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ABSTRACT

Pre-trained Vision-Language Models (VLMs) have recently been applied to In-
cremental Object Detection (IOD), achieving notable progress. However, existing
researches often oversimplify real-world scenarios by assuming the incremental
tasks come from a single general domain. To better investigate VLMs under 10D,
it is necessary to explore more generalized scenarios that encompass both novel
categories and domains. To this end, we propose Cross-Domain Incremental Ob-
ject Detection (CDIOD), a new benchmark that assesses the ability to continuously
adapt to diverse object detection tasks across domains. CDIOD reveals that exist-
ing methods struggle to balance between adaptivity and stability under substantial
domain shifts. To tackle this challenge, we propose D?, a novel framework that
possesses Dynamic grouping to promote knowledge sharing and prevent task col-
lisions; Dynamic adapter assignment to effectively adapt to new tasks while con-
trolling model scale; and Dynamic training pipeline to ensure a proper stability-
adaptivity balance. D3 enables VLM:s to effectively handle task streams of various
distribution shifts. Extensive experiments demonstrate that D achieves state-of-
the-art results across three benchmarks, highlighting its versatility and robustness
in diverse incremental learning scenarios.

1 INTRODUCTION

Object detection is a fundamental task in computer vision, with broad applications in areas such as
autonomous driving [[70; 5], remote sensing [31;35], and underwater object detection [67}[23]]. Tra-
ditional detectors are constrained to specific domains and pre-defined categories [52} 3], requiring
costly retraining for each new scenario. This limits their adaptivity in dynamic real-world environ-
ments. Recent advances in Vision-Language Models(VLMs) [32; (755 139] offer an innovative object
detection paradigm. After pre-trained on large-scale image-text pairs [21} [50], VLMs can recog-
nize diverse visual concepts, enabling a single model to perform various detection tasks without
retraining [53 [55]]. Despite strong zero-shot capability, deploying these models for diverse, spe-
cialized downstream tasks (e.g., remote sensing, underwater) often requires fine-tuning to bridge
the distribution gap. In practice, when data arrives non-stationarily, continuously finetuning models
often leads to catastrophic forgetting of previously learned knowledge and decrease of zero-shot
capabilities. [74].

Incremental learning is essential for VLMs to remain adaptable in dynamic environments while mit-
igating catastrophic forgetting. However, most existing IOD researches [415[73;1265163]] oversimplify
real-world challenges, assuming incremental learning occurs within a single, general domain. This
consumption conflicts with the design of modern VLMs [32;39], which are fundamentally intended
to operate across diverse domains. Under this simplified setting, naively fine-tuning pre-trained
VLMs already matches SOTA as shown in Fig. [T(b). This highlights that existing [OD benchmarks
can no longer adequately reflect the incremental learning capabilities of modern VLM-based detec-
tors and overlook the challenges in real-world scenarios. In practice, evolving domains and novel
categories often coincide, posing compounded challenges. A comprehensive evaluation protocol is
essential to assess VLMSs’ capabilities and reflect real-world challenges in a realistic way.

To better understand the challenges of incremental learning with VLMs, we introduce a new chal-
lenging yet practical benchmark named Cross-Domain Incremental Object Detection (CDIOD). As
shown in Fig.[T(a), CDIOD comprises datasets from three different domains: remote sensing(DIOR),
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natural scenes (Pascal VOC) and underwater (RUOD). Each dataset is further divided into several
sub-tasks. Models are required to incrementally learn all these tasks and are finally evaluated on
three datasets in a task-agnostic manner. We compare several SOTA methods under this more gener-
alized setting. The results show that VLMs suffer from severe forgetting when exposed to substantial
domain shifts from their pre-training distribution (e.g., from Objects365 to remote sensing). The for-
getting is further exacerbated by the need of handling novel categories. This compounded challenge
leads to a dilemma, making it difficult to pursue an optimal subspace for previous and upcoming
knowledge. This consequently makes existing methods fail to effectively balance between stability
and adaptivity. As shown in Fig.[2] full fine-tuning approaches like GCD [63]] adapt well to new
domains but fail to retain prior knowledge under large distribution shifts. In contrast, PEFT-based
methods such as MD-DETR [2]] and Zira [6] better preserve pre-trained knowledge but exhibit lim-
ited adaptivity. This underscores that incremental learning of VLMs under diverse and evolving
scenarios remains an underexplored problem.

To address these challenges, we propose D3, a novel framework that jointly enhances adaptivity,
stability, and efficiency. D? begins with Dynamic Task Grouping (DTG), which groups tasks by
distribution similarity to guide the entire learning process. Building on this, Dynamic Adapters
Assignment (DAA) allocates and manages Incremental Group Adapters (IGA) at group-level, en-
abling knowledge sharing across related tasks while isolating unrelated ones. The dynamic training
pipeline then adjusts learning strategies based on grouping: new groups initialize adapters to tackle
large distribution shifts, while existing groups consolidate adapters to maintain stability and encour-
age knowledge transfer with controlled parameter growth. At inference, D? performs group-wise
routing for each input, significantly reducing routing errors. This dynamic design enables VLMs to
learn from evolving task streams with minimal forgetting and parameter overhead.

Extensive experiments on three benchmarks Fig. Ekb), including CDIOD, conventional IOD, and
IVLOD[6], demonstrate that D3 consistently balances adaptivity and stability across diverse incre-
mental settings. It achieves competitive performance with significantly fewer parameters, and its
modular design enables scalable, efficient adaptation to a wide range of downstream detection tasks.

Our contributions are threefold:

* We introduce a novel benchmark, CDIOD, to evaluate the capability of VLMs in more generalized
scenarios that involve substantial domain shifts, which existing IOD methods struggle to handle.

» We propose D?, a dynamic framework that integrates task grouping, adaptive adapter assignment,
and knowledge consolidation to jointly enhance adaptivity, stability, and efficiency, achieving a
16.5 AP gain on CDIOD with only 1.2% additional parameters.

* Extensive evaluations across three benchmarks confirm our method’s consistent SOTA perfor-
mance, validating its generality and robustness in diverse incremental settings.

2 RELATED WORKS

2.1 INCREMENTAL LEARNING

Incremental learning aims to enable models to continuously learn new tasks without forgetting pre-
vious knowledge [43;160;[13]]. Existing approaches can be broadly categorized into three paradigms.
Regularization-based methods impose constraints on the model to prevent overfitting to new data,
either through explicit penalties on model weights [27} [29; [72]] or implicit constraints via knowl-
edge distillation (KD) [[16}136;59;166]]. Rehearsal methods maintain a memory buffer of previously
seen images [51; 48] or intermediate features [45} [20]], and selectively replay them during subse-
quent incremental stages [17]. Architectural methods dynamically expand network [69; |34 168]] to
accommodate new knowledge without interfering with existing ones.

2.2 INCREMENTAL OBJECT DETECTION

Compared to incremental classification, IOD is more challenging due to the presence of both old
and new classes in the same image, leading to missing annotations and background shift. Some
works extended aforementioned methods to object detection. For KD-based approaches [57; 140;
465 475 1105 245 163]], RILOD [57]] first applied LwF [36] to IOD. ERD [10] further filters negative
responses. For rehearsal methods [[151415142;25]], CL-DETR [41] replays exemplars that aligned with
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Figure 1: (a) [llustration of incremental learning spanning across different domains (Natural Scenes,
Underwater, Remote Sensing). A single-domain process (e.g., grey area) corresponds to conven-
tional IOD, whereas the full sequence defines CDIOD. (b) Radar chart comparing methods across
various incremental scenarios (e.g., CDIOD, IOD(COCO), IVLOD(OdinW13)). The outer bound-
ary indicates joint training performance, except for IVLOD(ZCOCO), where zero-shot serves as the
upper bound.

training data distribution, and ABR [42] replays only foreground objects to mitigate foreground shift.
Leveraging VLMs, [/3] assign separate parameters for each task to reduce interference. GCD [63]
distills vision-language topological relationships to preserve semantic structures. Zira [6]] introduces
reparameterizable modules to adapt while retaining pre-trained knowledge.

2.3  PARAMETER-EFFICIENT FINE-TUNING (PEFT)

PEFT techniques adapt pre-trained models to downstream tasks by updating a small subset of
parameters, significantly reducing computational costs. Prompt tuning methods [33} 22] learns
task-specific prompts to guide model predictions. Adapter-based methods [18} [15] insert train-
able bottleneck modules into each transformer layer. LoRA [19] approximates weight updates
via low-rank matrices. These techniques have been extended to incremental learning. For exam-
ple, [65;164; 158} 28] use learnable prompts to encode task-specific knowledge. [715[76561] explore
dynamic adapter expansion/composition to allocate capacity for new tasks.

3 PRELIMINARIES

3.1 CROSS-DOMAIN INCREMENTAL OBJECT DETECTION

Formally, given a sequence of training tasks {Dj,...,D;}, each phase ¢ provides a task D; =
{(xn,yn)}, where x,, are n samples drawn from domain P;. The corresponding labels y,, belong
to the label space C;. During phase ¢, only the classes in C; are annotated, and the label spaces are
disjoint across phases, i.e., Cy N Cy = @ for ¢ # t'. The detector is sequentially updated in each
phase to recognize the new classes in C; based on D;. After completing phase t, it is expected to
detect all seen classes, i.e., C1.4 = Cy.(;—1) U Cy. Unlike conventional IOD, which assumes a fixed

domain across all phases, i.e., Py = Py forall t # ¢, CDIOD considers a more realistic setting that
encompasses both intra-domain P; = P, and cross-domain scenarios P; # Py .

3.2 UNDERSTANDING THE CHALLENGES OF CDIOD

Based on GroundingDINO [39]], a widely adopted VLM for 10D [6; 163], we reproduce several
IOD methods to examine the challenges in CDIOD. Among them, GCD adopts full fine-tuning
combined with KD to preserve prior knowledge. MD-DETR and Zira are PEFT-based methods that
freeze backbone parameters. MD-DETR uses prompt pools, and Zira leverages reparameterization
to expand capacity. The training process proceeds sequentially, PascalVOC(4 phases) — RUOD(2
phases) — DIOR(2 phases).

Intra-domain Stability: We measure the average forgetting within a domain as ﬁ Zf\;l (Wi —

W), where N is the number of learning phase in this domain, W/ is the immediate performance
on task i, and W} is the performance after N learning phases. As shown in Fig. a), VLMs
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Figure 2: Stability and adaptivity analysis of different Methods on CDIOD. (a) Intra-domain sta-
bility is evaluated as forgetting percentage within each dataset, where a lower value represents less
forgetting. (b) Cross-domain stability is evaluated by tracking PascalVOC performance across all
training phases; vertical dashed lines denote domain transitions. (c) Adaptivity is measured by the
immediate performance on each task right after its training, indicating how well the model adapts to
newly introduced tasks.

show minimal forgetting on PascalVOC. However, domains with larger distribution shifts from pre-
training (e.g., DIOR and RUOD) suffer severe forgetting.

Cross-domain Stability: We track the performance of a dataset (e.g., PascalVOC) across all learn-
ing phases to assess cross-domain stability. In Fig. [J(b), PascalVOC sub-tasks are learned sequen-
tially (phases 1-4), achieving peak performance at phase 4. After phase 4 and phase 6, training
shifts to other domains. Large domain gaps lead to substantial VLM forgetting. GCD struggles to
prevent forgetting in these scenarios. Zira and MD-DETR, which maintain stable representations by
freezing pre-trained parameters, better preserve prior knowledge during cross-domain cases.

Adaptivity: Evaluating stability alone is insufficient, as methods with high stability (e.g., zero-shot)
but lack of capacity to adapt to downstream tasks typically result in suboptimal performance. We
measure adaptivity by the immediate performance on each task right after training. Full fine-tuning
methods generally offer stronger adaptivity. PEFT-based methods achieve comparable performance
to fine-tuning on tasks near the pre-training distribution but show limited adaptivity to significant
domain shifts, performing notably worse than full fine-tuning in such cases.

Discussion: While VLMs demonstrate strong generalization capabilities, they still suffer from sig-
nificant forgetting in more generalized incremental settings. Full fine-tuning approaches offer high
adaptivity but struggle to retain knowledge when faced with large domain shifts. In contrast, PEFT-
based methods exhibit stronger stability by preserving pre-trained representations, yet lack sufficient
adaptivity when handling out-of-distribution tasks. Balancing stability and adaptivity remains an
open challenge for CDIOD.

4 METHOD

4.1 OVERVIEW

Adapter modules such as LoRA [19] and Adapters [15] improve adaptivity but remain prone to
catastrophic forgetting in incremental scenarios. To enhance stability, task-specific adapters can
be integrated via task-wise routing/retrieval [7;[71}[76]. This practice, however, faces performance
bottlenecks due to inaccurate task-ID prediction, particularly when applied to complex CDIOD tasks
(see Fig. E]) To overcome these limitations, we propose a novel framework D? to transform task-
wise to robust group-wise routing. As shown in Fig. [3] we first introduce Dynamic Task Grouping
(DTG) to produce a task-to-group assignments. Build on this, Dynamic Adapter Assignment (DAA)
manages task-specific adapters at the group level through Incremental Group Adapters (IGA) and
Intra-Group Consolidation (IGC). A dynamic training pipeline then adjusts its learning strategy
based on group assignments to balance stability and adaptivity. Finally, during inference, DTG
performs robust group-wise routing for each input.

4.2 DYNAMIC TASK GROUPING

Task distributions are commonly used for task ID inference. We extend this by leveraging distri-
bution similarity not just for identification, but for grouping: tasks with similar distributions are
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Figure 3: Overview of the D? framework. SA: Self-Attn, DA: Deform-Attn, fi: language backbone,
fu: vision backbone. At training, given Task,, the DTG estimates its task distribution A, using
F, and computes similarity to existing groups. The task is either assigned to the closest group
g* = ¢(x) or a new group is initialized. The training pipeline branches accordingly: (1) For new
groups (e.g., Task;_1), a new IGA A, is trained; (2) For existing groups (e.g., Task;), A, expands

with a new adapter ozZ initialized from atg’ase. Intra-group consolidation then occurs through KD

where student output M (z; o)) are aligned with teacher output M(z; ab“be) followed by adapter
merging. At inference, DTG performs group routing by comparing the test sample distribution N,/
to stored group ones. If g* = g, the corresponding A, is activated for prediction.

clustered to enable knowledge sharing, while dissimilar ones are isolated to prevent interference.
We thus introduce DTG, an adaptive grouping mechanism based on distribution similarity. For-
mally, given a task sequence S = {1,..., Z}, we define a mapping function ¢(S) = {¢1,...,9:}
with z < Z, inducing a task partition:

z
S = U gi, where g;Ngy =0 fori#1i. (1)
i=1

DTG functions as a domain discriminator which can be implemented as an autoencoder or via prob-
abilistic modeling. In practice, we implement it as the latter due to memory efficiency. Given a new
task D;, we extract features F; using the frozen image backbone and estimate its statistics, denoted
as p; = E(F) and X; = Var(F;). This defines a Gaussian approximation N; = N (u, ;) for
task D;. We compare N; with the distribution of each task assigned to a group. For group g with
task set {k € g}, the similarity is computed as the minimum KL divergence:

KL(t, 9) = 11?61;1 [Drcr (Nl N3)] 2
Let g* = arg miny KL(t, g) denote the group yielding the minimum KL divergence. The grouping

decision follows:
* if KL(t,g*) <7
Init new group otherwise

where 7 is the expansion threshold. If no existing group exhibits sufficient similarity to task D;, a
new group is created to accommodate this task.

4.3 DYNAMIC ADAPTERS ASSIGNMENT

Building on the task-to-group allocation from DTG, we reorganize task-specific adapters into group-
specific ones. This approach offers two key advantages: it effectively replaces task-wise routing with
a more robust group-wise mechanism, and it enables knowledge reusing among adapters within the
same group. We realize this through two key components: Incremental Group Adapters (IGA) and
Intra-Group Consolidation (IGC). IGA serves as an expandable adapter module tied to each group.
IGC further enhances knowledge reuse and parameter growth control within IGA.
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Incremental Group Adapters. Each group g; is associated with an IGA, denoted as .4;, which is
initialized upon the arrival of its first task. The A; comprises a set of task-specific adapters a"’i, one
for each task k € g;. These adapters follow the LoRA [19] design and are inserted into the feed-
forward networks (FFN) of both text and image branches within each enhancer layer. Denoting the

FFN input as h, the output becomes:

FFN(h) + Z myg - BkAkh, 4)
keg;

where Ay and Bj, are LoRA parameters of task k, and my, is a one-hot mask indicating the active
adapter.

Intra-Group Consolidation. We manage to model multiple tasks within single IGA module A,
to enable group-wise routing. But we still faces two key issues: how to effectively reuse previ-
ously learned knowledge and how to prevent the linear growth of adapter parameters. To address
the aforementioned issues, we propose a per-task parameter consolidation strategy. First, to retain
group-level knowledge, we employ KD from the base to the new adapter via a lightweight switching
mechanism, avoiding the need to cache previous models. Each IGA A, includes a base adapter
agase. When a new task ¢ arrives (i.e., ¢(t) = g), a task-specific adapter a; is initialized from the
base one. We denote the model output as M (z; o), where x is the input sample, and « is the
currently activated adapter within IGA A,. During training, we obtain (i) the student output using
oz_f], and (ii) the teacher output using azase. The distillation loss is formally defined as:

Laisin = L (M(z;0), M(z;al)), &)

g9 g9

where L refers to a topology-based KD loss. Then, to prevent parameter growth over time, we
consolidate adapters within each .4, after training. Specifically, the new adapter ag is merged into

base adapter agase via a weighted sum:

ab™ = Xl 4 (1 — Aoy, (6)

where A € [0, 1] balances prior knowledge preservation and task-specific adaptation. This merging
serves as parameter-level regularization which prevents parameters overly drift from the base one.
We use a small A to favor updated representations while maintaining stability. The update is applied
to both LoRA matrices (A, B), after which afz is discarded. Further details are provided in Sec.

4.4 TRAINING AND INFERENCE

Dynamic training pipeline. To ensure a proper stability-adaptivity balance, D? dynamically adjusts
its training pipeline based on the task assignment. It adopts a two-fold scheme: for a task assigned
to a new group, the model is updated directly without a constraint term, favoring adaptivity to novel
tasks. Conversely, for a task assigned to an existing group, we apply KD to retain group knowledge
and mitigate label conflicts via pseudo-labeling, which prioritizes stability. By defining a binary
indicator 0(¢), where 0(¢) = 1 if task ¢ is assigned to an existing group, and §(¢) = 0 otherwise, we
unify the training objective as follows:

L = Las + Lioc + 0(t) Laisin» (7N
where L utilizes focal loss [38]], and £, employs L1 and GIoU losses [54]].

Group Routing for Inference. At inference time, for a given test image x, we first extract its
feature statistics using the backbone, defining a Gaussian approximation N,. The DTG identifies
the most similar group g* via minimum KL divergence. If KL(x, g*) is below an out-of-distribution
threshold, the corresponding A4~ is activated across all relevant layers for prediction. Otherwise,
the model defaults to zero-shot inference using the base model alone.

5 EXPERIMENTS

Datasets and Metrics. We construct CDIOD using three diverse datasets covering 50 classes:
DIOR [31] (remote sensing, 20 classes), Pascal VOC 2012 [9] (natural scenes, 20 classes), and
RUOD [[11]] (underwater, 10 classes). To assess generality, we also evaluate on two additional
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Table 1: CDIOD results (AP%) under 0-5 and 0-10 settings. We report performance over three
datasets after last training phase. All methods are based on Grounding-DINO-T. The Best and
second results are shown in bold and underline, respectively.

Method 0-10 (5 phases) 0-5 (10 phases)
DIOR PascalVOC RUOD Average | DIOR PascalVOC RUOD Average

Joint | 69.5 72.0 64.3 68.6 | 69.5 72.0 64.3 68.6
Fine-tuning 32.8 44.4 31.1 36.1 19.0 349 19.9 24.6
CL-DETR [41] | 55.6 46.3 40.9 47.6 51.6 30.5 33.1 38.4
MD-DETR [2] 352 59.6 48.5 47.8 29.5 58.5 36.8 41.6
GCD [63] 56.6 51.7 44.8 51.0 524 42.0 36.6 43.7
Zira [6] 36.8 62.6 453 48.2 275 61.3 39.7 42.8
Ours 63.2 68.4 62.5 64.7 58.8 65.3 56.7 60.2

Table 2: IOD results (AP%) on COCO 2017. Performance for base classes C1, new classes Co.;,
and all classes C1.; are reported, denoted as "old’, "new’, and all’, respectively.

40-40 (2 phases) 40-10 (5 phases)
old new all old new all

61.8 541 579 | 61.8 541 579

Fine-tuning | 56.8 53.6 552 | 562 462 512
CL-DETR | 576 526 551|516 476 496
GCD 587 524 555 | 554 480 517
MD-DETR | 526 50.1 513 | 513 40.1 457
Zira 58.0 49.6 538 | 57.0 46.8 519
Ours 598 50.8 553 | 56.8 484 52.6

Method

Joint

benchmarks: conventional IOD based on COCO [37]] and IVLOD [6] based on ODinW-13 [30]].
We use standard COCO metrics: AP and APsx.

Experiment Setup. CDIOD is constructed by sequentially combining the above datasets in a class-
incremental manner. Each dataset is split into subsets following standard class splits [10; [24; 23],
ensuring disjoint label spaces across phases. Since images may include objects from unseen classes,
they can reappear across phases, reflecting realistic conditions. The setup is denoted as Npse — Nine,
where Ny, denotes the number of classes introduced in the initial step, and Ny, specifies the
number introduced in each subsequent phase. When Ny,se = 0, classes are evenly divided in each
phase. We report joint training results as an upper bound (denoted Joint). We adopt two settings:
0-10 (5 phases) and 0-5 (10 phases). For example, the 0-10 setup follows DIOR (2 phases) —
PascalVOC (2) — RUOD (1). After completing all phases, models are evaluated jointly across
all three datasets. We report the average performance after three runs with shuffled dataset orders.
Detailed description of the benchmark can be found in Sec.[A.2]

Implementation Details. All models are built on Grounding-DINO-T, pre-trained on Ob-
jects365 [56], GoldG [32], and Cap4M [32]. Training is conducted on 8 RTX 3090 GPUs with
total batch size 16. Only LoRA parameters are updated, we set the rank as 16. The learning rate
is set to le—3 for 11 epochs and 1e—4 for the last. The expansion threshold is 150, and the merge
factor is 0.2 for both A and B matrices.

5.1 RELATED BENCHMARKS

Incremental Object Detection (IOD). We evaluate IOD on COCO under two common settings:
40-40 and 40-10, utilizing the same methods as in our CDIOD evaluations.

Incremental Vision-Language Object Detection (IVLOD). For the IVLOD benchmark [6], we
follow its full-shot task-incremental setup, where evaluation is confined to a task-specific label space.
We employ group routing to infer the optimal group id for each input. Models are sequentially
trained on ODinW-13 and evaluated after all phases. Baseline results for TFA [62], iDETR [8]],
AT [18]], OW-DETR [14], CL-DETR [41]], and Zira [6] are taken from [6].
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Table 3: IVLOD full-shot results (AP %) on ODinW-13 and ZCOCO (zero-shot results on COCO).

Methods ZCOCOo Avg Ae Aq Co Eg Mu Pa Pv Pi Po Ra Sh Th Ve
Zero-shot 474 46.7 19.1 20.8 64.7 57.0 254 545 54.8 66.0 221 622 32.8 70.6 572
TFA 31.0 479 238 30.7 67.2 61.8 30.5 50.2 41.7 60.9 293 61.7 314 66.2 61.6
iDETR 373 58.7 32,6 46.7 71.0 68.6 55.3 58.9 64.5 71.0 50.3 63.3 392 77.1 64.8
AT 423 51.1 23.6 399 723 65.5 315 50.5 60.5 66.1 39.1 53.5 34.0 68.1 60.2
OW-DETR 312 55.6 28.5 43.8 70.5 67.8 43.8 56.8 63.1 69.5 452 59.0 37.0 74.4 632
CL-DETR 322 573 29.4 45.2 71.9 69.9 45.2 58.5 65.1 1.7 46.6 60.8 38.1 76.7 652
ZiRa 46.1 59.7 32.8 48.2 70.3 69.7 59.3 58.1 64.0 70.7 50.1 67.5 45.5 76.8 63.5
Ours 46.4 60.9 40.3 54.8 60.5 78.3 42.6 59.1 58.4 75.9 56.1 69.5 50.5 79.4 66.4

5.2 MAIN RESULTS

Results on CDIOD. We evaluate our method on the CDIOD benchmark under 5 phases and 10
phases settings, where each phase introduces 10 and 5 classes, respectively (Tab. [I). Existing meth-
ods generally struggle to balance adaptivity and stability. Full fine-tuning methods adapt well to
new tasks but suffer from severe forgetting, especially under longer incremental sequences. In con-
trast, PEFT-based IOD methods maintain more stable performance on in-distribution tasks (e.g.,
PascalVOC) but show limited adaptivity to new domains. Our method achieves a better balance
across all domains and phases. It surpasses prior SOTA by +13.7 AP (5 phases) and +16.5 AP
(10 phases), maintaining stability while remaining adaptive to tasks with distribution shifts. More
detailed results per run and the impact of training order are provided in Sec.[C.1]

Results on IOD. As shown in Tab. [2} we further evaluate our method on COCO 2017 under 2 phases
and 5 phases incremental settings. For conventional IOD, simple fine-tuning already performs on
par with previous SOTA, indicating that pre-trained representations inherently offer strong forget-
ting resistance in in-domain scenarios. Our proposed method achieves superior performance across
both incremental scenarios, particularly in longer learning phases (40-10), which demonstrates its
enhanced intra-domain stability.

Results on IVLOD. As shown in Tab. [3| our method drops 1.0 AP on ZCOCO compared to the
zero-shot upper bound. It also improves the ODinW13 average by 1.2 AP over the prior SOTA,
achieving the top score on 10 of the 13 datasets. These results demonstrate our method’s robust
downstream adaptation while effectively preserving zero-shot capability.

5.3 ABLATION STUDY

Table 4: Impact of different components, re- Table 5: Impact of the expansion threshold 7
porting Extra Parameters Percentage (EPP, %)  ©n task grouping and performance under 0-5 (10
and Average performance (AP%) under 0-5 (10 phases) setting.

phases) CDIOD setting.
Threshold | Groups ~ DIOR ~ VOC ~ RUOD  Avg
# | Method | EPP  DIOR VOC RUOD  Avg r=1 10 410 637 497 515
= 6 58.8 64.8 53.2 58.9
1 Base Model 0.00% 2.7 51.9 19.6 24.7 : _ ?80 4 597 66.1 53.1 59.6
2 LoRA 0.40% 32 425 429 29.5 - 150 3 58'8 65.3 56'7 602
3 T-LoRA 4.00% 41.0 63.7 49.7 51.5 T= e - y
4 | 3+Merge 400% 297 615 401 438 T = 42138 ; gg-g 22 ; g; (7) 28(5)
T = . A
5 | G-LoRA 120% 487 652 490 543 T = 500 3 58.4 65.1 572 60.2
6 5 + Group Init 1.20% 51.6 66.7 519 56.7 T = 600 3 577 65.3 57.6 60.2
7 6 + Dynamic 1.20% 58.8 65.3 56.7 60.2 7 = 1000 > 235 65.2 573 48.7

Impact of each component. We conduct ablations under 10 phases setting to assess each compo-
nent’s impact (Tab.[d). Row 1 shows that pre-trained VLMs poorly generalize to remote sensing and
underwater domains. A single LoRA (Row 2) shows adaptivity but suffers from severe forgetting.
T-LoRA (Row 3) trains task-specific LORA and combines them via task-wise routing, causing lin-
ear parameter growth and routing errors. Row 4 further merge all LoRA weights per task through
average weighted sum, the knowledge gaps between domains leads to significant performance de-
cline. Row 5 we introduce DTG and Eq. (6) to train Group-wise LoRA (G-LoRA) which builds a
strong baseline. Knowledge from different domains are managed by groups, thus we could merge
relevant LoORA weights to avoid linear parameter growth. Row 6 we replace random init with group
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(a) Task-ids Prediction Accuracy Per Task (b) Performance Per Task (a) Impa nk (b) Impact of Inse (Rank 16)

Figure 4: Task ID prediction accuracy analy-  Figure 5: Analysis of LoRA Rank choice and cor-
sis, evaluated after 10 phases of training. responding insertion position with rank 16.

initialization, which effectively alleviate catastrophic forgetting. Our full method (Row 7) integrates
a dynamic training pipeline to automatically balance adaptivity and stability, achieving balanced
performance across all tasks.

Impact of Threshold 7 on Task Grouping. We examine how the expansion threshold 7 affects
group numbers and performance in the 10 phases setting. A small threshold (e.g., 7 = 1) degenerates
to task-wise routing, creating a separate IGA for each task and failing to exploit task similarities.
In contrast, a large one (e.g., 7 = 1000) merges diverse tasks into a single group, leading to severe
task interference and degraded cross-domain stability. Moderate values of 7 (e.g., 100-600) allow
semantically similar tasks to be grouped together, yielding the best overall performance. Notably,
the framework’s performance remains stable across this broader threshold range, which indicates
a low sensitivity to this hyperparameter under CDIOD. To further validate this, we adopt a fixed
expansion threshold (7 = 150) for all comparison experiments without extra tuning. The consistent
performance gains confirm practicality.

Task Routing Accuracy Analysis. We investigate the effect of different task ID inference strate-
gies on routing accuracy under 10 phases setting. Upon completing all phases, we assess the routing
accuracy for each task. As illustrated in Fig. f[a), task-wise routing based on auto-encoders (Blue)
suffers from severe confusion among tasks within the same domain. Distribution-based (Green)
inference alleviates intra-domain confusion but still achieves suboptimal accuracy. Furthermore,
Fig. f]b) reveals that the performance of each task is highly dependent on its inference accuracy. In
contrast, DTG allows for group-wise routing (Yellow), significantly reduces routing errors and con-
sistently outperforms task-wise methods across all tasks, validating its robustness and effectiveness.

Expert Rank and Insert Position. We analyzed the performance and parameter efficiency of Incre-
mental Group Adapters (IGA) by varying their insertion position and LoRA rank. “Fusion” refers
to the enhancer’s fusion layers, while "FFN” denotes the feed-forward networks in the enhancer’s
text and image branches. As shown in Fig. [5(a), inserting IGA into the FFNs (both image and text
branches) provides the best balance of parameters and performance. Furthermore, Fig. [5(b) reveals
that a LoRA rank of 16 achieves the most favorable trade-off between parameters and performance.

6 CONCLUSION AND LIMITATION.

In this work, we demonstrate that existing benchmarks inadequately capture the incremental learning
challenges faced by pre-trained VLMs in real-world scenarios. To bridge this gap, we introduce
CDIOD, a more generalized, domain-diverse benchmark. Experiments on CDIOD reveal that VLMs
suffer from severe forgetting, and current methods fail to effectively balance adaptivity and stability
in these cross-domain incremental scenarios. To address this, we propose D3, which integrates IGA
guided by DTG to separate tasks with distinct distributions while clustering similar ones, preventing
interference and enhancing knowledge sharing. Within each group, a consolidation mechanism
merges task-specific adapters, effectively controlling parameter growth. And a dynamic training
pipeline is introduced to better balance stability and adaptivity. During inference, group-wise routing
ensures activating the optimal IGA for each input. Extensive Experiments on three benchmarks
demonstrate our method’s effectiveness. However, a limitation is that DTG relies on accurate task
distribution estimation, which can be unreliable when data is scarce, leading to suboptimal grouping.
As a preliminary exploration of CDIOD, our work highlights the broader challenge of achieving
incremental learning across diverse downstream detection tasks.
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8 REPRODUCIBILITY STATEMENT

To guarantee reproducibility, we have made the following efforts. (1) The pseudo-code for our
method is provided in algorithm |1} (2) All datasets used in this work are publicly available, and
we provide a detailed description in Sec. Furthermore, details on the proposed benchmark are
provided in Sec.[A.T] (3) We have also included the experiment hyperparameter settings in Sec.[B.J]
and the training order in Sec. (4) Additionally, all source code required for conducting and
analyzing the experiments will be made publicly available upon the paper’s publication.

REFERENCES

[1] Manoj Acharya, Tyler L Hayes, and Christopher Kanan. Rodeo: Replay for online object
detection. arXiv preprint arXiv:2008.06439, 2020.

[2] Gaurav Bhatt, James Ross, and Leonid Sigal. Preventing catastrophic forgetting through mem-
ory networks in continuous detection. In European Conference on Computer Vision, pp. 442—
458. Springer, 2024.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213-229. Springer, 2020.

[4] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping
Luo. Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in
Neural Information Processing Systems, 35:16664—16678, 2022.

[5] Can Cui, Yunsheng Ma, Xu Cao, Wengqian Ye, Yang Zhou, Kaizhao Liang, Jintai Chen, Juanwu
Lu, Zichong Yang, Kuei-Da Liao, et al. A survey on multimodal large language models for
autonomous driving. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 958-979, 2024.

[6] Jieren Deng, Haojian Zhang, Kun Ding, Jianhua Hu, Xingxuan Zhang, and Yunkuan Wang.
Zero-shot generalizable incremental learning for vision-language object detection. Advances
in Neural Information Processing Systems, 37:136679-136700, 2024.

[7] Bowen Dong, Zitong Huang, Guanglei Yang, Lei Zhang, and Wangmeng Zuo. Mr-gdino:
efficient open-world continual object detection. arXiv preprint arXiv:2412.15979, 2024.

[8] Na Dong, Yongqgiang Zhang, Mingli Ding, and Gim Hee Lee. Incremental-detr: Incremental
few-shot object detection via self-supervised learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 543-551, 2023.

[9] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisser-
man. The pascal visual object classes (voc) challenge. International journal of computer
vision, 88(2):303-338, 2010.

[10] Tao Feng, Mang Wang, and Hangjie Yuan. Overcoming catastrophic forgetting in incremental
object detection via elastic response distillation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 9427-9436, 2022.

[11] Chenping Fu, Risheng Liu, Xin Fan, Puyang Chen, Hao Fu, Wanqi Yuan, Ming Zhu, and

Zhongxuan Luo. Rethinking general underwater object detection: Datasets, challenges, and
solutions. Neurocomputing, 517:243-256, 2023.

10



Under review as a conference paper at ICLR 2026

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Yugqian Fu, Yu Wang, Yixuan Pan, Lian Huai, Xingyu Qiu, Zeyu Shangguan, Tong Liu, Yanwei
Fu, Luc Van Gool, and Xingqun Jiang. Cross-domain few-shot object detection via enhanced
open-set object detector. In European Conference on Computer Vision, pp. 247-264. Springer,
2024.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Akshita Gupta, Sanath Narayan, KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Mubarak
Shah. Ow-detr: Open-world detection transformer. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 9235-9244, 2022.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
wards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366,
2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified
classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 831-839, 2019.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In International conference on machine learning, pp. 2790-2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1
(2):3, 2022.

Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. Memory-efficient in-
cremental learning through feature adaptation. In Computer Vision—-ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XVI 16, pp. 699-715.
Springer, 2020.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-
Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation

learning with noisy text supervision. In International conference on machine learning, pp.
4904-4916. PMLR, 2021.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
and Ser-Nam Lim. Visual prompt tuning. In European conference on computer vision, pp.
709-727. Springer, 2022.

Muwei Jian, Nan Yang, Chen Tao, Huixiang Zhi, and Hanjiang Luo. Underwater object detec-
tion and datasets: a survey. Intelligent Marine Technology and Systems, 2(1):9, 2024.

Mengxue Kang, Jinpeng Zhang, Jinming Zhang, Xiashuang Wang, Yang Chen, Zhe Ma, and
Xuhui Huang. Alleviating catastrophic forgetting of incremental object detection via within-
class and between-class knowledge distillation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 18894—18904, 2023.

Junsu Kim, Hoseong Cho, Jihyeon Kim, Yihalem Yimolal Tiruneh, and Seungryul Baek. Sd-
dgr: Stable diffusion-based deep generative replay for class incremental object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2877228781, 2024.

Junsu Kim, Yunhoe Ku, Jihyeon Kim, Junuk Cha, and Seungryul Baek. VIm-pl: Advanced
pseudo labeling approach for class incremental object detection via vision-language model. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4170-4181, 2024.

11



Under review as a conference paper at ICLR 2026

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy
of sciences, 114(13):3521-3526, 2017.

Minh Le, An Nguyen, Huy Nguyen, Trang Nguyen, Trang Pham, Linh Van Ngo, and Nhat Ho.
Mixture of experts meets prompt-based continual learning. Advances in Neural Information
Processing Systems, 37:119025-119062, 2024.

Sang-Woo Lee, Jin-Hwa Kim, Jachyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcom-
ing catastrophic forgetting by incremental moment matching. Advances in neural information
processing systems, 30, 2017.

Chunyuan Li, Haotian Liu, Liunian Li, Pengchuan Zhang, Jyoti Aneja, Jianwei Yang, Ping
Jin, Houdong Hu, Zicheng Liu, Yong Jae Lee, et al. Elevater: A benchmark and toolkit for
evaluating language-augmented visual models. Advances in Neural Information Processing
Systems, 35:9287-9301, 2022.

Ke Li, Gang Wan, Gong Cheng, Ligiu Meng, and Junwei Han. Object detection in optical
remote sensing images: A survey and a new benchmark. ISPRS journal of photogrammetry
and remote sensing, 159:296-307, 2020.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu
Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jeng-Neng Hwang, et al. Grounded language-
image pre-training. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10965-10975, 2022.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A con-
tinual structure learning framework for overcoming catastrophic forgetting. In International
conference on machine learning, pp. 3925-3934. PMLR, 2019.

Yuxuan Li, Qibin Hou, Zhaohui Zheng, Ming-Ming Cheng, Jian Yang, and Xiang Li. Large
selective kernel network for remote sensing object detection. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 16794—16805, 2023.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935-2947, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Pi-
otr Dolldr, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision—-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740-755. Springer, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980-2988, 2017.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jian-
wei Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training
for open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Xialei Liu, Hao Yang, Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto. Multi-task
incremental learning for object detection. arXiv preprint arXiv:2002.05347, 2020.

Yaoyao Liu, Bernt Schiele, Andrea Vedaldi, and Christian Rupprecht. Continual detection
transformer for incremental object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 23799-23808, 2023.

Yuyang Liu, Yang Cong, Dipam Goswami, Xialei Liu, and Joost van de Weijer. Augmented
box replay: Overcoming foreground shift for incremental object detection. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 11367-11377, 2023.

12



Under review as a conference paper at ICLR 2026

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pp.
109-165. Elsevier, 1989.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan
Ghasemzadeh. Linear mode connectivity in multitask and continual learning. arXiv preprint
arXiv:2010.04495, 2020.

Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen, and Moin Nabi. Learning
to remember: A synaptic plasticity driven framework for continual learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11321-11329,
2019.

Can Peng, Kun Zhao, and Brian C Lovell. Faster ilod: Incremental learning for object detectors
based on faster rcnn. Pattern recognition letters, 140:109-115, 2020.

Can Peng, Kun Zhao, Sam Maksoud, Meng Li, and Brian C Lovell. Sid: incremental learning
for anchor-free object detection via selective and inter-related distillation. Computer vision
and image understanding, 210:103229, 2021.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that
questions our progress in continual learning. In European conference on computer vision, pp.
524-540. Springer, 2020.

Yujia Qin, Cheng Qian, Jing Yi, Weize Chen, Yankai Lin, Xu Han, Zhiyuan Liu, Maosong Sun,
and Jie Zhou. Exploring mode connectivity for pre-trained language models. arXiv preprint
arXiv:2210.14102, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable

visual models from natural language supervision. In International conference on machine
learning, pp. 8748-8763. PMLR, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001-2010, 2017.

Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. Advances in neural information processing
systems, 28, 2015.

Tianhe Ren, Yihao Chen, Qing Jiang, Zhaoyang Zeng, Yuda Xiong, Wenlong Liu, Zhengyu
Ma, Junyi Shen, Yuan Gao, Xiaoke Jiang, et al. Dino-x: A unified vision model for open-world
object detection and understanding. arXiv preprint arXiv:2411.14347, 2024.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
Savarese. Generalized intersection over union: A metric and a loss for bounding box regres-

sion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 658-666, 2019.

Ranjan Sapkota and Manoj Karkee. Object detection with multimodal large vision-language
models: An in-depth review. Available at SSRN 5233953, 2025.

Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and
Jian Sun. Objects365: A large-scale, high-quality dataset for object detection. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 8430-8439, 2019.

Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. Incremental learning of object

detectors without catastrophic forgetting. In Proceedings of the IEEE international conference
on computer vision, pp. 3400-3409, 2017.

13



Under review as a conference paper at ICLR 2026

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun
Kim, Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual
decomposed attention-based prompting for rehearsal-free continual learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11909-11919,
2023.

Xiaoyu Tao, Xinyuan Chang, Xiaopeng Hong, Xing Wei, and Yihong Gong. Topology-
preserving class-incremental learning. In European conference on computer vision, pp. 254—
270. Springer, 2020.

Sebastian Thrun. Is learning the n-th thing any easier than learning the first? Advances in
neural information processing systems, 8, 1995.

Huiyi Wang, Haodong Lu, Lina Yao, and Dong Gong. Self-expansion of pre-trained models
with mixture of adapters for continual learning. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 10087-10098, 2025.

Xin Wang, Thomas E Huang, Trevor Darrell, Joseph E Gonzalez, and Fisher Yu. Frustratingly
simple few-shot object detection. arXiv preprint arXiv:2003.06957, 2020.

Xu Wang, Zilei Wang, and Zihan Lin. Ged: Advancing vision-language models for incremental
object detection via global alignment and correspondence distillation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 8015-8023, 2025.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi
Ren, Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting
for rehearsal-free continual learning. In European conference on computer vision, pp. 631—
648. Springer, 2022.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong
Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
139-149, 2022.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 374-382, 2019.

Shubo Xu, Minghua Zhang, Wei Song, Haibin Mei, Qi He, and Antonio Liotta. A systematic
review and analysis of deep learning-based underwater object detection. Neurocomputing, 527:
204-232, 2023.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for
class incremental learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 3014-3023, 2021.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dy-
namically expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Fisher Yu, Haofeng Chen, Xin Wang, Wengqi Xian, Yingying Chen, Fangchen Liu, Vashisht
Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous mul-
titask learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 26362645, 2020.

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
continual learning of vision-language models via mixture-of-experts adapters. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23219-23230,
2024.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intel-
ligence. In International conference on machine learning, pp. 3987-3995. PMLR, 2017.

14



Under review as a conference paper at ICLR 2026

[73] Hongquan Zhang, Bin-Bin Gao, Yi Zeng, Xudong Tian, Xin Tan, Zhizhong Zhang, Yanyun
Qu, Jun Liu, and Yuan Xie. Learning task-aware language-image representation for class-
incremental object detection. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 7096-7104, 2024.

[74] Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Prevent-
ing zero-shot transfer degradation in continual learning of vision-language models. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19125-19136,
2023.

[75] Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold
Li, Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-
image pretraining. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 16793-16803, 2022.

[76] Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensem-
ble for pre-trained model-based class-incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 23554-23564, 2024.
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Figure 6: Dataset visualization of Cross-Domain Incremental Object Detection

In this appendix, we provide: (1) Additional experiment details. (2) Additional method details. (3)
More comparison and ablation results of our method. (4) Some visualization results.

A ADDITIONAL EXPERIMENTAL DETAILS

This section presents: (i) detailed statistics of the datasets, (ii) comprehensive description of the
benchmark protocol construction, and (iii) a brief overview of the evaluated methods.

A.1 DATASET DETAILS

To evaluate the continual learning capabilities of Vision-Language Models (VLMs) across a wider
range of downstream task scenarios, we constructed the Cross-Domain Class-Incremental Object
Detection (CDIOD) benchmark. This benchmark leverages datasets from three different domains,
encompassing common natural scenes alongside remote sensing and underwater datasets that exhibit
significant distributional gaps from typical pre-training data.

* DIOR is a large-scale remote sensing object detection dataset. It contains 20 classes (e.g.,
golffield, bridge, stadium), with 18,463 training images and 5,000 validation images.
Classes primarily feature architectural and infrastructural objects.

¢ Pascal VOC 2012 [9] is a widely recognized natural scenes object detection benchmark. It com-
prises 20 classes (e.g., car, person, cat), with 13,690 training images and 3,422 validation
images. Classes focus on common everyday objects.

» RUOD [11] is a dataset specifically curated for underwater object detection. It consists of 10
classes (e.g., turtle, diver, starfish), with 9,800 training images and 4,200 validation
images. Classes include various marine life.
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For related Incremental Object Detection (IOD) and Incremental Vision-Language Object Detection
(IVLOD) benchmarks, we utilize:

* COCO [37] is a large-scale natural scenes dataset for object detection, segmentation. It features
80 classes (e.g., person, car, dog), with 118,000 training images and 5,000 validation images.

* ODinW13 [30] is a comprehensive benchmark designed to evaluate zero-shot object detection
performance. It aggregates 13 different sub-datasets, including: Aerial Maritime Drone (Ae),
Aquarium (Aq), Cottontail Rabbits (Co), Egohands (Eg), Mushrooms (Mu), Packages (Pa), Pascal
VOC (Pv), Pistols (Pi), Pothole (Po), Raccoon (Ra), Shellfish (Sh), Thermal Dogs and People
(Th), and Vehicles (Ve).

A.2 BENCHMARK CONSTRUCTION DETAILS

Extending 10D for Modern VLMs. Modern pre-trained vision-language models (VLMs), such as
GLIP [32] and Grounding DINO [39], are designed to operate across diverse domains rather than
being limited to a single scenario. For example, to assess their zero-shot generalization capability,
these models are commonly evaluated on heterogeneous benchmarks like ODinW35, which span a
wide range of domains.

We construct CDIOD not merely as a dataset extension to conventional IOD, but as a broader gen-
eralization of the IOD setting. A straightforward approach would be to retain the standard IOD
setting and treat each dataset as an independent incremental process for evaluation. However, this
still restricts the detection model to incremental learning within a single domain context. We further
view the incremental learning process as a natural extension of pre-training, aimed at progressively
expanding the model’s knowledge capacity through continual learning. Therefore, we integrate
datasets from different domains into a unified incremental learning protocol, enabling the model
not only to perform incremental learning within a specific domain but also to acquire cross-domain
continual learning ability. Ultimately, our goal is to develop a single, unified detector capable of
handling diverse downstream object detection tasks across multiple domains.

Dataset Split. To simulate the continual learning process within a single domain, we follow the
dataset splitting strategy commonly adopted in conventional IOD. Specifically, each dataset is parti-
tioned into multiple incremental tasks based on disjoint class subsets. For example, in Pascal VOC,
we split the 20 object categories into four sequential tasks, each containing five classes. Similarly,
all other datasets are divided into tasks of five classes per stage. After all training phases, the model
is evaluated on the full validation sets of all three datasets. This protocol thus captures both intra-
domain continual learning (within a single dataset) and cross-domain continual learning (by
transitioning between datasets). We assume that the model completes continual learning within one
domain before being transferred to the next. While randomly shuffling all tasks across domains
could present a more challenging setting, we argue that the current protocol aligns better with real-
istic application scenarios.

In our experiments, we report the average performance after three runs with shuffled training orders.
In practice, to ensure fair comparisons, these orders were defined as Order 1 (DIOR — Pascal VOC
— RUOD), Order 2 (Pascal VOC — RUOD — DIOR) and Order 3 (RUOD — Pascal VOC —
DIOR). Specifically, we treat the 50 classes from DIOR (20 classes), Pascal VOC (20 classes), and
RUOD (10 classes) as a single, complete continual learning process. We take Order 1 to explain
the training process: Classes 1 ~ 20 correspond to DIOR, 21 ~ 40 to Pascal VOC, and 41 ~ 50 to
RUOD. On this basis, we consider the following two configurations:

* 0-10 (5 phases): Each phase introduces 10 new classes, followed by evaluation on all learned
classes. The training and testing process is as follows:

— Phase 1: DIOR (classes 1 ~ 10)

Phase 2: DIOR (classes 11 ~ 20)

Phase 3: Pascal VOC (classes 21 ~ 30)

Phase 4: Pascal VOC (classes 31 ~ 40)

Phase 5: RUOD (classes 41 ~ 50)

— Test: DIOR + Pascal VOC + RUOD (classes 1 ~ 50)

* 0-5 (10 phases): Each phase introduces 5 new classes, with evaluation conducted after each phase
across all accumulated classes.
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A.3 EVALUATED METHOD DETAILS

Implementation Details. We conduct a comprehensive evaluation of existing Incremental Object
Detection (IOD) methods. To ensure fairness and consistency, all methods are re-implemented on
the Grounding DINO-T backbone, pre-trained on Objects365, GoldG, and Cap4M. All methods are
trained without a memory bank.

* CL-DETR [41]. A full fine-tuning-based IOD method. It adopts a from-scratch Deformable-
DETR and generates pseudo-labels that do not overlap with ground truth. The pseudo-label gen-
eration strategy is architecture-agnostic and was directly reproduced on the Grounding DINO
backbone. Following the original paper, we select the top 10 predictions to generate pseudo-
labels, setting the overlap with ground truth to not exceed 0.7. The learning rate is setto le —4. A
learning rate decay of 0.1 is applied to the vision backbone, while the language backbone remains
frozen.

* GCD [63]]. A full fine-tuning-based IOD method. It adopts a from-scratch Grounding-DINO
and employs correspondence distillation to transfer the teacher model’s responses and topological
relationships. Following the official implementation, we set the pseudo threshold to 0.4. The
coefficients of the correspondence distillation loss are set as v = 1, Ay = 3, A2 = 5. The learning
rate is set to be — 5, with a learning rate decay of 0.1 applied to the vision backbone. The language
backbone is frozen.

* MD-DETR [2]. A PEFT-based IOD method. It was originally initialized from a Deformable-
DETR pre-trained on LVIS. It introduces vision prompts organized in a prompt pool, which
are injected into the self-attention per decoder layer to facilitate task adaptation. For our re-
implementation, we follow the official code, using 100 memory units (/V,,, = 100) with a length
of 10 (L,, = 10) and a dimension of 256 (D = 256). We set Ag = 0.01 and 65 = 0.65. Only the
prompt pool and query function are updated during training, with the learning rate set to le — 2.

* Zira [0]. A PEFT-based IVLOD method. It is initialized from Grounding DINO pre-trained on
Objects365, GoldG, and Cap4M. It integrates a re-parameterizable dual-branch module for task
adaptation, inserted into both the language and vision backbone-to-enhancer connections within
the neck. Following the official code, we set the coefficient for the Zil loss to A = 0.1 and the
learning rate decay for LLRB is n = 0.2. The learnable scale factor is initialized with s = 0.1.
Only the RDB module is updated. The learning rate is initialized at 1e — 3 for the first epoch and
then decays to le — 4.

* MoE-Adapters [71]. A PEFT-based Method for MTIL from incremental classification, orig-
inally implemented in CLIP. It introduces adapters organized by a mixture-of-experts for task
adaptation and employs an activate-freeze strategy to alleviate catastrophic forgetting. For our re-
implementation, we insert the MoE-Adapters into the FFN of the enhancer. Following the official
code, we set the bottleneck for the adapter to D = 64 and use a top-2 gating strategy. For each
task, we use 2 experts and 1 router, resulting in Ny = 20 experts and Np = 10 routers in 10
phases setting. For routing, we use the mean of the image tokens instead of the [CLS] token. We
set the learning rate 1le — 3 for adapter and router, 3e — 3 for domain predictor.

A.4 RELATED BENCHMARKS

Incremental Object Detection (IOD). Incremental Object Detection typically indicates Class-
Incremental Object Detection. Conventional IOD benchmarks typically partition a general-domain
dataset such as COCO into disjoint tasks defined by category labels. Each phase introduces new
object classes under the assumption of a consistent data distribution. IOD can be seen as a special
case of CDIOD where the domain remains fixed.

Domain Incremental Object Detection (DIOD). DIOD focuses on the challenge of a model contin-
uously adapting to a sequence of shifting domains. While the domain changes incrementally, the set
of object classes is typically assumed to remain fixed. Our CDIOD benchmark presents a more com-
plex problem by combining the challenges of both DIOD (domain shift) and IOD (class-incremental
learning), requiring a method to handle both novel domains and novel classes simultaneously.

Incremental Vision-Language Object Detection (IVLOD). IVLOD [6] focuses on incrementally
adapting pre-trained vision-language models (VLMs) to a sequence of tasks from the ODinW-13
benchmark while preserving zero-shot generalization. IVLOD primarily addresses task-incremental
scenarios, where the model’s predictions are confined to a task-specific class space and the label
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space is allowed to overlap across tasks. In contrast, our work tackles a more complex and realistic
class-incremental challenge. For training, CDIOD features a disjoint label space, ’person’ labeled in
task ¢ will not be labeled in subsequent tasks t > t. For inference, all learned classes are evaluated
together without knowing which task set the test image belongs to.

Open-Vocabulary Object Detection (OVD). Open-Vocabulary Object Detection focuses on build-
ing models capable of detecting any category without being explicitly trained on them beforehand.
The primary goal of OVD is zero-shot generalization, the ability to identify unseen categories in
downstream tasks without the need for additional supervision. Starting from an generalizable OVD
model, CDIOD focues on the subsequent challenge of continual learning. CDIOD evaluates a
model’s ability to continuously learn from a sequence of supervised tasks, focusing on challenges
of adaptation to new data and preservation of previously acquired knowledge.

Domain Adaptation Object Detection (DAOD). Domain Adaptation Object Detection typically
focuses on a single-step adaptation process where a model trained on a labeled source domain is
adapted to an unlabeled target domain. A key assumption in most DAOD methods is that the set
of object classes across the source and target domains is identical. Unlike DAOD, our benchmark
addresses a multi-phase, supervised continuous learning scenario where both the domain and the
object classes change over time, and all new data is provided with labels.

Cross-Domain Few-shot Object Detection (CDFSOD). CDFSOD [12] focuses on adapting pre-
trained detectors to downstream tasks that exhibit a significant domain gap with the pre-trained data
under a few-shot setting. CDFSOD is a single-step adaptation task; it is concerned solely with
the model’s performance on the new downstream task and does not evaluate its ability to retain
knowledge from the source domain afterward. In contrast, our benchmark evaluates a continuous
learning process with multiple phases, requiring the model to simultaneously maintain performance
on all previously learned tasks.

B ADDITIONAL METHOD DETAILS

In this section, we provide supplementary details of our method, including: (i) Pseudo code illus-
trating the training and inference pipelines. (ii) A detailed formulation of DTG and KD loss (iii)
Hyperparameter configurations adopted in our experiments, and (iv) Understanding of IGC.

B.1 PSeEuDO CODE.

We present the pseudo code of our proposed method in algorithm[T]and algorithm [2] detailing both
the training and inference procedures.

B.2 DETAILED DYNAMIC TASK GROUPING.

For our Dynamic Task Grouping (DTG), we model each task’s feature distribution by extracting fea-
tures F; from the image backbone, utilizing either the final layer’s output for faster inference speeds
or a multi-level representation for higher accuracy(we default to the final layer). We approximate
this distribution as a multivariate Gaussian N (y;, 3;), where u; = E(F;) is the sample mean and
¥ = Var(F3) is the full covariance matrix, capturing inter-dimensional correlations. For numerical
stability, we regularize the covariance by adding a small identity matrix (3} = ¥; + €I). Group
similarity is measured using the Symmetrized KL Divergence for computational efficiency.

B.3 DETAILED KNOWLEDGE DISTILLATION LOSS.

We denote the model output as M (x; A,, m), where x is the input sample, A, is the IGA, and m a
binary switching mask. During training, we compute: (i) the student output with m; = 1 (activating
atg), and (ii) the teacher output with my,s. = 1 (activating ag“se). Our distillation loss is defined as
follows:

Lisin = £ (M (JU; -Agv mt)a M(Jj, Aga mfbase)) » (3
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In practice, £ serves as a soft constraint term, which we implement using fopology distillation as
introduced by [63]]. Specifically, we define the object prototype for class c as:

1 e
De = A ;ai‘ﬁa &)

where ¢; is the output query feature (from the last decoder layer), «; is the confidence score derived
from the predicted logits, and V. is the number of instances in class c.We then compute the pairwise
relation matrix over classes:

Rl] = ||p7 7p]H27 7”] € Cl:t—17 (10)
and define the topology loss as:

LM (5 Ag,me), M@ Ag, mivage)) = [|R™ = R™°|, (11)

where R"° is obtained by switching to the base adapter. Similarly, to maintain cross-modal struc-
tural consistency. Finally, the total distillation loss is expressed as:

Ldistinn = 71 Etopology,image + V2Ltopology,text7 (12)

where v, and 7, are balancing coefficients controlling the contributions of image and text topology
preservation, respectively.

B.4 HYPERPARAMETER SETUP.

Our training objective integrates five hyperparameters. The overall loss is formulated as:

L = Las+ Lioc + 3(t) Laistin (13)
= Afocal Lsocal + AL1LL1 + AciouLaiou + 0(t) Laistilt s (14)

where §(t) = 1 indicates we expand existing group, and that the distillation loss is applied. Follow-
ing [39; 163]], we set Ajpcal = 1, ALl = 5, Aglou = 2 and 3 = 3 and 2 = 5 for all experiments
without aditional tuning.

Besides, for adapter merging, the merging factor Amerge € [0, 1] controls the trade-off between
preserving prior knowledge and adapting to the new task. In our experiments, we set Aperge = 0.2
which obatains the most balanced performance as shown in Tab. [9]

B.5 WHY INTRA-GROUP CONSOLIDATION WORKS.

Group-Init. For tasks within an existing group, we initialize a new adapter from the group’s base
one. This "warm-start” approach provides the model with a knowledgeable starting point that al-
ready contains information from old tasks, rather than beginning from a random state, which has
been proven effective for alleviating catastrophic forgetting [27;136]. This also aligns with the prin-
ciple of linear mode connectivity (LMC) [49;44], which states that a sharing initialization is crucial
for keeping solutions of related tasks within a connected low error basin. By initializing from the
base adapter, we start training already inside this optimal basin, making learning a more stable and
efficient search for a nearby solution. This connectivity provides the theoretical foundation for why
adapters in the same group can be linearly merged: since they exist in the same basin, their weighted
average is also likely a high-performing solution.

Group-KD. The assumption of LMC generally holds for tasks like PASCAL VOC that are well-
aligned with the pre-training distribution. In such cases, the pre-trained model has already situated
the parameters within a favorable low-error basin, requiring the adapter to perform only minimal
exploration to reach its optimal solution. However, for tasks that are dissimilar to the pre-training
distribution (e.g., DIOR sub-tasks), their optimal solutions in the parameter space can be far from
the base adapter’s. In this case, a direct linear merge becomes suboptimal, as the simple average
of two distant points is likely to fall into a high-error region. To address this, we leverage KD as
an implicit constraint. During training, KD forces the new adapter’s solution to remain functionally
consistent with the base adapter, which actively pulls the two solutions closer and aligns them. This
alignment ensures that the final merge is a robust consolidation of two compatible solutions.
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Table 6: CDIOD results (AP%) under 0-5 and 0-10 settings across three training orders. We report
performance on all datasets after the final training phase.

Training | Method 0-10 (5 phases) 0-5 (10 phases)
Orders DIOR PascalVOC RUOD Avg | DIOR PascalVOC RUOD Avg
| Joint | 69.5 72.0 643  68.6 | 69.5 72.0 643  68.6
CL-DETR 353 57.7 639 523 | 230 47.6 575 427
MD-DETR 349 614 499 487 | 28.6 59.4 38.1 420
Order 1 | MoE-Adapters | 32.7 66.1 59.5 52.8 | 20.5 59.3 415 404
GCD 43.2 60.0 628 553 | 37.0 52.0 58.3  49.1
Zira 29.8 66.2 543  50.1 | 22.0 63.9 472 444
Ours 64.7 68.2 626 652 | 585 65.5 572 604
CL-DETR 65.8 34.0 355 451 ] 66.1 17.6 21.6  35.1
MD-DETR 354 58.5 484 474 | 30.1 57.9 36.5 415
Order 2 | MoE-Adapters | 33.7 63.9 557 511 | 2038 59.2 362  38.7
GCD 63.5 41.5 40.8 48.6 | 619 35.1 275 415
Zira 40.4 59.3 41.1 46.9 | 30.8 59.3 36.1 42.1
Ours 63.6 68.7 623 649 | 589 64.5 56.7  60.0
CL-DETR 65.6 47.2 232 453 | 63.8 26.4 203 368
MD-DETR 35.2 59.0 47.1 471 | 297 58.2 358 412
Order 3 | MoE-Adapters | 34.2 64.0 577 520 | 217 61.0 434 420
GCD 63.1 53.5 309 492 | 582 39.0 239 404
Zira 40.2 62.3 40.6 477 | 297 60.6 358 420
Ours 61.2 68.4 625 640 | 589 65.8 56.2  60.3

Table 7: Performance and Computation Costs under 0-5 (10 phases) settings. Train and Test Params
refer to parameters updated during training and activated at inference, respectively. Percentages
denote ratio to base model parameters; 1 indicates increased percentage. All methods are PEFT-
based except GCD and CL-DETR.

Method ‘ Technical Activation strategy ‘ Avg Train Params Test Params FLOPS
CL-DETR Pseudo-label Base model only 38.4 64.2M(37.1%) 173.1M(10.0%) 464G
GCD Knowledge Distillation Base model only 43.7 64.2M(37.1%) 173.1M(10.0%) 464G
MD-DETR Prompt pool Retrieval function 41.6 0.28M(0.16%) 173.2M(10.02%) 465G
Zira Rep Dual-branch Fixed branch 42.8 4.38M(2.5%) 177.5M(1 2.5%) 467G
MOoE-Adapters Mixture of Task-wise Adapters Token-wise routing 40.4 9.69M(5.6%) 175.5M(11.47%) 506G
T-LoRA Task-wise LoORA Task-wise routing 51.5 6.90M(4.0%) 173.8M(1 0.4%) 473G
Ours Dynamic Group-wise LoORA Group-wise routing 60.2 2.06M(1.2%) 173.8M(10.4%) 473G

C ADDITIONAL RESULTS

This section presents additional comparison results including : (i) Detailed CDIOD results of dif-
ferent training order and computation cost comparisons (ii) per-task performance analysis, and (iii)
extended ablation studies on various design choices and hyperparameters.

C.1 ADDITIONAL COMPARISON RESULTS

Detailed CDIOD results and Impact of training Order. To further assess the impact of training
order of tasks. we provide a detailed per order performance. As shown in Tab. [6] existing incre-
mental methods are highly sensitive to the sequence of tasks and exhibit significant performance
fluctuations. This instability is a key limitation in real-world applications where the arrival of new
data is unpredictable. In contrast, our method consistently delivers stable performance across all
three orders. This robustness to variations in the training sequence is a critical property for a practi-
cal incremental learning algorithm, demonstrating our framework’s reliability in non-stationary and
unpredictable environments.
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Figure 7: Performance across phases under the 0-5 (10-phase) setting with training order 1, where
the x-axis denotes the training phase.

Detailed comparison and discussion. As shown in Tab. [/ we report the Average Performance (3
runs) and computational costs of each method under the 10-phase setting. And we provide a detailed
discussion of each method.

* CL-DETR. It directly fine-tunes the base model using pseudo-labels, which means it has a higher
number of trainable parameters but introduces no additional overhead during inference. However,
under cross-domain scenarios, old classes may be absent or suffer from modality gaps. This makes
it impractical to generate robust pseudo-labels.

* GCD. It uses KD to transfer knowledge. This approach also results in a high number of trainable
parameters but introduces no overhead at inference. While the KD loss is designed to force the stu-
dent model to align with the teacher’s output, this alignment can be problematic in cross-domain
tasks where the teacher’s responses are often noisy, which may lead to catastrophic forgetting.

* Zira. It introduces a fixed dual-branch module attached to the base model. After learning each
task, a high-learning-rate branch is merged into a low-learning-rate branch. While this design
allows Zira to adapt to new tasks with a fixed parameter budget, it struggles to balance stability
and adaptivity.

* MD-DETR. It utilizes expandable prompt pools to incrementally learn new tasks and employs a
retrieval function to compose prompts with weighted sum for inference. Although this approach is
memory-efficient, the expressive power of prompts limits the model’s overall adaptive capability.
Furthermore, its retrieval accuracy diminishes as the size of prompt pools increases.

* MoE-Adapter. It employs a Mixture-of-Experts (MoE) structure to combine adapters. It first uses
a domain discriminator to select a task-specific router, which then performs token-wise routing to
activate the corresponding adapter. When applied to object detection tasks, this design faces two
critical issues. First, relying on a domain discriminator for router activation creates a bottleneck in
task-ID identification. Second, the complex detection scenes make its token-wise routing suscepti-
ble to misallocation. Consequently, MoE-Adapter exhibits subpar performance despite activating
a larger set of parameters.

* T-LoRA. It trains task-specific LoORA modules and uses task-level routing to select the optimal
ones for inference. This straightforward approach achieves good performance. However, it models
each task in isolation, ignoring shared knowledge and leading to a linear increase in parameters.
Its primary performance bottleneck remains the reliance on accurate task-ID inference.

To overcome these limitations, our method dynamically groups multiple tasks, which enables knowl-
edge reuse and effectively controls parameter growth. This strategy eliminates the need for precise
task-ID inference, as identifying a broader task group is significantly more robust. Furthermore, this
dynamic pipeline allows for the creation of new groups when facing novel tasks, enhancing adapt-
ability, while similar tasks can be effectively integrated into existing groups to maintain stability. As
shown in Table 1, our approach introduces only 1.2% additional trainable parameters and activates
just 0.4% extra parameters at inference. The FLOPs increase by a mere 9G compared to the base
model.

Per-task performance across phases. In Fig. [/} we present the detailed performance of each sub-
task under the 0-5 (10 phases) setting with training orderl (DIOR — Pascal VOC — RUOD). Given
the zero-shot capability of pre-trained VLMs, we evaluate all sub-tasks after each training phase to
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Table 8: Impact of different components, reporting Extra Parameters Percentage (EPP, %) and Aver-
age performance (AP %) under 0-5 (10 phases) CDIOD setting. Row 0 indicates Zero-shot. LoORA
is set rank 16 and inserted into enhancer’s FEN for all ablation results in this table.

Task- Raw Intra-Group Consolidation

Row ‘ LoRA ‘DTG ‘ EPP DIOR VOC RUOD Avg

‘ wise  Merge ‘ Group_Merge  Group_Init  Group_KD ‘
0 0.00% 2.7 51.9 19.6 247
1 v 0.40% 32 42.5 429 29.5
2 v v 0.40% 5.1 52.0 53.8 37.0
3 v v 4.00% 410  63.7 49.7 51.5
4 v v v 4.00%  29.7 61.5 40.1 43.8
5 v v v 1.20%  48.7 65.2 49.1 543
6 v v v v 1.20%  51.6  66.7 51.9 56.7
7 v v v 1.20%  50.5 60.9 52.3 54.6
8 v v v v 1.20%  55.7 61.3 554 575
9 v v v v v 1.20% 58.8 653 56.7  60.2

Table 9: Impact of the merging factor Ay,erge

under 0-5 (10 phases) setting. Table 10: Impact of the ood threshold under 0-5
setting.

Threshold | DIOR VOC RUOD Avg
merge = 0.0 | 55.7 61.3 55.4 57.5 Threshold ‘DIOR VOC RUOD Avg

merge =0 | 202 o2 %3 O theoy =200 | 542 642 534 573
merge = 0. : : : : thoog = 300 | 579 653 558 597

)
A

A

Jmerae =08 | 330 005 70 BE tha=400 | 83 655 564 60.1
Jmerge =011 47865, 0% thp =500 | 585 655 567 602
A
A

=05 393 648 494 512
merge _
merge = 0.6 | 317 64.1 445 468 thooa = 600 | 588 653 56.7 60.2

merge = 0.7 | 23.6 633 35,6  40.8

track their performance evolution across 10 phases. This serves purely as an analytical experiment,
since future tasks are unknown in practical CDIOD training. For example, with 50 total categories,
DIOR _Task4-1 introduces the first 5 classes in phase 1, achieves peak performance in that phase,
and gradually degrades over subsequent phases.

From the results, our method demonstrates strong adaptivity, achieving immediate performance
comparable to full fine-tuning for new tasks, while maintaining stability by effectively preserving
prior task performance in cross-domain incremental scenarios. Furthermore, our approach also well
sustains the model’s generalization ability. For instance, when PascalVOC _Task4-3 is introduced in
phase 7, its zero-shot performance from phases 1 to 6 remains largely intact. This is further validated
by the ZCOCO results in IVLOD benchmark.

C.2 ADDITIONAL ABLATION RESULTS

Detailed ablation of each components. We provide a detailed ablation results of each component
of our framework. Row 0 indicates Zero-shot performance. Row 1 represent sequentially fine-
tuning LoRA, which leads to severe catastrophic forgetting. Row 2 represent fine-tune LoRA with
KD loss Eq. (5), the result show that this practice still unable to overcome forgetting under cross-
domain scenarios. Row 3 represent train task-specific expert module per task and combine them
through task-wise routing mechanism, a design widely used in recent works [2; [71; [76]. In this
case, the LoRA parameters increase linearly with task numbers, which is still suboptimal due to
performance bottleneck of task-id predictions. Row 4 represent we merge LoRA weights trained on
each task through averaging merging, however knowledge of different domains varies significantly
which leads to poor performance.

Dynamic Task Grouping (DTG) alone just construct task-to-group mapping which can’t be ablated.
In Row 5, instead, we leverage DTG and Group_Merge to train Group-wise LoRA. Knowledge from
different domains are managed by groups, where we could merge relevant LoRA weights. This de-
sign transforms the task-wise routing to robust group-wise routing, which builds up a strong baseline
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Table 11: Comparison of adapter variants within our framework, reporting Extra Parameters Per-
centage (EPP, %) and Average performance (A P%) under 0-5 (10 phases) CDIOD setting. Both are
inserted into the enhancer’s FFN.

Method | EPP  DIOR VOC RUOD Avg
LoRA(r=4) 030% 532 64.1 52.9 56.7
LoRA(r=8) 0.60%  55.6 64.7 552 58.5
LoRA(r=16) 1.20%  58.8 65.3 56.7 60.2
LoRA(r=32) 2.40%  59.8 65.9 57.6 61.1

Adapter(d=16) 0.18%  48.7 63.8 49.7 54.1
Adapter(d=32) 0.35%  51.5 64.1 523 56.0
Adapter(d=64) 0.69% 539 64.5 53.5 57.3
Adapter(d=128) | 1.38%  55.8 65.0 56.5 59.1
Adapter(d=256) | 2.75%  57.7 65.3 57.0 60.0

for our framework. To enhance model compositionality, we introduce group initialization mecha-
nism. Once we expand existing group, we initialize the new task-specific adapter from the base
one. Row 7 and Row 8, we also ablate the merging process to focus on the impact of Group_KD.
The results show that KD is crucial for alleviating forgetting, particularly for remote sensing and
underwater tasks, which are not well-aligned with the pre-trained model. Our full method (Row
9) combines all components and adopt dynamic training pipeline which automatically switch be-
tween direct adapter updates and updates with Intra-Group Consolidation (IGC), effectively balance
adaptivity and stability.

Impact of Merge Factor \yerge. We investigate the effect of the merge factor Aperee 0n model per-
formance. A smaller value encourages the model to absorb more task-specific knowledge, whereas
a larger value emphasizes the preservation of base knowledge. The merging step essentially serves
as a regularization mechanism on the parameter space. As shown in Tab. [9} omitting the merging
step entirely leads the model to overfit to the new task, while an excessively large Aperge OVerly
constrains model updates, both of which result in suboptimal performance. A relatively small Aperge
achieves better results. Therefore, we set Aperee = 0.2 in our experiments to strike an effective
balance between knowledge retention and task-specific adaptation.

Out-of-distribution threshold. At inference time, as an optional choice, we introduce an out-of-
distribution (OOD) threshold th,,q to handle inputs that are far from any known group distribution.
If an input exceeds this threshold, no IGA is activated; instead, it is processed solely by the base
model, leveraging the zero-shot capability of the pre-trained VLM for unseen samples. As shown in
Tab. setting the OOD threshold too low risks misrouting samples from known tasks to zero-shot
prediction. In contrast, using a relatively higher threshold (e.g., 600) effectively avoids this issue.

Comparison of adapter variants. We evaluated different adapter modules for the base adapter in
our framework, comparing LoRA [19] and Adapter [4]. In our implementation, LoRA with rank r
is attached to the two linear layers of the feed-forward network (FFN), while the Adapter module
with bottleneck dimension d is placed outside the FFN. As shown in Tab. when the number
of effective parameters is comparable (e.g., LoORA(r=16) and Adapter(d=128)), LoRA consistently
achieves superior performance.

D ADDITIONAL VISUALIZATION

D.1 CLASS-LEVEL T-SNE VISUALIZATION.

To qualitatively assess the learned representations, we perform a T-SNE visualization on the output
query features. Each data point in the plot is colored and labeled according to its predicted class.
For this analysis, we sample 10 classes from each of the three datasets to generate the T-SNE plots.
The top row of Fig. [8]displays the features extracted from the base model’s zero-shot outputs, while
the bottom row corresponds to the features learned by our method after the complete incremental
process. As the figure illustrates, our method consistently produces features that are well-separated
by class across all three datasets, highlighting its effectiveness in learning distinct and robust repre-
sentations.
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(a) DIOR (b) Pascal VOC (c) RUOD

Figure 8: Class-level T-SNE of output query features, with each point labeled by its predicted class.
Row 1: Zero-shot; Row 2: Ours.

D.2 QUALITATIVE RESULTS.

We provide a qualitative comparison of Zero-shot, GCD, Zira, and our proposed method under the
0-5 (10-phase) setting, with all models evaluated after completing all training phases.

DIOR (Remote Sensing): The pre-trained Grounding-DINO model struggles to generalize effec-
tively to the DIOR domain, as demonstrated by its zero-shot performance. This is likely because
objects of interest in remote sensing often appear as background in its pre-training datasets (e.g.,
Objects365). In the incremental setting, both GCD and Zira exhibit severe catastrophic forgetting
on this domain, whereas our method produces predictions that closely match the ground truth,
demonstrating superior retention of DIOR-specific knowledge.

Pascal VOC (Natural Scenes): For the Pascal VOC domain, which is closer to the pre-training
data distribution, most methods perform well. However, GCD is a notable exception, as it suf-
fers from significant forgetting in this cross-domain incremental scenario, highlighting its limited
ability to preserve knowledge across substantial domain shifts.

RUOD (Underwater): The RUOD domain presents a unique challenge due to its distinct visual
characteristics. Here, Zira struggles to adapt effectively, which can be attributed to its limited
adaptivity on out-of-distribution tasks.

In summary, across all evaluated tasks and domains, our method consistently demonstrates a bal-
anced and robust performance, mitigating the forgetting issues observed in other methods and effec-
tively adapting to diverse data distributions.

E THE USE OF LARGE LANGUAGE MODEL

During the writing process, we utilized a large language model (LLM) to assist with editing and
refining the manuscript. The LLM’s role was confined to improving the fluency and grammatical
correctness of the text, ensuring our arguments were presented clearly and concisely. It did not
contribute to the ideation, data analysis, or core scientific content of the paper.
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Algorithm 1 Training Procedure

1: Input: Sequence of tasks {Dj,...,Dr}; Model M; ¢: Task to group mapping; G: set of
groups; A,: Incremental Group Adapters (IGA) of group g.
2: Output: A set of trained IGA {A,}4ec-

3:
4: for task D; € {D;,...,Dr} do
5:  {1. Dynamic Task Grouping}
6: Iterate D; to estimate task distribution N;.
7. g* < argmingeg KL(NV||IN). > Find the most similar group g*
8:
9:  {2. Dynamic Adapter Assignment}
10:  if G is empty or KL(N;||N,+) > 7 then
11: Initialize base adapter agjfj > Create a new group gnew and its IGA A,
12: Qactive < ozgf“:s
13:  else
14: Initialize new adapter ag* from agise > Assign task to g* and expand its IGA A~
15: Qactive 4 Qlpyr
16:  endif
17:
18:  {3. Dynamic Training Pipeline}
19:  for each training epoch do
20: for each batch = € D; do
21: if task ¢ assigned to a new group then
22: L < Los + Lioc. > Train without constraint to enhance adaptivity.
23: else
24: L+ Las + Lioe + Laistin- > Train with Eq. (I2)) to retain knowledge for stability.
25: end if
26: Update parameters of cvy.give Using loss L.
27: end for
28:  end for
29:
30:  {4. Merge Adapters after training}
31:  if task ¢ was assigned to an existing group g* then
32: oz';‘ise — )\ag*ise + (1 — N)active- > Merge into group’s base adapter
33: Discard avctive-
34:  end if
35: end for
Algorithm 2 Inference Procedure

1: Input: Test image z; trained model M with frozen backbone f,,; group set G with distributions
{N;} e and adapters { A, } e out-of-distribution (OOD) threshold 7o,q4.

: 0

utput: Prediction y.

: {1. Extract sample distribution }

: {2. Group routing }
: Select g* «— arg minge KL(t, g).

2
3
4
5. Compute N = N (jiz, ¥;) from x using f,,.
6.
7
8

10: {3. Adapter activation and prediction}

11: if

13: el

KL(N|[Ng+) < Tooa then

Y M(x; Ay) &> In-distribution: Use corresponding IGA.
se

y — M(x) > OOD: Default to base model (zero-shot).

15: end if
16: return y
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(a) Ground Truth (b) Zero-shot (¢) GCD (d) Zira (e) Ours

Figure 9: Qualitative results of Zero-shot, GCD, Zira, and our method under the 0-5 (10-phase)
setting. Rows 1 to 2 show samples from DIOR, 3 to 4 from Pascal VOC, and 5 to 6 from RUOD.
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