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ABSTRACT

Effective code retrieval plays a crucial role in advancing code generation, bug fix-
ing, and software maintenance, particularly as software systems increase in com-
plexity. While current code embedding models have demonstrated promise in
retrieving code snippets for small-scale, well-defined tasks, they often underper-
form in more demanding real-world applications such as bug localization within
GitHub repositories. We hypothesize that a key issue is their reliance on noisy
and inconsistent datasets for training, which impedes their ability to generalize
to more complex retrieval scenarios. To address these limitations, we introduce
CORNSTACK, a large-scale, high-quality contrastive training dataset for code that
spans multiple programming languages. This dataset is curated using consistency
filtering to eliminate noisy positives and is further enriched with mined hard nega-
tives, thereby facilitating more effective learning. We demonstrate that contrastive
training of embedding models using CORNSTACK leads to state-of-the-art per-
formance across a variety of code retrieval tasks. Furthermore, the dataset can
be leveraged for training code reranking models, a largely underexplored area
compared to text reranking. Our finetuned code reranking model significantly im-
proves the ranking quality over the retrieved results. Finally, by employing our
code retriever and reranker together, we demonstrate significant improvements in
function localization for GitHub issues, an important component of real-world
software development.

1 INTRODUCTION

The rapid advancement of software development has led to an increased reliance on automated tools
for code generation (Chen et al., 2021; Li et al., 2022b; Nijkamp et al.). As codebases grow in both
size and complexity, the ability to efficiently search for and retrieve relevant code snippets is impor-
tant. Code retrieval is crucial for advancing Retrieval-Augmented Code Generation (RACG) (Wang
et al., 2024b) with large language models (LLMs), where providing contextual examples signifi-
cantly improves the relevance and accuracy of generated code. Effective code retrieval facilitates
bug identification, enables the reuse of existing solutions, and minimizes redundancy, accelerat-
ing the overall development process. Code embedding models (Li et al., 2022a; Wang et al., 2023b;
Zhang et al., 2024) have gained traction for their ability to encode the semantic and syntactic proper-
ties of code into dense vector representations and help retrieve relevant snippets with high precision.
However, these approaches have not demonstrated substantial success in real-world applications,
particularly in complex tasks like resolving GitHub issues as evaluated by benchmarks like SWE-
Bench (Jimenez et al., 2024).

We hypothesize that code embedding models often suffer from suboptimal training procedures. Most
state-of-the-art code embedding models rely on contrastive learning (Li et al., 2022a), which is a
powerful technique for learning representations by reducing the distance between similar code snip-
pets while maximizing the distance between dissimilar ones. Yet, existing methods predominantly
fine-tune these models on noisy bimodal (text, code) datasets (Husain et al., 2019; Kocetkov et al.)
heuristically sourced from open platforms like GitHub. These datasets usually lack curation and con-
sistency filtering mechanisms, leading to significant noise, including irrelevant or incorrectly labeled
pairs, which impairs the model’s ability to learn robust representations. Further, existing approaches
often fail to incorporate such challenging negatives, resulting in embeddings that struggle to cap-
ture fine-grained distinctions between similar code snippets. This limitation prevents current models
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from effectively handling subtle semantic differences, thus compromising their retrieval accuracy in
real-world scenarios.

Figure 1: Figure demonstrating the curation
methodology for CORNSTACK, with consistency
filtering to remove noisy positives in addition to a
curriculum-based hard negative mining strategy.

To address these issues, we curate CORN-
STACK1, a large-scale dataset of high-
quality (text, code) pairs based on The Stack
V2 (Lozhkov et al., 2024), refined through
consistency filtering, and supplemented with
mined hard negatives for effective contrastive
learning. To remove noisy (text-positive)
pairs, our approach uses a dual consistency
filtering process, which ensures the positives
are within top-k across the corpus, while
having an embedding similarity score greater
than a threshold. Further, we incorporate a hard
negative mining strategy with softmax-based
sampling over a larger collection of negatives
to promote diversity, with a curriculum con-
trolling the sampling probability to ensure
we progressively increase the difficulty of the
sampled negatives across the training process.
We demonstrate that contrastive learning
using our dataset leads to state-of-the-art code
embedding models, outperforming even larger models (Zhang et al., 2024; Wang et al., 2023b) on a
variety of code retrieval tasks (Husain et al., 2019; Huang et al., 2021; Lu et al., 2021).

In addition to embedding quality, code retrieval quality can benefit from sophisticated reranking
techniques. While reranking has been extensively applied in domains like text retrieval (Zhuang
et al., 2023b; Sun et al., 2023) and recommendation systems (Liu et al., 2022; Gao et al., 2024), its
application in code retrieval remains largely unexplored. A major challenge for building effective
code reranking models is the lack of high-quality data for fine-tuning on contrastive bimodal (text,
code) data. In this paper, we show that our dataset, with the curated set of (text, code) pairs that
involve positives and negatives, can be leveraged to finetune code generation models (Wang et al.,
2023b; Hui et al., 2024) to be state-of-the-art code rerankers.

Finally, using our improved code retriever and reranker together, we show significant improvements
in function localization (Xia et al., 2024), a key aspect in addressing real-world software engineering
challenges (Jimenez et al., 2024). Function localization refers to the ability to accurately identify the
specific functions or code segments that require modification in response to a particular issue, such
as a bug report or feature request, especially on platforms like GitHub. Our retriever first identifies
a pool of highly relevant code snippets, while the reranker further refines these results, prioritizing
the most contextually appropriate functions based on their relevance to the given issue.

Our main contributions can be summarized as follows:

• We introduce CORNSTACK, a large-scale curated high-quality (text, code) pairs dataset,
refined through consistency filtering, and supplemented with mined hard negatives for ef-
fective contrastive learning.

• We show that code retrievers trained using CORNSTACK have considerably higher per-
formance on a variety of code retrieval benchmarks, with substantial gains over current
state-of-the-art code embedding models, while using a considerably smaller encoder.

• We are the first to finetune LLMs as code rerankers. Our 7B code reranker, trained lever-
aging our contrastive data, considerably improves performance over the retriever.

• We demonstrate the benefit of improved code retrieval and reranking on function localiza-
tion, while solving real-world software development problems such as addressing GitHub
issues.

1CORNSTACK stands for Consistency filtering and Robust Negatives for enriching The Stack v2.
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2 CORNSTACK

Language Original Selected

Python 46.1M 10M
JavaScript 85.5M 2.3M

Java 113.3M 3M
Go 9.2M 2M

PHP 31.8M 3M
Ruby 10.8M 0.9M

Table 1: # instances in
CORNSTACK for various
languages after filtering.

The performance of code embedding models is highly contingent
on the quality of the large-scale data used for contrastive training,
in the form of <query, positive, negatives> triples. Effective con-
trastive training hinges on satisfying two primary conditions: 1) The
positives are highly relevant to the query and not noisy, 2) The neg-
atives are semantically similar to the positives but do not directly
address the query, a.k.a hard negatives. Heuristically sourcing con-
trastive examples from large-scale open-source code data, such as
the Stackv2 (Lozhkov et al., 2024), can include irrelevant or incor-
rectly labeled <query, positive> pairs, which impair the models’
ability to learn robust and accurate representations. Hence, we in-
troduce a two-step consistency filtering method (in §2.2) that selects
positives that are among the top-k in the corpus and have an embed-
ding similarity above a certain threshold. Additionally, we employ a hard negative mining strategy
(see §2.3) to augment the <query, positive> pairs with negatives, sampled over a larger collection
to ensure diversity. We also implement a curriculum that adjusts the sampling probabilities, pro-
gressively increasing the difficulty of the negatives throughout the training process. We call this
collection of contrastive training examples CORNSTACK, with details in §3 on leveraging this data
to finetune code retrievers and rerankers. Table 1 shows the counts of examples from different
languages2 in our contrastive dataset after filtering from the original Stackv2.

2.1 DATA SELECTION

We base our dataset on the de-duplicated version of The Stack v23, a comprehensive collection
of source code in 600+ programming and markup languages. We convert this into bimodal data,
i.e. (text, code) pairs, by extracting the docstring of a function as the text, and the corresponding
function as the code. Following Zhang et al. (2024), we heuristically filter out pairs when the text is
not in English, it is too short which removes URLs, HTML tags, and other bad Unicode characters
in the text. To ensure the syntactic correctness of the code data in CoRNStack, following Guo et al.
(2021), we used the Tree-sitter parsing toolkit to filter out any codes that cannot be parsed into a
syntax tree. However, unlike previous works, we do not filter pairs with ≥ 256 tokens in the text. By
not filtering out these long-text pairs, we aim to improve the ability of the model to generalize well
to long sequences in the queries, which are common in repository-level code retrieval tasks. GitHub
issues, for instance, often contain long, detailed descriptions of problems or feature requests.

2.2 DUAL CONSISTENCY FILTERING

In analyzing the heuristically collected text-code pairs from the Stack-v2, we observe that many
docstrings inadequately describe the corresponding code behavior. Additionally, there are cases
where the code does not perform the functionality described in the docstring. Such discrepancies
can be harmful during training, as they provide a noisy signal for relevance between the natural
language descriptions and corresponding code implementations. We present examples of both data
quality issues in Figures 2 and 3 in the Appendix.

To address the data quality limitations, we build upon recent work in consistency filtering from
training text embedding models (Wang et al., 2022; Günther et al., 2023). Consistency filtering
aims to curate a refined dataset by excluding training pairs with low semantic similarity. In this
work, we incorporate dual consistency filtering with two criteria. First, for a given query, we ensure
that the positive code snippet is among the top-k most semantically similar snippets in the dataset.
This top-k retrieval step filters out irrelevant or weakly related code snippets. Next, we apply a
secondary filtering stage where pairs with similarity scores below a predefined threshold, δ, are
discarded. This guarantees that even highly ranked pairs must surpass a minimal quality threshold,

2While we were left with 16M for Java and 7M for Go after filtering, we subsampled for these languages
to ensure Python covered 50% of the data since most downstream benchmarks are based on python. These six
languages were picked to cover those evaluated in CodeSearchNet Husain et al. (2019).

3https://huggingface.co/datasets/bigcode/the-stack-v2-dedup
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reducing the retention of pairs that are only marginally relevant. The relative and absolute thresholds
are determined to balance dataset size and quality, ensuring that only the most consistent pairs are
included.

Dataset # Examples % Correct

CosQA 20k 63.9
CSN 2M 55.8

Stack v2 200M 52.9

Ours 21M 77.1

Table 2: Evaluation of <query, positive>
pair correctness for different code corpora.

Formally, let (ti, ci) denote the heuristically col-
lected (text, code) pair, T = [t1, t2, . . . , tn] repre-
sent the list of texts, and C = [c1, c2, . . . , cn] rep-
resent the corresponding code snippets in the corpus
D. We use an existing embedding model N to en-
code both texts and code snippets into vector repre-
sentations: Tv = N(T ) and Cv = N(C). A simi-
larity score matrix S = Tv · CT

v is computed, where
each entry Si,i represents the similarity between text
ti and code ci. For all (ti, ci) ∈ D, (ti, ci) is in-
cluded to the curated dataset D′ if Sii is in the top-k
ranked values of S[i] and Sii > δ, the similarity threshold4.

To demonstrate the superior quality of pairs in CORNSTACK, we perform an automated evaluation,
comparing our filtered dataset against other contrastive code datasets, such as CosQA Huang et al.
(2021) and CodeSearchNet (CSN) Husain et al. (2019). Specifically, we prompt Qwen2.5-Coder-
7B-Instruct (Hui et al., 2024), an instruction-tuned code generation model to judge whether a code
snippet fully answers the corresponding query for 10k randomly sampled pairs from each dataset
for 3 seeds. Table 2 shows the mean % correctness evaluated by the LLM, with our large-scale
contrastive collection considerably improving in quality over The Stack v2, CodeSearchNet, and
CosQA. We show the language-wise % correctness in Table A.3 in the Appendix.

2.3 HARD NEGATIVE MINING

Beyond improving the semantic relevance of positive pairs, incorporating challenging negatives is
critical to improving the model’s ability to distinguish semantically similar instances, as seen in
text embedding literature (Wang et al., 2024a; Moreira et al., 2024). Several prior works in code
embedding model training attempt to mine hard negatives but face key limitations. CodeSage (Zhang
et al., 2024) weights in-batch negatives based on relevance to the query. However, since the set of
in-batch negatives is chosen at random, this approach is still limited by the hardness of negatives
available within a single batch. CodeT5+ (Wang et al., 2023b) uses a contrastive similarity score
to sample negatives from a queue maintained by a momentum encoder (He et al., 2020). However,
this approach is restricted by the queue size and introduces high memory overhead. Moreover, both
methods risk sampling false negatives, which degrades contrastive learning by introducing noise. In
this work, we introduce a hard negative mining strategy that involves sampling negatives from a large
pool to promote diversity. Our hard negative mining strategy is divided into 2 stages: 1) an offline
stage that leverages the corpus-level similarity score matrix S pre-computed during consistency
filtering to filter false-negatives, and 2) an online stage that uses a softmax-based sampling strategy
with curriculum to progressively select diverse, challenging negatives during the contrastive fine-
tuning.

Given a positive (text, code) pair in the dataset, denoted as (ti, c+i ), and let Bi = {c−j }Mj=1 represent
the set of hard negatives for text ti, with S being the similarity score matrix between all the text and
code snippets in the corpus. To eliminate false negatives, we follow Moreira et al. (2024) to remove
any c−j which is sufficiently close to ti. Specifically, we filter out any negative c−j for which the
relevance score Sij exceeds a threshold γ · Sii, where Sii is the similarity score text ti and positive
code snippet ci. We then cache S for use in the online stage of our negative mining.

3 CODE RETRIEVER AND RERANKER

Each instance in our curated high-quality CORNSTACK dataset is of the form of the form of <query,
positive, negatives> triples, which can be used for contrastive training. Here, we describe how
CONTRASTACK is leveraged for finetuning both code retriever and reranker models.

4In our experiments, we use Jina-Code-v2 (Günther et al., 2023) as the proxy embedding model N , k=2
and δ=0.7
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3.1 RETRIEVER

We use a bi-encoder architecture (Reimers & Gurevych, 2019) for our retriever, with weights shared
between the text and code encoder. Let (ti, c+i ) denote a positive (text, code) pair in the dataset and
(hi, h

+
i ) be the respective output representations from the last hidden layer of the encoder. For a

batch of size N , let H = {h+
i }Ni=1 denote the code representations from the positive code samples

in the batch. Let HB =
⋃n

i=1{h
−
ij}Mj=1 denote the set of hard negatives code representations of all

text ti in the batch sampled via an online mining strategy that we describe next.

We use the pre-computed similarity-score matrix S (from §2.3) and for each ti, sample M negatives
with probability: P (c−j |ti) = exp(Sij/τ

′)/(
∑M

m=1 exp(Sim/τ ′)) where τ ′ is the temperature pa-
rameter5. Different from recent work in negative mining for text-embedding models Moreira et al.
(2024) that select from top-k negatives, our softmax-based sampling introduces diversity into the
selection of negatives, increasing the exploration of the negative sample space while maintaining a
high likelihood of selecting challenging negatives. This strategy avoids overfitting to specific hard
negatives and ensures that different negatives are explored across epochs, fostering better general-
ization. A key advantage of this approach lies in the gradual annealing of the temperature parameter
τ ′ during fine-tuning. As training progresses, we decrease τ ′, thereby sharpening the softmax distri-
bution and progressively increasing the difficulty of the sampled negatives. This forms a curriculum
learning strategy, where the model is initially exposed to easier negatives and progressively harder
ones as it becomes more adept at distinguishing semantically similar pairs.

To fine-tune the retriever, we employ a contrastive learning objective based on the InfoNCE
loss (Oord et al., 2018). The objective seeks to maximize the similarity between the text hi and
its positive counterpart h+

i , while minimizing the similarity between the text hi and both hard nega-
tives HB and other positives from other in-batch examples H . In our formulation, each positive has
N ∗ (M + 1)− 1 negatives in the contrastive loss. Specifically, the loss is formalized as:

LCL(hi,hi+) = − log

(
exp(hi · hi+/τ)∑

hk∈(HB∪H) exp(hi · hk/τ)

)
(1)

Here, τ(= 0.07) represents the temperature parameter that controls the sharpness of the softmax
distribution, and the dot product hi · hk represents the cosine similarity between the text query and
the code snippet in the joint embedding space. During inference, the cosine similarity between the
text query and the code snippet is used as the relevance score to get a ranked ordering.

3.2 RERANKER

Recently, listwise reranking approaches (Pradeep et al., 2023; Reddy et al., 2024) have gained pop-
ularity for their ability to score multiple passages simultaneously, as opposed to pointwise Zhuang
et al. (2023a;c) or pairwise Qin et al. (2023) reranking, where scoring is performed in isolation. Xian
et al. (2023) demonstrate that listwise reranking benefits from contextually comparing multiple pas-
sages at once, which helps calibrate relevance scoring better. Furthermore, Sun et al. (2023) show
that instruction-tuned LLMs can outperform traditional supervised cross-encoders (Nogueira et al.,
2020; Zhuang et al., 2023b) in zero-shot reranking settings. Due to input size limits, listwise rerank-
ing with LLMs usually adopts a sliding window strategy (Sun et al., 2023) with a window size of M
candidates and a stride s. For each window, passages are denoted by unique identifiers yi; the LLM
reranker generates as output a sequence of identifiers in decreasing order of their relevance.

However, CORNSTACK cannot be directly used for finetuning listwise rerankers, as they require
ranked ordering data as supervision for training. Following recent work by Pradeep et al. (2023),
we leverage larger LLMs as teacher models to train our listwise code reranker. The relevance su-
pervision is provided in the form of an ordered sequence y = y1 > y2 > ... > ym, where yi is
the identifier of a document that has been judged more relevant to the query q than yj , for every
m ≥ j > i. Here, {yi}mi=1 are taken from the positive and hard negative code snippets from CORN-
STACK for each text query. The reranker is trained using the top M negatives from the offline stage
(in §2.3), since it is relies on the ranking ordering supervision for these negatives provided by the
teacher model, which is not feasible to obtain in an online fashion. We then train the reranker with a

5We use γ = 0.95 with τ ′ linearly decayed from 0.05 to 0.001
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language modeling objective, minimizing the error in predicting the true next token in the generation
sequence:

LLM = −
|y|∑
i=1

log(Pθ(yi|x, y<i)) (2)

Pθ(yi|x, y<i) is the conditional probability of predicting the target yi given the instruction prompt
x and the preceding tokens y<i.

4 EXPERIMENTS

CORNSTACK is a high-quality curated code dataset containing <query, positive, negatives> tuples
across six programming languages: Python, Java, Javascript, Ruby, Go, and PHP. This work aims to
investigate two research questions: RQ1: Can CORNSTACK be leveraged to train highly performant
code retrievers and rerankers?; RQ2: Can such a code retriever + reranker framework be used to
assist in real-world software development? To address RQ1, we first demonstrate in §4.1 the superior
performance of our code retriever on a variety of code retrieval tasks. Subsequently, in §4.2, we show
the improved ranking accuracy achieved by leveraging our listwise code reranker over the retrieved
results. For RQ2, §4.3 shows better function localization based on GitHub issues from using our
code retriever + reranker framework.

4.1 CODE RETRIEVAL

4.1.1 SETUP

Training We finetune our code retriever using the 21 million contrastive examples in CORN-
STACK. The encoder is initialized with Arctic-Embed-M (Merrick et al., 2024), a text encoder
supporting an extended context length of 8,192 tokens and pretrained on large-scale web query-
document pairs, along with public text retrieval datasets (Yang et al., 2018; Kwiatkowski et al.,
2019; Thorne et al., 2018). We finetune for three epochs using four GH200 GPUs, with a batch size
of 128 and 15 hard negatives per example. Our data filtering, negative mining, and model finetuning
are implemented using the contrastors package (Nussbaum et al., 2024).

Evaluation Datasets To demonstrate the effectiveness of CORNSTACK, we evaluate our fine-
tuned retriever on a variety of code retrieval tasks under zero-shot settings. First, we consider Code-
SearchNet (CSN) (Husain et al., 2019) and AdvTest (Lu et al., 2021) as benchmarks for function-
level text-to-code retrieval, a semantic search task where natural language queries are used to retrieve
relevant code snippets. Additionally, to evaluate performance across diverse code retrieval tasks, we
consider the CoIR benchmark (Li et al., 2024), which includes code-to-text, code-to-code, and hy-
brid code retrieval tasks (retrieving a hybrid of code and textual documents given a hybrid query),
in addition to text-to-code retrieval.

Baselines We compare our finetuned code retriever against state-of-the-art open-source and pro-
prietary text and code embedding models of various parameter sizes. For open-source text em-
bedding models, we include E5-Base (Wang et al., 2022) and E5-Mistral (Wang et al., 2023a), the
two most performant text embedding models from the CoIR benchmark, as well as Arctic-Embed-
M (Merrick et al., 2024), the base text encoder that we finetune on CORNSTACK. For open-source
code embedding models, we consider the Small, Base, and Large variants of CodeSage (Zhang et al.,
2024), along with CodeT5+ (Wang et al., 2023b) and Jina-Code-v2 (Günther et al., 2023), which are
the current state-of-the-art code embedding models on text-to-code retrieval benchmarks. CodeSage
is trained on an older version of the Stack (Kocetkov et al.), while CodeT5+ and Jina-Code-v2 use
the GitHub Code dataset for pretraining. We also include proprietary embedding models OpenAI-
Ada-002 and Voyage-Code-002 in our evaluation.

4.1.2 RESULTS

Table 3 presents the retrieval performance for function-level text-to-code retrieval. Our approach
significantly outperforms all open-source and proprietary text and code embedding models, es-
tablishing a new state-of-the-art for text-to-code retrieval. Notably, despite being evaluated in a

6
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Retriever Param. CodeSeachNet AdvTest
Python Java JS PhP Go Ruby Avg. Python

E5-Base 110M 11.2 9.0 8.9 8.6 25.6 16.8 13.4 5.9
Arctic-Embed-M 137M 53.8 49.5 46.3 41.1 71.9 57.9 53.4 34.1
CodeSage-Small 130M 64.4 63.2 60.0 54.7 77.7 63.2 64.9 41.3
CodeSage-Base 356M 68.0 68.0 67.0 58.2 83.2 68.0 68.7 49.1
CodeSage-Large 1.3B 70.8 70.2 69.5 61.3 83.7 71.9 71.2 52.7

Jina-Code-v2 161M 64.4 66.4 61.8 55.9 84.4 70.4 67.2 37.1
CodeT5+ 110M 71.7 71.8 69.2 67.8 90.7 74.4 74.2 40.8

OpenAI-Ada-002 Unknown 68.0 71.5 67.5 60.6 85.6 74.2 71.3 38.1
Voyage-Code-002 Unknown 66.8 64.8 63.4 52.0 88.9 75.0 68.5 -

Ours 137M 78.4 76.9 71.4 68.8 92.7 79.3 77.9 59.5

Table 3: Ranking performance (%) for retrievers of difference sizes on function-level text-to-code
retrieval datasets. Following Zhang et al. (2024), we report numbers for MRR@1000.

Task (→) Text-to-Code Code-to-Text Code-to-Code Hybrid Code
Avg

Retriever Apps CosQA SQL CSN
CSN CodeTrans StackOver CodeFeedBack
-CCR -Contest -DL Flow -ST -MT

E5-base 11.5 32.6 52.3 68.0 56.9 62.5 21.9 86.9 74.5 42.0 50.9
Arctic-Embed-M 5.4 27.6 18.9 37.4 62.2 68.9 28 86.9 67 28.0 43.0

E5-Mistral 21.3 51.3 66.0 54.3 65.3 82.6 33.2 91.5 72.7 33.7 55.2
CodeSage-Small 17.3 30.5 51.9 74.1 84.2 76.2 31.0 73.9 62.3 42.6 54.4
CodeSage-Base 27.6 29.4 59.4 76.9 86.9 78.9 31.9 76.2 63.0 44.6 57.5
CodeSage-Large 32.7 28.9 59.5 78.1 89.0 82.6 32.7 78.7 65.4 46.3 59.4

Jina-Code-v2 16.4 42.2 46.4 84.0 82.7 83.6 26.8 89.3 68.6 44.4 58.4
CodeT5+ 3.3 23.1 41.1 78.0 83.6 52.3 31.6 59.9 53.2 32.8 45.9

OpenAI-Ada-002 8.7 29.8 58.3 74.2 69.1 53.3 26.0 72.4 47.1 17.7 45.6
Voyage-Code-002 26.5 29.8 69.3 81.8 73.5 72.8 27.3 77.7 65.4 28.7 56.3

Ours 21.1 36.3 58.8 83.7 86.9 78.8 32.8 82.3 75.7 45.2 60.1

Table 4: NDCG@10 for different retrievers on the Code Information Retrieval Benchmark (CoIR).

zero-shot setting, our code retriever achieves better performance than CodeT5+, which uses Code-
SearchNet for contrastive finetuning. Further, our 137M parameter encoder outperforms the 1.3B
CodeSage-Large model, which is ten times larger. Table 4 shows the performance on CoIR, which
includes a variety of code retrieval tasks. Our code retriever, despite being smaller than the majority
of the baselines, consistently performs well across all the tasks, leading to the highest average per-
formance. This demonstrates the robustness of our contrastive training data, with the trained model
exhibiting superior cross-task generalization despite being trained exclusively for only text-to-code
retrieval.

4.1.3 ABLATION STUDIES

Here, we conduct ablation studies for the code retriever using 10% of the training data from CORN-
STACK. Specifically, we measure the benefit of our proposed techniques, namely curriculum learn-
ing during training, the use of hard negatives with a softmax-based sampling strategy and consis-
tency filtering aimed at eliminating noisy positives. Table 5 shows the results from the ablation
experiments. We can see that removing consistency filtering of positives or the use of hard negatives
separately leads to significant drop in performance on both CodeSearchNet (CSN) and AdvTest.
We also see the benefit of curriculum learning, along with using softmax-based sampling of hard
negatives instead of top-K selection.
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Approach CSN AdvTest

Consistency Filtering + Softmax Sampling of Hard Negatives + Curriculum Learning 72.7 50.8
Consistency Filtering + Softmax Sampling of Hard Negatives 72.3 49.4
Consistency Filtering + Top-K Selection of Hard Negatives 71.4 48.6
Consistency Filtering 63.3 39.2
None 56.7 37.6

Table 5: Ablations showing benefit of each of our proposed techniques. None represents using
unfiltered Stack v2 examples with only in-batch negatives and no additional hard negatives.

Reranker FT Data CodeSeachNet AdvTest
Python Java JS PhP Go Ruby Avg. Python

None (Retriever Only) Code 78.1 76.6 68.9 69.9 91.6 80.3 77.7 56.9
Qwen-2.5-Code (zero-shot) - 71.6 70.7 64.0 63.1 84.0 71.6 70.2 58.7
Qwen-2.5-Text (finetuned) Text 80.0 78.1 73.2 69.8 92.0 79.9 78.8 66.4

Ours Code 81.7 80.5 76.2 72.4 92.3 81.8 80.5 69.1

Table 6: Ranking performance (MRR@100 in %) for different models from reranking top-100 re-
trieval results on function-level text-to-code retrieval datasets. Our code reranker is finetuned from
Qwen-2.5-Code with code listwise data, while Qwen-2.5-Text is finetuned using text listwise data.

4.2 CODE RERANKING

4.2.1 SETUP

Training To create the training data for listwise reranking, we pick 50k <query, positive,
negatives> tuples from CORNSTACK by filtering for a higher similarity score and a better rank
for the positive. Following Pradeep et al. (2023), a sampling strategy with varying window sizes
(between 3 to 10) and random shuffling leads to 250k training instances (more details in §A.8 of
Appendix). For ranking supervision, we use the Qwen-2.5-32B-Instruct LLM (Yang et al., 2024)
to obtain the ranked ordering of each example. The Qwen-2.5-Coder-7B-Instruct model (Hui et al.,
2024), which specializes in instruction-based code generation, is employed as the listwise reranker.
We finetune this model for one epoch using four GH200 GPUs, with a batch size of 64 and a maxi-
mum input sequence length of 16,800.

Baselines and Evaluation We compare our reranking performance with the zero-shot Qwen-2.5-
Coder-7B-Instruct model, which was used for fine-tuning. Since most text-based LLMs are trained
on both text and code data, we include a listwise text reranker as a baseline. Specifically, we
finetune the Qwen-2.5-7B-Instruct LLM using 40k listwise reranking instances labeled by GPT-
4, as described in Pradeep et al. (2023), which were created using queries from the MS MARCO
dataset (Nguyen et al., 2016). For evaluation, we employ the CodeSearchNet and AdvTest text-to-
code retrieval benchmarks. However, we exclude the CoIR benchmark due to its significantly larger
size (containing more than 100k queries). During inference, the top 100 results from our code re-
triever are passed to the reranker, with evaluation conducted using MRR@100. We use a window
size of 10 and a step size of 5 for the listwise LLM rerankers.

4.2.2 RESULTS

Table 6 presents the performance of different reranking models on text-to-code retrieval datasets.
Interestingly, the text reranker (Qwen-2.5-Text) demonstrates strong performance across multiple
programming languages, despite being finetuned with listwise text reranking data. This performance
is likely due to the presence of code examples in the LLM pretraining data, which enhances the
model’s understanding of code. Although the code LLM (Qwen-2.5-Text) performs worse in a
zero-shot setting for listwise reranking, its performance improves significantly after finetuning with
code-specific listwise data derived from CORNSTACK. These results suggest that listwise code
rerankers can further enhance ranking performance beyond the initial retrieval step.
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Model Param. File-level Function-level

Top-1 Top-2 Top-3 Top-5 Top-10

E5-Base 110M 45.7 60.3 65.7 39.4 52.2
Arctic-Embed-M 137M 41.7 57.7 62.3 40.5 49.6
CodeSage-Small 130M 43.7 59.3 65.7 40.9 51.1
CodeSage-Base 356M 44.3 60.7 67.7 39.8 48.9
CodeSage-Large 1.3B 45.3 61.3 65 40.1 48.2
Jina-Code-v2 161M 38.3 57 64 43.1 55.1
CodeT5+ 110M 43.7 57 62.3 39.8 45.3
Agentless GPT-4o-mini Unknown 54.0 63.5 68.2 35.0 36.9
Agentless GPT-4o Unknown 65.7 74.8 77.4 44.5 45.6

Code Retriever (Ours) 137M 47.3 62.7 70.0 50.0 59.1
+ Code Reranker (Ours) 7B 68.2 81.4 85 67.5 73.7

Table 7: File and function localization performance (%) on SWE-Bench-Lite.

4.3 CODE RETRIEVAL+RERANKING FOR FUNCTION LOCALIZATION

Having previously evaluated our code retrieval and reranker models on academic benchmarks, we
now demonstrate their utility in assisting software development in real-world settings. Specifically,
we focus on the task of function localization, which involves accurately identifying the specific
functions that need to be modified in response to a bug report or a GitHub issue.

4.3.1 SETUP

Datasets For evaluation, we utilize SWE-Bench (Jimenez et al., 2024), a widely used evaluation
suite for automated software engineering. SWE-Bench is a repository-level benchmark that focuses
on resolving real-world issues sourced from GitHub, requiring a code patch that passes the associ-
ated test cases. Due to reproducibility issues with the full dataset, we employ SWE-Bench-Lite, a
300-problem subset. Following the approach in Xia et al. (2024), we reformulate SWE-Bench-Lite
for function localization evaluation by considering the functions to which code patches have been
applied as the localized functions. The GitHub issue serves as the text query, while all functions
within the files in the repository are considered as candidates for retrieval.

Baselines and Metrics Our primary baseline is Agentless (Xia et al., 2024), an automated ap-
proach to solving software development problems that ranks among the top-performing open-source
submissions on SWE-Bench-Lite. Agentless employs a two-phase process of localization followed
by repair. In the localization phase, it uses a hierarchical approach to first localize the fault to spe-
cific files, then to relevant classes or functions, and finally to fine-grained edit locations. Given the
considerable size of the codebase, a tree-like structure of the repository, illustrating the relative lo-
cation of each file, along with the GitHub issue, is used to rank and identify the files that need edits.
Subsequently, the content of these files is used to identify the functions within them that require
modification. For a detailed description of Agentless, we refer the reader to Xia et al. (2024). We
evaluate function localization using the output logs of Agentless obtained from the released official
run. Furthermore, given the functions identified for modification, we map them to the files they
belong to for file localization evaluation. Since Agentless selects up to three files that need edits
and further localizes functions within them, we evaluate file localization at top 1–3 and function
localization at top 5 and top 10. We also consider the retrieval baselines as in Section 4.1, except for
the proprietary ones due to API costs.

4.3.2 RESULTS

Table 7 presents the function and file localization accuracy achieved on SWE-Bench-Lite. Results
indicate that our code retriever significantly outperforms Agentless and other retrieval baselines on
function localization. Additionally, we observe consistent improvements in both file and function
localization when leveraging our code reranker on top of the retriever results. We hypothesize that
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the superior performance of GPT-4o on file localization, compared to the code retriever, may be
due to these models having been exposed to the codebases during training, as SWE-Bench-Lite
is constructed using popular open-source Python repositories. Therefore, GPT-4o can potentially
identify the file to be edited without even utilizing the corresponding file content. We hypothesize
that our retrieval-based approach could achieve further improvements on private repositories, which
are typically not included in LLM pretraining data. We leave this investigation for future work.

5 CONCLUSION

This paper presents CORNSTACK, a large-scale, high-quality dataset of contrastive training in-
stances for code retrieval and reranking. Fine-tuning embedding models on this contrastive data
achieves state-of-the-art performance across various code retrieval tasks, outperforming code em-
bedding models that are ten times larger. We also demonstrate that a listwise code reranker, fine-
tuned using CORNSTACK, can further improve the code ranking accuracy. Moreover, using our
code retriever and listwise code reranker together, we show significant improvements in function
localization for GitHub issues, an important component of real-world software development.

LIMITATIONS

While heuristically filtering examples in CORNSTACK, exact matches with downstream evalua-
tion datasets were removed. However, more comprehensive semantic filtering may be necessary to
eliminate the possibility of similar queries and code being present. To further validate the func-
tional correctness of the code data, one could generate test cases using a combination of LLMs
and/or human annotators. However, considering the scale of the dataset, this approach would be
computationally intensive to generate diverse test cases that cover all edge cases and would require
substantial resources to set up the necessary environments for execution-based validation. Never-
theless, this is a valuable area for future exploration. Additionally, the benefits of the proposed code
retrieval and reranking framework for real-world software development are demonstrated only for
function localization, not for downstream code repair performance, due to API costs associated with
running GPT-4o on SWE-Bench-Lite.
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los Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, et al. The stack: 3 tb
of permissively licensed source code. Transactions on Machine Learning Research.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Xiangyang Li, Kuicai Dong, Yi Quan Lee, Wei Xia, Yichun Yin, Hao Zhang, Yong Liu, Yasheng
Wang, and Ruiming Tang. Coir: A comprehensive benchmark for code information retrieval
models. arXiv preprint arXiv:2407.02883, 2024.

Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu, Hang Zhang, Bolun Yao, Weizhen Qi, Daxin
Jiang, Weizhu Chen, and Nan Duan. Coderetriever: A large scale contrastive pre-training method
for code search. In Proceedings of the 2022 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2898–2910, 2022a.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
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A APPENDIX

A.1 CASE STUDY OF DATA QUALITY

To highlight the challenges posed by noisy data in code retrieval tasks, we share several examples
from the StackV2 dataset in the appendix. These examples showcase instances where code snippets
do not perfectly align with their associated queries, reflecting the inherent noise and misalignments
present in large-scale, real-world datasets.

Figure 2: An Example of a retrieve mismatch caused by unimplemented functionality (document)

Figure 3: An example of a retrieve mismatch caused by a non-informative docstring (query)
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A.2 DIVERSITY OF CODE TOPICS IN CORNSTACK

Figure 4: A wordcloud of popular code topics collected from 100k instances in CoRNStack

To provide more insight into the variety and complexity of code tasks in CoRNStack, we analyzed
the distribution of code topics for 100k randomly sampled instances using Nomic Atlas6, a popular
unstructured text visualization tool. Nomic Atlas employs a cluster-based keyword identification
algorithm and leverages a language model to generate topics. We find that the majority of examples
fall into eight broad categories: object creation, data sorting, data management, API management,
configuration, data validation, graphics, and math operations. The wordcloud in Figure 4 illustrates
the diverse fine-grained topics within these categories.

A.3 ACCURACY OF (TEXT, CODE) PAIRINGS BY LANGUAGE

Dataset Python Java JavaScript PHP Go Ruby Avg

Stack v2 54.8 50.3 53.6 56.4 63.2 39.2 52.9

CSN 53.9 56.3 50.5 60.7 65.9 47.6 55.8

CosQA 63.9 - - - - - 63.9

CoRNStack (Ours) 76.2 80.6 74.4 77.3 82.8 71.4 77.1

Table 8: Evaluation of <query, positive> pair correctness by language for different code corpora.

In Table 8, we provide the language-wise correctness numbers for the mean results from Table 2
in the main paper. We can see that CoRNStack has significantly higher correctness of (text, code)
pairings across all languages.

6https://atlas.nomic.ai/data/corniclr25/cornstack-100k
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A.4 FINE-TUNING VARIOUS ENCODERS ON CORNSTACK

We hypothesize that code retrievers can benefit from pretraining on supervised text ranking data,
which is typically abundant. To validate this hypothesis, we performed the following experiment:
We selected three ∼130M parameter text and code encoders, specifically Arctic-Embed-M Merrick
et al. (2024) and Nomic-embed Nussbaum et al. (2024) as the text encoders due to their strong per-
formance on text retrieval benchmarks like MTEB, and CodeSage-Small Zhang et al. (2024) as the
code encoder due to its overall performance on code retrieval benchmarks. We evaluated these mod-
els on code retrieval tasks before and after finetuning on CoRNStack for one epoch. As shown in
Table 9, we see that finetuning on CoRNStack significantly improves code retrieval performance for
all models. Moreover, we observe that a stronger text embedding model (Arctic-Embed-M in this
case) leads to better code retrieval performance after finetuning on CoRNStack, even outperform-
ing the code-pretrained CodeSage-Small. These results highlight that CoRNStack, being large-scale
and high-quality, can be leveraged to finetune text encoders into performant code retrievers. There-
fore, we selected Arctic-Embed-M as it provides a strong foundation from supervised text ranking
pretraining, which, when combined with fine-tuning on CoRNStack, leads to superior code retrieval
performance.

Base Model Pretrain # Params CSN Avg. AdvTest CoIR Avg.

CodeSage-Small Code 130M 64.9 → 73.9 (+9.0) 41.3 → 54.2 (+12.9) 54.4 → 60.0 (+5.6)

Nomic-Embed Text 137M 47.2 → 76.7 (+29.5) 28.6 → 54.6 (+26.0) 47.7 → 58.5 (+10.8)

Arctic-Embed-M Text 137M 53.4 → 77.7 (+24.3) 34.1 → 57.8 (+23.7) 43.0 → 59.7 (+16.7)

Table 9: Results (Before → After) from finetuning different encoders for 1 epoch on CoRNStack.

A.5 EFFICACY OF FINE-TUNING ON CORNSTACK VS CODESEARCHNET

CoRNStack has a significantly higher query-positive correctness, while also being upto 10x larger
than existing contrastive code datasets like CodeSearchNet (CSN) (see Table 2 in the main paper). To
further highlight the impact of CoRNStack’s scale and quality, we finetuned Arctic-Embed Merrick
et al. (2024), a text embedding model, for one epoch separately on CoRNStack and CodeSearchNet.
To specifically show the benefit of CoRNStack’s quality, we also report results for fine-tuning on 2
million randomly sampled datapoints from CoRNStack, the same amount of data as CodeSearchNet.
The results, shown in Table 10, clearly illustrate the improvement in code retrieval performance from
finetuning on CoRNStack with both a 2M subset and the full 21M examples.

Training Dataset # Examples CSN Avg AdvTest
CodeSearchNet 2M 65.8 37.5
CoRNStack Subset (Ours) 2M 71.4 48.6
CoRNStack (Ours) 21M 77.7 57.8

Table 10: Comparison of fine-tuning Arctic-Embed on CoRNStack vs CodeSearchNet.

A.6 DETAILED EXPLANATION OF COMPARISON WITH CODET5+

In our paper, we compared our code retriever—an encoder-only model—to the publicly available
110M parameter CodeT5+ Embedding model7 (denoted as CodeT5+ in our paper). This model is
also encoder-only and is listed in the official CodeT5+ repository8, but not discussed in the CodeT5+
paper Wang et al. (2023b). The repository also includes the 220M parameter CodeT5+ bimodal
model9, an encoder-decoder trained with text-code matching. CodeT5+ bimodal uses the 110M
parameter CodeT5+ embedding model as its encoder and incorporates an additional decoder for

7https://huggingface.co/Salesforce/codet5p-110m-embedding
8https://github.com/salesforce/CodeT5/tree/main/CodeT5%2B
9https://huggingface.co/Salesforce/codet5p-220m
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reranking the top 32 candidates retrieved by the embedding model. Since CodeT5+ bimodal pri-
marily serves as a reranker over the embedding model’s results, we did not include this model in
the comparison in our paper. Our results (in Table 3 of the main paper) closely align with the
performance metrics of the CodeT5+ Embedding model reported in the CodeT5+ README 10. Ad-
ditionally, the CodeT5+ authors note that the released CodeT5+ models are trained with multi-task
data, and results differ from those in their paper, which are fine-tuned for each retrieval bench-
mark. Table 11 shows a detailed comparison of our code retriever with both the released multi-task
CodeT5+ models and the single-task CodeT5+ models. We observe that our zero-shot code retriever
outperforms both variants.

Model # Params Model Type CSN AdvTest
CodeT5+ Embedding 110M Retriever Multi-Task Finetune 74.2 40.8
CodeT5+ Bimodal 220M Reranker Multi-Task Finetune 75.9 42.9
CodeT5+ Bimodal 220M Reranker Task-Specific Finetune 77.1 43.3
CodeT5+ Bimodal 770M Reranker Task-Specific Finetune 77.4 44.7

Ours 137M Retriever Zero-shot 77.9 59.5

Table 11: Code Retriever Fine-Tuned on CoRNStack vs. Different CodeT5+ Models

A.7 STUDENT VS TEACHER PERFORMANCE FOR LISTWISE CODE RERANKING

Here, we evaluate the teacher model for listwise code reranking, to see whether the student model
reaches the teacher’s performance after finetuning. Due to computational limitations in running the
large teacher model on the entire CodeSearchNet (CSN) and AdvTest benchmarks, we evaluated
on 1,000 random sampled queries for AdvTest and each language in CSN. Table 12 compares the
performance of our finetuned Qwen 2.5 7B student model with the Qwen 2.5 32B teacher model.
We observe that while the finetuned student slightly outperforms the teacher on CSN, it still shows
a slight performance gap on the more challenging AdvTest benchmark.

Reranker CodeSeachNet AdvTest
Python Java JS PhP Go Ruby Avg. Python

None (Retriever Only) 76.3 77.4 71.1 70.9 91.4 80.2 77.9 58.0
Qwen-2.5-7B (Student Model) 70.9 71.8 66.0 64.7 83.6 72.4 71.5 60.6

Qwen-2.5-32B (Teacher Model) 79.8 80.4 76.8 73.3 92.0 82.6 80.8 73.6

Finetuned Qwen 2.5 7B 79.9 81.9 77.9 73.2 92.5 81.8 81.2 70.4

Table 12: Ranking performance (MRR@100 in %) on 1k randomly sampled queries (per language)
from CodeSearchNet and AdvTest for teacher model vs student model before and after finetuning.

A.8 DETAILS ON DATA AUGMENTATION FOR LISTWISE RERANKING

We follow the data augmentation methodology from Pradeep et al. (2023), incorporating techniques
to create a more diverse and challenging training setup in order to obtain a more robust trained
reranker. Specifically, the augmentation process consists of two key components:

• Variable Window Sizes: For each training instance, a random subset of candidate code
snippets (ranging from 3 to 10 candidates) is sampled from the original ranked list to pass
as input to the teacher model. This introduces variability in the input size and diversifies
complexity of the reranking task, ensuring that the reranker model encounters a broader
range of scenarios during training.

• Random Shuffling: To enhance the model’s generalization ability across different doc-
ument orders—beyond the default order provided by the retriever—random permutations

10https://github.com/salesforce/CodeT5/blob/main/CodeT5%2B/README.md#
evaluation-results
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are applied to the sampled windows. This technique has demonstrated effectiveness in
traditional text reranking tasks (Pradeep et al., 2023), and we extend it to code reranking.
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