eq. 4, the function gℓ(.) is the ℓ-th output from the ANN. Note that as the set of hidden variables
{ṽ(ℓ)m }Mm=1 is finite, we have parameterized their variational distribution by a finite set of numbers
{φ(ℓ)

m }Mm=1. However, as the variables x can vary arbitrarily in the feature space, the variable u(ℓ)

varies arbitrarily in the kernel space. Therefore, the set of values v(ℓ) may be infinite. Accordingly,
the variational distribution for v(ℓ) is conditioned on x and is parameterized by the ANN g(.).

2.3 The Derived Evidence Lower-Bound (ELBO)

Due to space limitation, the derivation of the lower-bound is moved to Sec. S1 of the supplementary
material. In this section we only introduce the derived ELBO and discuss how it relates the GP, the
ANN and the training cost of the main module in an intuitive way. The ELBO terms containing the
GP parameters (i.e. the parameters of the kernel function f(.)) is denoted by Lgp. According to Eq.
S9 of the supplementary material Lgp is as follows:

Lgp = −1

2
E∼q

[L∑
ℓ=1

(µv(u
(ℓ), ũ

(ℓ)
1:M , ṽ

(ℓ)
1:M)− gℓ(x))

2 + σ2
g

covv(u(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M)

]
− 1

2
E∼q

[L∑
ℓ=1

log(
covv(u

(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M)

σ2
g

)
]
+

(
const.

)
, (5)

where q(.) is the variational distribution that factorizes to the q1(.) and q2(.) distributions defined
in Eq. 4. In the first term of Eq. 5, the numerator encourages the GP and the ANN to have the
same output. More precisely, for a feature point x we can compute the corresponding point in the
kernel space as u(ℓ) = fℓ(x) and then compute the GP’s posterior mean based on kernel similarities
between u and the inducing points to get the GP’s mean µv . In Eq. 5 the GP’s mean µv is encouraged
to match the ANN’s output gℓ(x). In Eq. 5, because of the denominator of the first term, the ANN-GP
similarity is not encouraged uniformly over the feature-space. Wherever the GP’s uncertainty is
low, the term covv(u

(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M) in the denominator becomes small. Therefore, the GP’s mean

is highly encouraged to match the ANN’s output. On the other hand, in regions where the GP’s
uncertainty is high, the GP-ANN analogy is less encouraged. This formulation is quite intuitive
according to the behaviour of Gaussian processes. Fig. 1b illustrates the posterior of a GP with
radial-basis kernel for a given set of observations. In regions like [3,∞) and (−∞,−4] there are no
nearby observed data. Therefore, in these regions the GP is highly uncertain and the blue uncertainty
margin is thick in such regions. Intuitively, our derived ELBO in Eq. 5 encourages the GP-ANN
analogy only when GP’s uncertainty is low and gives less importance to regions similar to [3,∞)
and (−∞,−4] in Fig. 1b. Note that this formulation makes no difference for the ANN as ANNs are
known to be global approximators. However, this formulation makes a difference when training the
GP, because the GP is not required to match the ANN in regions where there are no similar training
instances. The ELBO terms containing the ANN parameters is denoted by Lann. According to Sec.
S1.2 of the supplementary material, Lann is as follows:

Lann =− 1

2
E∼q

[L∑
ℓ=1

(µv(u
(ℓ), ũ

(ℓ)
1:M , ṽ

(ℓ)
1:M)− gℓ(x))

2

covv(u(ℓ), ũ
(ℓ)
1:M , ṽ

(ℓ)
1:M)

]
+ E∼q

[
log p(Y|y,X)

]
. (6)

In the above objective the first term encourages the ANN to have the same output as the GP. Similar
to the objective of Eq. 5, the denominator of the first term gives more weight to ANN-GP analogy
when GP’s uncertainty is low. In the right-hand-side of Eq. 6, the second term is the likelihood of the
pipeline’s output(s), i.e. Y in Fig. 1a. This term can be, e.g., the cross-entropy loss when Y contains
class scores in a classification problem, or the mean-squared error when Y is the predicted value for a
regression problem, or a combination of those costs in a multi-task setting.

3 Algorithm

We consider a separate Gaussian process for each output head of an ANN. In other words, given
an ANN we have as many GPs as the number of the ANN’s output heads. To explain an ANN, we
find the explainer GPs by optimizing the objective in Eq. 5 w.r.t. to the kernel mappings {fℓ(.)}Lℓ=1.
To do so, we need to have µv which in turn means we need to have all kernel-space representations

4

Algorithm 1 Method Optim_KernMappings

Input: Input instance x and inducing instance x̃, list of matrices U, list of vectors V.
Output: Kernel-space mappings [f1(.), ..., fL(.)].

Initialisation : loss← 0.
1: µ, cov← forward_GP(x, x̃, U, V) //feed x to GPs, "forward_GP" is Alg.S1 in supplementary.
2: µann ← g(x) //feed x to ANN.
3: for ℓ = 1 to L do
4: loss← loss+

(µ[ℓ]−µann[ℓ])
2+σ2

g

cov[ℓ] + log(cov[ℓ]). //Eq.5.
5: end for
6: δ ← ∂ loss

∂ params
(
[f1(.),...,fL(.)]

) .//the gradient of loss.

7: params
(
[f1, ..., fL]

)
← params

(
[f1, ..., fL]

)
− lr × δ //update the parameters.

8: lr ← updated learning rate
9: return [f1(.), ..., fL(.)]

Algorithm 2 Method Explain_ANN

Input: Training dataset ds_train, and the inducing dataset ds_inducing.
Output: Updated kernel-space mappings [f1(.), ..., fL(.)], and the other GP parameters U and V.

Initialisation : U, V ← Init_GPparams(ds_inducing) //Alg.S3 in supplementary.
1: for iter = 1 to max_iter do
2: x← randselect(ds_train).
3: x̃← randselect(ds_inducing)
4: [f1(.), ..., fL(.)] ← Optim_KernMapings(x, x̃,U,V).
5: x̃← randselect(ds_inducing).
6: for ℓ = 1 to L do
7: //update kernel-space representations.
8: U [ℓ][x̃.index]← fℓ(x̃)
9: end for

10: end for
11: return [f1(.), ..., fL(.)], U, V

{ũ(ℓ)
m }Mm=1. However, it is computationally prohibitive to feed thousands of inducing instances to

the kernel mappings as ũ(ℓ)
m = fℓ(x̃m) for m ∈ {1, 2, ...,M} in each gradient-descent iteration.

On the other hand, as the kernel-space mappings {fℓ(.)}Lℓ=1 keep changing during training, we
need to somehow track how the inducing points {ũ(ℓ)

m }Mm=1 change during training. To this end,
we put the kernel-space representations of the inducing points in matrices denoted by U. During
training, these matrices are repeatedly updated by feeding mini-batches of inducing instances to the
kernel-mappings.

Alg. 2 optimizes the objective of Eq. 5 w.r.t. the kernel mappings {fℓ(.)}Lℓ=1. First, a single training
instance x and a single inducing point x̃ are selected (line 2-3). Afterwards, the procedure of Alg. 1
is called to update the kernel mappings (line 4 of Alg. 2). To update the kernel-mappings, the GP
posterior is computed via the matrices U (line 1 of Alg.1). The "forward_GP" procedure (called in
line 1 of Alg. 1) is provided in Alg. S1 of the supplementary, and uses the matrices U to compute
GP’s posterior. Only the rows of U that correspond to the selected inducing point x̃ are computed
using the kernel-mappings, so that the gradient w.r.t. the kernel-mappings can be computed in the
backward pass (lines 5-6 of Alg. S1 in the supplementary). Finally, the matrices U are updated (lines
6-8 of Alg. 2). Due to the lack of space, the routines "forward_GP" and "Init_GPparams" and more
details are moved to Sec. S2 of the supplementary. Of course instead of a single training/inducing
instance, we used a mini-batch of multiple training/inducing instances.

One difficulty of training GPs is the matrix inversion of Eqs.2 and 3, which has O(M3) complexity
using standard matrix inversion methods. To address this issue, we adopted computational techniques
recently used for fast spectral clustering [13]. Let A be an arbitrary M ×D matrix where M >> D.
Moreover, let b be a M -dimensional vector and let σ be a scalar. The computational techniques [13]
allow us to efficiently compute: (AAT + σ2IM×M)−1 b. (Note the similar terms in the right hand
side of Eqs. 2 and 3.) The idea is that AAT is of rank D. Therefore, from linear algebra it follows

5

that (AAT + σ2IM×M)−1 has M −D eigen-values all of which are equal to σ−2. Therefore, in
the space of those eigen-vectors, the transformation on b is simply a scaling by σ−2. The details and
more computational techniques are provided in Sec. S2.1 of the supplementary. These computational
techniques allow us to efficiently compute the GP-posterior for hundreds of thousands of inducing
points in each gradient descent iteration.

A note on the used datasets in Alg. 2: According to our analysis of Sec. S7 in the supplementary
material, "ds_inducing" should be as large as possible so the GP posteriors can be flexible enough
to match the ANNs. Therefore a good practice is to include all training instances (without data
augmentation) in "ds_inducing". By doing so, the following issue arises. An instance from "ds_train"
like x is an augmented version of an inducing instance x̃. Because x and x̃ are close, their
kernel-space representations f(x) and f(x̃) also become close regardless of parameters of f(.).
Consequently, regardless of f(.), GP’s posterior mean will be roughly equal for both x and x̃.
Indeed, in this case Alg. 2 fails to find the kernel mappings {fℓ(.)}Lℓ=1. To avoid this issue, we
sample x in line 2 of Alg. 2 as follows: x1 and x2 are randomly selected from "ds_train", and
α ∼ uniform(−1, 2), and x = αx1 + (1− α)x2. The rest of Alg. 2 after line 2 is run as before.

4 Experiments

We conducted several experiments on four publicly available datasets: MNIST [9], Cifar10 [19],
Kather [15], and DogsWolves [34]. For MNIST [9] and Cifar10 [19] we used the standard split to
training and test sets provided by the datasets. For Kather [15] and DogsWolves [34] we randomly
selected 70% and 80% of instances as our training set. The exact parameter settings for running Alg.
2 are elaborated upon in Sec. S5 of the supplementary. We trained the ANNs as usual rather than
using Eq. 6, because our proposed GPEX should be applicable to ANNs which are trained as usual.

4.1 Measuring Faithfulness of GPs to ANNs

We trained a separate convolutional neural network (CNN) on each dataset to perform the classification
task. For MNIST [9], Cifar10 [19], and Kather [15] we used a ResNet-18 [12] backbone followed
by some fully connected layers. DogsWolves [34] is a relatively small dataset, and very deep
architectures like ResNet [12] overfit to training set. Therefore, we used a convolutional backbone
which is suggested in the dataset website [34]. For all datasets, we set the width (i.e. the number of
neurons) of the second last fully-connected layer to 1024. Because according to theoretical results
on GP-ANN analogy, the second last layer of ANN should be wide. We used an implementation
of ResNet [12] which is publicly available online [2]. We trained the pipelines for 20, 200, 20,
and 20 epochs on MNIST [9], Cifar10 [19], Kather [15], and DogsWolves [34], respectively. For
Cifar10 [19], we used the exact optimizer suggested by [2]. For other datasets we used an Adam
[17] optimizer with a learning-rate of 0.0001. The test accuracies of the models are equal to 99.56%,
95.43%, 96.80%, and 80.50% on MNIST [9], Cifar10 [19], Kather [15], and DogsWolves [34],
respectively. We also applied our proposed GPEX to a state-of-the-art cell-embedding method called
scArches [20]. We ran a tutorial notebook [32] and applied GPEX to the decoder whose job is to
predict expression of some genes given scArches [20] cell embeddings. More details are provided in
our public github repository (repository link is provided in page 1).

We explained each classifier ANN using our proposed GPEX framework (i.e. Alg.2). As discussed
in Sec. 3, given an ANN we have as many kernel-spaces (and as many GPs) as the number of
ANN’s output heads. The exact parameter settings and practical considerations for training the GPs
is elaborated upon in Sec. S5 of the supplementary material. To measure the faithfulness of GPs
to ANNs, we compute the Pearson correlation coefficient for each ANN head and the mean of the
corresponding GP posterior on unseen test instances. The results are provided in Fig. 3. In Fig. 3, the
first five groups of bars (i.e. the groups labeled as Cifar10 (classifier), MNIST (classifier), Kather
(classifier), DogsWolves (classifier), and scArches (classifier)) correspond to applying the proposed
GPEX to the five classifier ANNs trained on the four datasets and scArches embeddings. According
to Fig. 3, our trained GPs almost perfectly match the corresponding ANNs. Only for DogsWovles
[34], as illustrated by the 4-th bar group in Fig. 3, the correlation coefficients are lower compared
to other datasets. We hypothesize that this is because the DogsWolves dataset [34] has very few
images. GP posterior mean can be changed only by moving the inducing points in the kernel-space.

6

(a)

(b)

(c)

(d)

Figure 2: (a,c,d) Sample explanations for MNIST, Cifar10, and DogsWolves. In each row a test
instance is shown in the first column, and the 10 nearest neighbours (in the kernel-space of the GP
that corresponds to the output-head with maximum value at the test instance) is shown in columns
2-11. (b) Evaluating our proposed method, representer point selection [37], and influence functions
[18] in dataset debugging task.

Therefore, when very few inducing points are available GP posterior mean is less flexible [36]. This
is consistent with our parameter analysis in Sec. S7 of supplementary material.

In Fig. 1a we discussed that GPEX is not only able to explain a classifier ANN, but it can explain
any ANN which is a subcomponent of any feed-forward pipeline. To evaluate this ability, we trained
three classifiers with an attention mechanism [22]. Each classifier has two ResNet-18 [12] backbones:
one extracts a volumetric map containing deep features, and the other produces a spatial attention
mask. For each attention backbone, we set the width of the second last layer to 1024, followed by a
linear layer and sigmoid activation. We applied our proposed GPEX (i.e. Alg.2) to each classifier, but
this time the ANN to be explained (i.e. the box called "ANN" in Fig. 1a) is set to be the attention
submodule. Note that each attention backbone produces a spatial attention mask of size h by w.
We think of each attention backbone as an ANN which has h× w output heads. We trained three
classifier pipelines with attention mechanism on Cifar10 [19], MNIST [9], and Kather [15] with
the same training procedure as previous part. In Fig. 3, 6-th, 7-th, and 8-th bar groups show the
correlation coefficients between the attention backbones and the corresponding GPs on unseen test
instances. According to Fig. 3, our proposed GPEX is able find GPs which are faithful to attention
subcomponents of the classifier pipelines. Note that we didn’t include all attention heads, because

7

Figure 3: Faithfulness of GPs to ANNs measured by the Pearson correlation coefficient.

some pixels in attention masks are always off. In Sec. S3 of the supplementary material we have
included more information and insights about the faithfulness of GPs to ANNs.

4.2 Explaining ANNs’ Decisions

In Sec. 4.1 we trained four CNN classifiers on Cifar10 [19], MNIST [9], Kather [15], and DogsWolves
[34], respectively. Afterwards, we applied our proposed explanation method to each CNN classifier.
In this section, we are going to explain the decisions made by the classifiers via the obtained GPs
found by Alg. 2. We explain the decision made for a test instance like xtest as follows. We consider
the GP and the kernel-space that correspond to the ANN’s head with maximum value (i.e. the ANN’s
head that relates to the predicted label). Consequently, among the instances in the inducing dataset,
we find the 10 closest instances to xtest, like {xi1,xi2, ...,xi10}. Intuitively the ANN has labeled
xtest in that way because it has found xtest to be similar to {xi1,xi2, ...,xi10}.
For MNIST digit classification, some test instances and nearest neighbours in training set are shown
in Fig. 2a. In this figure each row corresponds to a test instance. The first column depicts the test
instance itself and columns 2 to 11 depict the 10 nearest neighbours. For example, in Fig. 2a the
image in row3-col1 depicts a test instance xtest and the images in row3, cols2-11 depict the nearest
neighbours {xi1,xi2, ...,xi10}. According to rows 1 and 2 of Fig. 2a, the classifier has labeled the
two images as digit 1 because it has found 1 digits with similar inclinations in the training set (in Fig.
2a in row 1 all digits are vertical but in row 2 all digits are inclined). We see the model has also taken
the inclination into account for the test instances of rows 7, 8, 15, 16, and 17 of Fig. 2a. In Fig. 2a,
according to rows 3, 4, and 5 the test instances are classified as digit 2 because 2 digits with similar
styles are found in the training set. We see the model has also taken the style into account for the test
instances of rows 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, and 17 of Fig. 2a. For instance, the test instance in
row 6 of Fig. 2a is a 4 digit with a short stand and the two nearest neighbours are alike. Or for the test
instances in rows 13, 14, and 15 of Fig. 2a the test instances have incomplete circles in the same way
as their nearest neighbours. More explanations are provided in the supplementary material in Sec. S4.

Fig. 2c illustrates some sample explanations for Cifar10 [19]. Like before, each row corresponds to a
test instance, the first column depicts the test instance itself and columns 2 to 11 depict the 10 nearest
neighbours. In Fig. 2c, the test instances of rows 1, 2, 3, 4, and 5 are captured from horses’ heads
from closeby, and the nearest neighbours are alike. However, in rows 6, 7, 8, 9, 10, and 11 of Fig.
2c the test images are taken from faraway and the found similar training images are also taken from
faraway. Intuitively, as the classifier is not aware of 3D geometry, it finds training images which are
captured from the same distance. In rows 9, 10, and 11 of Fig. 2c, we see that the testing images
contain riders. Similarly, the nearest neighbours also tend to have riders. Therefore, in rows 9, 10,
and 11 of Fig. 2c the model has made use of the riders or other context information to classify the
test instances as horse. More explanations are provided in the supplementary material in Sec. S4.

Besides finding the nearest neighbours, we provide CAM-like [38] explanations as to why xtest and
an instance like xij , 1 ≤ j ≤ 10 are considered similar by the model (according to the procedure
of Sec. S2.2 in the supplementary material). Fig.2d illustrates some sample explanations for
DogsWolves [34] dataset. In row 1 of Fig. 2d, the first column depicts the test instance itself and
columns 2 to 11 depict the 10 nearest neighbours. The second and third rows highlight the pixels

8

that contribute the most to the similarities. The second and third rows highlight the pixels of xtest

and {xi1,xi2, ...,xi10} respectively. According to row 3 of Fig. 2d, the pink object next to the dog’s
leg has contributed the most to the similarities. According to row 2 of Fig. 2d regions like the baby
in column 3, the dog colar or costume in columns 4, 5, and 6, human finger in column 9, and the
background in columns 10 and 11 have contributed the most to their similarity to the test instance.
These are patterns that usually happen for dogs images. Indeed, since the training set has been small
(1600 images), to detect dogs the model is making use of patterns that normally exist in indoor scenes
and do not normally appear in wolves images. We see a similar pattern for the test instance in row 6
of Fig. 2d and also several explanations in Sec.S4 of the supplementary.

4.3 Comparing GPEX to Representer-Point Selection and Influence Functions

In Sec. S6 of the supplementary material we qualitatively compare GPEX explanations to those
of representer point selection [37]. According to the experiments and detailed discussions of Sec.
S6 in the supplementary, the GP’s kernel that we find in this paper is superior due to a technical
point in the formulation of representer point selection [37]. Besides the analysis of Sec. S6, we
compared our proposed GPEX with representer point selection [37] and influence functions [18] in
dataset debugging task. In these experiments we only selected images from Cifar10 [19] that are
labeled as either automobile or horse. To corrupt the labels, we randomly selected 45% of training
instances and changed their labels. Afterwards, we trained a classifier CNN with ResNet18 [12]
backbone with the same training procedure explained in Sec. 4.1. In dataset debugging task, training
instances are shown to a user in some order. After seeing an instance, the user checks the label
of the instance and corrects it if needed. One can use explanation methods to bring the corrupted
labels to the user’s attention more quickly. Given an explanation method, we repeatedly select a test
instance which is misclassified by the model. Afterwards, we show to the user the closest training
instance (of course among the training instances which are not yet shown to the user). We repeat this
process for test instances in turn until all training instances are shown to the user. We compared our
proposed GPEX to representer point selection [37] and influence functions [18] in dataset debugging
task. We used an implementation of influence functions [18] based on LiSSA [4] with 10 steps for
each instance. The implementation is publicly available [1]. For representer point selection [37] we
used the implementation by authors which is publicly available [3]. The result is shown in Fig. 2b.
According to the plot on the left in Fig. 2b, when correcting the dataset by GPEX, the model accuracy
becomes close to 90% after showing about 4000 instances to user. But when using representer point
selection [37] or influence functions [18], this happens when the user has seen about 7000 training
instances. With noisy labels model training becomes unstable. Therefore, in the plot on the left of
Fig. 2b we repeat the training 5 times and we report the standard errors by the lines in top of the bars.
According to the plot on the right of Fig. 2b, after showing a fixed number of training instances to the
user, when using the proposed GPEX more corrupted labels are shown to the user. Indeed, GPEX
brings the corrupted labels to the user’s attention quicker than representer point selection [37] does.
Interestingly, according to the plot in the right hand side of Fig. 2b influence functions [18] is quicker
at spotting incorrect labels, but the instances found by our proposed method are more effective in
increasing the accuracy quicker.

5 Related Work

The first theoretical connection between ANNs and GPs was that under some conditions, a random
single-layer neural network converges to the mean of a Gaussian process [23] as the width of that
single layer goes to infinity. This connection was later proven for ANNs with many layers [8], and for
ANNs trained with gradient descent [14]. The theoretical requirements are usually too restrictive. For
example, [8] requires all intermediate layers to be wide and also requires the dataset to be countable
(so data-augmentations like color-jitter are not allowed). Or [24] requires the ANN to be trained
with MSE loss and requires all intermediate layers to be wide. In this paper we do not presume any
conditions on the ANN and simply distill knowledge from a neural network to some GPs. Of note,
those theoretical conditions may facilitate knowledge distillation and improve the Pearson correlation
coefficient between the ANNs and the GPs obtained by our method.

Scalability is a major issue when training GPs, and including a few inducing points may limit the
flexibility of GP’s posterior [36]. Here we review some previous methods to tackle the computational
challenges of training GPs. SV-DKL [27] derives a lower-bound for training a GP with a deep

9

kernel. In this method, a grid of inducing points are considered in the kernel-space (like the vectors
{(ũ(ℓ)

m , ṽ
(ℓ)
m)}Mm=1 with the notation of this paper). Afterwards, each input instance is firstly mapped to

the kernel-space and the output is computed based on similarities to the grid points in the kernel-space.
Since the GP posterior is computed via the grid points, SV-DKL [27] is scalable. But unfortunately
the number of grid points cannot be increased to above 1000 even for Cifar10 [19] and with a RTX
3090 GPU. Therefore, this may limit the flexiblity of the GP’s posterior [36].

A more recent framework called GPytorch [29] provides GPU acceleration. However, its computa-
tional complexity is quadratic in number of inducing points. Other approaches to improve scalability
of GPs include: considering structured kernel matrices [7], kernel interpolation [35], and imposing
grid-structure on including points [27]. Stack of Gaussian processes are shown to be connected
to ANNs [10][30][24]. By stacking kernels, GP kernels work on intermediate representations and
therefore are not necessarily interpretable to humans. But in our method the GPs’ kernels work
directly on the input-space itself. Knowledge distillation (KD) is closely related to this work. With
the best of our knowledge and according to the authors, [6] is the first work that applies KD to GPs.
But the distinction of our work is that we distill knowledge from ANN to GP, as opposed to the
self-distillation of [6] that distills knowledge from a GP to another GP.

Limitations and Outlook: In this work we used Eq. 5 to distill knowledge from ANN to GP. One may
use Eq. 6 to distill knowledge from GP to ANN in order to, e.g., transfer GP’s good generalization
to the ANN. Our method scales very well, and Alg. 2 runs without memory/computational issues
even on imagenet with more than 1M inducing points (i.e. images) and Resnet-18 [12] when a few
output-heads are selected, but on imagenet we failed to match the GPs to ANN in a 2-3 day runtime.
The issue is that the U matrices have to be updated very often (the update of line 8 of Alg. 2) so that
GPs’ kernels are updated according to an accurate estimate of kernel-space representations. Otherwise
the convergence may not happen especially for millions of inducing points and a small batch-size (as
required for, e.g., CNNs). We used control-variate [25], but one may use more advanced heuristics
[35] to achieve convergence for datasets like imagenet and with a reasonable computation time. In
this paper we analyzed the effect of number of inducing points, the width of the second last layer,
and the number of epochs for which the ANN is trained. One can use the proposed tool to answer
other questions, like, is the GP kernel required to have more parameters than the ANN itself? May it
so happen that a test instance is equally close to hundreds of training instances thereby limiting a
human’s ability to understand ANNs decision? Is the uncertainty provided by the GP correlated to
the understandability of the explanations to humans or to the ANN’s failures?

6 Acknowledgements

The experiments of this paper were enabled in part by the Digital Research Alliance of Canada. This
work was supported in part by the NSERC Discovery Grant.

References
[1] A simple PyTorch implementation of influence functions. https://github.com/alstonlo/

torch-influence. [Online; accessed 19-Oct-2023].

[2] An implementation for ResNet in pytorch. https://github.com/kuangliu/pytorch-cifar. [Online;
accessed 19-Dec-2021].

[3] Implementaiton of represnter point selection. https://github.com/chihkuanyeh/Representer_
Point_Selection. [Online; accessed 19-Oct-2023].

[4] N. Agarwal, B. Bullins, and E. Hazan. Second-order stochastic optimization for machine learning in linear
time. The Journal of Machine Learning Research, 18(1):4148–4187, 2017.

[5] Avanti Shrikumar et al. Learning important features through propagating activation differences. In
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 3145–3153. PMLR, 06–11 Aug 2017.

[6] K. Borup and L. N. Andersen. Self-distillation for gaussian process regression and classification. arXiv
preprint arXiv:2304.02641, 2023.

10

https://github.com/alstonlo/torch-influence
https://github.com/alstonlo/torch-influence
https://github.com/kuangliu/pytorch-cifar
https://github.com/chihkuanyeh/Representer_Point_Selection
https://github.com/chihkuanyeh/Representer_Point_Selection

[7] M. K. Cohen, S. Daulton, and M. A. Osborne. Log-linear-time gaussian processes using binary tree kernels.
In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information Processing
Systems, 2022.

[8] A. G. de G. Matthews, J. Hron, M. Rowland, R. E. Turner, and Z. Ghahramani. Gaussian process behaviour
in wide deep neural networks. In International Conference on Learning Representations, 2018.

[9] L. Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

[10] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep
learning. In international conference on machine learning, pages 1050–1059. PMLR, 2016.

[11] A. Ghorbani, A. Abid, and J. Zou. Interpretation of neural networks is fragile. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):3681–3688, Jul. 2019.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[13] L. He, N. Ray, Y. Guan, and H. Zhang. Fast large-scale spectral clustering via explicit feature mapping.
IEEE Transactions on Cybernetics, 49(3):1058–1071, 2019.

[14] Jaehoon Lee et al. Wide neural networks of any depth evolve as linear models under gradient descent. In
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[15] J. N. Kather, C.-A. Weis, F. Bianconi, S. M. Melchers, L. R. Schad, T. Gaiser, A. Marx, and F. G. Zöllner.
Multi-class texture analysis in colorectal cancer histology. Scientific Reports, 6, 2016.

[16] A. Khakzar, P. Khorsandi, R. Nobahari, and N. Navab. Do explanations explain? model knows best. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
10244–10253, June 2022.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

[18] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1885–1894. PMLR, 06–11 Aug 2017.

[19] A. Krizhevsky. Learning multiple layers of features from tiny images. pages 32–33, 2009.

[20] M. Lotfollahi, M. Naghipourfar, M. D. Luecken, M. Khajavi, M. Büttner, M. Wagenstetter, Ž. Avsec,
A. Gayoso, N. Yosef, M. Interlandi, et al. Mapping single-cell data to reference atlases by transfer learning.
Nature Biotechnology, pages 1–10, 2021.

[21] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In Advances in Neural
Information Processing Systems 30, pages 4765–4774. Curran Associates, Inc., 2017.

[22] Meng-Hao Guo et al. Attention mechanisms in computer vision: A survey. CoRR, abs/2111.07624, 2021.

[23] R. Neal. Bayesian Learning for Neural Networks. Lecture Notes in Statistics. Springer New York, 2012.

[24] R. Novak, L. Xiao, J. Hron, J. Lee, A. Alemi, J. Sohl-dickstein, and S. Schoenholz. Neural tangents: Fast
and easy infinite neural networks in python. 2020.

[25] J. Paisley, D. Blei, and M. Jordan. Variational bayesian inference with stochastic search. arXiv preprint
arXiv:1206.6430, 2012.

[26] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning (Adaptive Computation
and Machine Learning). The MIT Press, 2005.

[27] A. Wilson et al. Stochastic variational deep kernel learning. In Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016.

[28] D. Slack et al. Fooling lime and shap: Adversarial attacks on post hoc explanation methods. In Proceedings
of the AAAI/ACM Conference on AI, Ethics, and Society, AIES ’20, page 180–186, New York, NY, USA,
2020. Association for Computing Machinery.

[29] J. Gardner et al. Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration.
Advances in Neural Information Processing Systems, 2018-December:7576–7586, 2018.

11

[30] V. Dutordoir et al. Deep neural networks as point estimates for deep gaussian processes. Advances in
Neural Information Processing Systems, 34:9443–9455, 2021.

[31] M. T. Ribeiro, S. Singh, and C. Guestrin. "why should I trust you?": Explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 1135–1144, 2016.

[32] scArches CVAE notebook. https://docs.scarches.org/en/latest/expimap_surgery_
pipeline_basic.html.

[33] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 3319–3328. PMLR, 06–11 Aug 2017.

[34] H. Vutukuri. Dogs vs Wolves Classification of Dogs and Wolves. https://www.kaggle.com/
harishvutukuri/dogs-vs-wolves, 2019. [Online; accessed 19-Dec-2021].

[35] A. Wilson and H. Nickisch. Kernel interpolation for scalable structured gaussian processes (kiss-gp). In
International conference on machine learning, pages 1775–1784. PMLR, 2015.

[36] Y. Bengio’s post on gp vs ann https://qr.ae/pvqZn7.

[37] C.-K. Yeh, J. Kim, I. E.-H. Yen, and P. K. Ravikumar. Representer point selection for explaining deep
neural networks. Advances in neural information processing systems, 31, 2018.

[38] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discriminative
localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016.

12

https://docs.scarches.org/en/latest/expimap_surgery_pipeline_basic.html
https://docs.scarches.org/en/latest/expimap_surgery_pipeline_basic.html
https://www.kaggle.com/harishvutukuri/dogs-vs-wolves
https://www.kaggle.com/harishvutukuri/dogs-vs-wolves
https://qr.ae/pvqZn7

	Introduction
	Proposed Method
	Notation
	The Proposed Framework
	The Derived Evidence Lower-Bound (ELBO)

	Algorithm
	Experiments
	Measuring Faithfulness of GPs to ANNs
	Explaining ANNs' Decisions
	Comparing GPEX to Representer-Point Selection and Influence Functions

	Related Work
	Acknowledgements

