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Abstract

Multimodal machine learning (MMML) has emerged as a promising topic with the ability
to jointly utilize data from several data modalities to improve performance and address dif-
ficult real-world problems. Large-scale multimodal datasets and the availability of powerful
computing resources have sped up the development of sophisticated deep learning archi-
tectures that are designed for multimodal data. In this paper, we conducted a systematic
literature review focusing on the deep learning architectures used in MMML that combines
image and text modalities. The objective of this paper includes looking at various models
and deep learning architectures used in MMML, learning about the fusion techniques used
to combine both modalities and analyze their performance and limitations of these models.
For this purpose, we have garnered 341 research articles from 5 digital library database and
after an extensive review process, we have 88 research papers that allow us to thoroughly
assess MMML. Our findings from these papers shed light on providing new directions for
further study in this evolving and interdisciplinary domain.

1 Introduction

The advent of digital technologies has led to an exponential growth in data across various disciplines, resulting
in a paradigm shift in our understanding of complex systems (Vaswani et al., 2017a; Baltrušaitis et al.,
2019). This proliferation of data encompasses multiple modalities, including visual cues in images, textual
semantics, and auditory signals, which collectively provide a more comprehensive representation of the world
(Talukder et al., 2020; Gao et al., 2020). This multifaceted landscape has given rise to the field of Multimodal
Machine Learning (MMML), which aims to develop computational models capable of integrating data from
diverse modalities to improve predictive accuracy and decision-making capabilities (Baltrušaitis et al., 2019;
Siriwardhana et al., 2020).

The motivation for multimodal integration arises from the limitations associated with unimodal data. While
images offer rich visual information, they often lack the contextual depth that can be provided by accom-
panying text (Chai & Wang, 2022). On the other hand, textual data, despite its semantic richness, may
not capture the full spectrum of visual or auditory experiences (Choi & Lee, 2019). Fusing these modalities
enables constructing more robust and nuanced models that approximate human-like perception (Kline et al.,
2022; Bayoudh et al., 2021a).

The advent of deep learning architectures has further accelerated the capabilities of MMML, allowing for the
extraction and fusion of complex features from multiple data sources (Aggarwal et al., 2022; Barua et al.,
2021). However, designing effective multimodal architectures presents unique challenges, such as mitigating
overfitting, addressing data imbalance, and handling noisy data (Lv et al., 2021; Kumaresan et al., 2021).
Successful models strike a delicate balance between preserving the unique attributes of each modality and
leveraging their inter-modal interactions to optimize performance (Zhang et al., 2020; Li et al., 2020a).

In the current era of data ubiquity and technological convergence, text and image modalities have emerged
as pivotal elements in the MMML landscape. Images encapsulate visual complexity and emotional nuance,
while text provides semantic context and narrative structure (Zhu et al., 2020; Singh et al., 2020). The
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fusion of these modalities yields insights that are greater than the sum of their individual contributions,
revolutionizing various application domains (Cai et al., 2020; Schillaci et al., 2020).

The contributions of this study are as follows:

• Examine how multimodal machine learning (MMML) uses pretrained models to extract features
from text and image data, illustrating the techniques that improve data representation.

• A detailed look at of fusion architectures that clarifies the methods for fusing text and image data,
as well as an evaluation of their advantages and impacts.

• Identifying limitations and challenges present in MMML.

• Investigating the robustness of MMML models when exposed to noisy and adversarial data might
shed light on how adaptable and useful they are in the real world.

The remainder of the research paper is structured as follows: Section 2 describes the methodology used for
this research. The later sections describe the research questions in depth.

2 Methodology

The methodology section explains the thorough technique we used to investigate different aspects of MMML.
We begin by developing specific research questions and continue with exhaustive search queries followed by
systematic data extraction and integration of a rigorous quality assessment.

2.1 Research Questions

Our approach begins with the meticulous formulation of precise research questions intended to direct our
exploration of the complexities of MMML. These inquiries steer our research toward crucial issues, including
using pre-trained models for feature extraction, the variety, and influence of fusion topologies, inherent
limitations, and the robustness of MMML models against noisy data. After rigorous analysis, we came up
with the following research questions:

• RQ1: Do multimodal machine learning models use well-known, previously established architectures?

– RQ1.1 What are the most used pre-trained architectures for extracting and training image and
text data?

– RQ1.2 What datasets are used to compare the architectures?

• RQ2: What fusion strategies are usually used in MMML?

– RQ2.1 What are the impacts of this fusion strategy in MMML models?

• RQ3: What are the limitations or challenges to face using these architectures?

• RQ4: In what way (if any) MMML models can be robust against noise and adversarial data?

– RQ4.1 What type of noise or adversary can occur in MMML models?

2.2 Searching Methodology

To answer our research questions, we exhaustively searched through several digital libraries, looking for
relevant academic publications. We constructed a comprehensive collection of pertinent literature from our
thorough search across numerous academic archives. The digital library database that we used is as follows:

• Scopus

• IEEE Explorer
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• Springer Link

• ACM Digital Library

• Semantic Scholar

To strategically locate relevant scholarly works, we used a broad range of keywords such as multimodality,
deep learning, machine learning, neural network, image, text. We created this set of keywords to
cover all the topics we want to address in this study. These carefully selected keywords were then used as
search queries in the mentioned databases. The search queries I used are given in Table 1.

Table 1: Digital Database Search Queries
Database
Name

Search Query Volume Filters

Scopus ( ABS ( machine AND learning ) AND TITLE ( multimodal
) AND ABS ( image ) AND ABS ( text ) AND ( TITLE-ABS (
deep AND learning ) OR TITLE-ABS ( neural AND network
) ) )

None.

IEEE Ex-
plorer

(((("Document Title":multimodal) AND
(("Document Title":"deep") OR ("Document
Title":"machine learning") OR ("Abstract":"deep")
OR ("Abstract":"machine learning") OR
("Abstract":"neural network")) AND ("Abstract":text)
AND ("Abstract":image)) NOT ("Document
Title":"audiovisual") NOT ("Document Title":"video")
))

None.

Springer
Link

Where the title contains: multimodal; Query: text
AND image AND ("deep learning" OR "machine learning"
OR "neural network"); Sort by relevance

Pick top 80 of most
relevant.

ACM Digital
Library

Abstract: (neural) AND Title: (multimodal) AND
Abstract: (deep learning) AND NOT Title: (video)
AND NOT Title: (audio) AND E-Publication Date:
(06/27/2018 TO 06/27/2023)

None.

Semantic
Scholar

Kewords: multimodal machine learning deep learning
image text. Dates: (01/01/2018 To 4/31/2023) Sort by
relevance.

Pick top 13 rele-
vant documents by
TL;DR visual in-
spection.

2.3 Selection Criteria

We produced inclusion and exclusion criteria after getting research papers from the databases through search
queries. The inclusion criteria covered research publications specifically discussing MMML models in various
applications that worked with image and text data. Research papers that are not related to MMML or
worked with modalities other than image and text are excluded from our process.

2.3.1 Inclusion Criteria

• Papers that worked with both text and image data

• Papers that discussed multimodal machine learning model based on neural networks

• Papers that discussed performance of multimodal machine learning models

• Papers that are in English
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2.3.2 Exclusion Criteria

• Papers that have length less than 5 pages

• Papers that are not in English

• Papers that are not peer reviewed

• Articles with full text not available in the specified database

• Opinion papers

• Papers that worked with data other than image and text

After using the search queries mentioned in Table 1, we got 341 research papers. We applied inclusion and
exclusion criteria to those papers and finalized 80 papers that helped us answer the research questions we
wanted to address. Also, after we started working on this study and finalized our paper later this year(2023),
we came up with a few papers that talked about advanced multimodal models, which we considered relevant
for our paper, so we added those ten papers as well. Table 2 displays the total number of papers in each
database both before and after applying the selection criteria.

Table 2: Papers from each database before and after selection criteria
Database Name Before After

Scopus 57 14
IEEE Explorer 114 29
Springer Link 32 12

ACM Digital Library 108 14
Semantic Scholar 30 9

Others - 10

2.4 Data Extraction and Synthesis

With a methodical technique, we make sure to extract the relevant information that is crucial for answering
our research questions. We meticulously scanned every article to collect information that we considered
relevant to answer RQ1, RQ2, RQ3, and RQ4. We encoded information about pre-trained deep learning
architectures, fusion techniques, their performance and limitations, and datasets used in those applications.
To get answers to the research questions, we looked into different sections of the articles. The relevant
sections for each research question are discussed in Table 3.

Table 3: Data Extraction for research questions from different sections
Research Question Preferred Section

RQ1, RQ2 Methodology/Model Description/Dataset/ResultsS
RQ3 Limitations/Future Work/ Research Gap
RQ4 Limitations/Dataset/ Data Preprocessing

3 RQ1: Do multimodal machine learning models use well-known previously
established architectures?

In this research question we aim to explore the type of architectures used for MMML models. To train
MMML models for text and image data, we were interested in finding out if there were any single neural
network architectures available. After rigorously going through the papers we finalized, we realized MMML
models use previously well-established pre-trained architectures to train image and text data.
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3.1 RQ1.1 What are the most used pre-trained architectures for extracting and training image and
text data?

This research question will help researchers find which architectures to use while developing MMML models
with text and image data.

0

5

10

15

20

BERT
LS

TM

Bi-L
STM

GRU
RNN

Doc
2V

ec

Tex
tC

NN
GloV

e

RoB
ERTa

Res
idu

al 
BiLS

TM
BiG

RU

VADER

Lin
ea

rS
VC

TF-ID
F

Gree
k B

ERT

CLIP
 V

iT-L/
14

Figure 1: Most used pre-trained models for text feature extraction

3.1.1 Text Feature Extractor

In Figure 1, we showed the pre-trained architectures that are mostly used to extract and train text data.
From Figure 1, we see that Bilinear encoder representations from transformers (BERT) is used most to
train text data. It is a pre-trained language representation model. Palani et al. (2022) mentioned that
BERT works by masking word tokens at random and expressing each mask with a vector; it can extract
the underlying semantic and contextual meaning from the input words and sentences. BERT is used in
applications like detecting fake news (Palani et al., 2022), (Hangloo & Arora, 2022), rumor (Gao et al., 2023),
sarcasm (Yue et al., 2023), places from social media (Lucas et al., 2022), online antisemitism (Chandra et al.,
2021). It is also predicting review helpfulness (Xiao et al., 2022), tourism online reviews (Li, 2021). Though
BERT is vastly used, Bhat & Chauhan (2022) and Chandra et al. (2021) used RoBERTa for detection
purposes. RoBERTa is Facebook’s modified version of BERT. After BERT, another architecture that is
used frequently is Long-Short Term Memory (LSTM). In MMML models, LSTM is used in applications like
sentiment analysis (Yadav & Vishwakarma, 2023), visual log (Chen et al., 2020), multimodal retrieval (Alsan
et al., 2021), polarity detection (Ange et al., 2018). Other architectures are used for training and extracting
text features but are not as popular as BERT and LSTM. These are depicted in Figure 1. In Table 4, we
briefly mentioned neural network architectures that are used in MMML models to extract text features in
different articles.

The BERT paradigm for text representation and interpretation has gained prominence in natural language
processing. For multimodal review helpfulness prediction Xiao et al. (2022) converted each text into se-
quential embedding using BERT, with each row vector serving as a word. Gao et al. (2023) created a
word dictionary with BERT utilizing the subword tokenization algorithm WordPiece, which selects the value
with the highest likelihood of merging to produce word segmentation. Agarwal (2022) also used WordPiece
tokenizer to tokenize clinical data and sent it to BERT as input. To make a connection between review
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Table 4: Architectures used to train text features in MMML
Architecture Name Article
BERT Asgari-Chenaghlu et al. (2022), Chandra et al. (2021), Gao et al.

(2023), Hangloo & Arora (2022), Li (2021), Lucas et al. (2022),
Palani et al. (2022), Xiao et al. (2022), Yue et al. (2023), Zhang
et al. (2023), Guo et al. (2022b), Hu et al. (2022), Ahmed et al.
(2021), Agarwal (2022), Huang et al. (2022), Ban et al. (2022),
Liang et al. (2022), Sahoo et al. (2023), Yu et al. (2022), Xu et al.
(2023)

LSTM Jácome-Galarza (2022), Kraidia et al. (2022), Kaliyar et al.
(2021), Hangloo & Arora (2022), Malhotra & Jindal (2021), Yadav
& Vishwakarma (2023), Ahmed et al. (2021), Ban et al. (2022),
Alsan et al. (2021), Ange et al. (2018)

Bi-LSTM Peña et al. (2023), Ghosal et al. (2019), Miao et al. (2021), Hossain
et al. (2022), Xu et al. (2023)

Residual Bi-LSTM Paul et al. (2020)
TF-IDF Ha et al. (2020)
GRU Rivas et al. (2022), Ban et al. (2022), Babu et al. (2022)
GREEK BERT Paraskevopoulos et al. (2022)
RoBERTa Chandra et al. (2021), Bhat & Chauhan (2022)
Text CNN Chen et al. (2020), Wang et al. (2021), Xu & Mao (2017), Xu

et al. (2023)
CLIP ViT-L/14 Papadopoulos et al. (2023)
Bi-GRU Karimvand et al. (2021)
VADER Shirzad et al. (2020)
Doc2Vec Yu et al. (2018)
RNN Huang et al. (2022), Ban et al. (2022)
LinearSVC Yu et al. (2018)
LSTM-RNN Barveen et al. (2023)
GloVe Chen & Zhang (2023), Kim et al. (2021)
VD-CNN Thuseethan et al. (2020)

comments Li (2021) proposes a new attention mechanism using BERT. Sahoo et al. (2023) implemented
BERT to extract text features since it can handle long sentences as input data and has no set input size
requirements. Xu et al. (2023) used BERT to extract deep semantic information from sentences as BERT
uses a multi-head attention mechanism to calculate the connection between words. Lucas et al. (2022), Yu
et al. (2022), Ban et al. (2022) and Liang et al. (2022) also used BERT for text embedding.

Another mostly used architecture for text feature extraction is LSTM(Long short-term memory). It is one
type of Recurrent Neural Network (RNN) that deals with the vanishing gradient issue that is not solvable
for RNN (Hochreiter & Schmidhuber, 1996). Chen et al. (2020) used LSTM to extract text features from
visual logs and generate answers. Yadav & Vishwakarma (2023) used LSTM to optimize the pre-trained
word embedding matrix and make high-level text features. Alsan et al. (2021) used LSTM as a text encoder
to convert text into a feature vector. To take into account various emotional states, sentiments, and previous
opinions for detecting polarity, Ange et al. (2018) utilized LSTM.

Bi-LSTM is an extended version of LSTM which can process long texts from forward and backward directions.
To extract text information from CVs Peña et al. (2023) used Bi-LSTM which consists of 32 units and tangent
activation function. Hossain et al. (2022) applied Bi-LSTM to produce contextual text representation from
both forward and backward directions for input data. Ghosal et al. (2019) fed documents to Bi-LSTM and
then to a Multi-Layer Perceptron (MLP-1) for text feature extractions. For emotion recognition from the
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F1 dataset, Miao et al. (2021) first used GloVe for tokenizing texts and then passed the word embedding to
Bi-LSTM.

Text-CNN is another architecture used for text representation. For sentiment analysis, Xu & Mao (2017)
used Text-CNN with 1D convolutional network with 128 kernels each of size five and 1D MaxPooling layer of
size 3. Xu et al. (2023) and Wang et al. (2021) also used Text-CNN to extract text features. For generating
image description, a type of RNN is used, which is Gated Recurrent Network (GRU) in Babu et al. (2022).
They passed image parameters to GRU to process and generate a sequence of words as a description of the
image. For text representation and to understand the characteristics of hashtags, Ha et al. (2020) applied
TF-IDF as it can capture the importance of hashtags based on their occurrences. Yu et al. (2018) used
Doc2Vec for text feature extraction which extends Word2Vec. In contrast to Word2Vec, Doc2Vec turns
the complete document into a fixed-length vector while also considering the document’s word order. In the
paper, Doc2Vec created 300-D features for each document.

Lu et al. (2019) introduced the VilBERT model, or Vision-and-Language BERT, which is intended to develop
task-agnostic combined representations of natural language and image content. VilBERT uses the BERT
architecture for text, which consists of several layers of transformer encoders. These encoders are used for
tokenization and embedding. Learning Cross-Modality Encoder Representations (LXMERT) was designed
by Tan & Bansal (2019) for tasks like image captioning, Visual question answering. LXMERT employs a
Transformer model for the text modality, which is similar to BERT. It uses feed-forward neural networks and
multiple layers of self-attention to process input text. As a result, LXMERT is able to capture the complex
contextual relationships present in the text. Huang et al. (2020) introduced a multimodal transformer
called PixelBERT. The authors used BERT for text encoding by splitting the sentences into words and
used WordPiece to tokenize the words. In Flamingo, Alayrac et al. (2022) used another transformer-based
model, which is Generative Pre-training Transformer (GPT). Multimodal Embeddings for Text and Image
Representations (METER) is a multimodal model developed by Meta AI (Dou et al., 2022). This model is
used for tasks like multimodal classification tasks and image text matching. In this model, the authors used
BERT, RoBERTa, and ALBERT to get text encoding. The development of the language models we covered
above over time is shown in Figure 2.

Figure 2: Evolution of machine learning models for NLP tasks

3.1.2 Image Feature Extractor

Like texts, there are neural network architectures to extract features and train images. Convolutional Neural
Networks (CNNs) are crucial for computer vision and image analysis. In Table 5, we briefly mentioned neural
network architectures used in MMML models to extract text features in different articles. In Figure 3, we
can see that VGG-16 is the most used architecture among the others. VGG, ResNet, AlexNet, InceptionV3,
DenseNet, and SqueezeNet are CNN architectures, which are deep learning models used for image-related
tasks. VGG-16 has 13 convolutional layers with three fully connected layers. Every fully connected layer is
followed by a dropout layer to prevent overfitting, except for the last layer (Yu et al., 2018). The authors
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Figure 3: Most commonly used pre-trained models for image feature extraction

ended up with 4096-D features from each image in the paper. For sentiment analysis from the image, Shirzad
et al. (2020) used VGG-16, which is pre-trained on the Twitter dataset. They took the pre-trained model
trained on the ImageNet dataset, fine-tuned it, and retrained it on the Twitter dataset. Huang et al. (2022)
trained VGG-16 on the MINT dataset, which consists of microscopic images. Kim et al. (2021) also worked
with pre-trained VGG-16 but changed the last layer with a single sigmoid activation function. Babu et al.
(2022) combined two pre-trained models such as VGG-16 and Xception for image feature extraction. Both
of these models are pre-trained on the ImageNet dataset. VGG-16 consists of 16 convolutional layers, and
Xception has 71 layers. Another popular CNN architecture is ResNet-50. For disaster identification, Hossain
et al. (2022) used pre-trained ResNet-50 with a bit modification. The authors removed the top two layers
of the model. Moreover, they freeze the first 40 layers of the model to use only the weights, and for the
last ten layers, they retrain the model with new weights. Rivas et al. (2022) used another version of ResNet
with 152 layers and output 2048D features from each image. Another type of ResNet architecture used in
multimodality is ResNet-18. Hangloo & Arora (2022) used ResNet-18 to extract visual information that
can detect 1000 different categories of objects from images. Apart from the architectures of CNN, Faster-
RCNN is another popular pre-trained architecture for image feature extraction. Guo et al. (2022b) extracted
the bounding box and features of every object from each image using Faster-RCNN. Besides convolutional
neural networks, transformers are also used for image feature encoding. Paraskevopoulos et al. (2022) split
the images into sequence patches of 16X16 pixels as the visual transformer is used for sequence processing.
Huang et al. (2020) used ResNet for image encoding in their multimodal transformer.

VilBERT uses a modified Faster R-CNN model for images, a deep neural network designed for object
detection applications (Lu et al., 2019). The transformer-based architecture, similar to that used for the
text, is fed with the visual attributes this network collected from the images. This enables the model to
process the visual elements using self-attention in a way similar to how it processes textual data. Tan &
Bansal (2019) proposed a visual language model, which is LXMERT, where the authors didn’t use any
CNN architecture for feature extraction. Instead, they used the object detection method and considered
the features of the detected objects. The objects are represented by their bounding box positions and 2048-
dimensional Region of Interest (RoI). Microsoft researchers developed Vision and Language (VinVL) and
used an object detection model to get visual features. The authors extract region-based features from images
using R-CNN (Zhang et al., 2021). Jia et al. (2021) introduced Large-scale Image and Noisy-text (ALIGN),
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Table 5: Architectures used to train image features in MMML
Architecture Name Article
VGG-16 Ghosal et al. (2019), Xiao et al. (2022), Ahmed et al. (2021),

Fatichah et al. (2020), Thuseethan et al. (2020), Shirzad et al.
(2020), Yu et al. (2018), Huang et al. (2022), Guo et al. (2022a),
Yu et al. (2018), Kim et al. (2021), Babu et al. (2022)

VGG-19 Chen & Zhang (2023), Wang et al. (2021)
ResNet-50 Hossain et al. (2022), Gao et al. (2023), Peña et al. (2023)
ResNet-101 Guo (2023)
ResNet-152 Ban et al. (2022), Rivas et al. (2022), Chandra et al. (2021)
ResNet-18 Lucas et al. (2022), Paraskevopoulos et al. (2022)
AlexNet Fatichah et al. (2020), Ha et al. (2020), Hangloo & Arora (2022)
SqueezeNet Li (2021), Fatichah et al. (2020)
DenseNet-161 Chandra et al. (2021)
MobileNet Sahoo et al. (2023)
InceptionV3 Asgari-Chenaghlu et al. (2022)
Faster RCNN Guo et al. (2022b), Chen et al. (2020)
Recurrent CNN Paul et al. (2020)
Image-CNN Xu & Mao (2017)
Visual Transformer Paraskevopoulos et al. (2022)
Xception Babu et al. (2022)

where they used EfficientNet for image coding, a variation of CNN architecture. Contrastive Language
Image Pre-training (CLIP) was first introduced by Radford et al. (2021) to understand various visual and
text concepts. For image encoding, they used a visual transformer. Similar to this, Alayrac et al. (2022)
applied a visual transformer to get image features in their model Flamingo. The visual transformer is also
used in METER (Dou et al., 2022).

3.1.3 Discussion of Most Popular Architectures

Based on the previous discussion, we conclude that the most commonly used architecture is BERT to extract
text features. The existing language models used for natural language processing tasks were unidirectional,
where predictions only considered previous tokens they’ve seen. It raises a problem for the tasks that need
bidirectional context understanding. BERT is a pre-trained deep bidirectional model that uses a masked
language model and a "next sentence prediction" task to jointly pre-train representations for text pairs (Devlin
et al., 2018). BERT’s model architecture is almost similar to the transformer described by Vaswani et al.
(2017b), a multilayer bidirectional Transformer encoder. In the multilayer encoder, BERT uses multihead
self-attention. An attention function maps a query and a set of key-value pairs and outputs the weighted sum
of the values. The model can concurrently process data from various representation subspaces at multiple
positions with multi-head attention [add transition]

MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O, (1)

where headi = Attention(QW Q
i , KW K

i , V W V
i ), and the projections are the following parameter matrices:

W Q
i ∈ Rdmodel×dk ,

W K
i ∈ Rdmodel×dk ,

W V
i ∈ Rdmodel×dv ,

W O ∈ Rh·dv×dmodel .

Here, Q is the query matrix, and K and V are the matrices for keys and values (Vaswani et al., 2017b).
The pre-training in BERT takes place by combining two tasks: Masked Language Model (MLM) and Next
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Sentence Prediction (NSP). In MLM part of BERT, 15% of the input tokens are masked at random, and
these masked tokens are then predicted using cross-entropy loss. A replacement technique addresses the
fine-tuning challenge, which involves keeping the original tokens and using random and [MASK] tokens. In
pre-training, a binarized next-sentence prediction task is included to improve the model’s comprehension
of the relationship between sentences. For example, two sentences, A and B, with a 50% chance that B
is the sentence that comes after A (labeled "IsNext") and a 50% chance that B is a random sentence from
the corpus (labeled "NotNext"). NSP benefits tasks like Question Answering (QA) and Natural Language
Inference (NLI). In the fine-tuning part, BERT aims to tailor the model to a particular task by adapting
to a smaller, task-specific dataset to train and modify the parameters of the pre-trained model. The self-
attention mechanism of BERT’s architecture, in particular, makes it adaptable to perform various tasks,
from text classification to question answering, which makes this process efficient. In this part, BERT is fed
task-specific input data and outputs accordingly.

We also discussed various techniques to extract image features, and among them, we found different variations
of the Residual Network (ResNet) architectures that are primarily used. The use of ResNet architectures is
preferable to others because its performance does not decrease even though the model increases the number
of layers, and it is computationally efficient. This can be done when adding more layers to the network,
making the added layers ’identity mapping’ and the other layers are duplicate layers of the original model.
This way, training accuracy will not decrease by adding more layers. He et al. (2016) first introduced Residual
learning. In their paper, they defined residual block as:

y = F (x, {Wi}) + x, (2)

where x is the input layer, y is the output layer, and the F function is for residual mapping. He et al. (2016)
first defined H(x) as mapping function to fit few stacked layers. where x is the number of stacked layers.
So, instead of using all stacked layers for the mapping function, the authors use another mapping function,
which is F (x) : H(x) − x. It makes the original function as F (x) + x. It is possible to represent F (x) + x
using feedforward neural networks with what are known as ”shortcut connections”. By using these shortcut
connections, one or more layers are skipped. We blend their outputs with the outcomes from the stacked
layers, effectively maintaining the original input (identity mapping) through these shortcut connections.
Interestingly, these identical shortcut links increase neither the number of parameters nor the computing
complexity.

3.2 RQ1.2 What are the most popular dataset people used to report their performance of MMML
models?

In order to answer this research question, we looked through the chosen articles to find the datasets used
in multimodal applications. While gathering information about datasets we learned about some of the
common data sources used by researchers to create datasets for their research. Twitter, Flicker, IMDB,
COCO(Common Objects in Context).

In Figure 4, we summarized all the datasets we encountered in the articles. Rivas et al. (2022), Chandra
et al. (2021), Wang et al. (2021), Shirzad et al. (2020) Bhat & Chauhan (2022) used the Twitter dataset,
which consists of tweets and images. However, each employed a different Twitter dataset to help them
do their tasks. Figure 4 shows that the Flickr30k dataset has been used the most. Yu et al. (2022) used
Flickr30k Entities, which is an extension of Flickr30k. This dataset consists of 31,783 images with 44,518
object categories and 158k captions. Another commonly used dataset is MSCOCO. Alsan et al. (2021) used
MSCOCO dataset for multimodal data retrival. MSCOCO dataset has an image and text pair and is trained
on a dual encoder deep neural network. MSCOCO dataset has 80 object categories and 330k images with
five descriptions per image (Babu et al., 2022).

After summarizing datasets used in the articles, we analyzed the performance of datasets in different ap-
plications, see Table 6. As a performance measure, we evaluated the F1 score in those applications. We
want the F1 score because it’s one of the best measures of datasets with imbalanced samples in a number of
classes. From the above table, we see that for multimodal image text classification, the work by Liang et al.
(2022) on the MM-IMDB dataset, gave the highest F1 score.
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Figure 4: Mostly used dataset in MMML applications

Table 6: Performance summary of datasets in different applications
Dataset

Weibo MM-IMDB FakeNewsNet FND Vine Dataset-1(Sarcasm) Reference
84.1 Kim et al. (2021)

Hossain et al. (2022)
93.6 Liang et al. (2022)

92 Palani et al. (2022)
78 Paul et al. (2020)

76 Hangloo & Arora (2022)
82.37 Wang et al. (2021)

86.33 Yue et al. (2023)

4 RQ2: What fusion strategies usually used in MMML?

After going through the articles we have found different fusion techniques used in MMML models. Based on
their structure and methods we have categorized them in different categories such as:

• Concatenation Technique: Concatenates textual and visual vectors.

• Attention Technique: Calculates attention between text and image features, attention mecha-
nism.

11
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• Weight based Technique: Early fusion, Late fusion, Intermediate fusion with different weights.

• Ensemble Technique: Combines predictions from text and image models.

• Multimodal Deep Learning Architectures: Multimodal Compact Bilinear (MCB), Multimodal
DBM (Deep Boltzmann Machine), Efficient attention using Transformer, Stacked Autoencoder-
Based Multimodal Data Fusion, Multimodal Fusion Architecture Search (MFAS), Bi-LSTM, RNN,
GAN(Generative Adversarial Networks).

4.1 Concatenation Technique

Concatenation technique means concatenating multiple feature vectors together to get information from
the features. Palani et al. (2022) concatenated text and image feature vectors to get multimodal feature
vectors to leverage information from both modalities. Paraskevopoulos et al. (2022) used the concatenation
technique to concatenate text and visual encoders to assemble them into a classifier model.

4.2 Attention Technique

To get relevant parts of each modality Ghosal et al. (2019) used attention mechanism as fusion technique
to detect appropriateness in scholarly submission. The authors mentioned that not all modalities contain
equal importance. To get important modalities they added an attention layer and calculated attention
score. Important modalities contain higher attention scores. Zhang et al. (2023) used a multi-head attention
mechanism for joint representation of image and text features. For integrating two modalities, the authors
calculate the attention score of text and image features. They used the sigmoid function to calculate the
weight of importance of images for source words. Xu et al. (2023) used the attention mechanism to find the
relation between each word of a sentence with the corresponding candidate region of an image and calculated
the weighted sum to ensure feature association between text and image.

4.3 Weight based Technique

A weight based technique is Early fusion that merges data sources in the beginning of the processing. Raw
data can be fused directly without any pre-processing, but usually certain features are initially extracted.
These basically unimodal features are then fused by concatenating the individual data into a joint repre-
sentation (Gadzicki et al., 2020). To have joint representation of image and text features, Hossain et al.
(2022) utilized Early fusion technique. The authors take same number of nodes from each modality’s last
hidden layer to give same importance to each modality. Early fusion is used in different multimodal tasks.
For disaster identification, Hossain et al. (2022) used early fusion to combine image and text features. The
authors computed the feature vectors as:

FF (i) = V
(i)

f ⊕ T
(i)
f . (3)

Here, Vf is image feature vector and Tf is text feature vector. FF (i) is the concatenation of ith text and
image features. Hangloo & Arora (2022) used early for fake news detection from social media posts. For
sentiment analysis in multimodal data, to integrate two modalities, Thuseethan et al. (2020) applied the
late fusion scheme directly on the features computed for high attention word and salient image region is the
straightforward approach to construct a multimodal framework.

4.4 Multimodal Deep Learning Architectures

In addition to the methods outlined above, a wide range of deep learning architectures have been devised
to support multimodal feature representation, providing improved information fusion and interpretation
across various data modalities. One such model is Bi-LSTM which Asgari-Chenaghlu et al. (2022) used to
integrate image and text features. To fuse data, Yue et al. (2023) first introduced a knowledge-based network
called ConceptNet. The network calculates the pointwise mutual information of the matrix entries, which is
smoothed with the contextual distribution.
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4.5 Discussion

We have examined various methods to smoothly combine data from several data modalities as part of our
research into the fusion algorithms frequently utilized in Multimodal Machine Learning (MMML). These
approaches include weight-based methods (early fusion), concatenation, attention mechanisms, and other
multimodal deep learning architectures. The primary objective of these techniques is to draw conclusions
and representations that are insightful from the intricate interactions between text and visual data. Our
investigation of fusion strategies highlights how dynamic MMML is, with a wide range of techniques meeting
the complex requirements of multimodal data analysis. The particular requirements of the task at hand
determine which fusion process is best, as each approach has advantages and uses of its own. Researchers
and practitioners in multimodal machine learning (MMML) can completely utilize multimodal data by
understanding and expertly implementing these methodologies. This will enhance our capacity to extract
valuable insights and make well-informed decisions in various fields.

5 RQ3: What are the limitations or challenges to face using these architectures?

Multimodal Machine Learning (MMML) has reached incredible heights thanks to the search for efficient
architectures and fusion methods. However, in addition to the advancements, a particular set of restrictions
and difficulties have appeared, providing essential insights into the difficulties of integrating various data
modalities. In this research question, we explore the limitations or challenges that occur using MMML
architectures. Here we categorized the limitations and challenges that are commonly seen in MMML models.

• Dataset Size: One of the main challenges in MMML models is determining the ideal size for
the dataset. The dataset size needs to be huge as MMML models work with data from multiple
modalities. Data preprocessing for this huge number of data is both expensive and computationally
inefficient (Bayoudh et al., 2021b). Image and text datasets vary in size and difficulty. So training
them together is also challenging (Lu et al., 2020).

• Data Annotation: The publicly available datasets for text and image are mostly task-specific.
Researchers need to make their own dataset for other applications, which requires data annotation.
But large-scale data annotation is not widely available (Rahate et al., 2022).

• Noisy Data: The noisy data in multimodality causes misclassification, as Chandra et al. (2021)
stated in their article. According to the authors’ research, the outcome becomes inaccurate if one of
the modalities has noisy data.

• Task Specific Image Feature Extractor: For online review extraction on the multimodal fea-
tures, Li (2021) used SqueezeNet for image feature extraction but did not get the expected results
as, according to the authors, the image feature extraction method was not appropriate for their
specified task. The authors did not have their own dataset trained on SqueezeNet, so image features
were not fully utilized. Most pre-trained models for image feature extraction are task-specific. So,
utilizing them in different tasks does not give the expected result. Liu (2021) described that for
machine translation, they used ResNet-50, which is pre-trained on classification tasks. The image
representation they got from using ResNet-50 needed to be more accurate.

5.1 Discussion

Exploring the limitations and difficulties in MMML architectures provides insightful information about the
complexities of utilizing many data modalities. When attempting to use MMML, it becomes clear that several
important issues must be resolved to overcome these obstacles. To sum up, multimodal data integration
is challenging, as seen by the difficulties and limitations encountered while utilizing MMML designs. Since
they open the door to improved data annotation resources, task-specific model adaptations, noise reduction
strategies, and more effective data preprocessing addressing these issues is crucial to the further development
of MMML.
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6 RQ4: In what way MMML models can be robust against noise and adversarial
data?

Label noise and data sample noise are two types of noise that can be present in data quality: label noise refers
to faults or undesirable variations in the data labels, while data sample noise is related to errors or changes
in the actual data samples. Deep learning methods, particularly those based on adversarial and generative
networks, have shown promise in enhancing the quality of data for machine learning tasks by effectively
managing label noise and data sample noise. Label noise in datasets arises from various factors, including
human mistakes, inexperience, difficult annotation jobs, low-quality data, subjective classifications, reliance
on meta-data, and cost-cutting strategies on annotation processes. Label noise is a prevalent problem in
real-world applications. In contrast to the ideal circumstances frequently expected in building models, label
noise is common. It can result in unfavorable effects, including machine learning applications performing
less well, the demand for training data increasing, and possible class imbalances. Domain knowledge can
be a powerful tool to reduce label noise. For instance, ontology-based methods enhance classification tasks
using hierarchical relationships between data classes. By encoding relationships between labels using a graph
network, the Multi-task Graph Convolution Network (MT-GCN) model uses both well-labeled and noisy-
labeled data. Auxiliary Classifier GAN (AC-GAN), Conditional GAN (cGAN), Label noise-robust GAN
(rGAN), and other extensions of Generative Adversarial Networks (GANs) offer additional techniques for
handling label noise (Rahate et al., 2022).

Pre-trained Vision and Language (VL) models have proven more resilient than task-specific models. By
introducing noise into the embedding space of VL models, the Multimodal Adversarial Noise GeneratOr
(MANGO) technique has been put forth to improve this robustness (Li et al., 2020b). The purpose of
MANGO is to evaluate and enhance VL models in response to four kinds of robustness challenges: alterations
in the distribution of answers over nine distinct datasets, logical reasoning, linguistic variances, and visual
content manipulation. MANGO uses a neural network to produce noise, which hinders the model from
readily adjusting, in contrast to techniques that provide predictable local perturbations. This method
is supplemented by masking portions of photos and removing text tokens to further diversify input and
influence data distribution. Using MANGO to train models has been found to enhance performance on
benchmarks.

6.1 Discussion

From our search queries and after snowballing, we have found very few papers that discussed noise and
adversarial attacks in the multimodal machine learning model. In MMML, the study of robustness and
adversarial attacks is still in its infancy, with little research on these complex problems. The potential
for adversarial weaknesses may be particularly substantial but understudied, given the inherent intricacy
of MMML models, which integrate and correlate information from a variety of input kinds, including text,
images, and audio. Research on the adversarial resilience of MMML systems needs to be more critical, as seen
by the scarcity of work in this area. This gap offers a chance to do new research to create novel protection
mechanisms while delving further into the subtleties of hostile threats in multimodal situations. Expanding
research efforts to strengthen MMML models against adversarial attacks is essential as they become more
complex to ensure their dependability and credibility in practical applications. Developments in this area
may result in multimodal systems that are more resilient and can endure a broader range of hostile strategies.

7 Conclusion

Our scoping literature review identifies the most common methods for utilizing data from image and text
modalities. We deduced from our RQ1 that the most popular pre-trained architectures for text embedding
are BERT and LSTM. We observed that most researchers used various VGG and ResNet architectures for
picture embedding. Furthermore, our research showed that MMML practitioners regularly use benchmark
datasets like Twitter, Flickr, and the Common Objects in Context (COCO) dataset to train and assess
their models. These datasets provide extensive, varied, and multimodal data sources, strengthening and
broadening MMML models. As we turn our attention to the fusion methods, it becomes clear that the
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MMML community uses a wide range of fusion methods, from concatenation to attention processes and
neural networks. Every technique has a different set of benefits, which reflects the changing context of mul-
timodal fusion. However, we discovered several important factors throughout our investigation of MMML’s
limitations and difficulties. These include computational complexity, data limitations, real-time processing
difficulties, noise robustness, and the demand for bigger datasets. Researchers and practitioners must know
these constraints pertaining MMML.

This literature review has illuminated the architectural preferences and dataset selections in MMML and
the adaptable fusion strategies that the community has accepted. We have given an overall overview of the
state of the field today by addressing the MMML’s inherent limits and difficulties. This study acts as a
useful compass, directing academics and practitioners toward informed judgments and creative solutions as
MMML continues to develop and broaden its applications into various disciplines. As they delve farther
into the multimodal data arena, researchers and practitioners seek to deepen our understanding of the world
through connected data modalities. This journey has the power to transform industries, improve decision-
making, and broaden our perspective on the world. In our future work, we want to explore the behavior of
MMML models under adversarial conditions. Analyzing how these models react to adversarial attacks can
provide crucial insights into their security and robustness, revealing tactics to defend them from malicious
manipulation.
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