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Abstract
A key performance bottleneck when training graph neural network (GNN) models
on large, real-world graphs is loading node features onto a GPU. Due to limited
GPU memory, expensive data movement is necessary to facilitate the storage
of these features on alternative devices with slower access (e.g. CPU memory).
Moreover, the irregularity of graph structures contributes to poor data locality
which further exacerbates the problem. Consequently, existing frameworks
capable of efficiently training large GNN models usually incur a significant
accuracy degradation because of the inevitable shortcuts involved. To address
these limitations, we instead propose FreshGNN, a general-purpose GNN mini-
batch training framework that leverages a historical cache for storing and reusing
GNN node embeddings instead of re-computing them through fetching raw
features at every iteration. Critical to its success, the corresponding cache
policy is designed, using a combination of gradient-based and staleness criteria,
to selectively screen those embeddings which are relatively stable and can be
cached, from those that need to be re-computed to reduce estimation errors and
subsequent downstream accuracy loss. When paired with complementary system
enhancements to support this selective historical cache, FreshGNN is able to
accelerate the training speed on large graph datasets such as Papers100M and
MAG240M by 2.7× with less than 1% influence on test accuracy.

1 Introduction
Graphs serve as a ubiquitous abstraction for representing relations between entities of interest. Linked
web pages, paper citations, molecule interactions, purchase behaviors, etc., can all be modeled as
graphs, and hence, real-world applications involving non-i.i.d. instances are frequently based on
learning from graph data. To instantiate this learning process, graph neural networks (GNN) have
emerged as a powerful family of trainable architectures with successful deployment spanning a wide
range of graph applications, including community detection [1], recommender systems [2], fraud
detection [3], drug discovery [4] and more. The favorable predictive performance of GNNs is largely
attributed to their ability to exploit both entity-level features as well as complementary structural
information or network effects via so-called message passing schemes [5], whereby updating any
particular node embedding requires collecting and aggregating the embeddings of its neighbors.
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Repeatedly applying this procedure by stacking multiple layers allows GNN models to produce node
embeddings that capture local topology (with extent determined by model depth) and are useful for
downstream tasks such as node classification or link prediction.

Not surprisingly, the scale of these tasks is rapidly expanding as larger and larger graph datasets
are collected. As such, when the problem size exceeds the memory capacity of hardware such as
GPUs, some form of mini-batch training is the most common workaround [6–9]. Similar to the
mini-batch training of canonical i.i.d. datasets involving images or text, one full training epoch is
composed of many constituent iterations, each optimizing a loss function using gradient descent
w.r.t. a small batch of nodes/edges. In doing so, mini-batch training reduces memory requirements on
massive graphs but with the added burden of frequent data movement from CPU to GPU. The latter
is a natural consequence of GNN message passing, which for an L-layer model requires loading the
features of the L-hop neighbors of each node in a mini-batch. The central challenge of efficient GNN
mini-batch training then becomes the mitigation of this data loading bottleneck, which otherwise
scales exponentially with L; even for moderately-sized graphs this quickly becomes infeasible.

Substantial effort has been made to address the challenges posed by large graphs using system-level
optimizations, algorithmic approximations, or some combination thereof. For example, on the system
side, GPU kernels have been used to efficiently load features in parallel or store hot features in a
GPU cache [10–12]; however, these approaches cannot avoid memory access to the potentially large
number of nodes that are visited less frequently.

On the other hand, there are generally speaking two lines of work on the algorithm front. The
first is based on devising sampling methods to reduce the computational footprint and the required
features within each mini-batch. Notable strategies of this genre include neighbor sampling [6],
layer-wise sampling [13, 14], and graph-wise sampling [7, 8]. However, neighbor sampling does
not solve the problem of exponential growth mentioned previously, and the others may converge
slower or to a solution with lower accuracy [15]. Meanwhile, the second line of work [16–18] such
as GAS [17] stores intermediate node representations computed for each GNN layer during training
as historical embeddings and reuses them later to reduce the need for recursively collecting messages
from neighbors. Though conceptually promising and foundational to our work, as we will later show
in Sec. 3, its non-selective way of reusing historical embeddings struggle to simultaneously achieve
both high training efficiency and high model accuracy when scaling to large graphs, e.g., those with
more than 108 nodes and 109 edges.

To this end, we propose a new mini-batch GNN training solution with system and algorithm co-design
for efficiently handling large graphs while preserving predictive performance. As our starting point,
we narrow the root cause of accuracy degradation when using historical embeddings to the non-
negligible accumulation of estimation error between true and approximate representations computed
using the history. As prior related work has no practical mechanism for controlling this error, we
equip mini-batch training with a historical embedding cache whose purpose is to selectively admit
accurate historical embeddings while evicting those likely to be harmful to model performance. In
support of this cache and its attendant admission/eviction policy, we design a prototype system called
FreshGNN: Reducing mEmory access via Stable Historical embeddings, which efficiently trains
large-scale models with high accuracy.

Our contribution We propose a mini-batch training algorithm for GNNs that achieves scalability
without compromising model accuracy. This is accomplished through the use of a historical em-
bedding cache, with a corresponding cache policy that adaptively maintains node representations
(via gradient and staleness criteria to be introduced later) that are likely to be stable across training
iterations. In this way, we can economize GNN mini-batch training while largely avoiding the reuse
of embeddings that lead to large approximation errors and subsequently, poor predictive accuracy.
We provide a comprehensive empirical evaluation of FreshGNN across common baseline GNN
architectures, large-scale graph datasets, and hardware configurations. The results from evaluation
demonstrate that FreshGNN can closely maintain the accuracy (accuracy drop controlled within 1%)
of non-approximate neighbor sampling while training 2.7× faster than state-of-the-art baselines.

2 Historical Embedding Cache

The historical embedding cache design is informed by the following question: What is the suitable
cache policy for checking in and out node embeddings for accuracy? Caching intermediate node
embeddings is fundamentally different than caching raw node features. Unlike raw node features

2



FreshGNN: Reducing Memory Access via Stable Historical Embeddings for Graph Neural Network Training

which stay unchanged, the embeddings are constantly updated during model training, meaning the
quality of cached embedding will influence the accuracy of trained model. Compared with GAS’s
non-selective way of embedding reusing, we propose to selectively cache and reuse the stable
embeddings that are more reliable for future reuse. The following introduces the workflow of the
historical embedding cache and the cache policy for being selective.
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Figure 1: Illustration of historical embedding cache using an example mini-batch graph.

2.1 Historical Cache Workflow

Figure 1 elucidates the workflow of the historical embedding cache using a toy example. Here node
v1 is selected as the seed node of the current mini-batch as in Figure 1(a). Computing v1’s embedding
requires recursively collecting information from multi-hop neighbors as illustrated by the subgraph
in Figure 1(b). And as mentioned previously, neighbor sampling can reduce this subgraph size as
shown in Figure 1(c). Figure 1(d) then depicts how the historical embedding cache can be applied to
further prune the required computation and memory access. The cache contains node embeddings
recorded from previous iterations as well as some auxiliary data related to staleness and gradient
magnitudes as needed to estimate embedding stability. In this example, the embeddings of node v3
are found in the cache, hence its neighbor expansion is no longer needed and is pruned from the
graph. Additionally, after this training iteration, some newly generated embeddings (e.g., node v2)
will be pushed to the cache for later reuse. Existing cached embeddings may also be evicted based
on the updated metadata. In this example, both v11 (by staleness) and v3 (by gradient magnitude
criteria to be detailed later) are evicted from the cache.

2.2 Historical Embedding Cache Policy

To achieve caching embeddings selectively, it is important to identify the stable embeddings (i.e.,
embeddings that are safe to be reused during training). However, it is challenging to quantify the
stability of embeddings, where in the context of GNN training, the notion of stability is calibrated by
the difference between a true node embedding and the corresponding cached one. The naive solution
is to recompute all the embeddings in the cache after each training iteration and evict those that have
drifted away. However, this solution is of course not viable for large graphs because it involves the
very type of high-cost data loading and computation we are trying to avoid.

FreshGNN adopts a gradient-based criteria to identify stable embeddings in a light-weight way. The
gradient of node embeddings are naturally calculated to update the weight parameters during training,
therefore fetching the embedding gradients is zero-cost. More importantly, the gradients are the
feedbacks from model training that can reflect the stability of the embeddings. A near-zero gradient
magnitude indicates that the embedding leads to the correct predictions and only needs little change
at this iteration of training. Compared to the other embeddings with gradient of large magnitude,
this embedding is more stable and can be cached for further reuse. Based on the absolute value of
embedding gradients, FreshGNN is able to compare the stability of embeddings at each iteration in
order to store stable embeddings newly produced and invalidate unstable ones in the cache.

Based on the intuition of using gradient as indicator of embedding stability, we formulate the
embedding cache policy for accuracy as below. Given a mini-batch graph, denote the set of nodes at
layer l as V(l) and the set of cached nodes as Vcache. For nodes v ∈ V(l), we use the magnitude of
embedding gradients w.r.t. the training loss as a proxy for node stability at each layer. FreshGNN
admits nodes with small absolute values of gradients to the cache, with the rate controlled by pgrad,
the fraction of newly generated embeddings to be admitted. Of the remaining (1− pgrad) fraction of
the nodes, if any of these happen to already be in the cache, they will now be evicted.

With the weight parameters updated at every iteration, the embeddings produced using parameters
from previous iterations can be stale. To maintain the accuracy of the model, besides the gradient
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Table 1: Test accuracy of algorithms compared with target accuracy obtained by neighbor sampling.

Model SAGE GAT GCN

Dataset Papers100M MAG240M Papers100M MAG240M Papers100M MAG240M

Target 66.4 66.1 66.1 65.2 65.8 65.2

GAS -8.17 OOM -8.67 OOM -12.3 OOM
ClusterGCN -7.57 OOM -8.08 OOM -12.4 OOM
GraphFM -18.4 OOM OOM OOM -18.7 OOM
MariusGNN -3.43 -2.97 OOM OOM -2.04 -2.37

Ours -0.15 -0.51 -0.71 -0.36 -0.16 -0.29

policy, FreshGNN also bounds the staleness of the embeddings. The staleness is set to zero when an
embedding is admitted to cache and it will increase by one at each iteration. FreshGNN treats any
embedding with staleness larger than a threshold tstale as being out-dated and evicts it from cache.

3 Evaluation
We employed three widely-used GNN architectures for our experiments: GraphSAGE [6], GAT [19],
and GCN [20], . To measure their baseline model performance, we train them using mini-batch neigh-
bor sampling in DGL [21]. All datasets are from OGB benchmark [22, 23], including Papers100M
and MAG240M with over 100M nodes. We also use Twitter [24] and FriendSter [25] to evalu-
ate system speed. See Appendix A for detailed dataset settings. The compared systems include
state-of-the-art alternatives for GNN mini-batch training, including DGL [21], PyG [26], PyTorch-
Direct [10], MariusGNN [27], and representative mini-batch training algorithms such as Clus-
terGCN [7], GAS [17], and GraphFM [18].

Figure 2a compares the time for training a GraphSAGE model for one epoch on the four large-scale
graph datasets using a single GPU (NVIDIA-A100-40GB). FreshGNN significantly outperforms all
the other baselines across all the datasets by 2.73× over the best among others. FreshGNN is not only
fast but also reliably converges to the desired target accuracy. Figure 2b plots the time-to-accuracy
curve of different training systems. FreshGNN can reach the same accuracy in 25 minutes while the
slowest baseline (PyG) takes more than 6 hours.

Table 1 compares the test accuracy of FreshGNN with other mini-batch training algorithms. When
scaling to larger graphs such as Papers100M, most of the baselines experience a substantial accuracy
drop (from 7% to 18%) while running out of memory on MAG240M. Only MariusGNN can run on all
datasets, but with lower accuracy (over 2% drop) and longer epoch time (Figure 2a). By contrast,
FreshGNN only experiences a less than 1% accuracy difference across all datasets compared with
base models.

4 Conclusion
In this paper, we propose FreshGNN, a mini-batch training algorithm for GNNs on large, real-world
graphs. At the core of our design is a selective historical cache that stores and reuses the stable GNN
node embeddings to avoid re-computation from raw features. To identify stable embeddings that can
be cached, FreshGNN designates a cache policy using a combination of gradient-based and staleness
criteria. FreshGNN is able to accelerate the training speed of GNNs on large graphs by 2.7× over
state-of-the-art systems on GPU, with less than 1% influence on model accuracy.
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A Appendix

Table 2: Graph dataset details, including input node feature dimension (Dim.) and number of classes
(#Class).

Dataset |V| |E| Dim.2 #Class

Papers100M [22] 111M 1.6B 128 172
MAG240M [23] 244.2M 1.7B 768 153
Twitter [24] 41.7M 1.5B 768 64
Friendster [25] 65.6M 1.8B 768 64

2The first three datasets use float32 while the latter three use float16, which follows common practice [22, 23].
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