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Abstract

Pixel-level manual annotations are expensive and time-consuming to obtain for
semantic segmentation tasks. Unsupervised domain adaptation (UDA), which
outperforms direct zero-shot methods, adapts from a label-rich source domain to
a target domain where labels are scarce or unavailable. Recent progress in foun-
dational models has demonstrated the potential of large vision-language models
(VLMs) in zero-shot segmentation and domain adaptive classification. However,
the efficacy of VLMs in bridging domain gaps for semantic segmentation remains
under-explored. To improve segmentation performance in UDA, we introduce a
novel language-guided adaptation method (LangDA), which aligns image features
with VLMs’ domain-invariant text embeddings during training. We generate the
text embeddings by using a captioning VLM to create image-specific textual de-
scriptions, which are then passed to a frozen CLIP-based encoder. To the best
of our knowledge, this is the first work to utilize text to align vision domains in
unsupervised domain adaptation for semantic segmentation (DASS). Our proposed
language-driven plug-and-play UDA approach achieved a 62.0% mean Jaccard
index on the standard Synthia→ Cityscapes benchmark, outperforming the current
state-of-the-art by 0.9% with negligible parameter overheads.

1 Introduction

Training state-of-the-art neural networks for visual recognition requires large-scale annotated datasets,
but collecting and annotating data at pixel-level is time-consuming and tedious. To reduce the need
for manual annotation, unsupervised domain adaptation for semantic segmentation (DASS) methods
train segmentation networks on an available labelled source domain and adapt to an unlabeled target
domain [1–4] (Figure 1a). However, a notable performance gap still exists between UDA methods
(that use unlabeled target data) and their supervised counterparts [2, 4, 5].

To enhance the efficacy in bridging domain gaps, this work introduces language in the DASS setting
alongside conventional unlabeled target data. Our method leverages recent advancements in large-
scale vision-language models (VLMs)[6–10], which have demonstrated remarkable performance and
are now pivotal in computer vision research. Notably, architectures like CLIP [9] and LLaVA [10]
have demonstrated the potential of natural language supervision in learning rich visual representations.
Furthermore, recent studies have also successfully applied VLMs to zero-shot domain adaptation
[11–13], (Figure 1b) in contexts where target domain data is unavailable.

Despite the successes of VLMs in zero-shot DA, VLMs’ role in UDA has been overlooked. Given
the remarkable success of VLMs in zero-shot DA[11–13] (Figure 1b), we hypothesize VLMs have
significant untapped potential for advancing UDA methods. Our preliminary experiments reveal that
incorporating VLMs to address domain shifts for UDA methods yields particularly promising results,
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Figure 1: (a) In traditional UDA, a supervised source-trained model adapts an unsupervised target
model to the unlabelled target images by updating the target model’s weights with an exponential
moving average. (b) Zero-shot adaption uses a prompt description instead of unlabeled target images
to mitigate potential domain shifts. (c) Our proposed LangDA method generates image-level language
descriptors to facilitate adaptation while introducing very few learnable parameters (namely adapters).

which evokes the question: Is the sole focus on traditional visual domain alignment in DASS still
the optimal approach moving forward? In this paper, we investigate strategies to efficiently integrate
prior linguistic knowledge derived from VLMs to facilitate model adaptation to unlabeled target
visual domains, specifically for semantic segmentation tasks within the context of UDA.

2 Related Works

Unsupervised Domain Adaptation. In UDA (Figure 1a), a model trained on a labelled source
domain is adapted to an unlabeled target domain. Most UDA approaches rely on discrepancy
minimization[3, 14–17], adversarial training [3, 18], or self-training [2, 19–22]. However, the role of
language in unsupervised domain adaptation remains largely unexplored. Our work seeks to address
this gap by leveraging textual information from visual prompt tuning to bridge visual domain gaps in
DASS.

Zero-shot Domain Adaptation with Language. In zero-shot domain adaption (Figure 1b), re-
searchers facilitate domain transfer using a labelled source domain and a textual description of
the unavailable target images. For instance, [13] and [11] utilize text embedding from the CLIP
model to approximate the target visual domain. However, to the best of our knowledge, no existing
work combines textual information with unlabeled visual target data to bridge the domain gap. Our
research fills this blank by proposing a novel approach that leverages linguistic cues in conjunction
with unlabeled target image data to mitigate visual domain discrepancy.
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Feature Alignment To facilitate adaptation, researchers often employ feature alignment techniques
to minimize discrepancies between various feature representations. To better leverage ImageNet’s
real-world high-level semantic classes, [2] regularizes the bottleneck features with ImageNet features.
Furthermore, [13] redirects image-domain features towards text-domain features with a brief one-
sentence description processed by a pre-trained CLIP model [9]. However, the potential of textual
features in mitigating domain shifts between two visual domains remains largely unexplored. Our
paper addresses this research gap by aligning source and target visual features with CLIP-encoded [9]
language features. Overall, this work harnesses the rich semantic information embedded in linguistic
representations to enhance visual adaptation tasks.

3 Methodology

Our primary objective is unsupervised domain adaptation for semantic segmentation (DASS).
DASS involves classifying each pixel of an unlabeled target image DT into K seman-
tic categories given the labelled source data DS, where DT = {x(i)

T | x
(i)
T ∈ RH×W×3} and

DS = {(x(i)
S , y

(i)
S ) | x(i)

S ∈ RH×W×3, y
(i)
S ∈ {0, 1}H×W×K}. For adaptation between the visual

domains, we employed online self-training (see Appendix B for details). To provide visual fea-
tures with language guidance, we utilized an additional cross-domain vision-language alignment
minimization objective with image-level textual descriptions.

Text Generation We use visual prompt instruction tuning, specifically, the captioning model
LLaVA [10], to generate the set of image-level captions CS = {z(i)S | z

(i)
S ∈ Rl}. We further ob-

tain Cr = {z(i)r | z(i)r ∈ Rl, l ≤ 77} by refining CS using the LLM Mistral-Large-2 [23] to include
all the source class names from the ground truth segmentation masks and ensure the caption is
less than 77 tokens, which is the maximum token length accepted by CLIP [9]. We pass the re-
fined captions Cr to the frozen CLIP encoder ECLIP [9] to obtain the set of text feature vectors
VCLIP = {v(i)CLIP | v

(i)
CLIP = ECLIP(z

(i)
r )}, v(i)CLIP ∈ R512}.

Prompt-guided Adaptation To align source image features FS={f (i)
S | f (i)

S =Egθ (x
(i)
S )} with

domain-invariant textual features, we introduce an image-level minimization objective on the distance
between CLIP textual features VCLIP and the source feature FS.

We define the objective function as follows:

L(i)
p (f

(i)
S , v

(i)
CLIP) = 1−

f
(i)
S · v

(i)
CLIP

∥f (i)
S ∥ ∥v

(i)
CLIP∥

. (1)

This CLIP-space cosine distance, previously employed in a similar manner in text-driven image
editing by [24], guides the source features toward the text embedding.

The global target features are also implicitly guided towards the text feature space through the EMA
model update in Equation (2).

The overall UDA loss L is a minimization problem of the weighted sum of the supervised loss,
unsupervised loss and language-guided loss L = LS + LT + λpLp.

4 Main Result

We report our results using the standard semantic segmentation metric, Jaccard similarity coefficient
(mean Intersection over Union), as shown in Table 1. Notably, we observe a performance improvement
of 0.9% in mIoU with the introduction of image-level textual guidance. This promising preliminary
result highlights the efficacy of incorporating linguistic information in DASS.

Figure 2 illustrates the t-SNE visualizations of feature distributions. After integrating language-
driven feature alignment, our method LangDA shows improved per-class clustering. For instance, in
DAFormer’s [2] t-SNE, the feature representations of walls (light orange) and traffic signs (rose pink)
overlap in the image domain, likely due to traffic signs often visually appear in front of walls from
driver’s first-person view. On the other hand, walls and traffic signs are semantically distinguishable
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in terms of language, contributing to enhanced segmentation mIoU for LangDA in Table 2. These
findings demonstrate the promising capability of our proposed language-augmented approach in
mitigating domain discrepancies and enhancing semantic segmentation performance in UDA settings.

Table 1: Comparison with state-of-the-art methods in UDA and Zero-shot DA. We performed our
experiments on standard adaptation benchmark Synthia→ Cityscapes. Note source only refers to
lower bound DA baselines with no adaptation (i.e. training on source and evaluation on target). See
Appendix A for implementation details.

Method Backbone Unlabeled Target Data Prompt Description % mIoU↑
Source only ResNet-50 29.3
PODA [13] ResNet-50 ✓ 29.5
ULDA [11] ResNet-50 ✓ 30.8

Source only ResNet-101 29.4
ADVENT [3] ResNet-101 ✓ 41.2
CBST [25] ResNet-101 ✓ 42.6
DACS [4] ResNet-101 ✓ 48.3
CorDA [26] ResNet-101 ✓ 55.0
ProDA [27] ResNet-101 ✓ 55.5

DAFormer [2] SegFormer ✓ 61.1
LangDA (Ours) SegFormer ✓ ✓ 62.0 (+0.9%)

Table 2: Per-class performance on synthetic-to-real adaptation benchmark: Synthia→Cityscapes

Method Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Sky Person Rider Car Bus M.bike Bike % mIoU ↑
PODA [13] 19.0 13.2 61.6 11.6 0.5 34.9 13.6 11.9 74.4 77.0 62.5 13.3 61.2 20.1 8.2 9.7 29.5
ADVENT [3] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2
CBST [25] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6
DACS [4] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3
CorDA [26] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 90.4 69.7 41.8 85.6 38.4 32.6 53.9 55.0
ProDA [27] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5
DAFormer [2] 86.2 42.3 88.2 38.4 8.6 49.9 55.6 54.1 86.9 89.3 73.4 47.1 87.8 57.3 53.1 60.2 61.1
LangDA (Ours) 83.1 43.5 88.8 43.7 5.6 51.5 57.8 57.4 85.5 92.5 74.9 49.7 87.6 53.4 56.3 61.7 62.0

road
sidewalk
building
wall
fence
pole
traffic light
traffic sign
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Figure 2: Left: DAFormer [2], adaptation using only visual images. Right: LangDA (Ours),
adaptation using both visual images and textual descriptions. After aligning language and visual
features, we observe more well-defined boundaries and improved class clustering in t-SNE.

5 Discussion

With guidance from image-wise captioning, this work shows a notable +0.9% improvement in mIoU
and significantly more differentiable target domain features. Our result is a promising initial step in
illuminating the potential of language-guided DASS. For future work, we seek to apply our method
to multi-resolution adaptation [5], building upon existing single-resolution adaptation techniques [2].
Additionally, we will further investigate strategies for driving target features toward textual domains
by concurrently aligning source and target image representations with their corresponding language
representations.

4



References
[1] Y. Zou, Z. Yu, B. Kumar, and J. Wang, “Unsupervised domain adaptation for semantic segmen-

tation via class-balanced self-training,” in Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 289–305.

[2] L. Hoyer, D. Dai, and L. Van Gool, “Daformer: Improving network architectures and train-
ing strategies for domain-adaptive semantic segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 9924–9935.

[3] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Pérez, “Advent: Adversarial entropy minimization
for domain adaptation in semantic segmentation,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2019, pp. 2517–2526.

[4] W. Tranheden, V. Olsson, J. Pinto, and L. Svensson, “Dacs: Domain adaptation via cross-
domain mixed sampling,” in Proceedings of the IEEE/CVF winter conference on applications
of computer vision, 2021, pp. 1379–1389.

[5] L. Hoyer, D. Dai, and L. Van Gool, “Hrda: Context-aware high-resolution domain-adaptive
semantic segmentation,” in European conference on computer vision. Springer, 2022, pp.
372–391.

[6] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,
M. Reynolds et al., “Flamingo: a visual language model for few-shot learning,” Advances in
neural information processing systems, vol. 35, pp. 23 716–23 736, 2022.

[7] X. Lai, Z. Tian, Y. Chen, Y. Li, Y. Yuan, S. Liu, and J. Jia, “Lisa: Reasoning segmentation via
large language model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 9579–9589.

[8] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervi-
sion,” in International conference on machine learning. PMLR, 2021, pp. 8748–8763.

[9] ——, “Learning transferable visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.

[10] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” Advances in neural information
processing systems, vol. 36, 2024.

[11] S. Yang, Z. Tian, L. Jiang, and J. Jia, “Unified language-driven zero-shot domain adaptation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024,
pp. 23 407–23 415.

[12] G. Kwon and J. C. Ye, “Clipstyler: Image style transfer with a single text condition,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022,
pp. 18 062–18 071.

[13] M. Fahes, T.-H. Vu, A. Bursuc, P. Pérez, and R. De Charette, “Poda: Prompt-driven zero-shot
domain adaptation,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 18 623–18 633.

[14] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer learning with joint adaptation
networks,” in International conference on machine learning. PMLR, 2017, pp. 2208–2217.

[15] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep domain adaptation,” in
Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and
15-16, 2016, Proceedings, Part III 14. Springer, 2016, pp. 443–450.

[16] B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain adaptation,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 30, no. 1, 2016.

[17] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimization,” Advances
in neural information processing systems, vol. 17, 2004.

5



[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” Advances in neural information processing systems,
vol. 27, 2014.

[19] L. Chen, Z. Wei, X. Jin, H. Chen, M. Zheng, K. Chen, and Y. Jin, “Deliberated domain bridging
for domain adaptive semantic segmentation,” Advances in Neural Information Processing
Systems, vol. 35, pp. 15 105–15 118, 2022.

[20] D. Kim, M. Seo, K. Park, I. Shin, S. Woo, I. S. Kweon, and D.-G. Choi, “Bidirectional domain
mixup for domain adaptive semantic segmentation,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 37, no. 1, 2023, pp. 1114–1123.

[21] D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks,” in Workshop on challenges in representation learning, ICML, vol. 3,
no. 2. Atlanta, 2013, p. 896.

[22] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning results,” Advances in neural information
processing systems, vol. 30, 2017.

[23] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier et al., “Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[24] O. Patashnik, Z. Wu, E. Shechtman, D. Cohen-Or, and D. Lischinski, “Styleclip: Text-driven
manipulation of stylegan imagery,” in Proceedings of the IEEE/CVF international conference
on computer vision, 2021, pp. 2085–2094.

[25] Y. Zou, Z. Yu, B. Kumar, and J. Wang, “Unsupervised domain adaptation for semantic segmen-
tation via class-balanced self-training,” in Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 289–305.

[26] Q. Wang, D. Dai, L. Hoyer, L. Van Gool, and O. Fink, “Domain adaptive semantic segmen-
tation with self-supervised depth estimation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 8515–8525.

[27] P. Zhang, B. Zhang, T. Zhang, D. Chen, Y. Wang, and F. Wen, “Prototypical pseudo label denois-
ing and target structure learning for domain adaptive semantic segmentation,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 12 414–12 424.

[28] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The synthia dataset: A
large collection of synthetic images for semantic segmentation of urban scenes,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[29] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016, pp. 3213–3223.

[30] M. Contributors, “MMSegmentation: Openmmlab semantic segmentation toolbox and bench-
mark,” https://github.com/open-mmlab/mmsegmentation, 2020.

[31] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, “Segformer: Simple and
efficient design for semantic segmentation with transformers,” Advances in neural information
processing systems, vol. 34, pp. 12 077–12 090, 2021.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,” International
journal of computer vision, vol. 115, pp. 211–252, 2015.

6

https://github.com/open-mmlab/mmsegmentation


A Implementation Details

Datasets For the source domain, we use the Synthia dataset[28], which consists of 9,400 synthetic
images with resolution 1280 × 760. For the target domain, we utilize the standard benchmark
Cityscapes dataset [29], which includes 2,975 training images and 500 validation images at a
resolution of 2048×1024.

Network Architecture We implement our model using the mmsegmentation framework [30], em-
ploying the DAFormer architecture with the MiT-B5 encoder [31], which generates a feature pyramid
with channels C = [64, 128, 320, 512]. The DAFormer decoder is configured with 256 channels and
dilation rates of 1, 6, 12, and 18. All encoders are pre-trained on ImageNet-1k [32].

B Self-training

Following [2, 4], we leverage labelled source DS and unlabeled target images DT to facilitate
adaptation by training a student model gθ and a teacher model hθ. We first train the student
segmentation network gθ with a categorical cross-entropy supervised segmentation loss on the
labelled source domain DS:

L(i)
S = −

H×W∑
j=1

C∑
c=1

y
(i,j,c)
S log gθ(x

(i)
S )(j,c)

We then have a teacher network hϕ to generate pseudo-labels for unlabeled target domain data DT,
using the argmax of the softmax output (note gradients are not backpropagated into the teacher).

p
(i,j,c)
T = [c = argmax

c′
hϕ(x

(i)
T )(j,c

′)] ,

A quality estimate for pseudo-labels is provided based on the ratio of pixels exceeding a confidence
threshold τ in the softmax probability.

q
(i)
T =

∑H×W
j=1 [maxc′ hϕ(x

(i)
T )(j,c

′) > τ ]

H ·W
.

These pseudo-labels and their confidence estimates are used to further train gθ on the target domain
to compute the unsupervised loss for the teacher model.

L(i)
T = −

H×W∑
j=1

C∑
c=1

q
(i)
T p

(i,j,c)
T log gθ(x

(i)
T )(j,c) .

Pseudo-labels can be generated either online or offline. Follow [2] we opt for online ST due to its
simplicity and single training stage, which is crucial for comparing and ablating network architectures.
In online ST, the teacher network is updated as the exponentially moving average of the student
network after each training step.

ϕt+1 ← αϕt + (1− α)θt (2)
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