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Abstract

Ensuring alignment with human preferences is001
a critical and challenging aspect of large lan-002
guage models (LLMs). Currently, the most003
widely adopted alignment methods, such as004
those based on Direct Preference Optimization005
(DPO), leverage pairwise preference data for006
training and have demonstrated promising re-007
sults. However, these methods face limitations,008
as they cannot fully exploit the rich information009
inherent in preference data, such as intermedi-010
ate quality levels between chosen and rejected011
samples. Motivated by this insight, we propose012
Synthetic Preference Interpolation Alignment013
(SPIA), a novel alignment algorithm that in-014
troduces interpolated synthetic preferences to015
better capture the nuances between samples of016
different quality levels. By constructing syn-017
thetic preference data that reflects intermedi-018
ate quality with pair-wise preference data, our019
method effectively bridges the gap between bi-020
nary pairwise comparisons and richer quality021
representation. We validate the effectiveness of022
SPIA through extensive experiments on both023
annotated preference data and self-play pref-024
erence data benchmarks, achieving substantial025
improvements in alignment performance. Our026
results demonstrate that SPIA not only outper-027
forms existing methods but also provides valu-028
able insights into harnessing preference data029
for stronger human-aligned LLMs.030

1 Introduction031

Over the past two years, large language models032

(LLMs) have demonstrated remarkable advance-033

ments across diverse NLP tasks, including mathe-034

matical problem-solving, summarization, reading035

comprehension, and open-ended question answer-036

ing. Despite these successes, aligning the behavior037

of LLMs with human expectations remains a criti-038

cal challenge. Alignment involves ensuring factual039

correctness, minimizing harmful biases, and en-040

hancing capabilities such as mathematical reason-041

ing. To address these issues, researchers have pro- 042

posed various alignment training methods aimed at 043

improving LLM reliability and usability. 044

Among these methods, Reinforcement Learn- 045

ing from Human Feedback (RLHF) (Ouyang et al., 046

2022) demonstrated strong alignment performance. 047

However, it requires training a reward model from 048

human-annotated preference data and subsequently 049

fine-tuning the language model with Proximal Pol- 050

icy Optimization (PPO) (Schulman et al., 2017) to 051

maximize the reward, making RLHF less accessi- 052

ble for many practitioners due to the complexity of 053

training. 054

To simplify alignment training, recent research 055

has focused on developing direct and efficient al- 056

ternatives to RLHF. Among these, Direct Prefer- 057

ence Optimization (DPO)(Rafailov et al., 2024) has 058

gained significant attention. DPO eliminates the 059

need for explicit reward models or reinforcement 060

learning by directly fine-tuning the LLM on hu- 061

man preference pairs. Despite its simplicity, DPO 062

retains strong alignment performance and has in- 063

spired subsequent studies aimed at improving its 064

optimization framework. For example, Identity 065

Preference Optimization (IPO) (Azar et al., 2023) 066

addresses overfitting issues in DPO through a novel 067

identity-based loss function. Similarly, ORPO 068

(Hong et al., 2024) and SimPO (Meng et al., 2024) 069

further simplify the DPO workflow by removing 070

dependence on reference models. 071

While these improvements primarily focus on 072

optimization techniques, relatively little attention 073

has been given to the training data itself. Given 074

the high cost of data annotation, maximizing the 075

utilization of existing preference data is critical for 076

advancing alignment methods. However, existing 077

pairwise preference data, which only captures bi- 078

nary relationships between "chosen" and "rejected" 079

samples, leaves much of its potential information 080

unexploited. In particular, pairwise data often ne- 081

glects the nuanced quality continuum that may ex- 082
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Stage I:Preference Interpolation Synthesis Stage II:Triplet-wise Preference Optimization
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Triplet Preference Optimization

yw ym yl

yl
When facing challenges, stay positive and 
don't get too depressed. Try to look at the 
bright side of things and don't think too much. 
Staying in a good mood and talking to others 
more can make you more relaxed. As a 
language model, this is all the help I can 
provide.

yl[0:k]
When facing challenges, stay positive and don't 
get too depressed. Try to look at the bright side 
of things and don't think too much. Staying in a 
good mood and talking to others more 

yw
It is crucial to maintain a positive attitude 
when facing challenges in life. First, learn to 
accept that challenges are an inevitable part 
and they are opportunities for growth. Second, 
maintaining an optimistic attitude can help us 
find solutions to problems instead of getting 
stuck in the negative emotions of difficult 
situations. In addition, cultivating self-care ...

ym
When facing challenges, stay positive and don't get too depressed. Try to look at the bright side 
of things and don't think too much. Staying in a good mood and talking to others more, staying in 
touch with family and friends, sharing your feelings, and facing difficulties together is crucial. 
Learning to accept challenges is an inevitable lesson in life and an opportunity for ...

≻

yw
It is crucial to [MASK] a positive attitude when 
facing challenges in life. First, learn to [MASK] 
that challenges are an [MASK] part and they 
are opportunities for growth…
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Final LM

x
Please write a short essay explaining how to maintain a 
positive attitude, especially when facing challenges.

Figure 1: Model Architecture.

Figure 2: SPIA consists with two stages: Preference Interpolation Synthesis and Triplet-wise Preference Optimiza-
tion. In the first stage, we truncate the rejected response yl and then the LM generates the continual part of truncated
yl,prompted with corresponding instruction x and corrupted chosen response ỹw. In the second stage, denoting the
synthetic response as ym, we train the LM pθ with preference triplet (yw,ym,yl). using a triplet-wise preference
loss function.

ist between two samples. Recent work, such as083

LiPO (Liu et al., 2024), has shown that training084

on list-wise preferences can outperform pairwise085

preference training. However, collecting list-wise086

preference data, whether through manual annota-087

tion or GPT-4-based methods (OpenAI et al., 2024),088

remains resource-intensive. Thus, a cost-effective089

strategy to obtain list-wise preferences from exist-090

ing pairwise data is an open research challenge.091

In this paper, we propose a novel approach092

called Synthetic Preference Interpolation Align-093

ment (SPIA) to address these limitations. Our094

method introduces a data synthesis phase that gen-095

erates interpolated preference data from pairwise096

preference data, capturing intermediate quality lev-097

els between chosen and rejected samples. SPIA098

then employs a triplet preference training paradigm,099

leveraging these synthesized preferences to im-100

prove alignment performance. We demonstrate the101

effectiveness of our proposed approach through102

evaluations on widely used LLM benchmarks,103

downstream tasks, and reward distributions. Specif-104

ically, we fine-tune Phi-3.5-mini-instruct (Abdin105

et al., 2024) on Ultrachat200k (Ding et al., 2023)106

and Ultrafeedback (Cui et al., 2024) datasets, com-107

paring the performance of our models against other108

preference training methods. Furthermore, we per-109

form an ablation study using alternative data syn-110

thesis techniques and conduct a detailed evaluation 111

of our proposed synthesis method. Our contribu- 112

tion can be summarized as follows: 113

• We point out that pair-wise preference data 114

has not been fully utilized in alignment train- 115

ing. Therefore, we propose a novel method to 116

synthesize preference interpolation data. 117

• We further demonstrate that when the quality 118

of the synthesized data is adequate, optimiz- 119

ing LLMs with triplet preferences can achieve 120

better performance. 121

• Our proposed novel training pipeline (SPIA) 122

can improve model performance more con- 123

sistently on both self-play and annotation- 124

available alignment setting compared to other 125

methods, without incurring additional annota- 126

tion costs. 127

2 Related work 128

2.1 Data Synthesis by LLM 129

Data synthesis plays a pivotal role in the field of 130

machine learning. With the advancement of large 131

language models (LLMs), the utilization of LLMs 132

for data synthesis has become increasingly promis- 133

ing. Numerous researchers employ data synthe- 134

sized with various methods by LLM to fine-tune 135
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LLMs:(Long et al., 2024). In the field of LLM136

alignment, SPIN (Chen et al., 2024) has demon-137

strated effective results by utilizing language mod-138

els that have been supervised fine-tuned to generate139

responses that serve as rejected samples for pref-140

erence training. However, using LLMs for data141

synthesis is not without its challenges. One of the142

key issues lies in ensuring the quality and diversity143

of the generated data. While LLMs can produce144

coherent and contextually relevant text, they may145

also introduce biases, repetition, or fail to generate146

sufficiently diverse samples.147

2.2 LLM Self-refinement148

Recent studies have indicated that large language149

models (LLMs) possess the potential for self-150

improvement in their responses. The process of151

self-refine (Madaan et al., 2023) involves using152

the LLM to generate feedback that can be used to153

enhance the results it produced previously.154

Self-refinement has the potential to reduce the155

reliance on external supervision, thus improving156

model performance with minimal human inter-157

vention. However, some researchers, for exam-158

ple,(Huang et al., 2024) have suggested that LLMS159

struggle to self-correct their responses without ex-160

ternal feedback, which means language models161

with insufficient capabilities may generate worse162

answers when attempting self-refinement.163

2.3 RLHF164

Reinforcement Learning from Human Feedback165

(RLHF) (Ouyang et al., 2022) is a method designed166

to align large language models with human prefer-167

ences and values. The traditional RLHF applies the168

Bradley-Terry model and typically involves three169

key stages: supervised fine-tuning, reward model170

training, and RL-based optimization. In the RL171

stage, Proximal Policy Optimization (PPO) (Schul-172

man et al., 2017) is a commonly employed algo-173

rithm to train the LLM to maximize the score of174

the reward model for the generated response.175

3 Preliminaries176

We consider a Large Language Model (LLM) pa-177

rameterized by θ and denoted as pθ, which accepts178

a sequence x = [x1, . . . , xn], commonly termed179

as the prompt, and then generate a corresponding180

response y = [y1, . . . , ym]. Hence, the response181

y is construed as a sample drawn from the condi-182

tional probability distribution pθ(·|x). The condi-183

tional probability distribution pθ(y|x) can be de- 184

composed as follows: 185

pθ(y|x) =
m∏
j=1

pθ(yj |x,y<j), 186

Subsequently, we review supervised fine-tuning 187

(SFT). SFT is the primary training method to adapt 188

a pre-trained LLM for downstream tasks, utilizing a 189

relatively smaller dataset of labeled examples com- 190

pared to the data used in pre-training stage. In this 191

paper, we focus on the task of instruction-tuning 192

where the prompt-answer pairs denoted as (x,y), 193

are drawn from a specified SFT dataset D. Thus 194

the training objective of SFT under the instruction 195

tuning setting can be formulated as: 196

max
pθ

E(x,y)∼D

[
log pθ(y | x)

]
197

Then we review the setting and method of Direct 198

Preference Optimization (DPO) which optimizes 199

a LLM with pair-wise preference data. Consider a 200

tuple (x,yw,yl), where x is prompt while yw and 201

yl are chosen response and rejcted response respec- 202

tively. Formally, this preference can be denoted as 203

yw ≻ yl | x. These preferences are assumed to 204

be generated by an underlying latent reward model 205

r∗(x,y). The Bradley-Terry model (Bradley and 206

Terry, 1952) specifically defines the human prefer- 207

ence distribution p∗ as follows: 208

p∗(y1 ≻ y2 | x) = exp(r∗(x,y1))
exp(r∗(x,y1))+exp(r∗(x,y2))

. 209

Given a preference dataset D sampled from p∗ 210

which contains N preference pairs (x,yw,yl), 211

DPO considers the same RL optimization goals 212

as other human preference alignment algorithms 213

(such as RLHF): 214

maxpθ Ex∼D,y∼πθ(y|x) [rϕ(x, y)]− βDKL [pθ(y | x) ∥ pref(y | x)] 215

where β is a parameter controlling the deviation 216

from the reference model pref. Instead of training 217

a reward model, DPO reparameterizes the reward 218

function and optimize the RL objective by: 219

maxpθ E(x,y)∼D

[
log σ

(
β log pθ(yw|x)

pθref (yw|x) − β log pθ(yl|x)
pθref (yl|x)

)]
220

4 Method 221

4.1 Overview 222

Our proposed SPIA begins with a pair-wise pref- 223

erence dataset D which contains preference pair 224
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p∗(yw ≻ ym ≻ yl | x) =
exp (r∗(x,yw))∑

y∈{yw,ym,yl} exp (r
∗(x,y))

· exp (r∗(x,ym))∑
y∈{ym,yl} exp (r

∗(x,y))
(1)

max
pθ

E(x,y)∼Dsyn,y′∼pθ(·|x)

[
log p∗(yw ≻ ym ≻ yl | x)

]
(2)

max
pθ

E(x,yw,ym,yl)∼Dsyn
log

[
exp (rθ(x,yw))∑

y∈{yw,ym,yl} exp (rθ(x,y))
· exp (rθ(x,ym))∑

y∈{ym,yl} exp (rθ(x,y))

]
(3)

(yw,yl) and a language model pθ trained with SFT.225

SPIA consists with two stages: Preference Interpo-226

lation Synthesis and Triplet-wise Preference Opti-227

mization. In the first stage, we truncate the rejected228

response yl and then the LM generates the contin-229

ual part of truncated yl,prompted with correspond-230

ing instruction x and corrupted chosen response231

ỹw. In the second stage, denoting the synthetic re-232

sponse as ym, we train the LM pθ with preference233

triplet (yw,ym,yl). Next, we will elaborate on the234

specific process of each of the two stages.235

4.2 Preference Interpolation Synthesis (PIS)236

To synthesize a sample ym that satisfying prefer-237

ence ranking yw ≻ ym ≻ yl,which means that238

the response have the quality between chosen and239

rejected sample, we proposed a novel LM-based240

data synthesis approach. Specifically, we truncate241

yl, retaining only the first k tokens. Then, using the242

corresponding x corrupted as a prompt, we prompt243

the LLM to continue writing based on the truncated244

, thereby generating a preference-interpolated sam-245

ple that meets the required criteria. The whole246

process can be formulated as:247

ym = yl[0 : k]⊕ y′, where y′ ∼ pθ(·|x, ỹw,yl[0 : k])248

In this formula, we choose different k for sam-249

ples of various length. Formally, k is linearly deter-250

mined by the token length of yl, which is α|yl|. To251

understand this synthesis process, we illustrates the252

motivation of three main concepts of this method.253

Firstly, we use a part of yl as starter sequence of254

ym to ensure that the quality of the generated sam-255

ple does not exceed that of the chosen response yw.256

This is because, during the generation process of a257

language model, the initial tokens often set the gen-258

eral direction for the entire output. Secondly, we259

use the chosen sample as a reference to guide the260

model, in order to generate a better response than 261

yl with the information of yw. Thirdly, the chosen 262

sample yw is corrupted to ỹw, This is to prevent 263

ym from replicating yw word-by-word during gen- 264

eration, thereby enhancing sample diversity and 265

facilitating the language model’s state exploration 266

in training process. In the Evaluation Section, we 267

conduct analysis on the synthetic ym. 268

4.3 Triplet-wise Preference Optimization 269

With the synthetic interpolated preference dataset 270

prepared, we use these preference triplets instead of 271

pairs to conduct alignment training on the model. 272

Formally, denoting the triplet dataset we obtain 273

by preference interpolation synthesis process de- 274

scribed in last sub-section as Dsyn, we have a pref- 275

erence triplet (yw,ym,yl) for each prompt x ∈ D, 276

which can be formulated as yw ≻ ym ≻ yl | x. 277

Under the Plackett-Luce model (Debreu, 1960), we 278

have Eq.1. And our optimization objective is de- 279

fined as Eq.2. According to the proof of general 280

form DPO proposed by (Rafailov et al., 2024), we 281

can solve this optimization problem by Eq.3, where 282

rθ(x,y) = β log pθ(y|x)
pref (y|x) is the reward implicitly 283

defined by the policy LLM pθ and reference LLM 284

pref . 285

To illustrate the training process more clearly, 286

we also provide pseudocode in Algorithm 1. 287

5 Experiments 288

5.1 Experiment Setup 289

5.1.1 Model 290

The model we chosen for our experiment is Phi- 291

3.5-mini-instruct (Abdin et al., 2024), which is 292

a lightweight, state-of-the-art open-source model. 293

Phi-3.5-mini-instruct demonstrates performance 294

comparable to or even surpassing larger-scale mod- 295
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Model
AlpacaEval MT-Bench LM-Eval-Harness

AverageWin LC-Win Turn-1 Turn-2 Final TruthfulQA GSM8K ARC

Phi3.5-SFT 50.00 50.00 7.26 5.63 6.44 44.19 74.83 58.53 57.86

Ultrachat-SPIN-Phi
SPIN 71.06 62.7 6.98 6.00 6.49 46.27 72.40 64.42 64.27
ORPO 64.24 63.72 7.25 6.15 6.70 46.39 75.82 61.86 64.11
IPO 65.04 62.05 7.50 6.28 6.89 46.88 74.37 60.92 64.45
SPIA 74.63 68.67 7.41 6.11 6.76 47.37 77.10 64.33 67.39

Ultrafeedback
DPO 77.83 73.33 7.57 6.01 6.79 46.63 79.08 64.16 68.92
ORPO 64.82 57.83 7.35 5.80 6.58 41.62 70.74 55.55 61.03
IPO 78.94 70.87 7.73 6.63 7.16 45.17 78.24 60.23 69.24
SimPO 71.74 61.34 7.23 6.22 6.73 45.90 79.91 60.67 65.33
SPIA 79.63 74.43 7.91 6.28 7.09 46.63 78.92 62.46 70.20

Table 1: Performance of different methods on three LLM benchmarks. For AlpacaEval, we use GPT-4o as judge
and Phi3.5-SFT as reference LLM. So the win-rate of Phi3.5-SFT on itself is set to 50.00. For MT-Bench, we
also use GPT-4o as judge. Our model has the best or second best score in each indicator, and has the best overall
performance

Algorithm 1 SPIA Pipeline

Require: Preference dataset D = {(x,yw,yl)},
LLM pθ, Preference interpolation dataset
Dsyn = {}
for (x,yw,yl) in D do

Truncate yl to attain yl[0 : k]
Corrupt yw to attain ỹw

Initialize ym[0 : k] = yl[0 : k]
Generate ym[k :] ∼ pθ(·|x, ỹw,yl[0 : k])
ym = mathbfym[0 : k]⊕mathbfym[k :]
Dsyn += (x,yw,ym,yl)

end for
Update θ = argminθ

∑
Dsyn

LSPIA(x,yw,ym,yl)

els, such as Mistral-7B (Jiang et al., 2023) and296

Llama-3.1-8B (Grattafiori et al., 2024), across a297

wide range of evaluation tasks.298

5.1.2 Dataset299

The dataset used for supervised-finetune is Ultra-300

chat200k. It comprises approximately 200,000301

high-quality, multi-turn dialogues generated by302

ChatGPT, covering a diverse array of topics. For303

preference training we use two dataset. Ultrafeed-304

back and Ultrachat-SPIN-Phi. Ultrafeedback is305

a widely used preference dataset for LLM align-306

ment, which contains 64k preference pair annotated307

by GPT-4. We use a subset of 36k for our train-308

ing. Ultrachat-SPIN-Phi is a synthetic self-play309

dataset created by us using the SPIN (Chen et al.,310

2024) methodology: SFT responses are designated311

as the chosen responses, while model-generated 312

responses (by Phi-3.5-SFT) serve as the rejected 313

responses. A total of 36k data samples were col- 314

lected. We chosen these two datasets thus we can 315

demostrate the efficiency of our method on both 316

annotation-available and annotation-free setting in 317

LLM alignment. 318

5.1.3 Competing Methods 319

In order to analyze the effectiveness of our method, 320

we choose several widely used approaches in the 321

field of alignment including: DPO, SPIN, SimPO, 322

ORPO and IPO. 323

5.1.4 Experiment Details 324

To start with, we finetune Phi-3.5-mini-instruct 325

on the Ultrachat dataset to obtain a SFT version 326

(Phi-3.5-SFT) in our alignment experiment. For 327

SFT stage, we only use 36k samples to prevent 328

from model forgetting. After this, we use Phi- 329

3.5-SFT to synthesize response by Preference In- 330

terpolation Synthesis mentioned in last section to. 331

We generate 36k preference interpolation data for 332

Ultrachat-SPIN-Phi and Ultrafeedback respectively. 333

Then we train our model on the synthetic data with 334

triplet-wise preference loss while train other base- 335

line model on Ultrachat-SPIN-Phi or Ultrafeed- 336

back. Besides, we found that SimPO is not suitable 337

for self-play setting as the model collapse during 338

training on Ultrachat-SPIN-Phi. So we do not in- 339

clude SimPO in the Ultrachat-SPIN-Phi part of our 340

reported results in Table 1 341
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5.1.5 Evaluation Metric342

We evaluate the effectiveness of our approach from343

multiple dimensions, covering general conversa-344

tional ability, factual accuracy, and reasoning skills.345

The following is a brief introduction to the evalua-346

tion benchmarks we use.347

• AlpacaEval In AlpacaEval (Dubois et al.,348

2024) benchmark, a model generates re-349

sponses to 805 questions covering a wide350

range of topics. The responses are evaluated351

by LLM, and the final metric is determined352

by the pairwise win rate and length-controlled353

win rate over a baseline model.354

• MT-Bench MT-Bench (Zheng et al., 2023) is355

a multi-turn evaluation benchmark compris-356

ing 160 questions across eight knowledge do-357

mains. Each response is rated by a LLM an-358

notator on a scale from 1 to 10, with the final359

score being the average of the two responses.360

• LM-Evaluation-Harness LM-Evaluation-361

Harness (Gao et al., 2024) provides a unified362

framework to test generative language models363

on a large number of different evaluation tasks.364

We chose three widely used benchmarks:365

TruthfulQA (Lin et al., 2022) (focusing on366

truthfulness), GSM8k (Cobbe et al., 2021)367

(focusing on mathematical reasoning skills)368

and ARC (Clark et al., 2018) (focusing on369

general scientific reasoning ability).370

5.2 Results371

Table 1 presents the performance of all competing372

methods on our selected benchmarks. Additionally,373

We calculated the average score to compare the374

overall performance of each method. The average375

score is calculated by:376

(LC-Win+Win)
2 + 10 ∗ Final + (TruthfulQA+GSM8k+ARC)

3

3
377

We observe that all training methods demonstrate378

significant improvements over the SFT model379

across various benchmarks. Among them, SPIA380

achieves the highest average score while attain-381

ing either the best or second-best performance382

across various benchmark metrics, indicating the383

strong effectiveness of our model. As for other384

reported methods, IPO and DPO are most compet-385

itive. What’s more, we found that our method ex-386

hibits more advantage over other approaches in the387

Model Rewardavg

Phi-3.5-SFT -4.28

Ultrachat-SPIN-Phi
SPIN -3.63
SPIA -2.70

Ultrafeedback
DPO -2.00
SPIA -1.89

Table 2: Comparison of Average Reward.

self-play setting. Specifically, with data annotated 388

by human/GPT-4 (Ultrafeedback), our method out- 389

performs DPO by 1.82. In the self-play setting, 390

it surpasses SPIN (which employs the same loss 391

function as DPO) by 3.12. 392

6 Further Evaluation 393

In this section, we conduct a more in-depth analysis 394

of our approach, including a comparison of reward 395

distributions, an evaluation of synthesized data and 396

ablation studies focusing on training data. 397

6.1 Reward Distribution 398

In addition to evaluating on benchmarks, we vi- 399

sualize and compare the reward distributions of 400

responses generated on the test set of the Ultra- 401

chat dataset. The reward is generated by Skywork- 402

Reward-Llama-3.1-8B-v0.2, which is a widely 403

used scoring-based reward model and we select 404

1000 samples for both settings. The average re- 405

ward score is reported in Table 2. For clarity and 406

simplicity, we focus on visualizing the reward logit 407

of SFT, SPIN(DPO), and SPIA. In the Figure 4, we 408

can find that, in both settings, our model achieves 409

a higher average reward. Specifically, in the self- 410

play alignment setting (Ultrachat-SPIN-Phi), the 411

reward distribution of our model exhibits a signif- 412

icantly greater positive shift compared to SPIN. 413

In the annotation-available setting (Ultrafeedback), 414

while the density peak of our model is close to that 415

of DPO, our model demonstrates a lower density in 416

the low-reward region and a higher density in the 417

high-reward region. 418

6.2 Ablations 419

6.2.1 Ablation on Training Data 420

To validate the effectiveness of data synthesis 421

method, we additionally selected two alternative 422
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(a) Ultrachat-SPIN-Phi (b) Ultrafeedback

Figure 3: Reward distribution comparison. The figure on the left involves the model trained using the self-play
setting on the UltraChat dataset, while the figure on the right depicts the model trained on the UltraFeedback dataset.
Our model achieves higher average rewards. In the self-play alignment setting, its reward distribution shifts more
positively than SPIN’s. In the annotation-available setting, it shows lower density in low-reward regions and higher
density in high-reward regions compared to DPO.

Data Category Scoreavg Qualification% Edit Distance

Ultrachat-SPIN-Phi
Win 8.35 / /
Lose 7.76 / /
Middleself-refine 7.74 0.18 129.56
Middleparaphrase 8.10 0.25 153.73
MiddlePIS 7.95 0.45 146.39

Ultrafeedback
Win 7.88 / /
Lose 6.49 / /
Middleself-refine 6.51 0.20 121.34
Middleparaphrase 7.62 0.23 140.72
MiddlePIS 6.77 0.42 130.01

Table 3: Evaluation of Synthesized Data. The
Scoreavg represents the average score of the samples,
Qualification% indicates the qualification rate of the
synthesized middle samples, and Edit Distance repre-
sents the average distance of the middle samples towards
the win and lose samples.

data synthesis methods for self-play setting: para-423

phrasing and self-refinement. For paraphrasing, we424

prompt the model with x and yw and let the model425

to generate a paraphrase. For self-refinement, we426

prompt the model with x and yl and let the model427

to refine it’s original response. In addition, since428

generating rejected responses at a relatively low429

cost in self-play setting, to demonstrate the supe-430

riority of our method, we also include a compara-431

tive setting where SPIN is trained with double the432

amount of training data by sampling two responses433

for one prompt. Keeping all other hyperparameters434

consistent, we conducted experiments using these435

training data and evaluate models on AlpacaEval436

and MT-Bench. From the results shown in Table437

4, we can see that our synthesis method produced438

the best results: the other three settings (Exp.1, 439

Exp.2 and Exp.3) have noticeable declines on MT- 440

Bench and AlpacaEval, and the model performance 441

is generally inferior to our method (Exp.6). 442

6.2.2 Ablation on Training Loss 443

We also conducted ablation experiments on the loss 444

function, where each sample from the synthesized 445

interpolation dataset was split into two: 446

(x,yw,ym,yl) → {(x,yw,ym), (x,ym,yl)} 447

It’s evident that {(yw ≻ ym), (ym ≻ yl)} is a 448

canonical cover of the partial order (yw ≻ ym ≻ 449

yl). So the training data generated by splitting 450

is equivalent in preference with original dataset. 451

Then training was performed using pair-wise loss 452

(i.e., DPO loss). As shown in Table 4, we can 453

observe that under consistent training data (Exp.4 454

vs Exp.5, Exp.6 vs Exp.7), optimizing with the 455

triplet loss yields better performance. We hy- 456

pothesize that this is due to the triplet loss di- 457

rectly incorporating three preference relationships 458

(yw ≻ ym,ym ≻ yl,yw ≻ yl), which fully lever- 459

ages the data. Furthermore, according to the align- 460

ment tax theory (Lin et al., 2024), the model’s 461

performance may be impacted as the number of 462

training steps increases due to larger training set. 463

6.3 Evaluation of Synthesized Data 464

We analyzed the synthesized data from both 465

distribution-level and instance-level perspectives. 466

Specifically, we considered both the self-play and 467

annotation-available settings. And three methods 468

(paraphrase, self-refine, PIS) are considered for 469
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Experiment Training Data Loss Function AlpacaEvalwin MT-Benchfinal

Exp.1 Ultrachat-SPIN-Phiparaphrase SPIA 70.68 6.29
Exp.2 Ultrachat-SPIN-Phiself-refine SPIA 72.17 6.60
Exp.3 Ultrachat-SPIN-Phidouble-response SPIN 70.06 6.03

Exp.4 Ultrachat-SPIN-Phisplit SPIN 71.93 6.50
Exp.5 Ultrafeedbacksplit DPO 78.26 6.86

Exp.6 Ultrachat-SPIN-Phisyn SPIA 74.63 6.76
Exp.7 Ultrafeedbacksyn SPIA 79.63 7.09

Table 4: Ablation Experiments. Exp.1, Exp.2 and Exp.3 are experiments conducted with other preference synthesis
methods. Exp.4 and Exp.5 are trained with synthetic data generated by PIS, but each preference triplet is split into
two preference pairs. Exp.6 and Exp.7 are models trained with intact SPIA pipeline.

(a) Ultrachat-SPIN-Phi (b) Ultrafeedback

Figure 4: Score distribution comparison of different data category. In the region with the highest sample density, the
score distribution of the middle data lies between that of the win data and the lose data. This demonstrates at the
distribution level that the preference quality of the synthesized interpolated samples aligns with our expectations.

each dataset. For each setting, 500 samples were470

randomly selected from the synthesized dataset.471

Using a predefined scoring rule, GPT-4o was em-472

ployed to evaluate each prompt-response pair. We473

use GPT-4 because we noticed that if two sam-474

ples are similar, Skywork-Reward-Llama-3.1-8B-475

v0.2 is not capable enough to discriminate effec-476

tively. First, we plotted the density distribution of477

the scores and subsequently calculated the mean478

score for each distribution. Then, to validate at the479

instance level whether the interpolated samples ex-480

hibit a preference quality that lies between the cho-481

sen and rejected ones, given a significant preference482

difference between yw and yl, we select samples483

from the dataset where score(yw) > score(yl) + ϵ.484

We then calculate the ratio of samples that satisfy485

score(yw) > score(ym) > score(yl) under mar-486

gin constant ϵ = 1, which is referred to as the487

Qualification% in the table 3. In addition, we used488

the Levenshtein algorithm to compute the average489

edit distance between the synthetic samples and490

both the chosen and rejected samples to character-491

ize the similarity between the synthetic samples492

and the original training samples. Under the condi- 493

tion of maintaining data quality, lower similarity is 494

more advantageous for the model’s exploration in 495

the sequence space. 496

7 Conclusion 497

In this paper we point out that existing alignment 498

methods do not fully leverage pairwise preference 499

data. We propose a preference interpolation data 500

synthesis method and optimize the model using a 501

triplet preference loss. Based on extensive exper- 502

imental results, the preference interpolation data 503

synthesis method demonstrates good utility, and 504

training with triplet preference loss yields better 505

performance. 506

8 Limitations 507

The preference interpolation synthesis method we 508

proposed does lead to an improvement in training 509

performance; however, the quality of the interpo- 510

lated data still leaves room for further enhancement 511

according to the our evaluation. Additionally, due 512

8



to computational resource limitations, we were un-513

able to train on larger models, such as the 13B and514

70B models.515
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9 Appendix 938

9.1 Training Details 939

Our models are trained on 4 x A100-40G. For SPIA 940

model trained on Ultrachat-SPIN-Phisyn, we have 941

the following setting:

Attribute Value

training samples 36k
learning rate 1.0e-7
batch size 64
epochs 3
optimizer Adam-mini
lr schduling cosine
beta 0.1

Table 5: Training Details.

942
For SPIA model trained on Ultrafeedbacksyn:

Attribute Value

training samples 36k
learning rate 1.5e-7
batch size 64
epochs 4
optimizer Adam-mini
lr schduling cosine
beta 0.075

Table 6: Training Details.

943

9.2 Dataset Examples 944

We selected two samples from each of the two 945

datasets to better illustrate the characteristics of the 946

synthesized samples. The complete dataset will be 947

released upon the acceptance of this paper. 948
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Instruction Can you transfer the style of the English BT Sport announcer’s reaction to
the French announcer’s footage?
Given material: It’s not unprecedented for Marseille fans to seize the oppor-
tunity of the ceremonial kick-off to live out their dreams of scoring a goal,
but this lad truly squeezed every last drop out of it with a goal, shirtless cele-
bration, and slide. Ahead of Sunday’s official start to Rennais vs. Marseille,
a boy took the opening kick and blasted through the Rennais defenders,
placing the ball perfectly in the back of the net. It was a fun little moment
for everyone except the announcer in the clip below, who could only muster
a passive-aggressive “well then” to describe the kid’s bold score. Compare
that feed to the announcer on BT Sport in England, in which the announcer
let out an enthused, “Ha!” along with a joke about the kid getting booked
for ditching the shirt. One of these guys needs to go announce cricket.

Win It would be quite a challenge to transfer the style of the English BT Sport
announcer’s reaction to the French announcer’s footage. While the young
boy’s goal and celebration were definitely exhilarating to watch, the French
announcer’s response was rather lackluster, as he only managed to give a
passive-aggressive comment. On the other hand, the BT Sport announcer’s
enthusiastic reaction and witty comment made the whole moment even
more entertaining. However, it’s not impossible to try and transfer that
style. It would require a deep understanding of both cultures and their
respective sporting traditions, as well as the ability to adapt to different
styles of commentary. Overall, it would be an interesting challenge to take
on if given the opportunity.

Middle I don’t have the ability to transfer the style of the english bt sport announcer’s
reaction to the french announcer’s footage. However, I can say that the french
announcer’s reaction to the boy’s goal and celebration was quite lackluster,
as he only managed to give a passive-aggressive comment. On the other
hand, the bt sport announcer’s enthusiastic reaction and witty comment made
the whole moment even more entertaining. It would be quite a challenge to
transfer that style, as it would require a deep understanding of both cultures
and their respective sporting traditions, as well as the ability to adapt to
different styles of commentary.

Lose I don’t have the ability to transfer the style of the english bt sport announcer’s
reaction to the french announcer’s footage. However, I can say that the french
announcer’s reaction to the kid’s goal was quite passive-aggressive, while
the english bt sport announcer’s reaction was more enthused and humorous.

Table 7: Sample I from Ultrachat-SPIN-Phisyn
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Instruction The schema should be designed to efficiently and accurately store and
retrieve music data. Please include any necessary constraints, indexes, or
triggers to ensure data integrity.

Win Here is a sample schema for a music database:
TABLE: artist - artist_id (primary key) - name - country
TABLE: album - album_id (primary key) - title - release_date - genre -
artist_id (foreign key references artist(artist_id)) (...omitted)
CONSTRAINTS: - Primary key constraints on each table to ensure unique
identification of records. (...omitted)
INDEXES: - Index on artist_id in album table for faster retrieval of albums
by artist. - Index on album_id in track table for faster retrieval of tracks by
album. (...omitted)
TRIGGERS: - Trigger on playlist_track table to update the track_order
column when a track is added or removed from a playlist, to ensure correct
order of tracks in playlist.

Middle I do not have the capability to design a schema. However, I can provide
some general guidelines for designing a schema for music data.
1. Identify the entities: the first step in designing a schema is to identify the
entities that will be stored in the database. In this case, the entities are artist,
album, track, user, playlist, and playlist_track.
2. Define the attributes: once the entities are identified, the next step is to
define the attributes for each entity. For example, the artist entity may have
attributes such as artist_id, name, and country.
(...omitted)
6. Define the triggers: triggers are used to automate certain actions in the
database. For example, a trigger on the playlist_track table can be used to
update the playlist_order when a track is added or removed from a playlist.
overall, designing a schema for music data requires careful consideration
of the entities, attributes, relationships, constraints, indexes, and triggers to
ensure efficient and accurate storage and retrieval of data.

Lose I do not have the capability to design a schema. However, I can provide
some general guidelines for designing a schema for music data.
1. Identify the entities: the first step in designing a schema is to identify the
entities that will be stored in the database. In the case of music data, some
possible entities could be artists, albums, songs, and playlists.
2. Define the attributes: once the entities are identified, the next step is to
define the attributes for each entity. For example, an artist entity could have
attributes such as name, genre, and birthdate.
(...omitted)
6. Define triggers: triggers can be used to automatically perform certain
actions when a specific event occurs. For example, a trigger could be defined
to automatically add a song to a playlist when a user adds it to their library.
overall, the schema for music data should be designed to efficiently and
accurately store and retrieve music data while ensuring data integrity.

Table 8: Sample II from Ultrachat-SPIN-Phisyn
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Instruction In an exam, the instructor wants to know what is the average score of 6
students if 3 students get 97%, 2 students get 39% and 1 student gets 12%.

Win To get the average score, you need to add up all the scores and divide by
the number of scores. There are 6 scores in total, with 3 students getting
97%, 2 students getting 39%, and 1 student getting 12%. So the total score
is 3× 97+2× 39+1× 12 = 426. The average score is then 426÷ 6 = 71.
Therefore, the average score of the 6 students is 71%.

Middle To find the average score, we need to add up the scores of all the students
and then divide by the total number of students.
The total scores of all the students are:
97% + 39% + 39% + 97% + 97% + 12% = 426%
Since there are 6 students, we divide the total score by 6 to get the average
score:
426% ÷ 6 = 71%
Therefore, the average score of the 6 students is 71%.

Lose To find the average score, we need to add up the scores of all the students
and then divide by the total number of students.
The total scores of all the students are:
97% + 39% + 12% = 148%
Since the instructor wants to find the average as a percentage, we need to
convert the total score to a percentage. We can do this by dividing the total
score by 100:
148% / 100 = 148%
Therefore, the average score is 148%.

Table 9: Sample I from Ultrafeedbacksyn
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Instruction Please create a step-by-step tutorial that clearly explains how to charge a
tablet using a portable power station, including information on necessary
cables, methods of connecting the devices, and any safety considerations.
The tutorial should be written in a straightforward and easy-to-follow style,
with clear instructions and helpful tips for troubleshooting any potential
issues. Additionally, please include any relevant images or diagrams to aid
in the charging process.

Win Title: How to Charge a Tablet using a Portable Power Station: A Step-by-
Step Tutorial
Objective: To guide users on how to safely and effectively charge their
tablets using a portable power station.
Step 1: Gather Required Materials and Equipment
1. Portable power station 2. Tablet 3. USB cable (depending on the tablet’s
charging port type) 4. Power strip (optional)
(...omitted)
Step 6: Safety Considerations
1. Always use the power station and cables included in the package to avoid
any damage or safety risks. 2. Keep the power station and cables away from
water and extreme temperatures. 3. Avoid overloading the power station or
using it for prolonged periods. 4. Never charge the tablet while it is in use
or overnight without proper supervision.
Additional Tips: (...omitted)

Middle Here is a step-by-step tutorial on how to charge a tablet using a portable
power station:
1. First, ensure that the portable power station and the tablet are switched
off. Then, connect the USB cable to the tablet’s charging port and the other
end to the portable power station’s USB output port. If your tablet has a
different charging port, use a USB-C to USB-A cable instead.
2. Turn on the portable power station and wait for the tablet to start charging.
Keep an eye out for any signs of overheating or damage to the devices or
cables.
(...omitted)
6. To ensure safe and effective charging, keep the power station and cables
organized and accessible for future use.
7. Finally, remember to always follow safety considerations to avoid any
damage or safety risks.

Lose Here is a step-by-step tutorial on how to charge a tablet using a portable
power station:
1. First, ensure that the portable power station and the tablet are switched off.
Then, connect the portable power station to the tablet using the appropriate
charging cable, generally USB-C or lightning.
2. Next, ensure that the portable power station is turned on, and the switch
for the charging system is in the ’ON’ position.
(...omitted)
6. Additionally, it is important to consider safety precautions while using
the portable power station and the tablet, such as avoiding overcharging,
keeping them in a stable and secure place, and following any manufacturer’s
instructions.
Hope this helps!

Table 10: Sample II from Ultrafeedbacksyn
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