

000 001 002 003 004 005 REVISITING INCREMENTAL OBJECT DETECTION WITH 006 PRE-TRAINED VISION-LANGUAGE MODELS 007 008 009

010 **Anonymous authors**
 011 Paper under double-blind review
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026

ABSTRACT

027
 028
 029
 030
 031 Pre-trained Vision-Language Models (VLMs) have recently been applied to In-
 032 cremental Object Detection (IOD), achieving notable progress. However, existing
 033 researches often oversimplify real-world scenarios by assuming the incremental
 034 tasks come from a single general domain. To better investigate VLMs under IOD,
 035 it is necessary to explore more generalized scenarios that encompass both novel
 036 categories and domains. To this end, we propose Cross-Domain Incremental Ob-
 037 ject Detection (CDIOD), a new benchmark that assesses the ability to continuously
 038 adapt to diverse object detection tasks across domains. CDIOD reveals that exist-
 039 ing methods struggle to balance between adaptivity and stability under substantial
 040 domain shifts. To tackle this challenge, we propose D^3 , a novel framework that
 041 possesses **Dynamic** grouping to promote knowledge sharing and prevent task col-
 042 lisions; **Dynamic** adapter assignment to effectively adapt to new tasks while con-
 043 trolling model scale; and **Dynamic** training pipeline to ensure a proper stability-
 044 adaptivity balance. D^3 enables VLMs to effectively handle task streams of various
 045 distribution shifts. Extensive experiments demonstrate that D^3 achieves state-of-
 046 the-art results across three benchmarks, highlighting its versatility and robustness
 047 in diverse incremental learning scenarios.
 048
 049

1 INTRODUCTION

050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000

To better understand the challenges of incremental learning with VLMs, we introduce a new challenging yet practical benchmark named Cross-Domain Incremental Object Detection (CDIOD). As shown in Fig. 1(a), CDIOD comprises datasets from three different domains: remote sensing(DIOR),

natural scenes (Pascal VOC) and underwater (RUOD). Each dataset is further divided into several sub-tasks. Models are required to incrementally learn all these tasks and are finally evaluated on three datasets in a task-agnostic manner. We compare several SOTA methods under this more generalized setting. The results show that VLMs suffer from severe forgetting when exposed to substantial domain shifts from their pre-training distribution (e.g., from Objects365 to remote sensing). The forgetting is further exacerbated by the need of handling novel categories. This compounded challenge leads to a dilemma, making it difficult to pursue an optimal subspace for previous and upcoming knowledge. This consequently makes existing methods fail to effectively balance between stability and adaptivity. As shown in Fig. 2, full fine-tuning approaches like GCD [63] adapt well to new domains but fail to retain prior knowledge under large distribution shifts. In contrast, PEFT-based methods such as MD-DETR [2] and Zira [6] better preserve pre-trained knowledge but exhibit limited adaptivity. This underscores that incremental learning of VLMs under diverse and evolving scenarios remains an underexplored problem.

To address these challenges, we propose D^3 , a novel framework that jointly enhances adaptivity, stability, and efficiency. D^3 begins with Dynamic Task Grouping (DTG), which groups tasks by distribution similarity to guide the entire learning process. Building on this, Dynamic Adapters Assignment (DAA) allocates and manages Incremental Group Adapters (IGA) at group-level, enabling knowledge sharing across related tasks while isolating unrelated ones. The dynamic training pipeline then adjusts learning strategies based on grouping: new groups initialize adapters to tackle large distribution shifts, while existing groups consolidate adapters to maintain stability and encourage knowledge transfer with controlled parameter growth. At inference, D^3 performs group-wise routing for each input, significantly reducing routing errors. This dynamic design enables VLMs to learn from evolving task streams with minimal forgetting and parameter overhead.

Extensive experiments on three benchmarks Fig. 1(b), including CDIOD, conventional IOD, and IVLOD[6], demonstrate that D^3 consistently balances adaptivity and stability across diverse incremental settings. It achieves competitive performance with significantly fewer parameters, and its modular design enables scalable, efficient adaptation to a wide range of downstream detection tasks.

Our contributions are threefold:

- We introduce a novel benchmark, CDIOD, to evaluate the capability of VLMs in more generalized scenarios that involve substantial domain shifts, which existing IOD methods struggle to handle.
- We propose D^3 , a dynamic framework that integrates task grouping, adaptive adapter assignment, and knowledge consolidation to jointly enhance adaptivity, stability, and efficiency, achieving a 16.5 AP gain on CDIOD with only 1.2% additional parameters.
- Extensive evaluations across three benchmarks confirm our method’s consistent SOTA performance, validating its generality and robustness in diverse incremental settings.

2 RELATED WORKS

2.1 INCREMENTAL LEARNING

Incremental learning aims to enable models to continuously learn new tasks without forgetting previous knowledge [43; 60; 13]. Existing approaches can be broadly categorized into three paradigms. Regularization-based methods impose constraints on the model to prevent overfitting to new data, either through explicit penalties on model weights [27; 29; 72] or implicit constraints via knowledge distillation (KD) [16; 36; 59; 66]. Rehearsal methods maintain a memory buffer of previously seen images [51; 48] or intermediate features [45; 20], and selectively replay them during subsequent incremental stages [17]. Architectural methods dynamically expand network [69; 34; 68] to accommodate new knowledge without interfering with existing ones.

2.2 INCREMENTAL OBJECT DETECTION

Compared to incremental classification, IOD is more challenging due to the presence of both old and new classes in the same image, leading to missing annotations and background shift. Some works extended aforementioned methods to object detection. For KD-based approaches [57; 40; 46; 47; 10; 24; 63], RILOD [57] first applied LwF [36] to IOD. ERD [10] further filters negative responses. For rehearsal methods [1; 41; 42; 25], CL-DETR [41] replays exemplars that aligned with

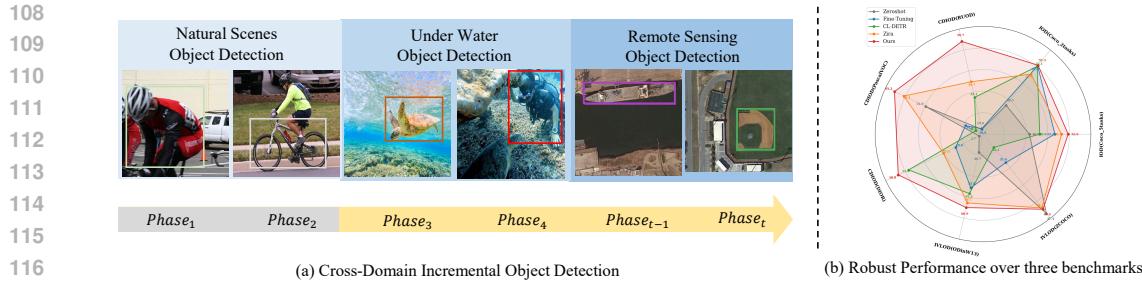


Figure 1: (a) Illustration of incremental learning spanning across different domains (Natural Scenes, Underwater, Remote Sensing). A single-domain process (e.g., grey area) corresponds to conventional IOD, whereas the full sequence defines CDIOD. (b) Radar chart comparing methods across various incremental scenarios (e.g., CDIOD, IOD(COCO), IVLOD(OdinW13)). The outer boundary indicates joint training performance, except for IVLOD(ZCOCO), where zero-shot serves as the upper bound.

training data distribution, and ABR [42] replays only foreground objects to mitigate foreground shift. Leveraging VLMs, [73] assign separate parameters for each task to reduce interference. GCD [63] distills vision-language topological relationships to preserve semantic structures. Zira [6] introduces reparameterizable modules to adapt while retaining pre-trained knowledge.

2.3 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

PEFT techniques adapt pre-trained models to downstream tasks by updating a small subset of parameters, significantly reducing computational costs. Prompt tuning methods [33; 22] learns task-specific prompts to guide model predictions. Adapter-based methods [18; 15] insert trainable bottleneck modules into each transformer layer. LoRA [19] approximates weight updates via low-rank matrices. These techniques have been extended to incremental learning. For example, [65; 64; 58; 28] use learnable prompts to encode task-specific knowledge. [71; 76; 61] explore dynamic adapter expansion/composition to allocate capacity for new tasks.

3 PRELIMINARIES

3.1 CROSS-DOMAIN INCREMENTAL OBJECT DETECTION

Formally, given a sequence of training tasks $\{\mathcal{D}_1, \dots, \mathcal{D}_t\}$, each phase t provides a task $\mathcal{D}_t = \{(x_n, y_n)\}$, where x_n are n samples drawn from domain \mathcal{P}_t . The corresponding labels y_n belong to the label space C_t . During phase t , only the classes in C_t are annotated, and the label spaces are disjoint across phases, i.e., $C_t \cap C_{t'} = \emptyset$ for $t \neq t'$. The detector is sequentially updated in each phase to recognize the new classes in C_t based on \mathcal{D}_t . After completing phase t , it is expected to detect all seen classes, i.e., $C_{1:t} = C_{1:(t-1)} \cup C_t$. Unlike conventional IOD, which assumes a fixed domain across all phases, i.e., $\mathcal{P}_t = \mathcal{P}_{t'}$ for all $t \neq t'$, CDIOD considers a more realistic setting that encompasses both intra-domain $\mathcal{P}_t = \mathcal{P}_{t'}$ and cross-domain scenarios $\mathcal{P}_t \neq \mathcal{P}_{t'}$.

3.2 UNDERSTANDING THE CHALLENGES OF CDIOD

Based on GroundingDINO [39], a widely adopted VLM for IOD [6; 63], we reproduce several IOD methods to examine the challenges in CDIOD. Among them, GCD adopts full fine-tuning combined with KD to preserve prior knowledge. MD-DETR and Zira are PEFT-based methods that freeze backbone parameters. MD-DETR uses prompt pools, and Zira leverages reparameterization to expand capacity. The training process proceeds sequentially, PascalVOC(4 phases) \rightarrow RUOD(2 phases) \rightarrow DIOR(2 phases).

Intra-domain Stability: We measure the average forgetting within a domain as $\frac{1}{N-1} \sum_{i=1}^{N-1} (W_i^i - W_i^N)$, where N is the number of learning phase in this domain, W_i^i is the immediate performance on task i , and W_i^N is the performance after N learning phases. As shown in Fig. 2(a), VLMs

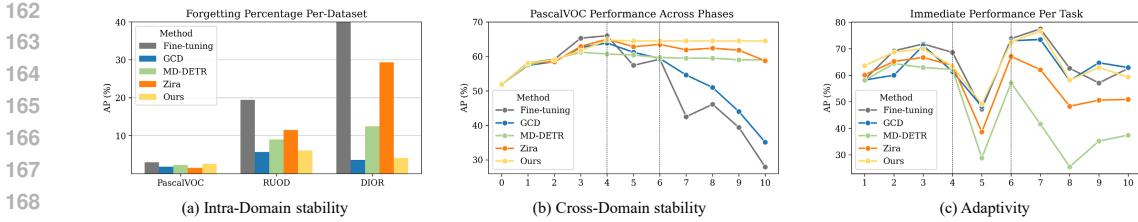


Figure 2: Stability and adaptivity analysis of different Methods on CDIOD. (a) Intra-domain stability is evaluated as forgetting percentage within each dataset, where a lower value represents less forgetting. (b) Cross-domain stability is evaluated by tracking PascalVOC performance across all training phases; vertical dashed lines denote domain transitions. (c) Adaptivity is measured by the immediate performance on each task right after its training, indicating how well the model adapts to newly introduced tasks.

show minimal forgetting on PascalVOC. However, domains with larger distribution shifts from pre-training (e.g., DIOR and RUOD) suffer severe forgetting.

Cross-domain Stability: We track the performance of a dataset (e.g., PascalVOC) across all learning phases to assess cross-domain stability. In Fig. 2(b), PascalVOC sub-tasks are learned sequentially (phases 1-4), achieving peak performance at phase 4. After phase 4 and phase 6, training shifts to other domains. Large domain gaps lead to substantial VLM forgetting. GCD struggles to prevent forgetting in these scenarios. Zira and MD-DETR, which maintain stable representations by freezing pre-trained parameters, better preserve prior knowledge during cross-domain cases.

Adaptivity: Evaluating stability alone is insufficient, as methods with high stability (e.g., zero-shot) but lack of capacity to adapt to downstream tasks typically result in suboptimal performance. We measure adaptivity by the immediate performance on each task right after training. Full fine-tuning methods generally offer stronger adaptivity. PEFT-based methods achieve comparable performance to fine-tuning on tasks near the pre-training distribution but show limited adaptivity to significant domain shifts, performing notably worse than full fine-tuning in such cases.

Discussion: While VLMs demonstrate strong generalization capabilities, they still suffer from significant forgetting in more generalized incremental settings. Full fine-tuning approaches offer high adaptivity but struggle to retain knowledge when faced with large domain shifts. In contrast, PEFT-based methods exhibit stronger stability by preserving pre-trained representations, yet lack sufficient adaptivity when handling out-of-distribution tasks. Balancing stability and adaptivity remains an open challenge for CDIOD.

4 METHOD

4.1 OVERVIEW

Adapter modules such as LoRA [19] and Adapters [15] improve adaptivity but remain prone to catastrophic forgetting in incremental scenarios. To enhance stability, task-specific adapters can be integrated via task-wise routing/retrieval [7; 71; 76]. This practice, however, faces performance bottlenecks due to inaccurate task-ID prediction, particularly when applied to complex CDIOD tasks (see Fig. 4). To overcome these limitations, we propose a novel framework D^3 to transform task-wise to robust group-wise routing. As shown in Fig. 3, we first introduce Dynamic Task Grouping (DTG) to produce a task-to-group assignments. Build on this, Dynamic Adapter Assignment (DAA) manages task-specific adapters at the group level through Incremental Group Adapters (IGA) and Intra-Group Consolidation (IGC). A dynamic training pipeline then adjusts its learning strategy based on group assignments to balance stability and adaptivity. Finally, during inference, DTG performs robust group-wise routing for each input.

4.2 DYNAMIC TASK GROUPING

Task distributions are commonly used for task ID inference. We extend this by leveraging distribution similarity not just for identification, but for grouping: tasks with similar distributions are

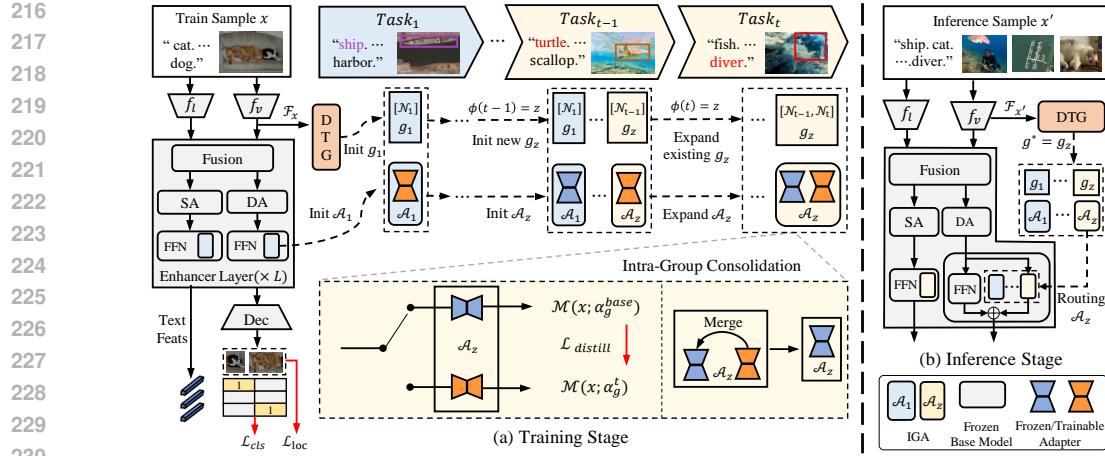


Figure 3: Overview of the D^3 framework. SA: Self-Attn, DA: Deform-Attn, f_l : language backbone, f_v : vision backbone. At training, given $Task_x$, the DTG estimates its task distribution \mathcal{N}_x using F_x and computes similarity to existing groups. The task is either assigned to the closest group $g^* = \phi(x)$ or a new group is initialized. The training pipeline branches accordingly: (1) For new groups (e.g., $Task_{t-1}$), a new IGA \mathcal{A}_z is trained; (2) For existing groups (e.g., $Task_t$), \mathcal{A}_z expands with a new adapter α_g^t initialized from α_g^{base} . Intra-group consolidation then occurs through KD where student output $\mathcal{M}(x; \alpha_g^t)$ are aligned with teacher output $\mathcal{M}(x; \alpha_g^{\text{base}})$, followed by adapter merging. At inference, DTG performs group routing by comparing the test sample distribution $\mathcal{N}_{x'}$ to stored group ones. If $g^* = g_z$, the corresponding \mathcal{A}_z is activated for prediction.

clustered to enable knowledge sharing, while dissimilar ones are isolated to prevent interference. We thus introduce DTG, an adaptive grouping mechanism based on distribution similarity. Formally, given a task sequence $\mathcal{S} = \{1, \dots, Z\}$, we define a mapping function $\phi(\mathcal{S}) \rightarrow \{g_1, \dots, g_z\}$ with $z \leq Z$, inducing a task partition:

$$\mathcal{S} = \bigcup_{i=1}^z g_i, \quad \text{where} \quad g_i \cap g_{i'} = \emptyset \quad \text{for } i \neq i'. \quad (1)$$

DTG functions as a domain discriminator which can be implemented as an autoencoder or via probabilistic modeling. In practice, we implement it as the latter due to memory efficiency. Given a new task \mathcal{D}_t , we extract features \mathcal{F}_t using the frozen image backbone and estimate its statistics, denoted as $\mu_t = \mathbb{E}(\mathcal{F}_t)$ and $\Sigma_t = \text{Var}(\mathcal{F}_t)$. This defines a Gaussian approximation $\mathcal{N}_t = \mathcal{N}(\mu_t, \Sigma_t)$ for task \mathcal{D}_t . We compare \mathcal{N}_t with the distribution of each task assigned to a group. For group g with task set $\{k \in g\}$, the similarity is computed as the minimum KL divergence:

$$\text{KL}(t, g) = \min_{k \in g} [\text{KL}(\mathcal{N}_t \parallel \mathcal{N}_k)] \quad (2)$$

Let $g^* = \arg \min_g \text{KL}(t, g)$ denote the group yielding the minimum KL divergence. The grouping decision follows:

$$\phi(t) = \begin{cases} g^* & \text{if } \text{KL}(t, g^*) < \tau \\ \text{Init new group} & \text{otherwise} \end{cases} \quad (3)$$

where τ is the expansion threshold. If no existing group exhibits sufficient similarity to task \mathcal{D}_t , a new group is created to accommodate this task.

4.3 DYNAMIC ADAPTERS ASSIGNMENT

Building on the task-to-group allocation from DTG, we reorganize task-specific adapters into group-specific ones. This approach offers two key advantages: it effectively replaces task-wise routing with a more robust group-wise mechanism, and it enables knowledge reusing among adapters within the same group. We realize this through two key components: Incremental Group Adapters (IGA) and Intra-Group Consolidation (IGC). IGA serves as an expandable adapter module tied to each group. IGC further enhances knowledge reuse and parameter growth control within IGA.

270 **Incremental Group Adapters.** Each group g_i is associated with an IGA, denoted as \mathcal{A}_i , which is
 271 initialized upon the arrival of its first task. The \mathcal{A}_i comprises a set of task-specific adapters $\alpha_{g_i}^k$, one
 272 for each task $k \in g_i$. These adapters follow the LoRA [19] design and are inserted into the feed-
 273 forward networks (FFN) of both text and image branches within each enhancer layer. Denoting the
 274 FFN input as h , the output becomes:

$$275 \quad \text{FFN}(h) + \sum_{k \in g_i} m_k \cdot B_k A_k h, \quad (4)$$

276 where A_k and B_k are LoRA parameters of task k , and m_k is a one-hot mask indicating the active
 277 adapter.

278 **Intra-Group Consolidation.** We manage to model multiple tasks within single IGA module \mathcal{A}_g
 279 to enable group-wise routing. But we still faces two key issues: how to effectively reuse previ-
 280 ously learned knowledge and how to prevent the linear growth of adapter parameters. To address
 281 the aforementioned issues, we propose a per-task parameter consolidation strategy. First, to retain
 282 group-level knowledge, we employ KD from the base to the new adapter via a lightweight switching
 283 mechanism, avoiding the need to cache previous models. Each IGA \mathcal{A}_g includes a base adapter
 284 α_g^{base} . When a new task t arrives (i.e., $\phi(t) = g$), a task-specific adapter α_g^t is initialized from the
 285 base one. We denote the model output as $\mathcal{M}(x; \alpha_g)$, where x is the input sample, and α_g is the
 286 currently activated adapter within IGA \mathcal{A}_g . During training, we obtain (i) the student output using
 287 α_g^t , and (ii) the teacher output using α_g^{base} . The distillation loss is formally defined as:

$$288 \quad \mathcal{L}_{\text{distill}} = \mathcal{L}(\mathcal{M}(x; \alpha_g^t), \mathcal{M}(x; \alpha_g^{\text{base}})), \quad (5)$$

289 where \mathcal{L} refers to a topology-based KD loss. Then, to prevent parameter growth over time, we
 290 consolidate adapters within each \mathcal{A}_g after training. Specifically, the new adapter α_g^t is merged into
 291 base adapter α_g^{base} via a weighted sum:

$$292 \quad \alpha_g^{\text{base}} \leftarrow \lambda \alpha_g^{\text{base}} + (1 - \lambda) \alpha_g^t, \quad (6)$$

293 where $\lambda \in [0, 1]$ balances prior knowledge preservation and task-specific adaptation. This merging
 294 serves as parameter-level regularization which prevents parameters overly drift from the base one.
 295 We use a small λ to favor updated representations while maintaining stability. The update is applied
 296 to both LoRA matrices (A, B), after which α_g^t is discarded. Further details are provided in Sec. B.
 297

302 4.4 TRAINING AND INFERENCE

303 **Dynamic training pipeline.** To ensure a proper stability-adaptivity balance, D³ dynamically adjusts
 304 its training pipeline based on the task assignment. It adopts a two-fold scheme: for a task assigned
 305 to a new group, the model is updated directly without a constraint term, favoring adaptivity to novel
 306 tasks. Conversely, for a task assigned to an existing group, we apply KD to retain group knowledge
 307 and mitigate label conflicts via pseudo-labeling, which prioritizes stability. By defining a binary
 308 indicator $\delta(t)$, where $\delta(t) = 1$ if task t is assigned to an existing group, and $\delta(t) = 0$ otherwise, we
 309 unify the training objective as follows:

$$310 \quad \mathcal{L} = \mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{loc}} + \delta(t) \mathcal{L}_{\text{distill}}, \quad (7)$$

311 where \mathcal{L}_{cls} utilizes focal loss [38], and \mathcal{L}_{loc} employs L1 and GIoU losses [54].

312 **Group Routing for Inference.** At inference time, for a given test image x , we first extract its
 313 feature statistics using the backbone, defining a Gaussian approximation \mathcal{N}_x . The DTG identifies
 314 the most similar group g^* via minimum KL divergence. If $\text{KL}(x, g^*)$ is below an out-of-distribution
 315 threshold, the corresponding \mathcal{A}_{g^*} is activated across all relevant layers for prediction. Otherwise,
 316 the model defaults to zero-shot inference using the base model alone.

319 5 EXPERIMENTS

320 **Datasets and Metrics.** We construct CDIOD using three diverse datasets covering 50 classes:
 321 DIOR [31] (remote sensing, 20 classes), Pascal VOC 2012 [9] (natural scenes, 20 classes), and
 322 RUOD [11] (underwater, 10 classes). To assess generality, we also evaluate on two additional

324 Table 1: CDIOD results ($AP\%$) under 0-5 and 0-10 settings. We report performance over three
 325 datasets after last training phase. All methods are based on Grounding-DINO-T. The Best and
 326 second results are shown in **bold** and underline, respectively.

Method	0-10 (5 phases)				0-5 (10 phases)			
	DIOR	PascalVOC	RUOD	Average	DIOR	PascalVOC	RUOD	Average
Joint	69.5	72.0	64.3	68.6	69.5	72.0	64.3	68.6
Fine-tuning	32.8	44.4	31.1	36.1	19.0	34.9	19.9	24.6
CL-DETR [41]	<u>55.6</u>	46.3	40.9	47.6	51.6	30.5	33.1	38.4
MD-DETR [2]	35.2	<u>59.6</u>	<u>48.5</u>	47.8	29.5	<u>58.5</u>	36.8	41.6
GCD [63]	<u>56.6</u>	51.7	44.8	<u>51.0</u>	<u>52.4</u>	42.0	36.6	43.7
Zira [6]	36.8	<u>62.6</u>	45.3	48.2	27.5	<u>61.3</u>	<u>39.7</u>	42.8
Ours	63.2	68.4	62.5	64.7	58.8	65.3	56.7	60.2

338 Table 2: IOD results ($AP\%$) on COCO 2017. Performance for base classes C_1 , new classes $C_{2:t}$,
 339 and all classes $C_{1:t}$ are reported, denoted as 'old', 'new', and 'all', respectively.

Method	40-40 (2 phases)			40-10 (5 phases)		
	old	new	all	old	new	all
Joint	61.8	54.1	57.9	61.8	54.1	57.9
Fine-tuning	56.8	53.6	55.2	56.2	46.2	51.2
CL-DETR	57.6	<u>52.6</u>	55.1	51.6	47.6	49.6
GCD	<u>58.7</u>	52.4	55.5	55.4	<u>48.0</u>	51.7
MD-DETR	<u>52.6</u>	50.1	51.3	51.3	40.1	45.7
Zira	58.0	49.6	53.8	57.0	46.8	<u>51.9</u>
Ours	59.8	50.8	<u>55.3</u>	<u>56.8</u>	48.4	52.6

351 benchmarks: conventional IOD based on COCO [37] and IVLOD [6] based on ODinW-13 [30].
 352 We use standard COCO metrics: AP and AP_{50} .

353 **Experiment Setup.** CDIOD is constructed by sequentially combining the above datasets in a class-
 354 incremental manner. Each dataset is split into subsets following standard class splits [10; 24; 25],
 355 ensuring disjoint label spaces across phases. Since images may include objects from unseen classes,
 356 they can reappear across phases, reflecting realistic conditions. The setup is denoted as $N_{\text{base}} - N_{\text{inc}}$,
 357 where N_{base} denotes the number of classes introduced in the initial step, and N_{inc} specifies the
 358 number introduced in each subsequent phase. When $N_{\text{base}} = 0$, classes are evenly divided in each
 359 phase. We report joint training results as an upper bound (denoted Joint). We adopt two settings:
 360 0-10 (5 phases) and 0-5 (10 phases). For example, the 0-10 setup follows DIOR (2 phases) \rightarrow
 361 PascalVOC (2) \rightarrow RUOD (1). After completing all phases, models are evaluated jointly across
 362 all three datasets. We report the average performance after three runs with shuffled dataset orders.
 363 Detailed description of the benchmark can be found in Sec. A.2.

364 **Implementation Details.** All models are built on Grounding-DINO-T, pre-trained on Ob-
 365 jects365 [56], GoldG [32], and Cap4M [32]. Training is conducted on 8 RTX 3090 GPUs with
 366 total batch size 16. Only LoRA parameters are updated, we set the rank as 16. The learning rate
 367 is set to $1e-3$ for 11 epochs and $1e-4$ for the last. The expansion threshold is 150, and the merge
 368 factor is 0.2 for both A and B matrices.

370 5.1 RELATED BENCHMARKS

371 **Incremental Object Detection (IOD).** We evaluate IOD on COCO under two common settings:
 372 40-40 and 40-10, utilizing the same methods as in our CDIOD evaluations.

373 **Incremental Vision-Language Object Detection (IVLOD).** For the IVLOD benchmark [6], we
 374 follow its full-shot task-incremental setup, where evaluation is confined to a task-specific label space.
 375 We employ group routing to infer the optimal group id for each input. Models are sequentially
 376 trained on ODinW-13 and evaluated after all phases. Baseline results for TFA [62], iDETR [8],
 377 AT [18], OW-DETR [14], CL-DETR [41], and Zira [6] are taken from [6].

378 Table 3: IVLOD full-shot results (*AP%*) on ODinW-13 and ZCOCO (zero-shot results on COCO).
379

Methods	ZCOCO	Avg	Ae	Aq	Co	Eg	Mu	Pa	Pv	Pi	Po	Ra	Sh	Th	Ve
Zero-shot	47.4	46.7	19.1	20.8	64.7	57.0	25.4	54.5	54.8	66.0	22.1	62.2	32.8	70.6	57.2
TFA	31.0	47.9	23.8	30.7	67.2	61.8	30.5	50.2	47.7	60.9	29.3	61.7	31.4	66.2	61.6
iDETR	37.3	58.7	32.6	46.7	71.0	68.6	55.3	58.9	64.5	71.0	50.3	63.3	39.2	77.1	64.8
AT	42.3	51.1	23.6	39.9	72.3	65.5	31.5	50.5	60.5	66.1	39.1	53.5	34.0	68.1	60.2
OW-DETR	31.2	55.6	28.5	43.8	70.5	67.8	43.8	56.8	63.1	69.5	45.2	59.0	37.0	74.4	63.2
CL-DETR	32.2	57.3	29.4	45.2	71.9	69.9	45.2	58.5	65.1	71.7	46.6	60.8	38.1	76.7	65.2
ZiRa	46.1	59.7	32.8	48.2	70.3	69.7	59.3	58.1	64.0	70.7	50.1	67.5	45.5	76.8	63.5
Ours	46.4	60.9	40.3	54.8	60.5	78.3	42.6	59.1	58.4	75.9	56.1	69.5	50.5	79.4	66.4

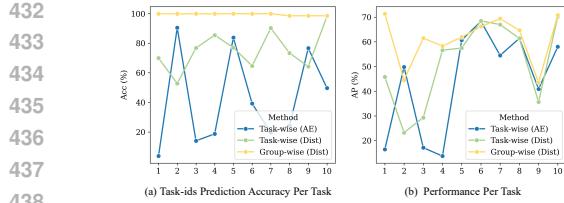
387
388 5.2 MAIN RESULTS
389390 **Results on CDIOD.** We evaluate our method on the CDIOD benchmark under 5 phases and 10
391 phases settings, where each phase introduces 10 and 5 classes, respectively (Tab. 1). Existing meth-
392 ods generally struggle to balance adaptivity and stability. Full fine-tuning methods adapt well to
393 new tasks but suffer from severe forgetting, especially under longer incremental sequences. In con-
394 trast, PEFT-based IOD methods maintain more stable performance on in-distribution tasks (e.g.,
395 PascalVOC) but show limited adaptivity to new domains. Our method achieves a better balance
396 across all domains and phases. It surpasses prior SOTA by +13.7 AP (5 phases) and +16.5 AP
397 (10 phases), maintaining stability while remaining adaptive to tasks with distribution shifts. More
398 detailed results per run and the impact of training order are provided in Sec. C.1.399 **Results on IOD.** As shown in Tab. 2, we further evaluate our method on COCO 2017 under 2 phases
400 and 5 phases incremental settings. For conventional IOD, simple fine-tuning already performs on
401 par with previous SOTA, indicating that pre-trained representations inherently offer strong forget-
402 ting resistance in in-domain scenarios. Our proposed method achieves superior performance across
403 both incremental scenarios, particularly in longer learning phases (40-10), which demonstrates its
404 enhanced intra-domain stability.405 **Results on IVLOD.** As shown in Tab. 3, our method drops 1.0 AP on ZCOCO compared to the
406 zero-shot upper bound. It also improves the ODinW13 average by 1.2 AP over the prior SOTA,
407 achieving the top score on 10 of the 13 datasets. These results demonstrate our method’s robust
408 downstream adaptation while effectively preserving zero-shot capability.410 5.3 ABLATION STUDY
411412 Table 4: Impact of different components, re-
413 porting Extra Parameters Percentage (EPP, %)
414 and Average performance (*AP%*) under 0-5 (10
415 phases) CDIOD setting.

#	Method	EPP	DIOR	VOC	RUOD	Avg
1	Base Model	0.00%	2.7	51.9	19.6	24.7
2	LoRA	0.40%	3.2	42.5	42.9	29.5
3	T-LoRA	4.00%	41.0	63.7	49.7	51.5
4	3 + Merge	4.00%	29.7	61.5	40.1	43.8
5	G-LoRA	1.20%	48.7	65.2	49.1	54.3
6	5 + Group Init	1.20%	51.6	66.7	51.9	56.7
7	6 + Dynamic	1.20%	58.8	65.3	56.7	60.2

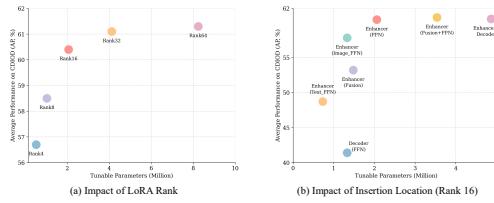
416 Table 5: Impact of the expansion threshold τ
417 on task grouping and performance under 0-5 (10
418 phases) setting.

Threshold	Groups	DIOR	VOC	RUOD	Avg
$\tau = 1$	10	41.0	63.7	49.7	51.5
$\tau = 50$	6	58.8	64.8	53.2	58.9
$\tau = 100$	4	59.7	66.1	53.1	59.6
$\tau = 150$	3	58.8	65.3	56.7	60.2
$\tau = 250$	3	58.6	65.3	57.7	60.5
$\tau = 400$	3	57.9	65.2	57.0	60.0
$\tau = 500$	3	58.4	65.1	57.2	60.2
$\tau = 600$	3	57.7	65.3	57.6	60.2
$\tau = 1000$	2	23.5	65.2	57.3	48.7

419 **Impact of each component.** We conduct ablations under 10 phases setting to assess each com-
420 ponent’s impact (Tab. 4). Row 1 shows that pre-trained VLMs poorly generalize to remote sensing and
421 underwater domains. A single LoRA (Row 2) shows adaptivity but suffers from severe forgetting.
422 T-LoRA (Row 3) trains task-specific LoRA and combines them via task-wise routing, causing lin-
423 ear parameter growth and routing errors. Row 4 further merge all LoRA weights per task through
424 average weighted sum, the knowledge gaps between domains leads to significant performance de-
425 cline. Row 5 we introduce DTG and Eq. (6) to train Group-wise LoRA (G-LoRA) which builds a
426 strong baseline. Knowledge from different domains are managed by groups, thus we could merge
427 relevant LoRA weights to avoid linear parameter growth. Row 6 we replace random init with group
428



439 Figure 4: Task ID prediction accuracy analysis,
440 evaluated after 10 phases of training.



456 Figure 5: Analysis of LoRA Rank choice and
457 corresponding insertion position with rank 16.

458 initialization, which effectively alleviate catastrophic forgetting. Our full method (Row 7) integrates
459 a dynamic training pipeline to automatically balance adaptivity and stability, achieving balanced
460 performance across all tasks.

461 **Impact of Threshold τ on Task Grouping.** We examine how the expansion threshold τ affects
462 group numbers and performance in the 10 phases setting. A small threshold (e.g., $\tau = 1$) degenerates
463 to task-wise routing, creating a separate IGA for each task and failing to exploit task similarities.
464 In contrast, a large one (e.g., $\tau = 1000$) merges diverse tasks into a single group, leading to severe
465 task interference and degraded cross-domain stability. Moderate values of τ (e.g., 100–600) allow
466 semantically similar tasks to be grouped together, yielding the best overall performance. Notably,
467 the framework’s performance remains stable across this broader threshold range, which indicates
468 a low sensitivity to this hyperparameter under CDIOD. To further validate this, we adopt a fixed
469 expansion threshold ($\tau = 150$) for all comparison experiments without extra tuning. The consistent
470 performance gains confirm practicality.

471 **Task Routing Accuracy Analysis.** We investigate the effect of different task ID inference strategies
472 on routing accuracy under 10 phases setting. Upon completing all phases, we assess the routing
473 accuracy for each task. As illustrated in Fig. 4(a), task-wise routing based on auto-encoders (Blue)
474 suffers from severe confusion among tasks within the same domain. Distribution-based (Green)
475 inference alleviates intra-domain confusion but still achieves suboptimal accuracy. Furthermore,
476 Fig. 4(b) reveals that the performance of each task is highly dependent on its inference accuracy. In
477 contrast, DTG allows for group-wise routing (Yellow), significantly reduces routing errors and
478 consistently outperforms task-wise methods across all tasks, validating its robustness and effectiveness.

479 **Expert Rank and Insert Position.** We analyzed the performance and parameter efficiency of Incremental
480 Group Adapters (IGA) by varying their insertion position and LoRA rank. ”Fusion” refers
481 to the enhancer’s fusion layers, while ”FFN” denotes the feed-forward networks in the enhancer’s
482 text and image branches. As shown in Fig. 5(a), inserting IGA into the FFNs (both image and text
483 branches) provides the best balance of parameters and performance. Furthermore, Fig. 5(b) reveals
484 that a LoRA rank of 16 achieves the most favorable trade-off between parameters and performance.

485 6 CONCLUSION AND LIMITATION.

486 In this work, we demonstrate that existing benchmarks inadequately capture the incremental learning
487 challenges faced by pre-trained VLMs in real-world scenarios. To bridge this gap, we introduce
488 CDIOD, a more generalized, domain-diverse benchmark. Experiments on CDIOD reveal that VLMs
489 suffer from severe forgetting, and current methods fail to effectively balance adaptivity and stability
490 in these cross-domain incremental scenarios. To address this, we propose D³, which integrates IGA
491 guided by DTG to separate tasks with distinct distributions while clustering similar ones, preventing
492 interference and enhancing knowledge sharing. Within each group, a consolidation mechanism
493 merges task-specific adapters, effectively controlling parameter growth. And a dynamic training
494 pipeline is introduced to better balance stability and adaptivity. During inference, group-wise routing
495 ensures activating the optimal IGA for each input. Extensive Experiments on three benchmarks
496 demonstrate our method’s effectiveness. However, a limitation is that DTG relies on accurate task
497 distribution estimation, which can be unreliable when data is scarce, leading to suboptimal grouping.
498 As a preliminary exploration of CDIOD, our work highlights the broader challenge of achieving
499 incremental learning across diverse downstream detection tasks.

486 7 ETHICS STATEMENT
487488 The authors of this paper have read and adhere to the ICLR Code of Ethics. We believe the work
489 presented in this paper poses no foreseeable ethical concerns.
490491 8 REPRODUCIBILITY STATEMENT
492493 To guarantee reproducibility, we have made the following efforts. (1) The pseudo-code for our
494 method is provided in algorithm 1. (2) All datasets used in this work are publicly available, and
495 we provide a detailed description in Sec. A.1. Furthermore, details on the proposed benchmark are
496 provided in Sec. A.1. (3) We have also included the experiment hyperparameter settings in Sec. B.3
497 and the training order in Sec. C.1. (4) Additionally, all source code required for conducting and
498 analyzing the experiments will be made publicly available upon the paper’s publication.
499500 501 REFERENCES
502503 [1] Manoj Acharya, Tyler L Hayes, and Christopher Kanan. Rodeo: Replay for online object
504 detection. *arXiv preprint arXiv:2008.06439*, 2020.
505 [2] Gaurav Bhatt, James Ross, and Leonid Sigal. Preventing catastrophic forgetting through mem-
506 ory networks in continuous detection. In *European Conference on Computer Vision*, pp. 442–
507 458. Springer, 2024.
508 [3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
509 Sergey Zagoruyko. End-to-end object detection with transformers. In *European conference on
510 computer vision*, pp. 213–229. Springer, 2020.
511 [4] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping
512 Luo. Adaptformer: Adapting vision transformers for scalable visual recognition. *Advances in
513 Neural Information Processing Systems*, 35:16664–16678, 2022.
514 [5] Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang Zhou, Kaizhao Liang, Jintai Chen, Juanwu
515 Lu, Zichong Yang, Kuei-Da Liao, et al. A survey on multimodal large language models for
516 autonomous driving. In *Proceedings of the IEEE/CVF Winter Conference on Applications of
517 Computer Vision*, pp. 958–979, 2024.
518 [6] Jieren Deng, Haojian Zhang, Kun Ding, Jianhua Hu, Xingxuan Zhang, and Yunkuan Wang.
519 Zero-shot generalizable incremental learning for vision-language object detection. *Advances
520 in Neural Information Processing Systems*, 37:136679–136700, 2024.
521 [7] Bowen Dong, Zitong Huang, Guanglei Yang, Lei Zhang, and Wangmeng Zuo. Mr-gdino:
522 efficient open-world continual object detection. *arXiv preprint arXiv:2412.15979*, 2024.
523 [8] Na Dong, Yongqiang Zhang, Mingli Ding, and Gim Hee Lee. Incremental-detr: Incremental
524 few-shot object detection via self-supervised learning. In *Proceedings of the AAAI Conference
525 on Artificial Intelligence*, volume 37, pp. 543–551, 2023.
526 [9] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisser-
527 man. The pascal visual object classes (voc) challenge. *International journal of computer
528 vision*, 88(2):303–338, 2010.
529 [10] Tao Feng, Mang Wang, and Hangjie Yuan. Overcoming catastrophic forgetting in incremental
530 object detection via elastic response distillation. In *Proceedings of the IEEE/CVF conference
531 on computer vision and pattern recognition*, pp. 9427–9436, 2022.
532 [11] Chenping Fu, Risheng Liu, Xin Fan, Puyang Chen, Hao Fu, Wanqi Yuan, Ming Zhu, and
533 Zhongxuan Luo. Rethinking general underwater object detection: Datasets, challenges, and
534 solutions. *Neurocomputing*, 517:243–256, 2023.
535

540 [12] Yuqian Fu, Yu Wang, Yixuan Pan, Lian Huai, Xingyu Qiu, Zeyu Shangguan, Tong Liu, Yanwei
541 Fu, Luc Van Gool, and Xingqun Jiang. Cross-domain few-shot object detection via enhanced
542 open-set object detector. In *European Conference on Computer Vision*, pp. 247–264. Springer,
543 2024.

544 [13] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
545 investigation of catastrophic forgetting in gradient-based neural networks. *arXiv preprint
546 arXiv:1312.6211*, 2013.

548 [14] Akshita Gupta, Sanath Narayan, KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Mubarak
549 Shah. Ow-detr: Open-world detection transformer. In *Proceedings of the IEEE/CVF conference
550 on computer vision and pattern recognition*, pp. 9235–9244, 2022.

551 [15] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
552 wards a unified view of parameter-efficient transfer learning. *arXiv preprint arXiv:2110.04366*,
553 2021.

555 [16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
556 *arXiv preprint arXiv:1503.02531*, 2015.

557 [17] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified
558 classifier incrementally via rebalancing. In *Proceedings of the IEEE/CVF conference on com-
559 puter vision and pattern recognition*, pp. 831–839, 2019.

561 [18] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
562 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
563 for nlp. In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

564 [19] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
565 Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1
566 (2):3, 2022.

567 [20] Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. Memory-efficient in-
568 cremental learning through feature adaptation. In *Computer Vision–ECCV 2020: 16th Euro-
569 pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16*, pp. 699–715.
570 Springer, 2020.

572 [21] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-
573 Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation
574 learning with noisy text supervision. In *International conference on machine learning*, pp.
575 4904–4916. PMLR, 2021.

576 [22] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
577 and Ser-Nam Lim. Visual prompt tuning. In *European conference on computer vision*, pp.
578 709–727. Springer, 2022.

580 [23] Muwei Jian, Nan Yang, Chen Tao, Huixiang Zhi, and Hanjiang Luo. Underwater object detec-
581 tion and datasets: a survey. *Intelligent Marine Technology and Systems*, 2(1):9, 2024.

582 [24] Mengxue Kang, Jinpeng Zhang, Jinming Zhang, Xiashuang Wang, Yang Chen, Zhe Ma, and
583 Xuhui Huang. Alleviating catastrophic forgetting of incremental object detection via within-
584 class and between-class knowledge distillation. In *Proceedings of the IEEE/CVF International
585 Conference on Computer Vision*, pp. 18894–18904, 2023.

586 [25] Junsu Kim, Hoseong Cho, Jihyeon Kim, Yihalem Yimolal Tiruneh, and Seungryul Baek. Sd-
587 dgr: Stable diffusion-based deep generative replay for class incremental object detection. In
588 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
589 28772–28781, 2024.

591 [26] Junsu Kim, Yunhoe Ku, Jihyeon Kim, Junuk Cha, and Seungryul Baek. Vlm-pl: Advanced
592 pseudo labeling approach for class incremental object detection via vision-language model. In
593 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
594 4170–4181, 2024.

594 [27] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
 595 drei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
 596 Overcoming catastrophic forgetting in neural networks. *Proceedings of the national academy
 597 of sciences*, 114(13):3521–3526, 2017.

598 [28] Minh Le, An Nguyen, Huy Nguyen, Trang Nguyen, Trang Pham, Linh Van Ngo, and Nhat Ho.
 599 Mixture of experts meets prompt-based continual learning. *Advances in Neural Information
 600 Processing Systems*, 37:119025–119062, 2024.

601 [29] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcom-
 602 ing catastrophic forgetting by incremental moment matching. *Advances in neural information
 603 processing systems*, 30, 2017.

604 [30] Chunyuan Li, Haotian Liu, Liunian Li, Pengchuan Zhang, Jyoti Aneja, Jianwei Yang, Ping
 605 Jin, Houdong Hu, Zicheng Liu, Yong Jae Lee, et al. Elevator: A benchmark and toolkit for
 606 evaluating language-augmented visual models. *Advances in Neural Information Processing
 607 Systems*, 35:9287–9301, 2022.

608 [31] Ke Li, Gang Wan, Gong Cheng, Liqiu Meng, and Junwei Han. Object detection in optical
 609 remote sensing images: A survey and a new benchmark. *ISPRS journal of photogrammetry
 610 and remote sensing*, 159:296–307, 2020.

611 [32] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu
 612 Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-
 613 image pre-training. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 614 Pattern Recognition*, pp. 10965–10975, 2022.

615 [33] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
 616 *arXiv preprint arXiv:2101.00190*, 2021.

617 [34] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A con-
 618 tinual structure learning framework for overcoming catastrophic forgetting. In *International
 619 conference on machine learning*, pp. 3925–3934. PMLR, 2019.

620 [35] Yuxuan Li, Qibin Hou, Zhaohui Zheng, Ming-Ming Cheng, Jian Yang, and Xiang Li. Large
 621 selective kernel network for remote sensing object detection. In *Proceedings of the IEEE/CVF
 622 international conference on computer vision*, pp. 16794–16805, 2023.

623 [36] Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern
 624 analysis and machine intelligence*, 40(12):2935–2947, 2017.

625 [37] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Pi-
 626 otr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer
 627 Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014,
 628 Proceedings, Part V 13*, pp. 740–755. Springer, 2014.

629 [38] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
 630 object detection. In *Proceedings of the IEEE international conference on computer vision*, pp.
 631 2980–2988, 2017.

632 [39] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jian-
 633 wei Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training
 634 for open-set object detection. *arXiv preprint arXiv:2303.05499*, 2023.

635 [40] Xialei Liu, Hao Yang, Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto. Multi-task
 636 incremental learning for object detection. *arXiv preprint arXiv:2002.05347*, 2020.

637 [41] Yaoyao Liu, Bernt Schiele, Andrea Vedaldi, and Christian Rupprecht. Continual detection
 638 transformer for incremental object detection. In *Proceedings of the IEEE/CVF Conference on
 639 Computer Vision and Pattern Recognition*, pp. 23799–23808, 2023.

640 [42] Yuyang Liu, Yang Cong, Dipam Goswami, Xialei Liu, and Joost van de Weijer. Augmented
 641 box replay: Overcoming foreground shift for incremental object detection. In *Proceedings of
 642 the IEEE/CVF International Conference on Computer Vision*, pp. 11367–11377, 2023.

648 [43] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
 649 The sequential learning problem. In *Psychology of learning and motivation*, volume 24, pp.
 650 109–165. Elsevier, 1989.

651

652 [44] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan
 653 Ghasemzadeh. Linear mode connectivity in multitask and continual learning. *arXiv preprint*
 654 *arXiv:2010.04495*, 2020.

655

656 [45] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen, and Moin Nabi. Learning
 657 to remember: A synaptic plasticity driven framework for continual learning. In *Proceedings*
 658 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11321–11329,
 659 2019.

660

661 [46] Can Peng, Kun Zhao, and Brian C Lovell. Faster ilod: Incremental learning for object detectors
 662 based on faster rcnn. *Pattern recognition letters*, 140:109–115, 2020.

663

664 [47] Can Peng, Kun Zhao, Sam Maksoud, Meng Li, and Brian C Lovell. Sid: incremental learning
 665 for anchor-free object detection via selective and inter-related distillation. *Computer vision*
 666 and *image understanding*, 210:103229, 2021.

667

668 [48] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that
 669 questions our progress in continual learning. In *European conference on computer vision*, pp.
 524–540. Springer, 2020.

670

671 [49] Yujia Qin, Cheng Qian, Jing Yi, Weize Chen, Yankai Lin, Xu Han, Zhiyuan Liu, Maosong Sun,
 672 and Jie Zhou. Exploring mode connectivity for pre-trained language models. *arXiv preprint*
 673 *arXiv:2210.14102*, 2022.

674

675 [50] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 676 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable
 677 visual models from natural language supervision. In *International conference on machine*
 678 *learning*, pp. 8748–8763. PMLR, 2021.

679

680 [51] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 681 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on*
 682 *Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.

683

684 [52] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
 685 object detection with region proposal networks. *Advances in neural information processing*
 686 *systems*, 28, 2015.

687

688 [53] Tianhe Ren, Yihao Chen, Qing Jiang, Zhaoyang Zeng, Yuda Xiong, Wenlong Liu, Zhengyu
 689 Ma, Junyi Shen, Yuan Gao, Xiaoke Jiang, et al. Dino-x: A unified vision model for open-world
 690 object detection and understanding. *arXiv preprint arXiv:2411.14347*, 2024.

691

692 [54] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
 693 Savarese. Generalized intersection over union: A metric and a loss for bounding box regres-
 694 sion. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 695 pp. 658–666, 2019.

696

697 [55] Ranjan Sapkota and Manoj Karkee. Object detection with multimodal large vision-language
 698 models: An in-depth review. *Available at SSRN 5233953*, 2025.

699

700 [56] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and
 701 Jian Sun. Objects365: A large-scale, high-quality dataset for object detection. In *Proceedings*
 702 *of the IEEE/CVF international conference on computer vision*, pp. 8430–8439, 2019.

703

704 [57] Konstantin Shmelkov, Cordelia Schmid, and Kartik Alahari. Incremental learning of object
 705 detectors without catastrophic forgetting. In *Proceedings of the IEEE international conference*
 706 *on computer vision*, pp. 3400–3409, 2017.

[58] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed attention-based prompting for rehearsal-free continual learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11909–11919, 2023.

[59] Xiaoyu Tao, Xinyuan Chang, Xiaopeng Hong, Xing Wei, and Yihong Gong. Topology-preserving class-incremental learning. In *European conference on computer vision*, pp. 254–270. Springer, 2020.

[60] Sebastian Thrun. Is learning the n-th thing any easier than learning the first? *Advances in neural information processing systems*, 8, 1995.

[61] Huiyi Wang, Haodong Lu, Lina Yao, and Dong Gong. Self-expansion of pre-trained models with mixture of adapters for continual learning. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 10087–10098, 2025.

[62] Xin Wang, Thomas E Huang, Trevor Darrell, Joseph E Gonzalez, and Fisher Yu. Frustratingly simple few-shot object detection. *arXiv preprint arXiv:2003.06957*, 2020.

[63] Xu Wang, Zilei Wang, and Zihan Lin. Gcd: Advancing vision-language models for incremental object detection via global alignment and correspondence distillation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 8015–8023, 2025.

[64] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for rehearsal-free continual learning. In *European conference on computer vision*, pp. 631–648. Springer, 2022.

[65] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149, 2022.

[66] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large scale incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 374–382, 2019.

[67] Shubo Xu, Minghua Zhang, Wei Song, Haibin Mei, Qi He, and Antonio Liotta. A systematic review and analysis of deep learning-based underwater object detection. *Neurocomputing*, 527: 204–232, 2023.

[68] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3014–3023, 2021.

[69] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically expandable networks. *arXiv preprint arXiv:1708.01547*, 2017.

[70] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2636–2645, 2020.

[71] Jiazu Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting continual learning of vision-language models via mixture-of-experts adapters. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23219–23230, 2024.

[72] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In *International conference on machine learning*, pp. 3987–3995. PMLR, 2017.

[73] Hongquan Zhang, Bin-Bin Gao, Yi Zeng, Xudong Tian, Xin Tan, Zhizhong Zhang, Yanyun Qu, Jun Liu, and Yuan Xie. Learning task-aware language-image representation for class-incremental object detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 7096–7104, 2024.

[74] Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing zero-shot transfer degradation in continual learning of vision-language models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 19125–19136, 2023.

[75] Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li, Luwei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-image pretraining. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16793–16803, 2022.

[76] Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for pre-trained model-based class-incremental learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23554–23564, 2024.

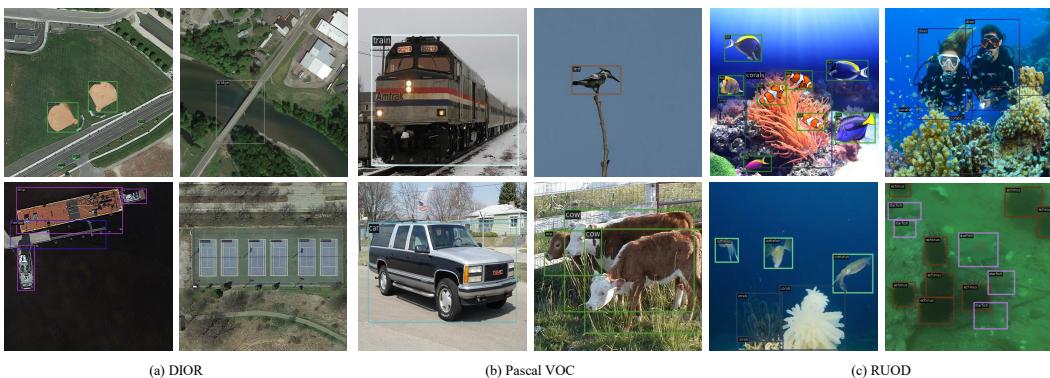


Figure 6: Dataset visualization of Cross-Domain Incremental Object Detection

In this appendix, we provide: (1) Additional experiment details. (2) Additional method details. (3) More comparison and ablation results of our method. (4) Some visualization results.

A ADDITIONAL EXPERIMENTAL DETAILS

This section presents: (i) detailed statistics of the datasets, (ii) comprehensive description of the benchmark protocol construction, and (iii) a brief overview of the evaluated methods.

A.1 DATASET DETAILS

To evaluate the continual learning capabilities of Vision-Language Models (VLMs) across a wider range of downstream task scenarios, we constructed the Cross-Domain Class-Incremental Object Detection (CDIOD) benchmark. This benchmark leverages datasets from three different domains, encompassing common natural scenes alongside remote sensing and underwater datasets that exhibit significant distributional gaps from typical pre-training data.

- **DIOR** [31] is a large-scale remote sensing object detection dataset. It contains 20 classes (e.g., golffield, bridge, stadium), with 18,463 training images and 5,000 validation images. Classes primarily feature architectural and infrastructural objects.
- **Pascal VOC 2012** [9] is a widely recognized natural scenes object detection benchmark. It comprises 20 classes (e.g., car, person, cat), with 13,690 training images and 3,422 validation images. Classes focus on common everyday objects.
- **RUOD** [11] is a dataset specifically curated for underwater object detection. It consists of 10 classes (e.g., turtle, diver, starfish), with 9,800 training images and 4,200 validation images. Classes include various marine life.

810 For related Incremental Object Detection (IOD) and Incremental Vision-Language Object Detection
 811 (IVLOD) benchmarks, we utilize:

812

- 813 • **COCO** [37] is a large-scale natural scenes dataset for object detection, segmentation. It features
 814 80 classes (e.g., person, car, dog), with 118,000 training images and 5,000 validation images.
- 815 • **ODinW13** [30] is a comprehensive benchmark designed to evaluate zero-shot object detection
 816 performance. It aggregates 13 different sub-datasets, including: Aerial Maritime Drone (Ae),
 817 Aquarium (Aq), Cottontail Rabbits (Co), Egohands (Eg), Mushrooms (Mu), Packages (Pa), Pascal
 818 VOC (Pv), Pistols (Pi), Pothole (Po), Raccoon (Ra), Shellfish (Sh), Thermal Dogs and People
 819 (Th), and Vehicles (Ve).

820 **A.2 BENCHMARK CONSTRUCTION DETAILS**

821 **Extending IOD for Modern VLMs.** Modern pre-trained vision-language models (VLMs), such as
 822 GLIP [32] and Grounding DINO [39], are designed to operate across diverse domains rather than
 823 being limited to a single scenario. For example, to assess their zero-shot generalization capability,
 824 these models are commonly evaluated on heterogeneous benchmarks like ODinW35, which span a
 825 wide range of domains.

826 We construct CDIOD not merely as a dataset extension to conventional IOD, but as a broader generalization of the IOD setting. A straightforward approach would be to retain the standard IOD
 827 setting and treat each dataset as an independent incremental process for evaluation. However, this
 828 still restricts the detection model to incremental learning within a single domain context. We further
 829 view the incremental learning process as a natural extension of pre-training, aimed at progressively
 830 expanding the model’s knowledge capacity through continual learning. Therefore, we integrate
 831 datasets from different domains into a unified incremental learning protocol, enabling the model
 832 not only to perform incremental learning within a specific domain but also to acquire cross-domain
 833 continual learning ability. Ultimately, our goal is to develop a single, unified detector capable of
 834 handling diverse downstream object detection tasks across multiple domains.

835 **Dataset Split.** To simulate the continual learning process within a single domain, we follow the
 836 dataset splitting strategy commonly adopted in conventional IOD. Specifically, each dataset is parti-
 837 tioned into multiple incremental tasks based on disjoint class subsets. For example, in Pascal VOC,
 838 we split the 20 object categories into four sequential tasks, each containing five classes. Similarly,
 839 all other datasets are divided into tasks of five classes per stage. After all training phases, the model
 840 is evaluated on the full validation sets of all three datasets. This protocol thus captures both **intra-**
 841 **domain continual learning** (within a single dataset) and **cross-domain continual learning** (by
 842 transitioning between datasets). We assume that the model completes continual learning within one
 843 domain before being transferred to the next. While randomly shuffling all tasks across domains
 844 could present a more challenging setting, we argue that the current protocol aligns better with real-
 845istic application scenarios.

846 In our experiments, we report the average performance after three runs with shuffled training orders.
 847 In practice, to ensure fair comparisons, these orders were defined as **Order 1** (DIOR \rightarrow Pascal VOC
 848 \rightarrow RUOD), **Order 2** (Pascal VOC \rightarrow RUOD \rightarrow DIOR) and **Order 3** (RUOD \rightarrow Pascal VOC \rightarrow
 849 DIOR). Specifically, we treat the 50 classes from DIOR (20 classes), Pascal VOC (20 classes), and
 850 RUOD (10 classes) as a single, complete continual learning process. We take **Order 1** to explain
 851 the training process: Classes 1 \sim 20 correspond to DIOR, 21 \sim 40 to Pascal VOC, and 41 \sim 50 to
 852 RUOD. On this basis, we consider the following two configurations:

853

- 854 • **0-10 (5 phases):** Each phase introduces 10 new classes, followed by evaluation on all learned
 855 classes. The training and testing process is as follows:
 - 856 – Phase 1: DIOR (classes 1 \sim 10)
 - 857 – Phase 2: DIOR (classes 11 \sim 20)
 - 858 – Phase 3: Pascal VOC (classes 21 \sim 30)
 - 859 – Phase 4: Pascal VOC (classes 31 \sim 40)
 - 860 – Phase 5: RUOD (classes 41 \sim 50)
 - 861 – Test: DIOR + Pascal VOC + RUOD (classes 1 \sim 50)
- 862 • **0-5 (10 phases):** Each phase introduces 5 new classes, with evaluation conducted after each phase
 863 across all accumulated classes.

864
865

A.3 EVALUATED METHOD DETAILS

866
867
868
869

Implementation Details. We conduct a comprehensive evaluation of existing Incremental Object Detection (IOD) methods. To ensure fairness and consistency, all methods are re-implemented on the Grounding DINO-T backbone, pre-trained on Objects365, GoldG, and Cap4M. All methods are trained without a memory bank.

870
871
872
873
874
875
876

- **CL-DETR** [41]. A full fine-tuning-based IOD method. It adopts a from-scratch Deformable-DETR and generates pseudo-labels that do not overlap with ground truth. The pseudo-label generation strategy is architecture-agnostic and was directly reproduced on the Grounding DINO backbone. Following the original paper, we select the top 10 predictions to generate pseudo-labels, setting the overlap with ground truth to not exceed 0.7. The learning rate is set to $1e-4$. A learning rate decay of 0.1 is applied to the vision backbone, while the language backbone remains frozen.
- **GCD** [63]. A full fine-tuning-based IOD method. It adopts a from-scratch Grounding-DINO and employs correspondence distillation to transfer the teacher model’s responses and topological relationships. Following the official implementation, we set the pseudo threshold to 0.4. The coefficients of the correspondence distillation loss are set as $\gamma = 1$, $\lambda_1 = 3$, $\lambda_2 = 5$. The learning rate is set to $5e-5$, with a learning rate decay of 0.1 applied to the vision backbone. The language backbone is frozen.
- **MD-DETR** [2]. A PEFT-based IOD method. It was originally initialized from a Deformable-DETR pre-trained on LVIS. It introduces vision prompts organized in a prompt pool, which are injected into the self-attention per decoder layer to facilitate task adaptation. For our re-implementation, we follow the official code, using 100 memory units ($N_m = 100$) with a length of 10 ($L_m = 10$) and a dimension of 256 ($D = 256$). We set $\lambda_Q = 0.01$ and $\delta_{bt} = 0.65$. Only the prompt pool and query function are updated during training, with the learning rate set to $1e-2$.
- **Zira** [6]. A PEFT-based IVLOD method. It is initialized from Grounding DINO pre-trained on Objects365, GoldG, and Cap4M. It integrates a re-parameterizable dual-branch module for task adaptation, inserted into both the language and vision backbone-to-enhancer connections within the neck. Following the official code, we set the coefficient for the Zil loss to $\lambda = 0.1$ and the learning rate decay for LLRB is $\eta = 0.2$. The learnable scale factor is initialized with $s = 0.1$. Only the RDB module is updated. The learning rate is initialized at $1e-3$ for the first epoch and then decays to $1e-4$.
- **MoE-Adapters** [71]. A PEFT-based Method for MTIL from incremental classification, originally implemented in CLIP. It introduces adapters organized by a mixture-of-experts for task adaptation and employs an activate-freeze strategy to alleviate catastrophic forgetting. For our re-implementation, we insert the MoE-Adapters into the FFN of the enhancer. Following the official code, we set the bottleneck for the adapter to $D = 64$ and use a top-2 gating strategy. For each task, we use 2 experts and 1 router, resulting in $N_E = 20$ experts and $N_R = 10$ routers in 10 phases setting. For routing, we use the mean of the image tokens instead of the [CLS] token. We set the learning rate $1e-3$ for adapter and router, $3e-3$ for domain predictor.

894
895
896
897
898
899
900
901

A.4 RELATED BENCHMARKS

902
903
904
905
906
907
908
909

Incremental Object Detection (IOD). Incremental Object Detection typically indicates Class-Incremental Object Detection. Conventional IOD benchmarks typically partition a general-domain dataset such as COCO into disjoint tasks defined by category labels. Each phase introduces new object classes under the assumption of a consistent data distribution. IOD can be seen as a special case of CDIOD where the domain remains fixed.

910
911
912
913
914

Domain Incremental Object Detection (DIOD). DIOD focuses on the challenge of a model continuously adapting to a sequence of shifting domains. While the domain changes incrementally, the set of object classes is typically assumed to remain fixed. Our CDIOD benchmark presents a more complex problem by combining the challenges of both DIOD (domain shift) and IOD (class-incremental learning), requiring a method to handle both novel domains and novel classes simultaneously.

915
916
917

Incremental Vision-Language Object Detection (IVLOD). IVLOD [6] focuses on incrementally adapting pre-trained vision-language models (VLMs) to a sequence of tasks from the ODinW-13 benchmark while preserving zero-shot generalization. IVLOD primarily addresses task-incremental scenarios, where the model’s predictions are confined to a task-specific class space and the label

918 space is allowed to overlap across tasks. In contrast, our work tackles a more complex and realistic
 919 class-incremental challenge. For training, CDIOD features a disjoint label space, 'person' labeled in
 920 task t will not be labeled in subsequent tasks $t' > t$. For inference, all learned classes are evaluated
 921 together without knowing which task set the test image belongs to.

922 **Open-Vocabulary Object Detection (OVD).** Open-Vocabulary Object Detection focuses on building
 923 models capable of detecting any category without being explicitly trained on them beforehand.
 924 The primary goal of OVD is zero-shot generalization, the ability to identify unseen categories in
 925 downstream tasks without the need for additional supervision. Starting from an generalizable OVD
 926 model, CDIOD focuses on the subsequent challenge of continual learning. CDIOD evaluates a
 927 model's ability to continuously learn from a sequence of supervised tasks, focusing on challenges
 928 of adaptation to new data and preservation of previously acquired knowledge.

929 **Domain Adaptation Object Detection (DAOD).** Domain Adaptation Object Detection typically
 930 focuses on a single-step adaptation process where a model trained on a labeled source domain is
 931 adapted to an unlabeled target domain. A key assumption in most DAOD methods is that the set
 932 of object classes across the source and target domains is identical. Unlike DAOD, our benchmark
 933 addresses a multi-phase, supervised continuous learning scenario where both the domain and the
 934 object classes change over time, and all new data is provided with labels.

935 **Cross-Domain Few-shot Object Detection (CDFSOD).** CDFSOD [12] focuses on adapting pre-
 936 trained detectors to downstream tasks that exhibit a significant domain gap with the pre-trained data
 937 under a few-shot setting. CDFSOD is a single-step adaptation task; it is concerned solely with
 938 the model's performance on the new downstream task and does not evaluate its ability to retain
 939 knowledge from the source domain afterward. In contrast, our benchmark evaluates a continuous
 940 learning process with multiple phases, requiring the model to simultaneously maintain performance
 941 on all previously learned tasks.

943 B ADDITIONAL METHOD DETAILS

944 In this section, we provide supplementary details of our method, including: (i) Pseudo code illus-
 945 trating the training and inference pipelines. (ii) A detailed formulation of DTG and KD loss (iii)
 946 Hyperparameter configurations adopted in our experiments, and (iv) Understanding of IGC.

950 B.1 PSEUDO CODE.

951 We present the pseudo code of our proposed method in algorithm 1 and algorithm 2, detailing both
 952 the training and inference procedures.

955 B.2 DETAILED DYNAMIC TASK GROUPING.

956 For our Dynamic Task Grouping (DTG), we model each task's feature distribution by extracting fea-
 957 tures \mathcal{F}_t from the image backbone, utilizing either the final layer's output for faster inference speeds
 958 or a multi-level representation for higher accuracy (we default to the final layer). We approximate
 959 this distribution as a multivariate Gaussian $\mathcal{N}(\mu_t, \Sigma_t)$, where $\mu_t = \mathbb{E}(\mathcal{F}_t)$ is the sample mean and
 960 $\Sigma_t = \text{Var}(\mathcal{F}_t)$ is the full covariance matrix, capturing inter-dimensional correlations. For numerical
 961 stability, we regularize the covariance by adding a small identity matrix ($\Sigma'_t = \Sigma_t + \epsilon I$). Group
 962 similarity is measured using the Symmetrized KL Divergence for computational efficiency.

965 B.3 DETAILED KNOWLEDGE DISTILLATION LOSS.

966 We denote the model output as $\mathcal{M}(x; \mathcal{A}_g, m)$, where x is the input sample, \mathcal{A}_g is the IGA, and m a
 967 binary switching mask. During training, we compute: (i) the student output with $m_t = 1$ (activating
 968 α_g^t), and (ii) the teacher output with $m_{\text{base}} = 1$ (activating α_g^{base}). Our distillation loss is defined as
 969 follows:

$$970 \mathcal{L}_{\text{distill}} = \mathcal{L}(\mathcal{M}(x; \mathcal{A}_g, m_t), \mathcal{M}(x; \mathcal{A}_g, m_{\text{base}})), \quad (8)$$

972 In practice, \mathcal{L} serves as a soft constraint term, which we implement using *topology distillation* as
 973 introduced by [63]. Specifically, we define the object prototype for class c as:
 974

$$975 \quad p_c = \frac{1}{N_c} \sum_{i=1}^{N_c} \alpha_i q_i, \quad (9)$$

$$976$$

$$977$$

978 where q_i is the output query feature (from the last decoder layer), α_i is the confidence score derived
 979 from the predicted logits, and N_c is the number of instances in class c . We then compute the pairwise
 980 relation matrix over classes:

$$981 \quad R_{ij} = \|p_i - p_j\|_2, \quad i, j \in C_{1:t-1}, \quad (10)$$

$$982$$

983 and define the topology loss as:

$$984 \quad \mathcal{L}(\mathcal{M}(x; \mathcal{A}_g, m_t), \mathcal{M}(x; \mathcal{A}_g, m_{\text{base}})) = \|R^{\text{new}} - R^{\text{base}}\|_2, \quad (11)$$

$$985$$

986 where R^{base} is obtained by switching to the base adapter. Similarly, to maintain cross-modal struc-
 987 tural consistency. Finally, the total distillation loss is expressed as:

$$988 \quad \mathcal{L}_{\text{distill}} = \gamma_1 \mathcal{L}_{\text{topology,image}} + \gamma_2 \mathcal{L}_{\text{topology,text}}, \quad (12)$$

$$989$$

990 where γ_1 and γ_2 are balancing coefficients controlling the contributions of image and text topology
 991 preservation, respectively.

992 B.4 HYPERPARAMETER SETUP.

993 Our training objective integrates five hyperparameters. The overall loss is formulated as:

$$994 \quad \mathcal{L} = \mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{loc}} + \delta(t) \mathcal{L}_{\text{distill}} \quad (13)$$

$$995$$

$$996 \quad = \lambda_{\text{focal}} \mathcal{L}_{\text{focal}} + \lambda_{\text{L1}} \mathcal{L}_{\text{L1}} + \lambda_{\text{GIOU}} \mathcal{L}_{\text{GIOU}} + \delta(t) \mathcal{L}_{\text{distill}}, \quad (14)$$

$$997$$

$$998$$

999 where $\delta(t) = 1$ indicates we expand existing group, and that the distillation loss is applied. Follow-
 1000 ing [39; 63], we set $\lambda_{\text{focal}} = 1$, $\lambda_{\text{L1}} = 5$, $\lambda_{\text{GIOU}} = 2$ and $\gamma_1 = 3$ and $\gamma_2 = 5$ for all experiments
 1001 without additional tuning.

1002 Besides, for adapter merging, the merging factor $\lambda_{\text{merge}} \in [0, 1]$ controls the trade-off between
 1003 preserving prior knowledge and adapting to the new task. In our experiments, we set $\lambda_{\text{merge}} = 0.2$
 1004 which obtains the most balanced performance as shown in Tab. 9.

1005 B.5 WHY INTRA-GROUP CONSOLIDATION WORKS.

1006 **Group-Init.** For tasks within an existing group, we initialize a new adapter from the group’s base
 1007 one. This “warm-start” approach provides the model with a knowledgeable starting point that al-
 1008 ready contains information from old tasks, rather than beginning from a random state, which has
 1009 been proven effective for alleviating catastrophic forgetting [27; 36]. This also aligns with the prin-
 1010 ciple of linear mode connectivity (LMC) [49; 44], which states that a sharing initialization is crucial
 1011 for keeping solutions of related tasks within a connected low error basin. By initializing from the
 1012 base adapter, we start training already inside this optimal basin, making learning a more stable and
 1013 efficient search for a nearby solution. This connectivity provides the theoretical foundation for why
 1014 adapters in the same group can be linearly merged: since they exist in the same basin, their weighted
 1015 average is also likely a high-performing solution.

1016 **Group-KD.** The assumption of LMC generally holds for tasks like PASCAL VOC that are well-
 1017 aligned with the pre-training distribution. In such cases, the pre-trained model has already situated
 1018 the parameters within a favorable low-error basin, requiring the adapter to perform only minimal
 1019 exploration to reach its optimal solution. However, for tasks that are dissimilar to the pre-training
 1020 distribution (e.g., DIOR sub-tasks), their optimal solutions in the parameter space can be far from
 1021 the base adapter’s. In this case, a direct linear merge becomes suboptimal, as the simple average
 1022 of two distant points is likely to fall into a high-error region. To address this, we leverage KD as
 1023 an implicit constraint. During training, KD forces the new adapter’s solution to remain functionally
 1024 consistent with the base adapter, which actively pulls the two solutions closer and aligns them. This
 1025 alignment ensures that the final merge is a robust consolidation of two compatible solutions.

1026 Table 6: CDIOD results (*AP%*) under 0–5 and 0–10 settings across three training orders. We report
 1027 performance on all datasets after the final training phase.

Training Orders	Method	0-10 (5 phases)				0-5 (10 phases)			
		DIOR	PascalVOC	RUOD	Avg	DIOR	PascalVOC	RUOD	Avg
	Joint	69.5	72.0	64.3	68.6	69.5	72.0	64.3	68.6
Order 1	CL-DETR	35.3	57.7	63.9	52.3	23.0	47.6	57.5	42.7
	MD-DETR	34.9	61.4	49.9	48.7	28.6	59.4	38.1	42.0
	MoE-Adapters	32.7	66.1	59.5	52.8	20.5	59.3	41.5	40.4
	GCD	43.2	60.0	62.8	55.3	37.0	52.0	58.3	49.1
	Zira	29.8	66.2	54.3	50.1	22.0	63.9	47.2	44.4
	Ours	64.7	68.2	62.6	65.2	58.5	65.5	57.2	60.4
Order 2	CL-DETR	65.8	34.0	35.5	45.1	66.1	17.6	21.6	35.1
	MD-DETR	35.4	58.5	48.4	47.4	30.1	57.9	36.5	41.5
	MoE-Adapters	33.7	63.9	55.7	51.1	20.8	59.2	36.2	38.7
	GCD	63.5	41.5	40.8	48.6	61.9	35.1	27.5	41.5
	Zira	40.4	59.3	41.1	46.9	30.8	59.3	36.1	42.1
	Ours	63.6	68.7	62.3	64.9	58.9	64.5	56.7	60.0
Order 3	CL-DETR	65.6	47.2	23.2	45.3	63.8	26.4	20.3	36.8
	MD-DETR	35.2	59.0	47.1	47.1	29.7	58.2	35.8	41.2
	MoE-Adapters	34.2	64.0	57.7	52.0	21.7	61.0	43.4	42.0
	GCD	63.1	53.5	30.9	49.2	58.2	39.0	23.9	40.4
	Zira	40.2	62.3	40.6	47.7	29.7	60.6	35.8	42.0
	Ours	61.2	68.4	62.5	64.0	58.9	65.8	56.2	60.3

1049
 1050 Table 7: Performance and Computation Costs under 0–5 (10 phases) settings. Train and Test Params
 1051 refer to parameters updated during training and activated at inference, respectively. Percentages
 1052 denote ratio to base model parameters; \uparrow indicates increased percentage. All methods are PEFT-
 1053 based except GCD and CL-DETR.

Method	Technical	Activation strategy	Avg	Train Params	Test Params	FLOPS
CL-DETR	Pseudo-label	Base model only	38.4	64.2M(37.1%)	173.1M(\uparrow 0.0%)	464G
	Knowledge Distillation	Base model only	43.7	64.2M(37.1%)	173.1M(\uparrow 0.0%)	464G
MD-DETR	Prompt pool	Retrieval function	41.6	0.28M(0.16%)	173.2M(\uparrow 0.02%)	465G
	Rep Dual-branch	Fixed branch	42.8	4.38M(2.5%)	177.5M(\uparrow 2.5%)	467G
MoE-Adapters	Mixture of Task-wise Adapters	Token-wise routing	40.4	9.69M(5.6%)	175.5M(\uparrow 1.47%)	506G
	Task-wise LoRA	Task-wise routing	51.5	6.90M(4.0%)	173.8M(\uparrow 0.4%)	473G
Ours	Dynamic Group-wise LoRA	Group-wise routing	60.2	2.06M(1.2%)	173.8M(\uparrow 0.4%)	473G

1064 C ADDITIONAL RESULTS

1067 This section presents additional comparison results including : (i) Detailed CDIOD results of dif-
 1068 ferent training order and computation cost comparisons (ii) per-task performance analysis, and (iii)
 1069 extended ablation studies on various design choices and hyperparameters.

1071 C.1 ADDITIONAL COMPARISON RESULTS

1073 **Detailed CDIOD results and Impact of training Order.** To further assess the impact of training
 1074 order of tasks. we provide a detailed per order performance. As shown in Tab. 6, existing incre-
 1075 mental methods are highly sensitive to the sequence of tasks and exhibit significant performance
 1076 fluctuations. This instability is a key limitation in real-world applications where the arrival of new
 1077 data is unpredictable. In contrast, our method consistently delivers stable performance across all
 1078 three orders. This robustness to variations in the training sequence is a critical property for a practi-
 1079 cal incremental learning algorithm, demonstrating our framework’s reliability in non-stationary and
 unpredictable environments.

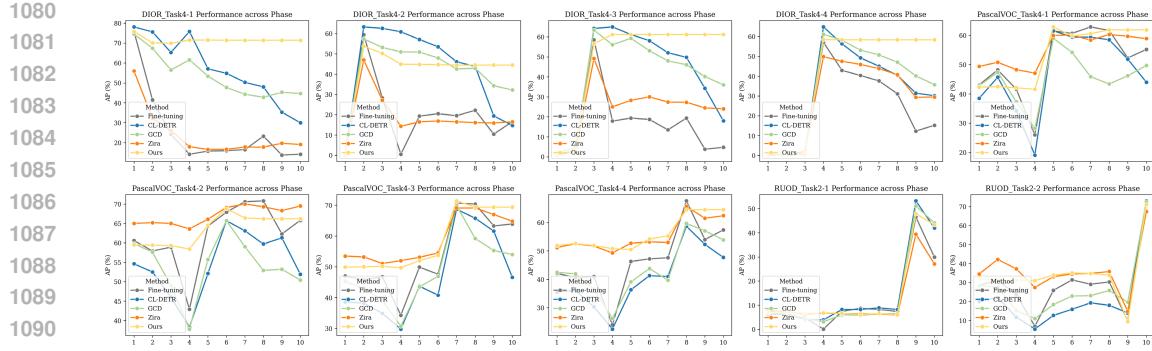


Figure 7: Performance across phases under the 0-5 (10-phase) setting with training order 1, where the x-axis denotes the training phase.

Detailed comparison and discussion. As shown in Tab. 7, we report the Average Performance (3 runs) and computational costs of each method under the 10-phase setting. And we provide a detailed discussion of each method.

- **CL-DETR.** It directly fine-tunes the base model using pseudo-labels, which means it has a higher number of trainable parameters but introduces no additional overhead during inference. However, under cross-domain scenarios, old classes may be absent or suffer from modality gaps. This makes it impractical to generate robust pseudo-labels.
- **GCD.** It uses KD to transfer knowledge. This approach also results in a high number of trainable parameters but introduces no overhead at inference. While the KD loss is designed to force the student model to align with the teacher’s output, this alignment can be problematic in cross-domain tasks where the teacher’s responses are often noisy, which may lead to catastrophic forgetting.
- **Zira.** It introduces a fixed dual-branch module attached to the base model. After learning each task, a high-learning-rate branch is merged into a low-learning-rate branch. While this design allows Zira to adapt to new tasks with a fixed parameter budget, it struggles to balance stability and adaptivity.
- **MD-DETR.** It utilizes expandable prompt pools to incrementally learn new tasks and employs a retrieval function to compose prompts with weighted sum for inference. Although this approach is memory-efficient, the expressive power of prompts limits the model’s overall adaptive capability. Furthermore, its retrieval accuracy diminishes as the size of prompt pools increases.
- **MoE-Adapter.** It employs a Mixture-of-Experts (MoE) structure to combine adapters. It first uses a domain discriminator to select a task-specific router, which then performs token-wise routing to activate the corresponding adapter. When applied to object detection tasks, this design faces two critical issues. First, relying on a domain discriminator for router activation creates a bottleneck in task-ID identification. Second, the complex detection scenes make its token-wise routing susceptible to misallocation. Consequently, MoE-Adapter exhibits subpar performance despite activating a larger set of parameters.
- **T-LoRA.** It trains task-specific LoRA modules and uses task-level routing to select the optimal ones for inference. This straightforward approach achieves good performance. However, it models each task in isolation, ignoring shared knowledge and leading to a linear increase in parameters. Its primary performance bottleneck remains the reliance on accurate task-ID inference.

To overcome these limitations, our method dynamically groups multiple tasks, which enables knowledge reuse and effectively controls parameter growth. This strategy eliminates the need for precise task-ID inference, as identifying a broader task group is significantly more robust. Furthermore, this dynamic pipeline allows for the creation of new groups when facing novel tasks, enhancing adaptability, while similar tasks can be effectively integrated into existing groups to maintain stability. As shown in Table 1, our approach introduces only 1.2% additional trainable parameters and activates just 0.4% extra parameters at inference. The FLOPs increase by a mere 9G compared to the base model.

Per-task performance across phases. In Fig. 7, we present the detailed performance of each sub-task under the 0-5 (10 phases) setting with training order1 (DIOR → Pascal VOC → RUOD). Given the zero-shot capability of pre-trained VLMs, we evaluate all sub-tasks after each training phase to

Table 8: Impact of different components, reporting Extra Parameters Percentage (EPP, %) and Average performance ($AP\%$) under 0-5 (10 phases) CDIOD setting. Row 0 indicates Zero-shot. LoRA is set rank 16 and inserted into enhancer’s FFN for all ablation results in this table.

Row	LoRA	Task-wise	Raw Merge	DTG	Intra-Group Consolidation			EPP	DIOR	VOC	RUOD	Avg
					Group_Merge	Group_Init	Group_KD					
0								0.00%	2.7	51.9	19.6	24.7
1	✓							0.40%	3.2	42.5	42.9	29.5
2	✓						✓	0.40%	5.1	52.0	53.8	37.0
3	✓	✓						4.00%	41.0	63.7	49.7	51.5
4	✓	✓	✓					4.00%	29.7	61.5	40.1	43.8
5	✓			✓	✓			1.20%	48.7	65.2	49.1	54.3
6	✓			✓	✓	✓		1.20%	51.6	66.7	51.9	56.7
7	✓			✓			✓	1.20%	50.5	60.9	52.3	54.6
8	✓			✓		✓	✓	1.20%	55.7	61.3	55.4	57.5
9	✓			✓	✓	✓	✓	1.20%	58.8	65.3	56.7	60.2

Table 9: Impact of the merging factor λ_{merge} under 0-5 (10 phases) setting.

Threshold	DIOR	VOC	RUOD	Avg
$\lambda_{merge} = 0.0$	55.7	61.3	55.4	57.5
$\lambda_{merge} = 0.1$	58.4	65.2	56.8	60.1
$\lambda_{merge} = 0.2$	58.8	65.3	56.7	60.2
$\lambda_{merge} = 0.3$	55.0	64.5	57.0	58.8
$\lambda_{merge} = 0.4$	47.8	65.9	55.0	56.2
$\lambda_{merge} = 0.5$	39.3	64.8	49.4	51.2
$\lambda_{merge} = 0.6$	31.7	64.1	44.5	46.8
$\lambda_{merge} = 0.7$	23.6	63.3	35.6	40.8

Table 10: Impact of the ood threshold under 0-5 setting.

Threshold	DIOR	VOC	RUOD	Avg
$th_{ood} = 200$	54.2	64.2	53.4	57.3
$th_{ood} = 300$	57.9	65.3	55.8	59.7
$th_{ood} = 400$	58.3	65.5	56.4	60.1
$th_{ood} = 500$	58.5	65.5	56.7	60.2
$th_{ood} = 600$	58.8	65.3	56.7	60.2

track their performance evolution across 10 phases. This serves purely as an analytical experiment, since future tasks are unknown in practical CDIOD training. For example, with 50 total categories, DIOR_Task4-1 introduces the first 5 classes in phase 1, achieves peak performance in that phase, and gradually degrades over subsequent phases.

From the results, our method demonstrates strong adaptivity, achieving immediate performance comparable to full fine-tuning for new tasks, while maintaining stability by effectively preserving prior task performance in cross-domain incremental scenarios. Furthermore, our approach also well sustains the model’s generalization ability. For instance, when PascalVOC_Task4-3 is introduced in phase 7, its zero-shot performance from phases 1 to 6 remains largely intact. This is further validated by the ZCOCO results in IVLOD benchmark.

C.2 ADDITIONAL ABLATION RESULTS

Detailed ablation of each components. We provide a detailed ablation results of each component of our framework. Row 0 indicates Zero-shot performance. Row 1 represent sequentially fine-tuning LoRA, which leads to severe catastrophic forgetting. Row 2 represent fine-tune LoRA with KD loss Eq. (5), the result show that this practice still unable to overcome forgetting under cross-domain scenarios. Row 3 represent train task-specific expert module per task and combine them through task-wise routing mechanism, a design widely used in recent works [2; 71; 76]. In this case, the LoRA parameters increase linearly with task numbers, which is still suboptimal due to performance bottleneck of task-id predictions. Row 4 represent we merge LoRA weights trained on each task through averaging merging, however knowledge of different domains varies significantly which leads to poor performance.

Dynamic Task Grouping (DTG) alone just construct task-to-group mapping which can’t be ablated. In Row 5, instead, we leverage DTG and Group_Merge to train Group-wise LoRA. Knowledge from different domains are managed by groups, where we could merge relevant LoRA weights. This design transforms the task-wise routing to robust group-wise routing, which builds up a strong baseline

1188
 1189 Table 11: Comparison of adapter variants within our framework, reporting Extra Parameters Per-
 1190 centage (EPP, %) and Average performance (*AP*%) under 0-5 (10 phases) CDIOD setting. Both are
 1191 inserted into the enhancer’s FFN.

Method	EPP	DIOR	VOC	RUOD	Avg
LoRA(r=4)	0.30%	53.2	64.1	52.9	56.7
LoRA(r=8)	0.60%	55.6	64.7	55.2	58.5
LoRA(r=16)	1.20%	58.8	65.3	56.7	60.2
LoRA(r=32)	2.40%	59.8	65.9	57.6	61.1
Adapter(d=16)	0.18%	48.7	63.8	49.7	54.1
Adapter(d=32)	0.35%	51.5	64.1	52.3	56.0
Adapter(d=64)	0.69%	53.9	64.5	53.5	57.3
Adapter(d=128)	1.38%	55.8	65.0	56.5	59.1
Adapter(d=256)	2.75%	57.7	65.3	57.0	60.0

1201
 1202 for our framework. To enhance model compositionality, we introduce group initialization mecha-
 1203 nism. Once we expand existing group, we initialize the new task-specific adapter from the base
 1204 one. Row 7 and Row 8, we also ablate the merging process to focus on the impact of Group_KD.
 1205 The results show that KD is crucial for alleviating forgetting, particularly for remote sensing and
 1206 underwater tasks, which are not well-aligned with the pre-trained model. Our full method (Row
 1207 9) combines all components and adopt dynamic training pipeline which automatically switch be-
 1208 tween direct adapter updates and updates with Intra-Group Consolidation (IGC), effectively balance
 1209 adaptivity and stability.

1210
 1211 **Impact of Merge Factor λ_{merge} .** We investigate the effect of the merge factor λ_{merge} on model per-
 1212 formance. A smaller value encourages the model to absorb more task-specific knowledge, whereas
 1213 a larger value emphasizes the preservation of base knowledge. The merging step essentially serves
 1214 as a regularization mechanism on the parameter space. As shown in Tab. 9, omitting the merging
 1215 step entirely leads the model to overfit to the new task, while an excessively large λ_{merge} overly
 1216 constrains model updates, both of which result in suboptimal performance. A relatively small λ_{merge}
 1217 achieves better results. Therefore, we set $\lambda_{\text{merge}} = 0.2$ in our experiments to strike an effective
 1218 balance between knowledge retention and task-specific adaptation.

1219
 1220 **Out-of-distribution threshold.** At inference time, **as an optional choice**, we introduce an out-of-
 1221 distribution (OOD) threshold th_{ood} to handle inputs that are far from any known group distribution.
 1222 If an input exceeds this threshold, no IGA is activated; instead, it is processed solely by the base
 1223 model, leveraging the zero-shot capability of the pre-trained VLM for unseen samples. As shown in
 1224 Tab. 10, setting the OOD threshold too low risks misrouting samples from known tasks to zero-shot
 1225 prediction. In contrast, using a relatively higher threshold (e.g., 600) effectively avoids this issue.

1226
 1227 **Comparison of adapter variants.** We evaluated different adapter modules for the base adapter in
 1228 our framework, comparing LoRA [19] and Adapter [4]. In our implementation, LoRA with rank r
 1229 is attached to the two linear layers of the feed-forward network (FFN), while the Adapter module
 1230 with bottleneck dimension d is placed outside the FFN. As shown in Tab. 11, when the number
 1231 of effective parameters is comparable (e.g., LoRA($r=16$) and Adapter($d=128$)), LoRA consistently
 1232 achieves superior performance.

D ADDITIONAL VISUALIZATION

D.1 CLASS-LEVEL T-SNE VISUALIZATION.

1233
 1234 To qualitatively assess the learned representations, we perform a T-SNE visualization on the output
 1235 query features. Each data point in the plot is colored and labeled according to its predicted class.
 1236 For this analysis, we sample 10 classes from each of the three datasets to generate the T-SNE plots.
 1237 The top row of Fig. 8 displays the features extracted from the base model’s zero-shot outputs, while
 1238 the bottom row corresponds to the features learned by our method after the complete incremental
 1239 process. As the figure illustrates, our method consistently produces features that are well-separated
 1240 by class across all three datasets, highlighting its effectiveness in learning distinct and robust repre-
 1241 sentations.

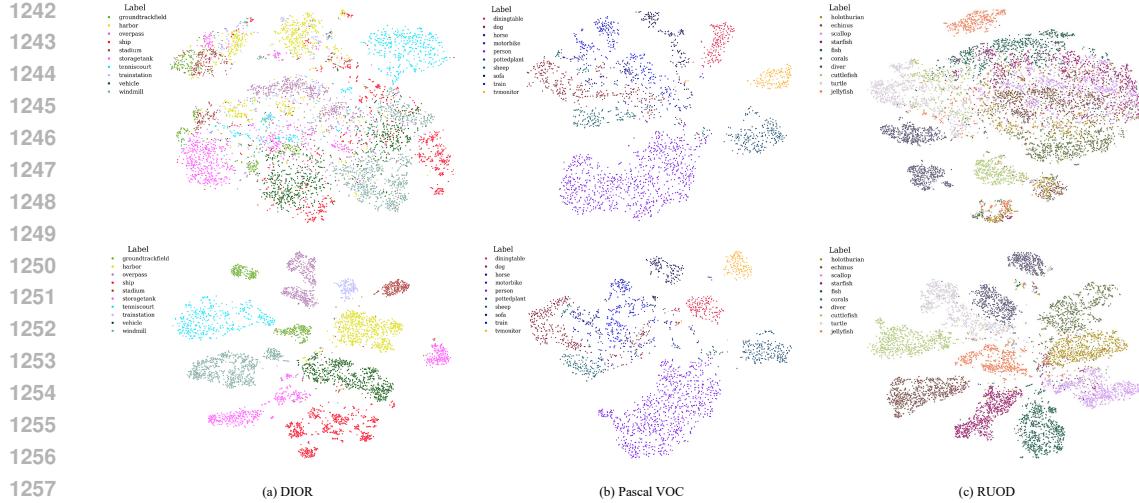


Figure 8: Class-level T-SNE of output query features, with each point labeled by its predicted class. Row 1: Zero-shot; Row 2: Ours.

D.2 QUALITATIVE RESULTS.

We provide a qualitative comparison of Zero-shot, GCD, Zira, and our proposed method under the 0-5 (10-phase) setting, with all models evaluated after completing all training phases.

- **DIOR (Remote Sensing):** The pre-trained Grounding-DINO model struggles to generalize effectively to the DIOR domain, as demonstrated by its zero-shot performance. This is likely because objects of interest in remote sensing often appear as background in its pre-training datasets (e.g., Objects365). In the incremental setting, both GCD and Zira exhibit severe catastrophic forgetting on this domain, whereas our method produces predictions that closely match the ground truth, demonstrating superior retention of DIOR-specific knowledge.
- **Pascal VOC (Natural Scenes):** For the Pascal VOC domain, which is closer to the pre-training data distribution, most methods perform well. However, GCD is a notable exception, as it suffers from significant forgetting in this cross-domain incremental scenario, highlighting its limited ability to preserve knowledge across substantial domain shifts.
- **RUOD (Underwater):** The RUOD domain presents a unique challenge due to its distinct visual characteristics. Here, Zira struggles to adapt effectively, which can be attributed to its limited adaptivity on out-of-distribution tasks.

In summary, across all evaluated tasks and domains, our method consistently demonstrates a balanced and robust performance, mitigating the forgetting issues observed in other methods and effectively adapting to diverse data distributions.

E THE USE OF LARGE LANGUAGE MODEL

During the writing process, we utilized a large language model (LLM) to assist with editing and refining the manuscript. The LLM’s role was confined to improving the fluency and grammatical correctness of the text, ensuring our arguments were presented clearly and concisely. It did not contribute to the ideation, data analysis, or core scientific content of the paper.

1296

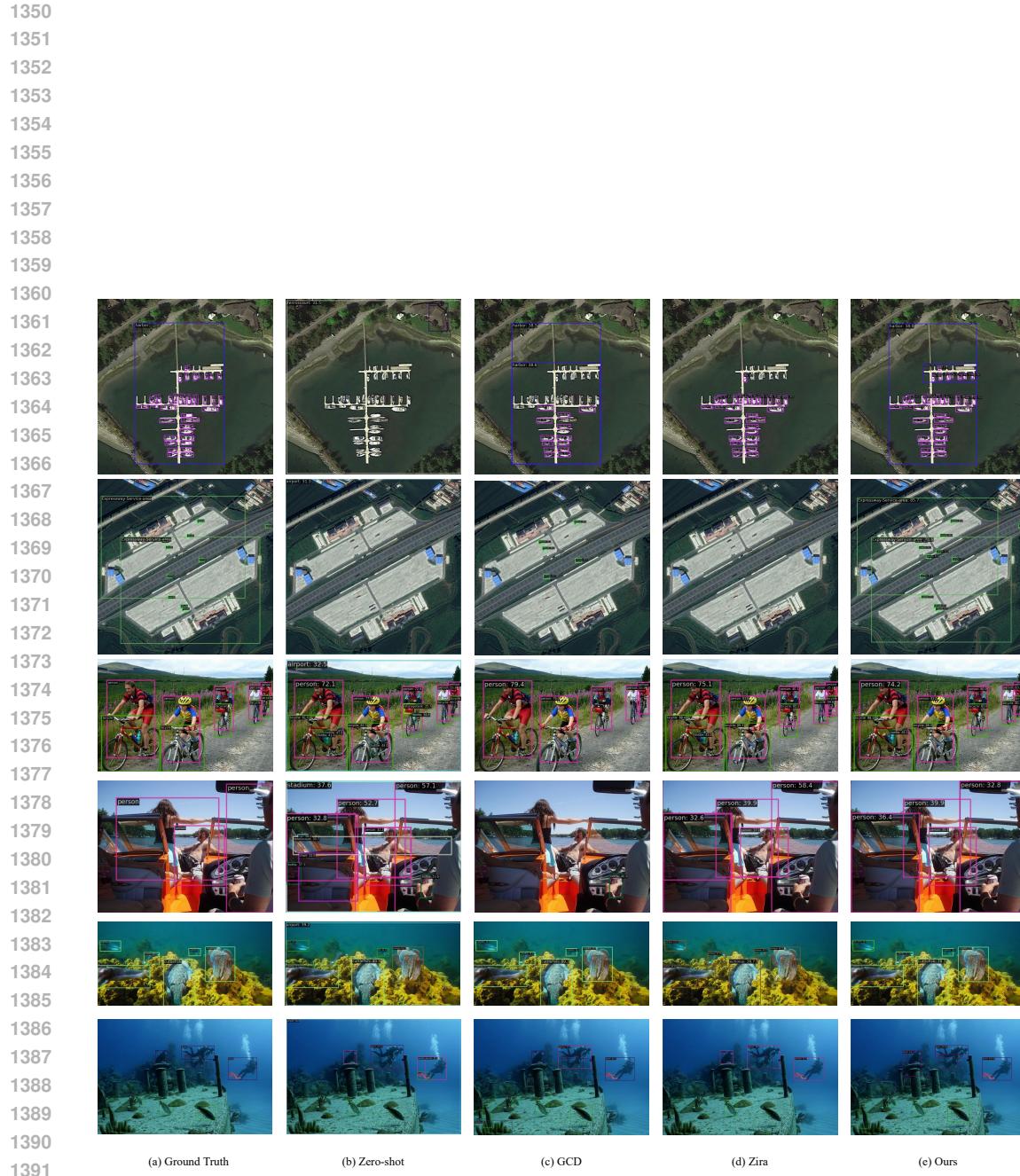
Algorithm 1 Training Procedure

1: **Input:** Sequence of tasks $\{\mathcal{D}_1, \dots, \mathcal{D}_T\}$; Model \mathcal{M} ; ϕ : Task to group mapping; G : set of groups; \mathcal{A}_g : Incremental Group Adapters (IGA) of group g .
 2: **Output:** A set of trained IGA $\{\mathcal{A}_g\}_{g \in G}$.
 3:
 4: **for** task $\mathcal{D}_t \in \{\mathcal{D}_1, \dots, \mathcal{D}_T\}$ **do**
 5: {1. Dynamic Task Grouping}
 6: Iterate \mathcal{D}_t to estimate task distribution \mathcal{N}_t .
 7: $g^* \leftarrow \arg \min_{g \in G} \text{KL}(\mathcal{N}_t \parallel \mathcal{N}_g)$.
 8: ▷ Find the most similar group g^*
 9: {2. Dynamic Adapter Assignment}
 10: **if** G is empty or $\text{KL}(\mathcal{N}_t \parallel \mathcal{N}_{g^*}) \geq \tau$ **then**
 11: Initialize base adapter $\alpha_{g_{\text{new}}}^{\text{base}}$ ▷ Create a new group g_{new} and its IGA $\mathcal{A}_{g_{\text{new}}}$
 12: $\alpha_{\text{active}} \leftarrow \alpha_{g_{\text{new}}}^{\text{base}}$
 13: **else**
 14: Initialize new adapter $\alpha_{g^*}^t$ from $\alpha_{g^*}^{\text{base}}$ ▷ Assign task to g^* and expand its IGA \mathcal{A}_{g^*}
 15: $\alpha_{\text{active}} \leftarrow \alpha_{g^*}^t$
 16: **end if**
 17:
 18: {3. Dynamic Training Pipeline}
 19: **for** each training epoch **do**
 20: **for** each batch $x \in \mathcal{D}_t$ **do**
 21: **if** task t assigned to a new group **then**
 22: $\mathcal{L} \leftarrow \mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{loc}}$. ▷ Train without constraint to enhance adaptivity.
 23: **else**
 24: $\mathcal{L} \leftarrow \mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{loc}} + \mathcal{L}_{\text{distill}}$. ▷ Train with Eq. (12) to retain knowledge for stability.
 25: **end if**
 26: Update parameters of α_{active} using loss \mathcal{L} .
 27: **end for**
 28: **end for**
 29:
 30: {4. Merge Adapters after training}
 31: **if** task t was assigned to an existing group g^* **then**
 32: $\alpha_{g^*}^{\text{base}} \leftarrow \lambda \alpha_{g^*}^{\text{base}} + (1 - \lambda) \alpha_{\text{active}}$. ▷ Merge into group's base adapter
 33: Discard α_{active} .
 34: **end if**
 35: **end for**

1332

Algorithm 2 Inference Procedure

1: **Input:** Test image x ; trained model \mathcal{M} with frozen backbone f_v ; group set G with distributions $\{\mathcal{N}_g\}_{g \in G}$ and adapters $\{\mathcal{A}_g\}_{g \in G}$; out-of-distribution (OOD) threshold τ_{ood} .
 2: **Output:** Prediction y .
 3:
 4: {1. Extract sample distribution}
 5: Compute $\mathcal{N}_x = \mathcal{N}(\mu_x, \Sigma_x)$ from x using f_v .
 6:
 7: {2. Group routing}
 8: Select $g^* \leftarrow \arg \min_{g \in G} \text{KL}(t, g)$.
 9:
 10: {3. Adapter activation and prediction}
 11: **if** $\text{KL}(\mathcal{N}_x \parallel \mathcal{N}_{g^*}) < \tau_{\text{ood}}$ **then**
 12: $y \leftarrow \mathcal{M}(x; \mathcal{A}_{g^*})$ ▷ In-distribution: Use corresponding IGA.
 13: **else**
 14: $y \leftarrow \mathcal{M}(x)$ ▷ OOD: Default to base model (zero-shot).
 15: **end if**
 16: **return** y



1392 Figure 9: Qualitative results of Zero-shot, GCD, Zira, and our method under the 0-5 (10-phase)
1393 setting. Rows 1 to 2 show samples from DIOR, 3 to 4 from Pascal VOC, and 5 to 6 from RUOD.

1394
1395
1396
1397
1398
1399
1400
1401
1402
1403