
Advancing Expert Specialization for Better MoE

Hongcan Guo1∗ Haolang Lu1∗ Guoshun Nan1† Bolun Chu1 Jialin Zhuang1

Yuan Yang1 Wenhao Che1 Sicong Leng2 Qimei Cui1 Xudong Jiang2

1Beijing University of Posts and Telecommunications, China
2Nanyang Technological University, Singapore

{ai.guohc,lhl_2507,nanguo2021}@bupt.edu.cn

Abstract

Mixture-of-Experts (MoE) models enable efficient scaling of large language mod-
els (LLMs) by activating only a subset of experts per input. However, we observe
that the commonly used auxiliary load balancing loss often leads to expert over-
lap and overly uniform routing, which hinders expert specialization and degrades
overall performance during post-training. To address this, we propose a simple
yet effective solution that introduces two complementary objectives: (1) an or-
thogonality loss to encourage experts to process distinct types of tokens, and (2) a
variance loss to encourage more discriminative routing decisions. Gradient-level
analysis demonstrates that these objectives are compatible with the existing auxil-
iary loss and contribute to optimizing the training process. Experimental results
over various model architectures and across multiple benchmarks show that our
method significantly enhances expert specialization. Notably, our method improves
classic MoE baselines with auxiliary loss by up to 23.79%, while also maintaining
load balancing in downstream tasks, without any architectural modifications or
additional components. Our code is available at this link.

1 Introduction

Large language models (LLMs) [67, 65, 62, 6] have demonstrated remarkable generalization capa-
bilities [52, 69, 74, 73] across a wide range of tasks [53, 24], but their inference cost [15, 57] grows
rapidly with scale, hindering practical deployment and efficiency. Mixture-of-Experts (MoE) [9, 3, 37]
architectures alleviate this problem by activating only a subset of experts per input [19], thus enabling
greater model capacity without a commensurate increase in computational overhead [22, 49, 33]. To
maximize parameter utilization, MoE systems typically introduce load balancing [56, 20] objectives
that encourage a more uniform routing of tokens across experts during pre-training.

While load balancing is effective in avoiding idle experts during large-scale pre-training, it often
hinders model adaptation in the post-training stage for downstream tasks, where data distributions
are narrower and more domain-specific. In such settings, token occurrences are typically concentrated
within particular subspaces (e.g., numeric or symbolic tokens in math tasks), intensifying the tension
between balanced routing and expert specialization. A widely observed phenomenon is that load
balancing encourages uniform expert routing across inputs, resulting in highly overlapping token
distributions [14, 79]. This overlap leads to convergence in expert representations [46], ultimately
compromising the development of specialized functionalities. The lack of specialization [14] becomes
particularly problematic during fine-tuning [17, 60, 2, 80] on downstream tasks with strong domain
preferences, where the model struggles to adapt and exhibits degraded performance [34].

∗Equal contribution.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/HongcanGuo/Auxloss-For-Advancing-Expert-Specialization

R
ou

tin
g

Sc
or

e
M

et
ri

c

Routing Output Diverse Routing Output
Diverse (Training)

Top 3 Experts Token Embedding Visualization

Experts Before Train

Experts After Train

Routing Diversification(): Expert Specialization():

Discriminative
Routing Variance

Routing Output
Variance Growth

Specialize Token Assignment
for Experts

OVERLAP

Expert Index

To
ke

n
C

ou
nt

Va
ria

nc
e

Experts Token
Balance

Experts Load
Variance Decrease

Training
(Ours)

Figure 1: Two core effects of our method. Left — Routing Diversification: Left-Bottom: after
training, scores show higher discrimination than the untrained model. Right-Top: expert load variance
decrease after training. Right-Bottom: when training, variance increases markedly, yielding more
decisive token-to-expert assignments. Right — Expert Specialization: Cluster Separation: clearer
per-expert token clusters emerge after training, evidencing specialization. Overlap: baseline exhibits
heavy token-assignment overlap across experts, which our method substantially reduces.

This highlights a core challenge in MoE post-training: the inherent conflict between encouraging
expert specialization [50, 38, 36]and enforcing routing uniformity [83] via auxiliary losses. From the
expert perspective, load-balanced routing causes overlapping training intentions across experts [14,
45, 46, 7], suppressing the development of distinct expert behaviors. From the router perspective,
as experts become less specialized, the router receives less variation across experts, leading to
increasingly uniform and less informed token-to-expert assignments [82]. These dynamics form
a self-reinforcing loop: diminished specialization and uniform routing exacerbate each other over
time, progressively degrading both expert expressiveness and routing quality [20]. This compounding
effect reveals a deeper limitation of existing training objectives, which lack mechanisms to decouple
expert specialization from the uniformity constraints imposed by auxiliary losses.

To address this challenge, we propose a gradient-based multi-objective optimization framework
that promotes expert specialization and routing diversification, while preserving load balance from
auxiliary loss. We introduce two complementary objectives, as shown in Figure 1: 1) Expert
Specialization, which fosters distinct expert representations by ensuring that each expert specializes
in processing different tokens. 2) Routing Diversification, which drives differentiated routing
decisions, enabling more precise token-to-expert assignments by enhancing the variance in routing.
By jointly optimizing these objectives, our method mitigates the trade-off between model performance
and routing efficiency in MoE training. We demonstrate that our approach successfully achieves:

• Enhanced expert–routing synergy. Our joint objectives reduce expert overlap by up to 45%
and increase routing score variance by over 150%, leading to clearer specialization and more
discriminative expert assignment.

• Stable load balancing. Despite introducing new objectives, our method matches the baseline’s
MaxVioglobal across all models, with RMSE under 8.63 in each case.

• Improved downstream performance. We achieve 23.79% relative gains across 11 benchmarks
and outperform all baselines on 92.42% of tasks ,all without modifying the MoE architecture.

2 Motivation
2.1 Preliminaries of MoE

In a typical MoE layer, let there be n experts, and a sequence of input tokens represented by
X = {x1, x2, · · · , xN}, where N is the total number of tokens in the sequence. The routing score
matrix after applying the top-k mechanism is denoted as:

S =


s11 s12 · · · s1n
s21 s22 · · · s2n

...
...

. . .
...

sN1 sN2 · · · sNn

 ,

n∑
j=1

sij = 1, i = 1, 2, · · · , N (1)

2

where sij represents the routing weight assigned to the i-th token for the j-th expert.

Let F = {f1, f2, · · · , fn} represent the proportion of tokens assigned to each expert, where fj is
the number of tokens assigned to the j-th expert. For any given MoE layer, the total loss function L
consists of two parts, the main loss Lh and the auxiliary loss Laux:

L = Lh + α · Laux = Lh + α

n∑
j=1

fj · pj , pj =
N∑
i=1

sij , (2)

where Lh is the loss computed from the output of the MoE layer, and Laux is the auxiliary loss term,
α denotes the weighting coefficient for the auxiliary loss. Here, pj represents the total routing score
for the j-th expert, which is the sum of the routing weights for all tokens assigned to that expert.

2.2 Observations

Obs I (Expert Overlap): Introduction of the auxiliary loss function leads to a more homogenized
distribution of tokens across experts, which may reduce the distinctiveness of each expert.

It has been observed that the auxiliary loss function is independent of the expert parameter matrices
θEj

. Therefore, for the j-th expert, its gradient can be written as:

∂L
∂θEj

=
∂Lh

∂θEj

+ α · ∂Laux

∂θEj

=
∂L
∂yh

· ∂yh
∂θEj

=

N∑
i=1

xi · sij , j = 1, 2, · · · , n. (3)

where θEj
is the parameter matrix of the j-th expert, and yh is the output of the MoE layer. During

gradient descent, the addition of the auxiliary loss Laux forces the routing mechanism to evenly
distribute the tokens across experts as much as possible.

This results in input token xi being assigned to an expert that may not be semantically aligned with it,
causing an unintended gradient flow to expert j. Mathematically, after applying the top-k mechanism,
the routing score sij transitions from 0 to a non-zero value, introducing gradients from tokens that
originally had no affinity with expert j.

Obs II (Routing Uniformity): As training progresses, the routing output tends to become more
uniform, with the expert weight distribution gradually converging towards an equal allocation.

To understand this phenomenon, we first examine the source of gradients with respect to the routing
parameters θR. Since the routing mechanism produces only the score matrix S = sij , the gradient
∂L/∂θR can be written as:

∂L

∂θR
=

∂Lh

∂θR
+ α · ∂Laux

∂θR
=

N∑
i=1

xi

n∑
j=1

θEj
· ∂sij
∂θR

+ α ·
n∑

j=1

fj

N∑
i=1

∂sij
∂θR

, (4)

where xi · θEj
represents the output of expert j for token xi, and fj denotes the frequency with which

expert j is selected. This formulation reveals that the routing gradient is primarily influenced by the
expert outputs and the token distribution across experts.

The auxiliary loss Laux is introduced to encourage balanced token assignment by optimizing the
uniformity of fj . However, since fj is non-differentiable, direct optimization is not feasible. Instead,
a surrogate variable pj , which is differentiable and positively correlated with fj , is employed to
approximate the objective and enable gradient flow back to the routing network.

As training proceeds, the optimization objective increasingly favors the uniformity of pj , which drives
fj toward an even distribution. Moreover, as discussed in Observation I, incorrect token assignments
caused by auxiliary regularization introduce overlapping gradients among experts, increasing the
similarity of xi · θEj

across different j.

Obs III (Expert–Routing Interaction): While Obs I concerns expert specialization, while Obs II
reflects the uniformity of routing. These two effects interact during training, jointly driving the model
toward degraded performance.

• Expert-side interference caused by Obs I leads to blurred specialization. Tokens are assigned to
mismatched experts, and the resulting gradient interference reduces expert distinctiveness. As the

3

routing weights become more uniform, different experts receive similar gradients from the same
tokens, increasing their functional overlap.

• This expert similarity feeds back into the routing mechanism. As expert outputs become less
distinguishable, the routing network finds fewer cues to differentiate among experts, leading
to even more uniform weight distributions. This promotes random top-k selection and further
misalignment between tokens and their optimal experts.

Together, this loop gradually steers the model toward more uniform token allocation and reduced
expert specialization, highlighting potential opportunities for improving the routing strategy and
expert assignment.

3 Method

Based on the observations above, we propose the following design to mitigate expert overlap and
routing uniformity, the overall loss function L is defined as follows:

L = Lh + Lbalance, Lbalance = α · Laux + β · Lo + γ · Lv, (5)

where Laux represents the existing auxiliary loss, with coefficient α, and the newly introduced
orthogonality loss Lo and variance loss Lv (see Subsec 3.1), with coefficients β and γ respectively. It
is worth noting that the theoretical complementarity of these optimization objectives, rather than any
inherent conflict, is formally analyzed and demonstrated in Subsection 3.2.

3.1 Implementations of Losses Lo and Lv

In this section, we introduce two critical loss functions Lo and Lv that act on the expert and router
components, respectively.

Expert Specialization. We introduce an orthogonalization objective that encourages independent
expert representations. Specifically, we design the following orthogonality loss:

Lo =

N∑
i=1

n∑
j=1

n∑
k=1
k ̸=j

⟨x̃ij , x̃ik⟩
⟨x̃ik, x̃ik⟩

x̃ik, x̃ij = xi · θEj
· I{sij>0}, i ∈ [1, N], j ∈ [1, n], (6)

where ⟨·⟩ denotes the inner product between two vectors, and Isij > 0 is an indicator function that
evaluates to 1 when sij > 0 and 0 otherwise. Here, x̃ij represents the output of expert j for token xi

after the top-k routing selection.

The orthogonality loss Lo reduces the overlap between different expert outputs within the same top-k
group by minimizing their projections onto each other. This encourages experts to develop more
distinct representations, promoting specialization in processing different token types.

Routing Diversification. We introduce a variance-based loss to encourage more diverse routing
decisions and promote expert specialization. Specifically, we define the variance loss as:

Lv = −
N∑
i=1

n∑
j=1

1

n
· (sij − s̄j)

2, s̄j =
1

N
·

N∑
i=1

sij , (7)

where s̄j denotes the average routing score for expert j across the batch. By maximizing the
variance of routing scores, Lv discourages uniform token-to-expert assignments and encourages more
deterministic and distinct routing patterns, thereby facilitating expert specialization.

3.2 Compatibility of Multi-Objective Optimization

In this section, we analyze how each component influences the optimization dynamics of expert
parameters θEj

and routing parameters θR during training. Meanwhile, we will focus on the
optimization and compatibility of the two losses Lo and Lv with respect to load balancing and expert
specificity. The following two key questions guide our analysis.

Balancing Expert and Routing. How can expert (Lo) and routing (Lv) optimizations be designed to
complement each other without compromising their respective objectives?

4

We first demonstrate that Lo and Lv are compatible in their optimization directions within MoE, then
show that they mutually reinforce each other.

Mutually Compatible. We elaborate on the compatibility of Lo and Lv from the perspectives of
expert and Routing.

From the expert perspective, we observe that the auxiliary loss Laux and the variance loss Lv do
not directly contributes gradients to the expert parameter matrix θEj

. Therefore, the gradient of the
total loss with respect to θEj

is:

∂L
∂θEj

=
∂L
∂x̃ij

· ∂x̃ij

∂θEj

=

N∑
i=1

(
sij + β ·

n∑
k=1
k ̸=j

x̃ikx̃
⊤
ik

⟨x̃ik, x̃ik⟩

)
· xi, (8)

This gradient is influenced by both the routing score sij and the expert representation x̃ij . As training
progress, the variance of expert weights increases, and the gradient encourages stronger preferences
in different directions for each token.

From the routing perspective, we notice that Lo does not affect the gradient with respect to routing
parameters θR. The gradient of the total loss with respect to θR is:

∂L
∂θR

=
∂L
∂sij

· ∂sij
∂θR

=

N∑
i=1

n∑
j=1

(
x̃ij + α · fj − γ · 2(N − 1)

nN
· (sij − s̄j)

)
· ∂sij
∂θR

. (9)

This gradient is influenced by expert representations x̃ij , expert load fj , and routing weights sij . As
the model converges, the expert load fj becomes more balanced, and the variance of routing weights
sij increases. Orthogonalizing expert representations causes the routing gradients to flow in more
orthogonal directions, making the weight allocation more biased towards the representations and
increasing the weight variance.

Summary. Expert parameters θEj are solely influenced by the gradients of Lo without conflict. While
routing parameters θR are affected by both Lo and Lv , the objectives of these two losses (orthogonality-
friendliness vs. score diversification) remain non-conflicting.

Mutually Reinforcing. Lo aims to encourage the effective output vectors of different selected experts
j and k to tend to be orthogonal for the same input token xi, i.e., ⟨x̃ij , x̃ik⟩ ≈ 0. The learning signal
for the routing mechanism partially originates from the gradient of the primary task loss Lh with
respect to the routing score sij :

∂L
∂sij

= gTyi
x̃ij︸ ︷︷ ︸

from Lh

+α
∂Laux

∂sij︸ ︷︷ ︸
from Laux

− γ
2(N − 1)

nN
(sij − s̄j)︸ ︷︷ ︸

from Lv

, yi =
∑
j

sij x̃ij , gyi =
∂Lh

∂yi
(10)

Assuming pij = gTyi
x̃ij , when the expert outputs tend to be orthogonal, for any given task gradient

gyi
, the projections pij onto these approximately orthogonal expert outputs are more likely to exhibit

significant differences. The increased variance of the primary task-related signals pij implies that the
routing mechanism receives more discriminative and stronger learning signals, which creates more
favorable conditions for Lv to achieve diversification of routing scores.

Lv enhances the diversity of routing scores sij by optimizing routing parameters θR. Meanwhile,
due to the influence of Lo’s gradient β ∂Lo

∂sij
on θR, routing tends to assign more specialized token

subsets Tj to each expert j. Expert parameters θEj learn the unique features of tokens within Tj ,
leading to gradual functional divergence among experts, thereby promoting expert orthogonality.

Summary. Lo induces orthogonal expert outputs x̃ij , enhances the discriminative power of routing
signals gTyi x̃ij , and generates diverse routing scores sij to support Lv . Meanwhile, Lv drives experts to
specialize in distinct token subsets via sij and promotes parameter divergence of θEj to support Lo.
Together, they form a mutually reinforcing cycle.

Multi-Objective Optimization. How do expert and routing maintain their balance while enhancing
Laux and Lh independently, ensuring mutually beneficial performance improvements?

5

Lemma 1 Let S ∈ RN×n be a matrix that satisfies following conditions: each row sums to 1, each
row contains k non-zero elements and n− k zero elements. Then, there always exists a state in which
the following two objectives are simultaneously optimized: 1. The sum of the elements in each column
tends to the average value N

n ; 2. The variance of the non-zero elements in each row increases.

Lemma 2 For two sets of points A and B of equal size, it is always possible to partition A ∪ B such
that A ∩ B = ∅ and |A| = |B|.

The overall objective function L optimizes four key dimensions: accurate data fitting(Lh), expert
orthogonalization(Lo), balanced expert routing weights(Laux), and increased variance in routing
outputs(Lv). Our core objective is to achieve an optimal balance by jointly optimizing these
multiple objectives, ensuring they complement each other for enhanced model performance.

As shown by Lemma 1, expert load fj and routing weights sij can be optimized together. As
demonstrated in Lemma 2, the objectives of orthogonalization and load balancing are not in conflict
and can be jointly optimized. Thus, both expert and routing modifications can be optimized alongside
load balancing (balanced expert routing weights).

Moreover, orthogonalization enhances routing weight variance, in turn, improves expert specialization
(as discussed in Section 2.2). This leads to more distinctive expert representations, aligning with
performance (accurate data fitting) improvements when optimized together.

4 Experiments

In this section, we conduct experiments to address the following research questions:

• RQ1: Does introducing the orthogonality loss (Lo) and variance loss (Lv) lead to better overall
performance in downstream tasks compared to baseline approaches?

• RQ2: To what extent does our method maintain expert load balancing during training?

• RQ3: How do the orthogonality loss (Lo) and variance loss (Lv) interact with each other, and what
are their respective and joint impacts on expert specialization and routing behavior?

• RQ4: What are the individual and combined contributions of Lo, Lv , and the auxiliary loss Laux

to the final model performance?

4.1 Experimental Setup

Environment. All experiments are performed on a CentOS Linux 7 server with PyTorch 2.3. The
hardware specifications consist of 240GB of RAM, a 16-core Intel Xeon CPU, and two NVIDIA
A800 GPUs, each having 80GB of memory. Implementation details are provided in the Appendix F.

Datasets. We evaluate our method on a total of 11 benchmarks. Specifically, we use the training
sets from Numina [41], GLUE [66], and the FLAN collection [72] to train our models. Our bench-
marks include: ❶ Mathematics: GSM8K [12], MATH500 [44], and Numina [41]; ❷ Multi-Domain
Tasks: MMLU [31, 30], MMLU-pro [70], BBH [63], GLUE [66]; LiveBench [76] and GPQA [59].
❸ Code generation: HumanEval [10] and MBPP [4]. We group training and test sets by language,
reasoning, science, math, and code to match downstream evaluation needs. Detail in Appendix D.

Baselines. We compare our method with 4 existing MoE training strategies. With Aux Loss [46]
applies auxiliary load-balancing losses during routing to encourage expert utilization diversity.
GShard [39] introduces a foundational sparse expert framework with automatic sharding and rout-
ing; ST-MoE [85] enhances training stability via router dropout and auxiliary losses; Loss-Free
Balancing [68] achieves balanced expert routing without auxiliary objectives. Detail in Appendix G.

Metrics. We employ 6 evaluation metrics to test our method in terms of accuracy, expert load
balancing (MaxVioglobal [68]), clustering quality (Silhouette Coefficient), expert specialization (Expert
Overlap), routing stability (Routing Variance), and prediction error (RMSE). Detail in Appendix E.

Setup. Each benchmark is fine-tuned separately on 6,000 high-quality examples, primarily from the
official training split and supplemented when necessary. Answers are generated using strong teacher
models (OpenAI o3-mini and DeepSeek R1) and manually verified for correctness. Fine-tuning is
limited to three epochs (∼550 steps) to prevent overfitting.

6

Table 1: Performance on different downstream tasks. The table shows accuracies of methods across
models and downstream tasks. Notably, we categorize sub-downstream tasks in Multi-Domain and ensure
training/evaluation sets are domain-aligned, following downstream task requirements.

Method Model
Multi-Domain (Avg.) Code Math

MMLU MMLU-pro BBH GLUE Livebench GPQA HumanEval MBPP GSM8K MATH500 NuminaTest

With Aux Loss

D
ee

pS
ee

k-
M

oE
-1

6B

29.27±0.10 19.47±2.50 26.92±2.30 49.26±0.40 7.43±0.10 21.15±0.40 51.52±1.50 31.36±1.10 15.70±2.40 5.47±1.50 14.99±2.40

Loss-Free Balancing 30.71±2.10 16.81±0.70 32.99±1.00 49.60±1.30 9.79±0.20 20.63±1.60 53.16±2.40 32.80±1.40 21.28±0.40 5.83±1.30 17.23±1.60

GShard 27.05±2.00 20.48±0.60 29.83±1.80 53.83±0.70 8.69±1.20 24.28±2.30 57.75±2.20 34.50±1.70 27.12±1.30 8.20±1.50 16.99±0.70

ST-MOE 34.23±2.20 19.71±0.80 36.91±1.90 54.56±2.30 6.48±0.70 20.35±0.90 53.28±1.60 36.34±1.50 30.10±2.00 7.08±0.40 15.48±1.20

Ours 33.35±2.20 24.87±1.20 37.52±1.40 60.01±1.00 11.00±1.70 25.15±0.40 63.30±0.70 40.03±0.40 35.00±1.00 10.82±0.30 20.41±0.10

With Aux Loss

D
ee

pS
ee

k-
V

2-
L

ite
33.23±2.10 28.40±0.20 34.80±1.40 35.97±0.20 11.70±0.50 24.92±0.80 40.24±0.80 41.23±0.20 44.79±2.10 42.03±1.40 42.01±1.90

Loss-Free Balancing 30.23±0.80 30.75±2.10 34.21±1.10 39.83±1.80 10.15±1.10 26.33±0.60 41.28±1.40 36.02±2.30 43.35±0.70 39.76±1.10 43.90±1.10

GShard 30.86±1.10 29.13±0.80 37.67±0.30 38.89±1.00 13.17±1.80 24.34±2.10 45.36±1.60 37.00±2.10 45.39±1.50 43.61±2.10 43.25±0.70

ST-MOE 32.68±2.10 30.28±2.10 38.78±0.90 38.27±1.00 10.60±2.30 22.33±0.40 44.10±0.20 39.72±2.30 47.78±1.80 46.74±0.50 48.65±0.70

Ours 35.59±0.50 37.37±0.20 38.84±1.70 41.20±2.00 14.60±2.50 28.76±0.10 43.58±0.30 43.53±2.40 50.94±2.40 49.33±2.40 50.67±1.10

With Aux Loss

M
oo

nl
ig

ht
-

16
B

-A
3B

35.82±1.40 36.10±1.50 47.17±0.70 26.16±1.20 15.84±1.70 30.72±1.90 63.61±1.90 47.34±1.50 82.32±1.50 57.03±1.60 45.41±0.40

Loss-Free Balancing 27.40±0.10 31.91±2.10 42.45±0.50 32.97±1.60 20.05±2.40 29.27±1.80 62.93±2.50 44.92±1.30 79.34±0.70 57.77±0.50 42.82±0.10

GShard 36.06±0.90 30.65±0.50 49.20±1.70 34.46±2.40 13.97±2.30 31.13±1.10 64.50±1.50 49.85±0.50 84.62±0.80 56.09±2.20 47.18±2.30

ST-MOE 33.03±0.90 26.83±1.70 46.78±0.30 30.18±1.50 16.99±1.70 30.93±1.50 66.04±1.60 47.97±2.20 84.45±0.90 57.61±1.60 49.42±2.10

Ours 40.36±2.20 34.90±0.30 52.42±1.80 37.01±1.10 20.85±1.10 32.01±0.90 70.64±0.20 47.77±1.00 87.62±2.20 59.64±0.20 52.88±1.70

All experiments adopt LoRA-based fine-tuning, with LoRA modules inserted into both router
and expert layers to enable joint optimization. A rank of 32 is used to approximate full-model
updates. Detailed configurations, including optimizer, batch size, and learning rate, are provided in
Appendix H.2.

4.2 Performance in Downstream Tasks (RQ1)

To verify that our Lbalance enhances model performance in downstream task scenarios through expert
orthogonality and routing output diversification, as shown in Table 1, we design downstream task
scenarios on 11 well-known benchmarks and validate our method against four baseline methods with
distinct loss designs on three widely used MoE models. We make the following observations:

Obs.❶ Baseline methods without guidance for expert specialization exhibit varied performance
and fail to effectively improve downstream task performance. As shown in Table 1, the four
baseline methods show no clear overall performance ranking across the 11 tasks, with performance
variations within 2% in many tasks. Their overall performance is significantly lower than our method,
demonstrating no potential to improve downstream task performance.

Obs.❷ Our method guiding expert specialization effectively enhances model performance in
downstream tasks. As shown in Table 1, we achieve state-of-the-art (SOTA) results in over 85%
of the 33 tasks across the three models. In some tasks, the average across multiple measurements
even outperforms the next-best method by nearly 7%. Extensive experiments indicate that our
method significantly improves model performance in downstream task scenarios by enhancing expert
specialization. More results on additional baselines and MoE architectures are provided in Appendix I.

4.3 Load Balancing (RQ2)

To verify that our newly added losses Lv and Lo do not affect the load balancing effect, we conduct
statistical measurements on the load balancing of all combinations of Laux, Lv , and Lo across various
models during training.

Figure 2 shows the variation of MaxV ioglobal ↓ across training steps for different loss combinations,
as well as the RMSE of differences between our method and other combinations. We make the
following observations:

Obs.❸ Loss combinations without Laux exhibit significantly worse load balancing performance
than those with Laux. As shown in Figure 2, across three distinct models, the MaxV ioglobal of the
w/o all method (with no losses added) is significantly higher than that of other methods, indicating
notably poorer load balancing. In particular, for the DeepSeek-V2-Lite model, the method
without Laux converges to 6.14, whereas methods with Laux converge to 2.48, demonstrating that loss
combinations containing Laux achieve significantly better load balancing.

7

0
100

200
300

400
500

Step ours

only aux

w/o lv

w/o lo

w/o all

M
eth

od

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

M
ax

Vi
o g

lo
ba

l

RMSE (vs ours):
 only aux: 0.023
 w/o lv: 0.019
 w/o lo: 0.023
 w/o all: 0.650

DeepSeek-Moe-16B
w/o all
w/o lo
w/o lv
only aux
ours

0
100

200
300

400
500

Step ours

only aux

w/o lv

w/o lo

w/o all

M
eth

od

6.75

7.00

7.25

7.50

7.75

8.00

8.25

8.50

8.75

M
ax

Vi
o g

lo
ba

l

RMSE (vs ours):
 only aux: 0.012
 w/o lv: 0.012
 w/o lo: 0.012
 w/o all: 0.291

Moonlight-16B-A3B
w/o all
w/o lo
w/o lv
only aux
ours

0
100

200
300

400
500

Step ours

only aux

w/o lv

w/o lo

w/o all

M
eth

od

3

4

5

6

7

M
ax

Vi
o g

lo
ba

l

RMSE (vs ours):
 only aux: 0.026
 w/o lv: 0.026
 w/o lo: 0.022
 w/o all: 1.044

DeepSeek-V2-Lite
w/o all
w/o lo
w/o lv
only aux
ours

Figure 2: Variation of Load Balancing. The figure illustrates the variation of load balancing during
training across three distinct models for different methods. Method represents the combination of
Laux, Lo, and Lv; Step denotes the number of training steps; MaxV ioglobal ↓ serves as the metric for
load balancing; and RMSE is the metric for measuring the similarity between two curves.

Obs.❹ Incorporating any combination of Lv and Lo into Laux does not affect load balancing.
As shown in Figure 2, for methods with Laux, the trends of “only aux” (no additional losses), “w/o
lv” (only Lo), “w/o lo” (only Lv), and “ours” (both Lv and Lo) are nearly identical. Additionally,
the RMSE (root mean squared error) of our method relative to other baselines does not exceed
0.03, further corroborating the conclusion that the combination of Lv and Lo does not impact load
balancing.

4.4 Behaviors of Experts and Routing (RQ3)

To verify that Lv and Lo can jointly promote expert orthogonality and routing score diversification,
following the method setup in Section 4.3, we will conduct evaluations of expert orthogonality and
measurements of routing score diversification for different loss combinations.

0.15 0.10 0.05 0.00 0.05 0.10
silhouette coefficient

D
ee

pS
ee

k
-V

2-
Li

te
M

oo
nl

ig
ht

-1
6B

-A
3B

D
ee

pS
ee

k
-M

oe
-1

6B

M
od

el

Silhouette Coefficient () Comparison
ours
w/o lo
w/o lv
w/o all
only aux

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
expert overlap

D
ee

pS
ee

k
-V

2-
Li

te
M

oo
nl

ig
ht

-1
6B

-A
3B

D
ee

pS
ee

k
-M

oe
-1

6B

M
od

el

Expert Overlap () Comparison
ours
w/o lo
w/o lv
w/o all
only aux

0.000 0.002 0.004 0.006 0.008 0.010
variance

D
ee

pS
ee

k
-V

2-
Li

te
M

oo
nl

ig
ht

-1
6B

-A
3B

D
ee

pS
ee

k
-M

oe
-1

6B

M
od

el

Routing Variance () Comparison
ours
w/o lo
w/o lv
w/o all
only aux

Figure 3: Behaviors of Experts and Routing. The figure demonstrates the behavioral states of
experts and routing across different methods. The first two subplots, Silhouette Coefficient and
Expert Overlap, measure the degree of expert orthogonality, while the last subplot, Routing Variance,
evaluates the diversity of routing outputs.

As shown in Figure 3, the first two subplots demonstrate the orthogonality of experts, while the last
subplot illustrates the diversification of routing outputs. We make the following observations:

Obs.❺ Lo directly promotes expert orthogonality, and Lv also aids in expert orthogonality. As
shown in the first two panels of Figure 3, our method with both Lo and Lv achieves state-of-the-art
(SOTA) results across three models, with Expert Overlap even dropping below 0.3. The method with
only Lo and Laux (w/o lv) consistently ranks second-best, indicating that Lo has a more significant
impact on expert orthogonality. Notably, the method with only Lv and Laux (w/o lo) significantly
outperforms the method with only Laux across all three models, confirming that Lv also contributes
to expert orthogonality.

Obs.❻ Lv directly enhances routing output diversification, and Lo also supports this diversifi-
cation. Similarly, our method exhibits the highest routing score variance (exceeding 0.010), followed
by the method with only Lv and Laux, while the method with only Laux performs worst. This strongly
supports the conclusion.

8

Obs.❼ Laux leads to higher expert overlap and more homogeneous routing outputs. Compared
to the w/o all method (no losses), the aux only method (with only Laux) shows a Silhouette Coefficient
that is over 0.05 higher and a routing output variance that is 0.0045 higher. This indicates that w/o all
exhibits significantly greater expert orthogonality and routing output diversification than aux only.

4.5 Ablation among Losses (RQ4)

To demonstrate that both Lo and Lv have positive effects on the model’s performance in downstream
task scenarios, and their combination synergistically enhances each other’s efficacy, we design
ablation experiments for these two losses on three models.

GSM8K

MATH500

NuminaTestMMLU

MMLU-pro

BBH

GLUE

GPQA HumanEval

MBPP

0
13

26
39

52
65

Ablation Experiment on
 DeepSeek-Moe-16B

w/o all
w/o lo

w/o lv
only aux

Ours

GSM8K

MATH500

NuminaTestMMLU

MMLU-pro

BBH

GLUE

GPQA HumanEval

MBPP

0
12

24
36

48
60

Ablation Experiment on
 DeepSeek-V2-Lite

w/o all
w/o lo

w/o lv
only aux

Ours

GSM8K

MATH500

NuminaTestMMLU

MMLU-pro

BBH

GLUE

GPQA HumanEval

MBPP

0
20

40
60

80
100

Ablation Experiment on
 Moonlight-16B-A3B

w/o all
w/o lo

w/o lv
only aux

Ours

Figure 4: Ablation Experiments. The figure illustrates the performance differences of different
ablation method combinations across three models on various benchmarks. The vertices on the circles
represent the corresponding benchmark names, with the same type connected by the same color. The
numbers inside the circles denote the accuracy represented by each circle.

Figure 4 illustrates the performance of different ablation method combinations across various down-
stream tasks. We make the following observations:

Obs.❽ The combination of Lo and Lv significantly enhances model performance in downstream
tasks, and each loss individually also improves performance. Our method (combining Lo and Lv)
exhibits the largest coverage area across all three models, nearly encompassing other methods. When
either Lo or Lv is ablated (i.e., w/o lv or w/o lo), the coverage areas of these methods are larger than
that of the only aux method (with only Laux), indicating performance improvements over the baseline.

Obs.❾ Laux impacts model performance on downstream tasks. Figure 4 clearly shows that the
only aux method (with only Laux) is nearly entirely enclosed by other methods across all three models,
consistently exhibiting the smallest coverage area. Notably, the w/o all method (with no losses)
achieves performance improvements and a larger coverage area than the only aux method when Laux
is removed, supporting this conclusion.

Beyond the ablation results in Fig. 4, we further conduct a sensitivity analysis on the loss-weight
coefficients α, β, and γ. The detailed results and discussions are provided in Appendix H.1.

5 Related Work

Auxiliary Losses in MoE Training. Auxiliary losses [39, 85] are commonly used to prevent expert
collapse by encouraging balanced expert utilization [14]. Early approaches focus on suppressing
routing imbalance, while later works [81] introduce capacity constraints or multi-level objectives
to separate routing stability from load balancing [65, 39, 20]. Recent methods [75] further reduce
manual tuning by dynamically adjusting auxiliary weights or replacing them with entropy-based
routing [42]. However, fixed-rule strategies may underutilize expert capacity, and dynamic schemes
can introduce instability or overhead, making robust balancing still a challenge [32, 68].

Orthogonality in MoE. Orthogonalization [47, 28] improves expert diversity by encouraging inde-
pendent representations [29]. Some methods [54, 84, 51] regularize expert weights directly, while

9

others [14, 29] assign experts to disentangled subspaces based on task semantics. Recent routing-
based approaches [47, 58] also impose orthogonality on token-to-expert assignments to reduce
redundancy. Nonetheless, static constraints [11] often fail to adapt to dynamic inputs, and dynamic
ones [78, 35, 25, 64] may conflict with balancing, complicating expert allocation [32, 82, 27, 68].
Our work addresses these tensions by integrating orthogonalization and balance into a unified,
gradient-consistent optimization framework.

6 Limitation & Future Discussion

While Lbalance balances load and enhances performance in downstream tasks, its potential in other
domains remains unexplored. Specifically, it could be extended to visual models, as suggested
in recent work [26], and multimodal or full-modal settings [8], offering opportunities for cross-
domain applications. Additionally, investigating Lbalance within lightweight MoE fine-tuning, such
as LoRA-MoE [21], could make our approach viable for resource-constrained environments [43].

Furthermore, there is considerable potential in exploring expert-distributed deployment, where
Lbalance can optimize both parameter inference efficiency and model performance. This avenue
could significantly enhance the scalability and practicality of MoE models in real-world applications,
providing new opportunities for distributed expert architectures.

7 Conclusion

In this work, we present a theoretically grounded framework that resolves the inherent conflict between
expert specialization and routing uniformity in MoE training. By introducing orthogonality and
variance-based objectives, our method significantly improves downstream performance without any
architectural changes. This demonstrates that MoE efficiency and specialization can be simultaneously
optimized through loss-level innovations alone. Experiments show the effectiveness of our method.

8 Acknowledgements

This work was supported in part by the National Key Research and Development Program of China
under Grant 2022YFB2902200; in part by the National Natural Science Foundation of China under
Grant 62471064; in part by the Fundamental Research Funds for the Beijing University of Posts and
Telecommunications under Grant 2025AI4S02.

References
[1] Eneko Agirre, Llu’is M‘arquez, and Richard Wicentowski, editors. Proceedings of the Fourth In-

ternational Workshop on Semantic Evaluations (SemEval-2007). Association for Computational
Linguistics, Prague, Czech Republic, June 2007.

[2] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra
Cojocaru, Merouane Debbah, Etienne Goffinet, Daniel Heslow, Julien Launay, Quentin Malartic,
et al. Falcon-40b: an open large language model with state-of-the-art performance, 2023.

[3] Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Vic-
toria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, et al. Efficient large scale language
modeling with mixtures of experts. arXiv preprint arXiv:2112.10684, 2021.

[4] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[5] Baidu-ERNIE-Team. Ernie 4.5 technical report, 2025.

[6] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models
with longtermism. arXiv preprint arXiv:2401.02954, 2024.

10

[7] Weilin Cai, Juyong Jiang, Le Qin, Junwei Cui, Sunghun Kim, and Jiayi Huang.
Shortcut-connected expert parallelism for accelerating mixture-of-experts. arXiv preprint
arXiv:2404.05019, 2024.

[8] Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
mixture of experts. arXiv preprint arXiv:2407.06204, 2024.

[9] Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey
on mixture of experts in large language models. IEEE Transactions on Knowledge and Data
Engineering, 2025.

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[11] Tianlong Chen, Zhenyu Zhang, Ajay Kumar Jaiswal, Shiwei Liu, and Zhangyang Wang. Sparse
moe as the new dropout: Scaling dense and self-slimmable transformers. In ICLR, 2023.

[12] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[13] Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evaluating predictive uncertainty, visual object
classification, and recognising tectual entailment, pages 177–190. Springer, 2006.

[14] Damai Dai, Chengqi Deng, Chenggang Zhao, Rx Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization
in mixture-of-experts language models. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1280–1297, 2024.

[15] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in neural information processing
systems, 35:16344–16359, 2022.

[16] DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

[17] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in neural information processing systems, 36:10088–
10115, 2023.

[18] William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential para-
phrases. In Proceedings of the International Workshop on Paraphrasing, 2005.

[19] William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning.
arXiv preprint arXiv:2209.01667, 2022.

[20] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research, 23
(120):1–39, 2022.

[21] Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han, and Hao Wang. Mixture-of-loras: An
efficient multitask tuning for large language models. arXiv preprint arXiv:2403.03432, 2024.

[22] Chongyang Gao, Kezhen Chen, Jinmeng Rao, Ruibo Liu, Baochen Sun, Yawen Zhang, Daiyi
Peng, Xiaoyuan Guo, and VS Subrahmanian. Mola: Moe lora with layer-wise expert allocation.
In Findings of the Association for Computational Linguistics: NAACL 2025, pages 5097–5112,
2025.

[23] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL
recognizing textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on
textual entailment and paraphrasing, pages 1–9. Association for Computational Linguistics,
2007.

11

[24] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[25] Yongxin Guo, Zhenglin Cheng, Xiaoying Tang, and Tao Lin. Dynamic mixture of experts: An
auto-tuning approach for efficient transformer models. CoRR, abs/2405.14297, 2024.

[26] Xumeng Han, Longhui Wei, Zhiyang Dou, Zipeng Wang, Chenhui Qiang, Xin He, Yingfei Sun,
Zhenjun Han, and Qi Tian. Vimoe: An empirical study of designing vision mixture-of-experts.
arXiv preprint arXiv:2410.15732, 2024.

[27] Xin He, Shunkang Zhang, Yuxin Wang, Haiyan Yin, Zihao Zeng, Shaohuai Shi, Zhenheng Tang,
Xiaowen Chu, Ivor Tsang, and Ong Yew Soon. Expertflow: Optimized expert activation and
token allocation for efficient mixture-of-experts inference. arXiv preprint arXiv:2410.17954,
2024.

[28] Ahmed Hendawy, Jan Peters, and Carlo D’Eramo. Multi-task reinforcement learning with
mixture of orthogonal experts. arXiv preprint arXiv:2311.11385, 2023.

[29] Ahmed Hendawy, Jan Peters, and Carlo D’Eramo. Multi-task reinforcement learning with
mixture of orthogonal experts. In The Twelfth International Conference on Learning Represen-
tations, 2024.

[30] Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. Proceedings of the International Conference
on Learning Representations (ICLR), 2021.

[31] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. Proceedings of the
International Conference on Learning Representations (ICLR), 2021.

[32] Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao, Chen Zhang, Yang Jin, Kun Xu, Liwei
Chen, Songfang Huang, and Yansong Feng. Harder task needs more experts: Dynamic routing in
moe models. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12883–12895, 2024.

[33] Yongqi Huang, Peng Ye, Chenyu Huang, Jianjian Cao, Lin Zhang, Baopu Li, Gang Yu, and Tao
Chen. Ders: Towards extremely efficient upcycled mixture-of-experts models. arXiv preprint
arXiv:2503.01359, 2025.

[34] Ranggi Hwang, Jianyu Wei, Shijie Cao, Changho Hwang, Xiaohu Tang, Ting Cao, and Mao
Yang. Pre-gated moe: An algorithm-system co-design for fast and scalable mixture-of-expert
inference. In 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture
(ISCA), pages 1018–1031. IEEE, 2024.

[35] Gagan Jain, Nidhi Hegde, Aditya Kusupati, Arsha Nagrani, Shyamal Buch, Prateek Jain, Anurag
Arnab, and Sujoy Paul. Mixture of nested experts: Adaptive processing of visual tokens. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

[36] Ganesh Jawahar, Subhabrata Mukherjee, Xiaodong Liu, Young Jin Kim, Muhammad Abdul-
Mageed, Laks VS Lakshmanan, Ahmed Hassan Awadallah, Sébastien Bubeck, and Jianfeng
Gao. Automoe: Heterogeneous mixture-of-experts with adaptive computation for efficient
neural machine translation. In ACL (Findings), 2023.

[37] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[38] Junmo Kang, Leonid Karlinsky, Hongyin Luo, Zhen Wang, Jacob Hansen, James Glass, David
Cox, Rameswar Panda, Rogerio Feris, and Alan Ritter. Self-moe: Towards compositional large
language models with self-specialized experts. arXiv preprint arXiv:2406.12034, 2024.

12

[39] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

[40] Hector J Levesque, Ernest Davis, and Leora Morgenstern. The Winograd schema challenge.
In AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning, volume 46,
page 47, 2011.

[41] Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa
Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong,
Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath.
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/
project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf),
2024.

[42] Jing Li, Zhijie Sun, Xuan He, Li Zeng, Yi Lin, Entong Li, Binfan Zheng, Rongqian Zhao, and
Xin Chen. Locmoe: A low-overhead moe for large language model training. arXiv preprint
arXiv:2401.13920, 2024.

[43] Jing Li, Zhijie Sun, Dachao Lin, Xuan He, Yi Lin, Binfan Zheng, Li Zeng, Rongqian Zhao,
and Xin Chen. Expert-token resonance: Redefining moe routing through affinity-driven active
selection. arXiv preprint arXiv:2406.00023, 2024.

[44] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

[45] Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu Zhang,
Yatian Pang, Munan Ning, et al. Moe-llava: Mixture of experts for large vision-language models.
arXiv preprint arXiv:2401.15947, 2024.

[46] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[47] Boan Liu, Liang Ding, Li Shen, Keqin Peng, Yu Cao, Dazhao Cheng, and Dacheng Tao. Diver-
sifying the mixture-of-experts representation for language models with orthogonal optimizer.
arXiv preprint arXiv:2310.09762, 2023.

[48] Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong
Yin, Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang,
Yongsheng Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin
Yang. Muon is scalable for llm training, 2025. URL https://arxiv.org/abs/2502.16982.

[49] Xinyi Liu, Yujie Wang, Fangcheng Fu, Xupeng Miao, Shenhan Zhu, Xiaonan Nie, and Bin CUI.
Netmoe: Accelerating moe training through dynamic sample placement. In The Thirteenth
International Conference on Learning Representations, 2025.

[50] Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and
Hongsheng Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-
experts large language models. arXiv preprint arXiv:2402.14800, 2024.

[51] Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu He, Jun Zhao, and Kang Liu. Moelora:
Contrastive learning guided mixture of experts on parameter-efficient fine-tuning for large
language models. arXiv preprint arXiv:2402.12851, 2024.

[52] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594,
2023.

13

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2502.16982

[53] Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, et al. Gemma: Open
models based on gemini research and technology. CoRR, 2024.

[54] Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Multi-
modal contrastive learning with limoe: the language-image mixture of experts. Advances in
Neural Information Processing Systems, 35:9564–9576, 2022.

[55] Nabil Omi, Siddhartha Sen, and Ali Farhadi. Load balancing mixture of experts with similarity
preserving routers. arXiv preprint arXiv:2506.14038, 2025.

[56] Bowen Pan, Yikang Shen, Haokun Liu, Mayank Mishra, Gaoyuan Zhang, Aude Oliva, Colin
Raffel, and Rameswar Panda. Dense training, sparse inference: Rethinking training of mixture-
of-experts language models. CoRR, 2024.

[57] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5:606–624, 2023.

[58] Peijun Qing, Chongyang Gao, Yefan Zhou, Xingjian Diao, Yaoqing Yang, and Soroush Vosoughi.
Alphalora: Assigning lora experts based on layer training quality. In EMNLP, 2024.

[59] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024.

[60] Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung,
Barret Zoph, William Fedus, Xinyun Chen, et al. Mixture-of-experts meets instruction tuning:
A winning combination for large language models. arXiv preprint arXiv:2305.14705, 2023.

[61] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of EMNLP, pages 1631–1642, 2013.

[62] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
TRANSACTIONS ON MACHINE LEARNING RESEARCH, 2022.

[63] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei.
Challenging big-bench tasks and whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

[64] Peng Tang, Jiacheng Liu, Xiaofeng Hou, Yifei Pu, Jing Wang, Pheng-Ann Heng, Chao Li, and
Minyi Guo. Hobbit: A mixed precision expert offloading system for fast moe inference. arXiv
preprint arXiv:2411.01433, 2024.

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[66] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[67] Kun Wang, Guibin Zhang, Zhenhong Zhou, Jiahao Wu, Miao Yu, Shiqian Zhao, Chenlong Yin,
Jinhu Fu, Yibo Yan, Hanjun Luo, et al. A comprehensive survey in llm (-agent) full stack safety:
Data, training and deployment. arXiv preprint arXiv:2504.15585, 2025.

[68] Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load
balancing strategy for mixture-of-experts. arXiv preprint arXiv:2408.15664, 2024.

14

[69] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated in-
structions. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13484–13508, 2023.

[70] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and
challenging multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574,
2024.

[71] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability
judgments. arXiv preprint 1805.12471, 2018.

[72] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022.
URL https://arxiv.org/abs/2109.01652.

[73] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[74] Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen,
Yifeng Lu, Denny Zhou, Tengyu Ma, et al. Symbol tuning improves in-context learning in
language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pages 968–979, 2023.

[75] Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao
Zhang, Xiaoyu Zhang, Liang Zeng, et al. Skywork-moe: A deep dive into training techniques
for mixture-of-experts language models. arXiv preprint arXiv:2406.06563, 2024.

[76] Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain,
Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh
Sandha, Siddartha Venkat Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie
Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-free LLM
benchmark. In The Thirteenth International Conference on Learning Representations, 2025.

[77] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of NAACL-HLT, 2018.

[78] Qiong Wu, Zhaoxi Ke, Yiyi Zhou, Xiaoshuai Sun, and Rongrong Ji. Routing experts: Learning
to route dynamic experts in existing multi-modal large language models. In The Thirteenth
International Conference on Learning Representations, 2025.

[79] Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
You. Openmoe: An early effort on open mixture-of-experts language models. arXiv preprint
arXiv:2402.01739, 2024.

[80] Shu Yang, Muhammad Asif Ali, Cheng-Long Wang, Lijie Hu, and Di Wang. Moral: Moe
augmented lora for llms’ lifelong learning. arXiv preprint arXiv:2402.11260, 2024.

[81] Zihao Zeng, Yibo Miao, Hongcheng Gao, Hao Zhang, and Zhijie Deng. Adamoe: Token-
adaptive routing with null experts for mixture-of-experts language models. In Findings of the
Association for Computational Linguistics: EMNLP 2024, pages 6223–6235, 2024.

[82] Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai,
Quoc V Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in
Neural Information Processing Systems, 35:7103–7114, 2022.

[83] Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
Llama-moe: Building mixture-of-experts from llama with continual pre-training. In Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 15913–
15923, 2024.

15

https://arxiv.org/abs/2109.01652

[84] Yun Zhu, Nevan Wichers, Chu-Cheng Lin, Xinyi Wang, Tianlong Chen, Lei Shu, Han Lu,
Canoee Liu, Liangchen Luo, Jindong Chen, et al. Sira: Sparse mixture of low rank adaptation.
arXiv preprint arXiv:2311.09179, 2023.

[85] Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer,
and William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv
preprint arXiv:2202.08906, 2022.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In both the abstract and the introduction, we clearly present the key contribu-
tions of our paper, including our optimization method based on expert specialization.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a thorough discussion of the limitations of our work and suggest
potential directions for future research.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

17

Answer: [Yes]
Justification: In this paper, we provide the full set of assumption and a complete proof in the
main paper and appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In this paper, the experimental code and datasets will be publicly available
in the future. The details necessary for reproducing all reported results are thoroughly
described in Section 4.2 (Implementation Details).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

18

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and datasets will be publicly released in the future, all reported
results are fully reproducible based on the provided data and the detailed implementation
described in Section 4.2. Further experimental procedures are documented in the appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present the dataset construction process and all experimental details,
including hyperparameter settings and other implementation specifics, in the Appendix and
in Section 4.2 (Implementation Details).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The vast majority Of experiments in this article report variance measurements.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments? [Yes]

Justification: We report the resource consumption metrics for all experimental procedures
conducted in this study.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All aspects of this work are in full compliance with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss it in the limitation&discussion section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

20

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not involve high-risk models or datasets; therefore, no addi-
tional release safeguards are necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all creators and original owners of assets used in this paper (e.g., code,
data, models) are properly credited. Furthermore, all relevant licenses and terms of use are
explicitly stated and fully respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

21

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, all new assets introduced in this paper are thoroughly documented, with
corresponding documentation provided alongside them to ensure clarity and reproducibility.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or research with
human subjects; therefore, such details are not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study did not involve human participants; therefore, no risks, disclosures,
or Institutional Review Board (IRB) approvals were required or obtained.

Guidelines:

22

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The use of large language models is described in detail in both the main text
and the appendix.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

A Notations

Table 2: Notations and Definitions

Notation Definition
L Total loss function.
Lh Primary task loss.
Laux Auxiliary loss function.
Lo Orthogonality loss.
Lv Variance loss.
xi A d-dimensional input token vector, xi ∈ Rd.
N Number of tokens in a sequence or batch.
Ej The j-th expert network.
θEj Parameters of the j-th expert network Ej .

h(xi)
Vector of logits output by the routing network for token
xi, h(xi) ∈ Rn.

h(xi)j
The j-th component of the logit vector h(xi),
corresponding to expert j.

P (xi)j Initial routing probability of token xi for expert Ej .
Ti Set of indices of the top k experts selected for token xi.

sij
Final routing weight assigned to the i-th token for the j-th
expert.

yi Final output for token xi from the MoE layer.
Ej(xi) Output of expert Ej for token xi.
fj Proportion of tokens assigned to expert j.

pj
Sum of routing probabilities (scores) assigned to expert j
across all N tokens in a batch, pj =

∑N
i=1 sij .

I{sij>τgate}
Indicator function ensuring x̃ij is Ej(xi) if sij > τgate
and zero otherwise.

θR Parameters of the routing network.

Wij(θR)
Raw logit produced by the routing network for token xi

and expert j.

s′ij
Soft routing probabilities obtained via a softmax function
applied to logits Wij(θR).

Eavg(xi)
Approximate average output of experts for token xi when
experts become similar.

x̃ij
Output of expert Ej for token xi if sij > τgate, zero
vector otherwise; x̃ij = Ej(xi) · I{sij>τgate}.

τgate
Threshold for routing score sij to consider an expert
active for orthogonality loss calculation.

ϵnorm
Small constant added to the denominator in orthogonality
loss to prevent division by zero.

projx̃ik
(x̃ij) Vector projection of x̃ij onto x̃ik.

B Motivation

B.1 MoE Layer Structure

A Mixture of Experts (MoE) layer enhances the capacity of a neural network model by conditionally
activating different specialized sub-networks, known as "experts," for different input tokens. This
architecture allows the model to scale its parameter count significantly while maintaining a relatively
constant computational cost per token during inference.

Let the input to the MoE layer be a sequence of N tokens, denoted as X = {x1, x2, . . . , xN}, where
each token xi ∈ Rd is a d-dimensional vector. The MoE layer comprises a set of n independent
expert networks, E = {E1, E2, . . . , En}. Each expert Ej is typically a feed-forward network (FFN)
with its own set of parameters θEj

.

24

A crucial component of the MoE layer is the routing network, also known as the gating network,
G. The routing network takes an input token xi and determines which experts should process this
token. It outputs a vector of logits h(xi) ∈ Rn, where each component h(xi)j corresponds to the j-th
expert. These logits are then typically passed through a softmax function to produce initial routing
probabilities or scores:

P (xi)j =
exp(h(xi)j)∑n
k=1 exp(h(xi)k)

, for j = 1, . . . , n. (11)

These probabilities P (xi)j represent the initial affinity of token xi for expert Ej .

To manage computational cost and encourage specialization, a top-k selection mechanism is often
employed. For each token xi, the top k experts (where k ≪ n, often k = 1 or k = 2) with the
highest routing probabilities P (xi)j are chosen. Let Ti ⊂ {1, . . . , n} be the set of indices of the top
k experts selected for token xi. The routing scores are then re-normalized or directly used based on
this selection. The routing score matrix S of dimensions N × n captures these assignments:

S =


s11 s12 · · · s1n
s21 s22 · · · s2n

...
...

. . .
...

sN1 sN2 · · · sNn

 , (12)

where sij represents the final weight assigned to the i-th token for the j-th expert. If expert j is
among the top k selected for token xi (i.e., j ∈ Ti), then sij is typically derived from P (xi)j (e.g.,
by re-normalizing the top-k probabilities so they sum to 1, or simply sij = P (xi)j/

∑
l∈Ti

P (xi)l).
If expert j is not selected for token xi (i.e., j /∈ Ti), then sij = 0. Consequently, for each token xi,
the sum of its routing scores across all experts is normalized:

n∑
j=1

sij = 1, for i = 1, 2, . . . , N. (13)

It is important to note that with a top-k mechanism where k < n, most sij values for a given i will be
zero.

Each token xi is then processed by its selected experts. The output of expert Ej for token xi is
denoted as Ej(xi). The final output yi for token xi from the MoE layer is a weighted sum of the
outputs from all experts, using the routing scores as weights:

yi =

n∑
j=1

sijEj(xi). (14)

Since sij = 0 for non-selected experts, this sum is effectively only over the top k chosen experts for
token xi.

To encourage a balanced load across the experts and prevent a situation where only a few experts are
consistently chosen (expert starvation), an auxiliary loss function, Laux, is commonly introduced.
Let F = {f1, f2, . . . , fn} represent the proportion of tokens assigned to each expert. More precisely,
fj can be defined as the fraction of tokens in a batch for which expert j is among the top k selected
experts, or it can be a softer measure. For a given MoE layer, the total loss function L consists of two
main parts: the primary task loss Lh (e.g., cross-entropy loss in language modeling) and the auxiliary
loss Laux:

L = Lh + α · Laux. (15)

Here, Lh is computed based on the final output Y = {y1, y2, . . . , yN} of the MoE layer (and
subsequent layers), and α is a scalar hyperparameter that controls the importance of the auxiliary
loss term. The auxiliary loss is often designed to penalize imbalance in the distribution of tokens
to experts. A common formulation for Laux, as referenced in the original text, involves the sum of
routing scores per expert:

Laux =

n∑
j=1

(loadj · importancej), (16)

25

where loadj is related to the number of tokens routed to expert j, and importancej is related to the
routing probabilities for expert j. Let pj represent the sum of routing probabilities (scores) assigned
to expert j across all N tokens in the batch:

pj =

N∑
i=1

sij . (17)

This pj value gives an indication of the "total routing score" directed towards expert j. The term fj in
the original formulation, representing the proportion of tokens assigned to expert j, can be considered
as the average routing probability for expert j over the batch, i.e., fj = 1

N

∑N
i=1 I(j ∈ Ti), where

I(·) is the indicator function, or a softer version using sij . The specific form Laux =
∑n

j=1 fj · pj as
given in the prompt, if fj is interpreted as an average probability or fraction of tokens assigned, and
pj is the sum of probabilities, then fj · pj would be (1

N

∑
i sij) · (

∑
i sij). However, a more standard

auxiliary loss aims to balance the load, often by taking the form of the dot product of the vector of
the fraction of tokens dispatched to each expert and the vector of the fraction of router probability
dispatched to each expert, scaled by the number of experts. For example, a common auxiliary load
balancing loss used in literature (e.g., Switch Transformers) is:

Laux = α · n
n∑

j=1

(
1

N

N∑
i=1

I(j ∈ Ti)

)
·

(
1

N

N∑
i=1

P (xi)j

)
, (18)

or using sij values directly related to P (xi)j for the selected experts. The intent is to make the
product of the actual load (how many tokens an expert gets) and the routing confidence for that expert
more uniform across experts. If fj in the original text refers to Nj/N (fraction of tokens routed
to expert j) and pj is

∑N
i=1 sij (sum of gating values for expert j over the batch, which already

considers the top-k selection implicitly through sij), then the formula from the prompt:

L = Lh + α

n∑
j=1

fj · pj (19)

where fj is the proportion of tokens assigned to expert j, and pj =
∑N

i=1 sij is the sum of routing
weights for expert j. This auxiliary loss encourages the gating network to distribute tokens such that
experts with higher pj (receiving larger aggregate routing weights) are also assigned a substantial
fraction of tokens fj , aiming for a balance in expert utilization.

B.2 Observation

Obs I(Expert Overlap): Introduction of the auxiliary loss function leads to a more homogenized
distribution of tokens across experts, which may reduce the distinctiveness of each expert.

It has been observed that the auxiliary loss function is independent of the expert parameter matrices
θEj

. Therefore, for the j-th expert, its gradient can be written as:

∂L
∂θEj

=
∂Lh

∂θEj

+ α · ∂Laux

∂θEj

=
∂L
∂yh

· ∂yh
∂θEj

=

N∑
i=1

xi · sij , j = 1, 2, · · · , n. (20)

where θEj
is the parameter matrix of the j-th expert, and yh is the output of the MoE layer. During

gradient descent, the addition of the auxiliary loss Laux forces the routing mechanism to evenly
distribute the tokens across experts as much as possible. This results in input token xi being assigned
to an expert that may not be semantically aligned with it, causing an unintended gradient flow to
expert j. Mathematically, after applying the top-k mechanism, the routing score sij transitions from
0 to a non-zero value, introducing gradients from tokens that originally had no affinity with expert j.

Obs II(Routing Uniformity): As training progresses, the routing output tends to become more
uniform, with the expert weight distribution gradually converging towards an equal allocation.

To understand this phenomenon, we first examine the source of gradients with respect to the routing
parameters θR. Let Wij(θR) denote the raw logit produced by the routing network for token xi and

26

expert j. The soft routing probabilities, denoted as s′ij , are typically obtained via a softmax function
applied to these logits:

s′ij =
exp(Wij(θR))∑n
k=1 exp(Wik(θR))

. (21)

These soft probabilities s′ij are then used to determine the final routing assignments sij in the matrix
S (after top-k selection). The derivatives ∂sij

∂θR
in the gradient expressions are understood to represent

the differentiation through these underlying soft probabilities with respect to the router parameters
θR. The total loss L comprises the main task loss Lh and the auxiliary loss Laux. The gradient of L
with respect to θR is given by:

∂L
∂θR

=
∂Lh

∂θR
+ α · ∂Laux

∂θR
. (22)

Substituting the expressions provided in the context, we have:

∂L
∂θR

=

N∑
i=1

 n∑
j=1

(xi · θEj)
∂sij
∂θR

+ α ·
n∑

j=1

fj

N∑
i=1

∂sij
∂θR

, (23)

where xi · θEj
represents the output of expert j for token xi, and fj denotes the fraction of tokens

ultimately assigned to expert j.

The first term, ∂Lh

∂θR
=
∑N

i=1

∑n
j=1(xi · θEj

)
∂sij
∂θR

, represents the gradient contribution from the main
task loss. This term guides the router to select experts that are most beneficial for minimizing Lh.
However, as discussed in Obs I, the expert parameters θEj tend to become similar during training
due to overlapping token assignments induced by Laux. Consequently, the expert outputs xi · θEj

become less distinguishable across different experts j for a given token xi. Let xi · θEj
≈ Eavg(xi)

for all j. In this scenario, the specific choice of expert j (i.e., making sij large for that j) has a
progressively similar impact on Lh, regardless of which j is chosen. The differential information
(xi · θEj) − (xi · θEk

) between experts diminishes. As a result, the router receives a weaker, less
discriminative signal from the main loss component for selecting specific experts. The ability of Lh

to guide fine-grained, specialized routing decisions is therefore reduced.

With the diminishing influence of ∂Lh

∂θR
, the updates to the routing parameters θR become increasingly

dominated by the auxiliary loss gradient, α∂Laux

∂θR
:

∂L
∂θR

≈ α
∂Laux

∂θR
= α

n∑
j=1

fj

N∑
i=1

∂sij
∂θR

. (24)

The auxiliary loss Laux is designed to encourage a balanced load across experts, primarily by
promoting uniformity in fj (the fraction of tokens processed by expert j). This is achieved by
using pj =

∑N
i=1 sij (where sij are the post-top-k scores) as a differentiable surrogate to guide the

optimization. The objective is to drive fj → 1/n for all n experts. The gradient term α∂Laux

∂θR
adjusts

the router parameters θR (and thus the soft probabilities s′ij which determine sij) to achieve this
balanced distribution.

In the absence of strong, discriminative signals from Lh (due to expert similarity), and under the
primary influence of Laux which penalizes load imbalance, the router tends to adopt a strategy that
most straightforwardly achieves load balance. This often results in the soft routing probabilities
s′ij for a given token xi becoming more uniform across the experts j, i.e., s′ij → 1/n. If the router
assigns nearly equal soft probabilities to all experts for any given token, then the post-top-k scores
sij will also reflect this reduced selectivity, and the sum pj =

∑
i sij will naturally tend towards

N/n, satisfying the auxiliary loss’s objective. This trend leads to the variance of routing weights
for a given token xi (i.e., Varj(s′ij)) decreasing over time. Consequently, the overall routing output
becomes more uniform, and the router becomes less specialized in its assignments, reinforcing the
homogenization observed. This feedback loop, where expert similarity weakens task-specific routing
signals and strengthens the homogenizing effect of the load balancing mechanism, explains the
progressive trend towards routing uniformity.

27

C Method

C.1 Specialized Losses Lo and Lv

In this section, we introduce two critical loss functions: the orthogonality loss Lo, which acts on the
expert representations, and the variance loss Lv, which acts on the routing scores. These losses are
designed to encourage expert specialization and routing diversity, respectively.

Expert Specialization via Orthogonality Loss Lo. To foster expert specialization, we aim to make
the representations learned by different experts for the same input token as independent as possible.
Orthogonal vectors are the epitome of linear independence. Thus, we introduce an orthogonality
objective that penalizes similarities between the output representations of different experts when they
are selected to process the same token. This is achieved through the orthogonality loss Lo.

The orthogonality loss is defined as:

Lo =

N∑
i=1

n∑
j=1

n∑
k=1
k ̸=j

⟨x̃ij , x̃ik⟩
⟨x̃ik, x̃ik⟩+ ϵnorm

x̃ik, where x̃ij = Ej(xi) · I{sij>τgate}. (25)

Here, N is the number of tokens in a batch, and n is the total number of experts. The input token is
denoted by xi. The term Ej(xi) represents the output vector of the j-th expert, Ej , when processing
token xi. The indicator function I{sij>τgate} ensures that x̃ij is the actual output Ej(xi) if the routing
score sij for expert j and token xi exceeds a certain threshold τgate (implying expert j is selected in
the top-k routing for token xi), and x̃ij is a zero vector otherwise. This effectively means that the
loss operates only on the experts that are active for a given token. A small constant ϵnorm is added to
the denominator to prevent division by zero if an expert’s output vector happens to be zero.

The core component of Lo, projx̃ik
(x̃ij) =

⟨x̃ij ,x̃ik⟩
⟨x̃ik,x̃ik⟩+ϵnorm

x̃ik, calculates the vector projection of
the output x̃ij (from expert j for token i) onto the output x̃ik (from expert k for the same token i).
The loss Lo sums these projection vectors for all distinct pairs of active experts (j, k) for each token
xi, and then sums these across all tokens in the batch.

Although the formula (25) presents Lo as a sum of vectors, the optimization objective is to minimize
the magnitude of these projection components. Typically, this is achieved by minimizing a scalar value
derived from these vectors, such as the sum of their squared L2 norms, i.e.,

∑
i,j,k ̸=j ∥projx̃ik

(x̃ij)∥2.
Minimizing these projections encourages the dot product ⟨x̃ij , x̃ik⟩ to approach zero for j ̸= k. This
forces the representations x̃ij and x̃ik from different active experts to become more orthogonal.

By minimizing Lo, we reduce the representational overlap between different experts chosen for the
same token. This encourages each expert to learn unique features or specialize in processing different
aspects of the input data, leading to a more diverse and efficient set of experts. This specialization is
key to mitigating the expert overlap issue.

Routing Diversification via Variance Loss Lv . To ensure that the router utilizes experts in a varied
and balanced manner, rather than consistently favoring a few, we introduce a variance-based loss Lv .
This loss encourages the routing scores assigned by the router to be more diverse across tokens for
any given expert.

The variance loss is defined as:

Lv = −
N∑
i=1

n∑
j=1

1

n
· (sij − s̄j)

2, where s̄j =
1

N
·

N∑
i=1

sij . (26)

In this formula, sij represents the routing score (e.g., gating value from a softmax layer in the router)
indicating the router’s preference for assigning token xi to expert Ej . The term s̄j is the average
routing score for expert Ej calculated across all N tokens in the current batch. This average score,
s̄j , can be interpreted as a measure of the current utilization or overall assignment strength for expert
j within that batch.

The core of the loss, (sij − s̄j)
2, measures the squared deviation of the specific score sij from the

average score s̄j for expert j. A sum of these squared deviations for a particular expert j over all
tokens,

∑N
i=1(sij − s̄j)

2, quantifies the total variance of routing scores received by that expert. A

28

high variance implies that expert j receives a wide range of scores from different tokens (i.e., it is
strongly preferred for some tokens and weakly for others), rather than receiving similar scores for all
tokens it processes.

The loss Lv sums these squared deviations over all experts j (scaled by 1/n) and all tokens i, and
then negates this sum. Therefore, minimizing Lv is equivalent to maximizing the sum of these score
variances:

∑n
j=1

∑N
i=1(sij − s̄j)

2. This maximization encourages the routing mechanism to produce
a diverse set of scores for each expert across different tokens.

By promoting higher variance in routing scores per expert, Lv helps to prevent routing uniformity,
where experts might be selected with similar probabilities for many tokens or where some experts are
consistently overloaded while others are underutilized based on uniform high/low scores. Instead, it
pushes the router to make more discriminative assignments, which can lead to better load balancing
in conjunction with Laux and supports experts in specializing on more distinct subsets of tokens.

C.2 Compatibility of Multi-Objective Optimization

In this section, we conduct a detailed analysis of how each loss component, namely Lh,Laux,Lo,Lv ,
influences the optimization dynamics of expert parameters θEj

(for j = 1, . . . , n experts) and routing
parameters θR during the training process. Our primary focus is to demonstrate the theoretical com-
patibility and synergistic interplay between the specialized losses Lo (promoting expert orthogonality)
and Lv (promoting routing score diversification) in conjunction with the load balancing loss Laux

and the primary task loss Lh. The analysis is structured around two key questions:

Balancing Expert and Routing. How can expert (Lo) and routing (Lv) optimizations be designed to
complement each other without compromising their respective objectives, and how do they interact
with Laux?

We begin by demonstrating that the optimization objectives Lo and Lv are compatible in their
optimization directions with respect to the expert parameters θEj and routing parameters θR. Subse-
quently, we will show that these losses can mutually reinforce each other, leading to a more effective
and stable learning process for Mixture-of-Experts (MoE) models.

Mutually Compatible

We elaborate on the compatibility of Lo and Lv by examining their respective gradient contributions
to expert parameters and routing parameters. The total loss function is L = Lh+αLaux+βLo+γLv .

From the expert parameter θEj
perspective, the expert parameters θEj

are primarily updated to
minimize the task loss Lh for the tokens routed to expert j, and to satisfy the orthogonality constraint
Lo. The auxiliary loss Laux and the variance loss Lv are functions of the routing scores sij (outputs
of the router R(xi)θR) and do not explicitly depend on the expert parameters θEj

. That is, ∂Laux

∂θEj
= 0

and ∂Lv

∂θEj
= 0. The output of expert j for token xi is denoted as x̃ij = Ej(xi; θEj) · I{sij>0}, where

Ej(xi; θEj
) is the transformation by expert j (e.g., xiθEj

if xi is a row vector and θEj
is a weight

matrix), and I{sij>0} is an indicator function that is 1 if xi is routed to expert j (i.e., sij is among the
top-k scores for xi) and 0 otherwise. For simplicity in gradient derivation with respect to θEj

, we
consider only tokens xi for which expert j is active. The gradient of the total loss L with respect to
θEj

is:

∂L
∂θEj

=

N∑
i=1

I{sij>0}

(
∂Lh

∂x̃ij
+ β

∂Lo

∂x̃ij

)
∂x̃ij

∂θEj

. (27)

Let gyi =
∂Lh

∂yi
be the gradient of the task loss with respect to the final output yi =

∑
k sikx̃ik. Then

∂Lh

∂x̃ij
= gyi

sij . The orthogonality loss Lo is designed to make x̃ij and x̃ik (for k ̸= j, k also selected
for xi) orthogonal. Assuming the specific form of Lo from the paper leads to the gradient component
shown (interpreted as ∂Lo

∂x̃ij
contributing

∑n
k=1,k ̸=j

x̃ikx̃
⊤
ik

⟨x̃ik,x̃ik⟩ x̃ij), and if ∂x̃ij

∂θEj
results in a factor of xT

i

29

(assuming x̃ij = θEjxi with xi as column vector), the gradient expression given in the paper is:

∂L
∂θEj

=

N∑
i=1

I{sij>0}

gyisij + β


n∑

k=1
k ̸=j

I{sik>0}

x̃ikx̃
⊤
ik

⟨x̃ik, x̃ik⟩
x̃ij


xT

i . (28)

More generally, using the paper’s notation for the gradient w.r.t. θEj directly:

∂L
∂θEj

=

N∑
i=1

(
gLh

(x̃ij , sij)︸ ︷︷ ︸
from Lh

+β · gLo({x̃il}l ̸=j , x̃ij)︸ ︷︷ ︸
from Lo

)
∂x̃ij

∂θEj

, (29)

where gLh
(x̃ij , sij) represents the gradient contribution from Lh to x̃ij (e.g., sij in the paper’s

simplified notation might represent gyi
sij or a similar term) and gLo

({x̃il}l ̸=j , x̃ij) represents the

gradient contribution from Lo (e.g.,
∑n

k=1
k ̸=j

x̃ikx̃
⊤
ik

⟨x̃ik,x̃ik⟩ x̃ij if it acts on x̃ij). The crucial observation is

that Laux and Lv do not directly impose conflicting gradient directions on θEj
as their influence

is on θR. As training progresses, Lo encourages θEj
to form specialized representations. This

specialization, driven by Lo, is not hindered by Laux or Lv .

From the routing parameter θR perspective, the routing parameters θR determine the routing scores
sij = R(xi, j; θR). The gradient of the total loss with respect to θR is given by:

∂L
∂θR

=

N∑
i=1

n∑
j=1

∂L
∂sij

∂sij
∂θR

. (30)

The term ∂L
∂sij

captures influences from all relevant loss components:

∂L
∂sij

=
∂Lh

∂sij
+ α

∂Laux

∂sij
+ β

∂Lo

∂sij
+ γ

∂Lv

∂sij
. (31)

The paper asserts that Lo does not directly affect the gradient with respect to routing parameters θR,
implying ∂Lo

∂sij
= 0. This holds if Lo is defined based on the expert outputs x̃ij which, once an expert

is selected, depend on θEj
and xi but not on the magnitude of sij itself (assuming sij is used for hard

selection via top-k, and not as a differentiable weighting for x̃ij within Lo’s definition). Given this
assumption, the gradient ∂L

∂sij
becomes:

∂L
∂sij

= gTyi
x̃ij︸ ︷︷ ︸

from Lh

+α
∂Laux

∂sij︸ ︷︷ ︸
from Laux

+ γ
∂Lv

∂sij︸ ︷︷ ︸
from Lv

. (32)

Substituting the specific forms for derivatives of Laux and Lv (where Laux often involves balancing
the load fj =

∑
i sij/N or similar, and Lv = −

∑N
i=1

∑n
j=1

1
n · (sij − s̄j)

2), the paper’s specific
form for the gradient of the total loss w.r.t. θR is:

∂L
∂θR

=

N∑
i=1

n∑
j=1

(
gTyi

x̃ij︸ ︷︷ ︸
term from Lh

+α · derived from fj︸ ︷︷ ︸
term from Laux

−γ · 2(N − 1)

nN
· (sij − s̄j)︸ ︷︷ ︸

term from Lv

)
· ∂sij
∂θR

. (33)

The term represented by x̃ij in the paper’s original routing gradient formula corresponds to gTyi
x̃ij ,

fj to the derivative of Laux, and the last term to the derivative of Lv. This gradient is influenced
by the expert representations x̃ij (via Lh), the expert load fj (via Laux), and the distribution of
routing weights sij (via Lv). The optimization of Lv aims to diversify routing scores, while Laux

aims to balance loads. These objectives are not inherently contradictory with the primary task of
minimizing Lh. For instance, Lv might encourage a token to be strongly assigned to one expert
within its top-k set, while Laux ensures that, across all tokens, experts are utilized in a balanced
manner. The absence of a direct gradient from Lo on sij (and thus θR) prevents direct conflicts
between expert orthogonalization and the routing objectives.

30

Based on this detailed analysis of gradient components, we can summarize:

Summary. Expert parameters θEj are updated based on gradients from Lh and Lo. The losses Laux

and Lv do not directly contribute gradients to θEj , thus avoiding conflicts with expert specialization.
Routing parameters θR are influenced by gradients from Lh, Laux, and Lv . The objective of Lo (expert
orthogonality) does not directly impose constraints on θR, and the objectives of Laux (load balancing)
and Lv (score diversification) are designed to be compatible aspects of routing.

Mutually Reinforcing

Beyond mere compatibility, Lo and Lv can create a synergistic effect, where improvements in one
facilitate the optimization of the other.

The orthogonality loss Lo encourages the effective output vectors of different selected experts, x̃ij and
x̃ik (for j ̸= k and both j, k selected for token xi), to become more orthogonal, i.e., ⟨x̃ij , x̃ik⟩ ≈ 0.
The learning signal for the routing mechanism, particularly the part derived from the primary task
loss Lh with respect to the routing score sij , is crucial. This component is given by:

∂Lh

∂sij
=

∂Lh

∂yi

∂yi
∂sij

= gTyi
x̃ij , where yi =

∑
k

sikx̃ik and gyi
=

∂Lh

∂yi
. (34)

The full gradient for sij (excluding Lo’s direct term as discussed) is:

∂L
∂sij

= gTyi
x̃ij︸ ︷︷ ︸

from Lh

+α
∂Laux

∂sij︸ ︷︷ ︸
from Laux

+ γ
∂Lv

∂sij︸ ︷︷ ︸
from Lv

. (35)

Let pij = gTyi
x̃ij represent the projection of the task gradient gyi

onto the expert output x̃ij . When
the expert outputs {x̃ij}j for a given token xi tend to be orthogonal, they represent distinct, non-
redundant features. For any given task-specific gradient vector gyi

, its projections pij onto these
more orthogonal expert output vectors are likely to exhibit greater variance. For example, if x̃i,j1
and x̃i,j2 are orthogonal, gyi might align well with x̃i,j1 (large pi,j1) but poorly with x̃i,j2 (small
pi,j2). In contrast, if x̃i,j1 and x̃i,j2 were nearly collinear, pi,j1 and pi,j2 would likely be very similar.
This increased variance in the task-relevant signals pij provides the routing mechanism with more
discriminative information, making it easier to differentiate between the utility of experts for a given
token. This, in turn, creates more favorable conditions for Lv , which aims to maximize the variance
of routing scores sij , thereby encouraging more decisive routing decisions.

Conversely, Lv contributes to expert specialization. By promoting diverse routing scores sij , Lv en-
courages the router to send different types of tokens to different experts (or to assign tokens with higher
confidence to a smaller subset of the top-k experts). This results in each expert Ej being trained on a
more specialized subset of tokens, denoted Tj = {xi | expert j is selected for xi with high score}.
As experts see more distinct data distributions, their parameters θEj

are more likely to diverge and
learn unique features representative of their assigned token subsets Tj . This functional divergence
naturally promotes the orthogonality of their output representations x̃ij , which is the direct objective
of Lo. Thus, Lv indirectly aids Lo. The statement in the original text "due to the influence of Lo’s
gradient β ∂Lo

∂sij
on θR" is interpreted here as an indirect influence: Lo improves expert representations

x̃ij , which in turn makes the routing signal gTyi
x̃ij more discriminative, thereby influencing θR.

Summary. A virtuous cycle is formed: Lo promotes orthogonal expert outputs x̃ij , which enhances the
discriminative power of the routing signals gTyi x̃ij . More discriminative routing signals allow Lv to
more effectively diversify routing scores sij . In turn, diversified routing scores sij driven by Lv lead
to experts being trained on more specialized token subsets, which facilitates the learning of divergent
and orthogonal expert parameters θEj , thus supporting the objective of Lo. This mutual reinforcement
contributes to overall model stability and performance.

Multi-Objective Optimization. How do expert and routing maintain their balance while enhancing
Laux and Lh independently, ensuring mutually beneficial performance improvements?

The overall objective function L aims to optimize four key aspects:

31

1. Accurate data fitting and task performance (minimizing Lh).

2. Orthogonal and specialized expert representations (minimizing Lo).

3. Balanced load distribution across experts (minimizing Laux).

4. Diverse and confident routing decisions (maximizing variance via Lv, i.e., minimizing
negative variance).

Our core objective is to achieve an optimal balance by jointly optimizing these multiple objectives,
ensuring they complement each other for enhanced model performance. The compatibility of these
objectives is supported by the following considerations, including the provided lemmata.

Lemma 1 Let S ∈ RN×n be the matrix of routing scores, where sij is the score for token i assigned
to expert j. Assume for each token xi (row of S),

∑n
j=1 sij = 1 (if scores are normalized probabilities

post-softmax) or that k experts are chosen (e.g., sij ∈ {0, 1/k} or general sij for selected experts).
Then, there always exists a state where the following two objectives are simultaneously optimized: 1.
Load balancing: The sum of scores for each expert (column sum, fj =

∑N
i=1 sij) tends towards an

average value, e.g., N · k/n if each token selects k experts, or N/n if sij are probabilities and k = 1.
This is driven by Laux. 2. Routing score variance: For each token xi, the variance of its non-zero
routing scores sij (among the chosen top-k experts) is increased. This is driven by Lv .

Lemma 1 suggests that the goals of Laux and Lv are not inherently contradictory. Laux focuses on
inter-expert load distribution (column-wise property of S), while Lv focuses on the concentration of
routing scores for each token (row-wise property of S). For example, even if each token xi strongly
prefers one expert over others in its top-k set (high variance for si,:), the assignment of tokens to
experts can still be managed such that overall expert utilization is balanced. Different tokens can
strongly prefer different experts, allowing column sums to balance out.

Lemma 2 For two objectives, such as (A) making expert representations orthogonal and (B) bal-
ancing the computational load across these experts, it is possible to achieve both. If we consider
experts needing to learn distinct "regions" of the problem space (orthogonality) and also needing
to process a fair share of the data (load balancing). The original phrasing was: "For two sets of
points A and B of equal size, it is always possible to partition A ∪ B such that A ∩ B = ∅ and
|A| = |B|." Interpreted in our context: Let Fj be the functional space or feature set that expert j
specializes in. Lo aims to make Fj ∩ Fk = ∅ for j ̸= k (orthogonality/specialization). Let Cj be
the computational load on expert j. Laux aims to make Cj ≈ Ck. It is possible for experts to learn
distinct specializations (Fj are disjoint) while still processing a comparable amount of data or tokens
(Cj are balanced), provided the data itself contains enough variety to be beneficially partitioned
among specialized experts.

Lemma 2, under this interpretation, suggests that the objectives of expert orthogonalization (Lo) and
load balancing (Laux) are compatible. Expert specialization does not necessitate load imbalance, nor
does load balance prevent experts from specializing. Each expert can become highly specialized in
processing certain types of inputs or learning specific features, while the routing mechanism ensures
that the number of tokens processed by each expert remains roughly equal.

In summary, the multi-objective optimization framework is designed for compatibility:

• Laux and Lv can be jointly optimized as per Lemma 1.

• Lo (leading to expert specialization) and Laux (load balancing) are compatible as per
Lemma 2’s interpretation.

• As discussed in the "Mutually Reinforcing" section, Lo and Lv can synergistically enhance
each other. Lo makes expert outputs more distinct, which helps Lv by providing clearer
signals for routing diversification. Diversified routing, in turn, provides more specialized
data streams to experts, aiding Lo.

• All these objectives serve to improve the primary task performance Lh. Specialized experts
(Lo) can model complex functions more effectively. Balanced load (Laux) ensures efficient
use of resources and prevents undertraining of some experts. Diverse and confident routing
(Lv) ensures that tokens are sent to the most appropriate experts.

32

This comprehensive approach allows the model to harness the benefits of MoE architectures by
promoting expert specialization, efficient resource utilization, and decisive routing, all contributing to
better overall performance on the downstream task.

C.3 Proof of Lemmas

Lemma 1 Let S ∈ RN×n be a matrix that satisfies following conditions: each row sums to 1, each
row contains k non-zero elements and n− k zero elements. Then, there always exists a state in which
the following two objectives are simultaneously optimized: 1. The sum of the elements in each column
tends to the average value N

n
; 2. The variance of the non-zero elements in each row increases.

proof C.1 1. Preliminaries and Assumptions

The lemma implicitly requires k ≥ 2. If k = 1, each row i has a single non-zero element si,ji = 1.
The set of non-zero elements for row i is {1}. Its mean is 1, and its variance is 1

1 (1− 1)2 = 0. This
variance cannot be increased as si,ji must remain 1. Henceforth, we assume k ≥ 2.

Let P = (pij) ∈ {0, 1}N×n denote the support matrix where pij = 1 if sij ̸= 0 and pij = 0
otherwise. Condition (ii) implies

∑n
j=1 pij = k for all i.

2. Construction of an Initial State S(0) Optimizing Objective 1

To optimize Objective 1, we select a support matrix P such that its column sums (degrees of column
nodes in the associated bipartite graph), dj =

∑N
i=1 pij , are as uniform as possible. That is, each

dj ∈ {⌊Nk/n⌋, ⌈Nk/n⌉}. The existence of such a matrix P is a known result in combinatorics
(e.g., provable via network flow arguments or related to the existence of (0, 1)-matrices with given
marginal sums).

Define an initial matrix S(0) = (s
(0)
ij) based on this P:

s
(0)
ij =

{
1/k if pij = 1

0 if pij = 0

This matrix S(0) satisfies:

• Row sums:
∑n

j=1 s
(0)
ij =

∑
j:pij=1(1/k) = k · (1/k) = 1 for all i.

• Column sums: C(0)
j =

∑N
i=1 s

(0)
ij =

∑
i:pij=1(1/k) = dj/k. Since the integers dj are as

uniform as possible, the values C(0)
j minimize

∑n
j=1(Cj −N/n)2. Thus, S(0) optimizes

Objective 1.

• Row variance: For any row i, the k non-zero elements are all 1/k. The mean of these
non-zero elements is µ(0)

i = (1/k)
∑

j:pij=1(1/k) = 1/k. The variance of these non-zero

elements is Vari(S(0)) = 1
k

∑
j:pij=1(s

(0)
ij − µ

(0)
i)2 = 1

k

∑
j:pij=1(1/k − 1/k)2 = 0.

3. Perturbation via a Cycle in the Support Graph GP

Let GP = (U∪V,EP) be the bipartite graph associated with P , where U = {r1, . . . , rN} represents
rows, V = {c1, . . . , cn} represents columns, and an edge (ri, cj) ∈ EP if and only if pij = 1.

We assume that for k ≥ 2, the graph GP (corresponding to a P that optimizes Objective 1 as
described above) contains at least one cycle. If GP were a forest, this specific perturbation method
would not apply. The strength of the lemma’s claim ("always exists") suggests that such a cycle is
indeed available in an appropriately chosen P .

Let such a cycle be P = (r1 − c1 − r2 − c2 − · · · − rL − cL − r1). The edges forming this cycle
correspond to matrix entries s(0)r1,c1 , s

(0)
r2,c1 , s

(0)
r2,c2 , . . . , s

(0)
r1,cL (indices are re-labeled for cycle elements

for simplicity), all of which are equal to 1/k.

33

Define a perturbed matrix S ′ = (s′ij) by altering elements along this cycle. Let δ be a scalar such
that 0 < δ ≤ 1/k.

s′r1,c1 = s(0)r1,c1 + δ = 1/k + δ

s′r2,c1 = s(0)r2,c1 − δ = 1/k − δ

s′r2,c2 = s(0)r2,c2 + δ = 1/k + δ

...

s′rL,cL = s(0)rL,cL + δ = 1/k + δ

s′r1,cL = s(0)r1,cL − δ = 1/k − δ

Elements s′ij not involved in the cycle remain s
(0)
ij . Since δ ≤ 1/k, all s′ij ≥ 0. The number of

non-zero elements per row remains k.

• Row Sums of S ′: For any row rx in the cycle (e.g., r1), two of its elements are modified:
s′r1,c1 by +δ and s′r1,cL by −δ. All other non-zero elements in row r1 are unchanged. Thus,

the sum
∑

j s
′
r1,j

=
∑

j s
(0)
r1,j

= 1. This holds for all rows r1, . . . , rL. Rows not in the cycle
are unaffected.

• Column Sums of S ′: For any column cx in the cycle (e.g., c1), two of its elements are
modified: s′r1,c1 by +δ and s′r2,c1 by −δ. Thus, the sum

∑
i s

′
i,c1

=
∑

i s
(0)
i,c1

= C
(0)
1 .

This holds for all columns c1, . . . , cL. Columns not in the cycle are unaffected. Therefore,
C ′

j = C
(0)
j for all j, and Objective 1 remains optimized.

• Row Variances in S ′: Consider row r1. Two of its k non-zero elements are now 1/k + δ
and 1/k − δ, while the other k − 2 remain 1/k. The mean of non-zero elements in row r1 is
µ′
1 = 1

k

(
(k − 2) 1k + (1/k + δ) + (1/k − δ)

)
= 1/k. The variance of non-zero elements

in row r1 is:

Var1(S ′) =
1

k

[
(k − 2)

(
1

k
− 1

k

)2

+

((
1

k
+ δ

)
− 1

k

)2

+

((
1

k
− δ

)
− 1

k

)2
]

=
1

k
[0 + δ2 + (−δ)2] =

2δ2

k

Since δ > 0 and k ≥ 2, Var1(S ′) > 0. Similarly, for all rows r1, . . . , rL involved in the
cycle, their variance of non-zero elements increases from 0 to 2δ2/k. Rows not in the cycle
maintain zero variance. Thus, Objective 2 is achieved as the variance has increased for at
least these L rows.

4. Existence of the Desired State and Conclusion

The construction of S ′ from S(0) demonstrates that if k ≥ 2 and the support graph GP (chosen
to optimize Objective 1) contains a cycle, then a state S ′ exists satisfying the lemma’s conditions.
Objective 1 remains optimized, and Objective 2 is achieved because the variance of non-zero elements
in rows participating in the cycle is strictly increased from zero.

Thus, under the stated assumption of cycle existence in an appropriately chosen support graph GP ,
the matrix S ′ is the desired state.

Lemma 2 For two sets of points A and B of equal size, it is always possible to partition A ∪ B such
that A ∩ B = ∅ and |A| = |B|.

proof C.2 The lemma we aim to prove states: For two sets of points A and B of equal size, it is
always possible to partition A ∪ B such that the components of this partition (also referred to as A
and B in the conclusion of the lemma) satisfy A ∩ B = ∅ and |A| = |B|.

34

For the lemma’s assertion that this is "always possible" to hold, we interpret the conditions "A∩B =
∅" and "|A| = |B|" in the conclusion as pertaining to the initially given sets A and B themselves.
These sets must satisfy these conditions and thereby form the required partition of their union.

Let A and B be two sets of points. From the statement of the lemma and our interpretation, we
establish the following premises:

(i) The sets A and B are of equal size, i.e., there exists a non-negative integer n such that
|A| = |B| = n. (This is given by the lemma’s hypothesis.)

(ii) For A and B to serve as the components of the partition of A∪B and to satisfy the disjointness
condition in the lemma’s conclusion, we require that the sets A and B themselves are disjoint,
i.e., A ∩ B = ∅.

We now demonstrate that under premises (i) and (ii), the sets A and B form a partition of their union,
A ∪ B. First, consider the pair of sets (A,B) as a candidate partition for the set U = A ∪ B. For
(A,B) to be a valid partition of U , its components must satisfy two conditions:

• The union of the components must be equal to the set being partitioned. Here, A ∪ B is by
definition equal to U .

• The components must be mutually disjoint. By premise (ii), we have A ∩ B = ∅.

Thus, the sets A and B indeed form a valid partition of A ∪ B.

Next, we verify that the components of this partition (i.e., A and B) satisfy the specific properties
mentioned in the conclusion of the lemma:

1. The components of the partition are disjoint. This condition is A ∩ B = ∅, which is true by
premise (ii).

2. The components of the partition are of equal size. This condition is |A| = |B|, which is true
by premise (i).

Since the components of this partition (formed by A and B themselves) satisfy all the properties
required by the lemma’s conclusion, the lemma is proven.

C.4 Computational Overhead of Lo

While Lo has quadratic complexity in theory, the actual overhead is negligible in practice due to the
small number of activated experts (k) and efficient batched implementations. It does not present a
bottleneck in our setup. Detailed experimental results are provided in Appendix J.

Lo involves pairwise projections among the k selected expert outputs for each token, leading to a
theoretical cost of O(N · k2 · d). In practice, this cost remains manageable for three reasons.

(1) Small k in standard MoE practice. Sparse MoE models typically keep k small to control
computation. In our experiments, we follow this convention, using configurations such as k = 6 in
DeepSeek-V2-Lite. Given that k ≪ N and k ≪ d, the quadratic factor contributes minimally to the
overall training cost.

(2) Efficient hardware execution. The main operations in Lo—inner products and pairwise pro-
jections—are highly parallelizable and efficiently implemented as batched matrix multiplications in
frameworks such as PyTorch, running smoothly on modern GPUs.

(3) Justified by empirical gains. The modest increase in computation is offset by substantial and
consistent performance improvements across diverse downstream tasks. This demonstrates that
the regularization effect of Lo leads to meaningful gains in expert specialization without incurring
prohibitive cost.

D Datasets

GSM8K [12] is a benchmark designed to evaluate mathematical reasoning through 8,000 elementary
and middle school word problems across arithmetic, algebra, geometry, and other topics. Each

35

problem comes with detailed step-by-step solutions, enabling models to learn chain-of-thought (CoT)
reasoning strategies. The dataset is widely used to train and assess a model’s ability to decompose
multi-step questions logically and produce interpretable solutions.

MATH500 [44] focuses on advanced mathematics with 500 university-level problems in calculus,
linear algebra, abstract algebra, real analysis, and more. Problems typically require multi-step formal
proofs, symbolic manipulation, and theoretical understanding, making it a strong test for mathematical
maturity. Its emphasis on rigor and abstraction makes it ideal for developing specialized solvers and
assessing formal reasoning depth.

Numina [41] is a large-scale math dataset containing approximately 24,000 problems ranging from
primary to high school levels, annotated with explicit chain-of-thought reasoning steps. It is designed
to teach models to perform structured, stepwise reasoning rather than shortcut memorization of
solutions. The dataset is particularly effective for improving multi-step performance and explainability
in math-based language models.

MMLU [31, 30] is a massive multitask benchmark with multiple-choice questions spanning 57
academic subjects, including science, humanities, law, and medicine. Each subject is stratified
by difficulty (high school to expert level), allowing evaluation across a broad spectrum of general
knowledge. MMLU is a widely adopted standard for testing cross-domain reasoning and factual
recall in large language models (LLMs).

MMLU-pro [70] is an expert-level extension of MMLU that increases question difficulty by expand-
ing answer choices and emphasizing multi-step, high-complexity problems. It targets challenging
domains like STEM reasoning and policy analysis, where simple factual recall is insufficient. MMLU-
pro is ideal for benchmarking models under professional-grade conditions with nuanced and layered
reasoning requirements.

BBH [63] consists of hundreds of diverse tasks covering complex scenarios such as logical reasoning,
language games, social sciences, and physical commonsense. Its design aims to challenge models on
unconventional capabilities, such as counterfactual reasoning and cross-lingual transfer. Most BBH
tasks are open-ended, requiring the integration of commonsense and creative thinking—for example,
generating poetry or designing ethical AI frameworks.

GLUE [66, 71, 61, 18, 1, 77, 13, 23, 40] is a foundational NLP benchmark combining nine language
understanding tasks such as sentiment classification, sentence similarity, and entailment detection. It
provides a standardized framework to assess general-purpose language comprehension and model
transferability across tasks. GLUE has been instrumental in shaping the early progress and comparison
of pre-trained language models.

HumanEval [10] is a code generation benchmark released by OpenAI, containing 164 Python
programming tasks with unit test specifications. It focuses on assessing a model’s ability to synthesize
functionally correct, efficient, and stylistically appropriate code from natural language prompts.
HumanEval remains a key benchmark for evaluating reasoning, planning, and syntax correctness in
code generation models.

MBPP [4] features thousands of Python programming problems based on real-world development
scenarios like string parsing, API use, and algorithm design. Each task includes input/output
specifications and test cases, enabling automated evaluation of code correctness and performance.
MBPP is widely used to train and evaluate models for practical software engineering and step-by-step
code synthesis.

LiveBench [76] is a real-time evaluation benchmark capturing dynamic user-model interactions from
deployment environments like chatbots or decision engines. It tracks response latency, robustness,
and contextual consistency in streaming or multi-turn settings. LiveBench is designed to reveal
edge-case failures and test a model’s adaptability under realistic, time-sensitive constraints.

GPQA [59] is a high-difficulty multiple-choice dataset written by domain experts in biology, physics,
and chemistry, targeting scientific reasoning at an expert level. Questions often require interdisci-
plinary integration and reasoning across theory, data interpretation, and experimental design. GPQA
is ideal for probing a model’s capabilities in abstract scientific synthesis and expert-level domain
understanding.

36

E Metrics

MaxVioglobal [68] is a metric introduced to quantify load imbalance in Mixture-of-Experts (MoE)
models.A lower value indicates more balanced expert utilization, while a higher value reflects severe
imbalance. It evaluates global load balance across the entire validation set, reflecting long-term
efficiency and fairness in expert usage.

MaxV ioglobal =
maxiLoadi − Loadi

Loadi
(36)

where:

• Loadi is the number of tokens assigned to expert i.
• Loadi is the average (ideal balanced) load across experts.

Accuracy (ACC) is a metric that measures the proportion of correct predictions made by a model.It’s
calculated as the number of correct predictions divided by the total number of predictions.

ACC =
Number of Correct Predictions
Total Number of Predictions

(37)

Silhouette Coefficient is a metric used to evaluate the quality of clustering.It measures how similar
a data point is to its own cluster compared to other clusters, considering both cohesion and separa-
tion.Values range from -1 to +1, where a higher value indicates that the object is well-matched to its
own cluster and poorly matched to neighboring clusters.

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(38)

where:

• a(i) is the average distance from sample i to all other points in the same cluster (intra-cluster
dissimilarity).

• b(i) is the minimum average distance from sample i to all points in any other cluster
(inter-cluster dissimilarity).

Expert Overlap primarily describes a feature in Mixture of Experts (MoE) models where special-
ized subnetworks (experts) are not entirely distinct.These experts might share parameters or have
intentionally intersecting knowledge domains to process similar types of data or tasks.

The actual number of neighbors, k′, used for an input parameter kparam and N total embeddings is:

k′ = min(kparam, N − 1) (39)

The overlap score for an individual embedding ei, denoted Oi, is:

Oi =
1

k′

∑
ej∈Ni(k′)

I(lj ̸= li) (40)

The overall expert overlap score, Soverlap, is the average of these individual scores:

Soverlap =
1

N

N∑
i=1

Oi =
1

N

N∑
i=1

 1

k′

∑
ej∈Ni(k′)

I(lj ̸= li)

 (41)

where:

• N is the total number of embeddings.
• kparam is the user-specified number of nearest neighbors.
• k′ is the adjusted number of nearest neighbors, min(kparam, N − 1), used in the calculation

(meaningful for k′ > 0).
• ei represents the i-th embedding from the set of embeddings E = {e1, e2, . . . , eN}.

37

• li is the expert label corresponding to the embedding ei, from the set of labels L =
{l1, l2, . . . , lN}.

• Ni(k
′) is the set of k′ nearest neighbors of embedding ei, excluding ei itself.

• I(·) is the indicator function, which is 1 if the condition (e.g., lj ̸= li) is true, and 0
otherwise.

The Soverlap score ranges from 0 to 1. A score of 0 indicates no overlap (all k′ nearest neighbors
of any point share its label), while a score of 1 indicates complete overlap (all k′ nearest neighbors
of any point have different labels). A lower score generally signifies better expert separation in the
embedding space.

Routing Variance refers to the inconsistency or fluctuation in how the gating network distributes
inputs to different expert sub-models.It measures the variability in which expert(s) are chosen for
similar inputs or over time, reflecting the stability of the routing decisions.

RoutingV ariance =
1

NE

NE∑
j=1

((
1

NS

NS∑
i=1

gj(xi)

)
− 1

NE

)2

(42)

where:

• NE : Total number of experts.

• NS : Number of input samples.

• gj(xi): Gating probability of input xi being assigned to expert j.

Root Mean Square Error (RMSE) is a standard statistical metric used to evaluate the performance
of a model by quantifying the magnitude of error between predicted and observed values. Lower
RMSE values signify a closer fit of the model to the data, indicating higher predictive accuracy.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (43)

where:

• n is the total number of observations.

• yi represents the i-th actual (observed) value.

• hatyi represents the i-th predicted value.

• sum denotes the summation over all observations from i = 1 to n.

F Implementation Details

DeepSeek-Moe-16B[14] DeepSeekMoE-16B is a Mixture-of-Experts (MoE) language model with
16.4B parameters. It employs an innovative MoE architecture, which involves two principal strategies:
fine-grained expert segmentation and shared experts isolation. It is trained from scratch on 2T English
and Chinese tokens, and exhibits comparable performance with DeekSeek 7B and LLaMA2-7B,
with only about 40% of computations.

Moonlight-16B-A3B[48] Moonlight-16B-A3B is a 16 billion-parameter Mixture-of-Experts
(MoE) language model developed by Moonshot AI. It employs the Muon optimizer to train on 5.7
trillion tokens, achieving a new Pareto frontier of performance per FLOP. Available in both a 3 billion
activated-parameter inference configuration and the full 16 billion-parameter scale, it outperforms
comparable models such as Llama3-3B and Deepseek-v2-Lite while requiring significantly
less compute. The model and its instruction-tuned variant are open-source on Hugging Face, with
checkpoints and a memory- and communication-efficient Muon implementation provided to foster
further research.

DeepSeek-V2-Lite[16] DeepSeek-V2 is a strong Mixture-of-Experts (MoE) language model
characterized by economical training and efficient inference. DeepSeek-V2 adopts innovative

38

architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees effi-
cient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while
DeepSeekMoE enables training strong models at an economical cost through sparse computation.

We integrate our balance loss Lbalance into each MoE layer by modifying the model’s modeling
file. During training, due to device computational resource constraints, we employ LoRA for fine-
tuning (note that the sole difference from full-parameter fine-tuning lies in the smaller number
of parameters, with no fundamental difference in the training mechanism). LoRA uses standard
configurations (rank 32, LoRA α = 128, learning rate 1 × 10−4, batch size 32, dropout 0.1). We
keep several original training hyperparameters in the model configuration, including the weight α
of Laux defaulting to 0.001. Settings like top-k activation and routing scoring function type match
each model’s default configurations. The weights β and γ for our Lo and Lv are set identically to α.
During inference, we first merge the trained LoRA into the base model, then infer using vllm with
gpu_memory_utilization = 0.9. Evaluation uses three validation methods: rule-based extraction,
GPT-4o, and human experts.

G Baselines

GShard[39] GShard is a pioneering Mixture-of-Experts (MoE) architecture developed by Google
Research, designed for massively parallelized training across thousands of devices. It introduces
automatic tensor sharding to scale model parameters and data efficiently, achieving dynamic load
balancing during distributed computation. Trained on 600 billion tokens, GShard demonstrated break-
through performance in multilingual machine translation across 100+ languages while maintaining
linear computational cost scaling. Its innovations in sparse expert routing and memory optimization
laid the foundation for subsequent large-scale MoE systems.

ST-MoE[85] ST-MoE (Sparsely-Trained Mixture-of-Experts) is a compute-efficient framework from
Google that enhances MoE model stability through specialized training techniques. It employs a
novel router design with expert dropout and auxiliary loss terms to prevent mode collapse during
sparse activation. Scaling to 269 billion parameters with only 3 billion active parameters per token,
ST-MoE achieves state-of-the-art results on language modeling and reasoning tasks while using 5-7x
less compute than dense counterparts. The architecture incorporates parameter-sharing strategies
across experts to improve sample efficiency and reduce memory footprint.

Loss-Free Balancing[68] Loss-Free Balancing addresses the routing imbalance in MoE models
without explicit optimization objectives. Traditional approaches rely on auxiliary loss functions to
enforce expert load balancing, often at the cost of model performance or computational efficiency.
This method dynamically adjusts entropy constraints on routing decisions and incorporates an
adaptive activation threshold mechanism for sparse gating, achieving balanced expert utilization
without auxiliary losses. It preserves primary task performance while demonstrating robustness in
large-scale multi-task scenarios.

With Aux Loss[46] This classical load-balancing strategy for MoE training introduces explicit
auxiliary losses during routing to constrain variance in expert utilization. Two complementary designs
are implemented: (1) soft regularization terms (e.g., L2 penalties) based on expert selection frequency,
and (2) probability redistribution strategies for cold-start experts. While effective in mitigating
long-tail distribution issues, it requires careful tuning of loss weights to avoid interference with the
primary task.

H Experiments Details

H.1 Hyperparameter Sensitivity

To address the importance of hyperparameter sensitivity, we conducted experiments varying the
values of the loss weights α (for Laux), β (for Lo), and γ (for Lv) across different magnitudes.

For reference, our overall loss function L is defined as the sum of Lh and Lbalance. The balance loss
Lbalance is defined as:

L = Lh + Lbalance (44)
Lbalance = α · Laux + β · Lo + γ · Lv (45)

39

It is worth noting that we apply a dynamic balancing mechanism to ensure fair weighting across
different loss terms. Specifically, because the orthogonality and variance losses (Lo and Lv) may
have different initial scales, we first normalize them using dynamic scaling factors. This brings their
magnitudes roughly in line with the auxiliary loss Laux. Only after this normalization do we apply
the hyperparameters α, β, and γ to control their contributions to the total loss.

The table below summarizes our results across several representative benchmarks under four different
settings (DS v2 lite), as shown in Table 3.

Table 3: Hyperparameter sensitivity analysis. We evaluate performance across multiple benchmarks
with different combinations of α, β, γ (DS v2 lite).
α, β, γ MMLU GPQA HumanEval GSM8K MATH500 MaxVioGlobal

10−3, 10−3, 10−3 35.59 28.76 43.58 50.94 49.33 2.52
10−3, 10−4, 10−3 31.24 25.52 41.62 46.63 46.23 3.05
10−3, 10−3, 10−4 33.52 27.35 39.52 48.30 49.09 2.77
10−4, 10−3, 10−3 30.74 26.90 42.85 49.62 44.54 4.57

From the results in Table 3, we observe that the setting where α = β = γ = 10−3 consistently yields
the best performance across tasks. This suggests that the performance is optimal when all three loss
weights α, β, and γ are set to the same value.

Furthermore, our method demonstrates strong robustness across different hyperparameter magnitudes.
When any of the coefficients is varied within one order of magnitude (±1), i.e., 10−3 vs 10−4, the
results remain stable and close to optimal. This indicates that our method is not overly sensitive to
these hyperparameters and can be considered robust in practical applications.

H.2 Configurations and Base Model Performance

A discrepancy between our reported results and the original model figures from public citations
(e.g., Moonlight, DeepSeek) was observed. This disparity primarily arises from differences in model
versions, prompting strategies, and inference settings. We clarify these differences below:

• Model versions: The public figures are typically based on instruction-tuned models. In
contrast, our work starts from their pretrained base versions, which have no preference or
SFT (Supervised Fine-Tuning) data, leading to inherently different performance baselines.

• Prompting strategies: Our evaluation is conducted in a zero-shot setting without hand-
crafted few-shot prompts or demonstrations, which are often used in official evaluations.

• Inference length: We uniformly limit the generation to 512 max new tokens due to
computational constraints. In contrast, official results often use 8k–32k tokens, which
notably benefits reasoning-heavy tasks like MMLU and HumanEval.

To quantify this impact, we evaluated both base and our fine-tuned models under the same, matched
token budget (512 tokens). The results are summarized in Table 4. We also analyze the effect of
increasing the token length for the Kimi model in Table 5.

Table 4: Performance Comparison under Matched Inference Settings (512 max new tokens).
Method MMLU GPQA HumanEval GSM8K MATH500 MaxVioGlobal

Base (ds) 28.46 22.45 42.64 28.76 7.34 4.63
Ours (ds) 33.35 25.15 63.30 35.00 10.82 2.19

Base (ds-v2) 26.56 20.33 31.34 22.57 15.69 6.97
Ours (ds-v2) 35.59 28.76 43.58 50.94 49.33 2.52

Base (Kimi) 34.23 28.33 55.67 81.23 53.76 8.37
Ours (Kimi) 40.36 32.01 70.64 87.62 59.64 7.23

40

Table 5: Effect of Increasing Max New Tokens (Kimi).
Method MMLU GPQA HumanEval GSM8K MATH500 MaxVioGlobal

Base 512 34.23 28.33 55.67 81.23 53.76 8.37
Base 1024 37.74 31.42 60.24 82.42 55.62 8.22
Base 2048 45.43 33.52 62.09 82.73 60.13 9.01

Ours 512 40.36 32.01 70.64 87.62 59.64 7.23
Ours 1024 45.63 35.22 73.23 88.31 65.23 7.14
Ours 2048 47.95 36.78 73.62 86.25 69.82 6.87

As shown in Table 4, under identical inference constraints (512 tokens), our method consistently
outperforms the original base models. Furthermore, Table 5 demonstrates that our method retains its
leading performance even when the generation length is extended. We note that due to computational
resource constraints, we were unable to reproduce the official results from other papers, which often
utilize significantly longer sequence lengths (e.g., 8k-32k tokens).

H.3 Performance Under Larger and More Diverse Training Data

We conducted an experiment to evaluate the impact of training data size and diversity on the
effectiveness of our method.

H.3.1 Motivation from Single-Task Settings

As noted in the introduction, our method is motivated by the observation that in post-training scenarios,
the training data is often domain-specific and less diverse. This results in highly skewed token
distributions, which intensifies the conflict between load balancing (which encourages even token-to-
expert allocation) and expert specialization (which encourages domain-specific token routing). Our
method was designed to explicitly address this tension.

H.3.2 Performance on Mixed and Richer Datasets

To test whether our method still performs well with more diverse training data, we constructed a
mixed dataset combining Numina (math), GPQA (science), and HumanEval (coding), totaling 18k
examples. We fine-tuned the Moonlight (Kimi) model for 3 epochs on this combined dataset. The
results are summarized in Table 6.

Table 6: Performance comparison on a larger, mixed dataset (Numina, GPQA, HumanEval) using the
Moonlight (Kimi) model.

Method MMLU GPQA HumanEval GSM8K MATH500 MaxVioGlobal

Base 34.23 28.33 55.67 81.23 53.76 8.37
AuxOnly 36.98 31.34 67.53 84.83 62.29 7.07
AuxFree 35.87 29.48 68.83 86.29 63.84 7.28
Ours 45.38 37.01 78.93 92.92 67.83 7.11

As shown, our method continues to outperform all baselines, even when trained on a significantly
larger and more diverse dataset. This demonstrates that our approach remains robust and effective
beyond constrained single-task settings.

I More Baselines and MoE Architectures

I.1 Comparison with Additional Baselines

To provide a more comprehensive evaluation, we expanded our set of comparison methods to include
two additional state-of-the-art baselines. We re-evaluated all methods on the most comprehensive
subsets of our benchmark suite.

41

The added baselines are:

• Dynamic Routing MoE (ERNIE 4.5) [5]: This is a strong recent baseline that introduces
a multimodal, heterogeneous MoE architecture. It supports both parameter sharing across
modalities and modality-specific expert specialization. The ERNIE 4.5 family includes
multiple model scales (e.g., 47B and 3B active parameters) and has shown competitive
performance on various text and multimodal benchmarks.

• SIMBAL (Similarity-Preserving Routers) [55]: This is a recent method addressing expert
load balancing in sparse MoE models. Instead of enforcing uniform routing via conventional
load balancing loss, SIMBAL introduces an orthogonality-based regularization. This aligns
the router’s Gram matrix with the identity matrix, encouraging similar input tokens to be
routed to similar experts, thereby reducing redundancy and improving consistency in expert
utilization.

A summary of the key results is presented in Table 7.

Table 7: Performance comparison against additional state-of-the-art baselines. Our method demon-
strates superior performance and achieves the best (lowest) load balance score (MaxVioGlobal).

Method MMLU GPQA HumanEval GSM8K MATH500 MaxVioGlobal

ERNIE 4.5 LBL 32.44 27.45 37.32 47.24 42.63 3.45
SIMBAL 31.89 27.64 39.45 48.75 45.36 4.56
Ours 35.59 28.76 43.58 50.94 49.33 2.52

As shown in Table 7, after incorporating these two additional state-of-the-art baselines, our approach
continues to deliver the best overall performance. Across all six representative tasks, our method
either matches or surpasses the strongest new baseline, while simultaneously maintaining the lowest
MaxVioGlobal (indicating better load balance). These additional results confirm that the improve-
ments reported in the main paper are not an artifact of the original baseline selection but hold against
the latest alternatives as well.

I.2 Performance on Diverse MoE Architectures

To further validate the generality of our method, we extended our evaluation to more diverse MoE
architectures. Our initial experiments focused on DeepSeek and Moonlight models due to their strong
open-source performance and recent community adoption. To broaden this scope, we additionally
evaluated our method on two structurally different models: Mixtral and Phi-MoE, which adopt
distinct routing strategies and omit shared experts.

The results, shown in Table 8, demonstrate that our method continues to outperform baselines across
all tasks on these diverse architectures.

Table 8: Performance comparison on diverse MoE architectures (Mixtral and Phi-MoE).
Method MMLU GPQA HumanEval GSM8K MATH500 MaxVioGlobal

Mixtral Architecture
Mixtral-Base 43.32 15.34 33.23 52.42 20.63 6.32
Mixtral-AuxOnly 50.56 18.84 39.74 58.73 28.74 3.25
Mixtral-AuxFree 49.73 20.14 36.06 56.96 29.84 3.58
Mixtral-Ours 52.63 20.74 37.73 61.74 33.42 3.54
Phi-MoE Architecture
PhiMoE-Base 51.73 34.52 66.46 84.52 41.84 7.53
PhiMoE-AuxOnly 57.24 34.21 71.32 85.21 42.94 5.21
PhiMoE-AuxFree 53.52 35.32 70.45 86.24 44.52 5.35
PhiMoE-Ours 59.63 35.87 76.23 88.32 44.79 5.32

These results further demonstrate the generality of our approach, showing its effectiveness across
MoE models with different underlying architectural designs.

42

Figure 5: Selected Images (4×3)

J Training Overhead

While our method introduces some additional computation due to the proposed regularization losses,
the training time remains within a practical range and compares favorably with existing baselines.
We report the average step time (in seconds per iteration) on the DeepSeek V2 Lite model using a
batch size of 32. The results are summarized in Table 9.

Table 9: Training time comparison (seconds per iteration) on the DeepSeek V2 Lite model (batch
size 32).

Method Time (s/iter)

Ours 11.5
Only Aux 10.7
Aux Free 9.8
GShard 14.8
ST-MoE 12.1

Our approach incurs moderate overhead compared to load-balancing-only methods like "Aux Free"
and "Only Aux," but remains significantly more efficient than GShard and ST-MoE. Given that our
method achieves up to a 23.79% performance improvement across benchmarks (as reported in the
abstract), we believe this efficiency-performance trade-off is well justified.

K Visualization

Figures 5 present the PCA projection of token embeddings assigned to the top 3 most active experts
from baseline models. The significant overlap among different colors suggests that the token
representations routed to different experts are not well separated. This indicates high expert overlap
and a lack of clear specialization among experts in the representation space.

43

	Introduction
	Motivation
	Preliminaries of MoE
	Observations

	Method
	Implementations of Losses Lo and Lv
	Compatibility of Multi-Objective Optimization

	Experiments
	Experimental Setup
	Performance in Downstream Tasks (RQ1)
	Load Balancing (RQ2)
	Behaviors of Experts and Routing (RQ3)
	Ablation among Losses (RQ4)

	Related Work
	Limitation & Future Discussion
	Conclusion
	Acknowledgements
	Notations
	Motivation
	MoE Layer Structure
	Observation

	Method
	Specialized Losses Lo and Lv
	Compatibility of Multi-Objective Optimization
	Proof of Lemmas
	Computational Overhead of Lo

	Datasets
	Metrics
	Implementation Details
	Baselines
	Experiments Details
	Hyperparameter Sensitivity
	Configurations and Base Model Performance
	Performance Under Larger and More Diverse Training Data
	Motivation from Single-Task Settings
	Performance on Mixed and Richer Datasets

	More Baselines and MoE Architectures
	Comparison with Additional Baselines
	Performance on Diverse MoE Architectures

	Training Overhead
	Visualization

