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Abstract

In stochastic optimization, a widely used approach for handling large samples sequentially is
the stochastic gradient algorithm (SGD). However, a key limitation of SGD is that its step
size sequence remains uniform across all gradient directions, which can lead to poor perfor-
mance in practice, particularly for ill-conditioned problems. To address this issue, adaptive
gradient algorithms, such as Adagrad and stochastic Newton methods, have been developed.
These algorithms adapt the step size to each gradient direction, providing significant ad-
vantages in such challenging settings. This paper focuses on the non-asymptotic analysis of
these adaptive gradient algorithms for strongly convex objective functions. The theoretical
results are further applied to practical examples, including linear regression and regularized
generalized linear models, using both Adagrad and stochastic Newton algorithms.

Keywords: Non asymptotic analysis; Online estimation; Adaptive gradient algorithm; Adagrad; Stochastic
Newton algorithm.

1 Introduction

A usual problem in stochastic optimization is to estimate the minimizer θ of a convex functional G : Rd −→ R
of the form

G(h) = E [g(X, h)]
where g : X × Rd −→ R, and X is an X -valued random variable. This framework encompasses numerous
classical problems, such as linear and logistic regression (Bach, 2014), or the estimation of geometric medians
and quantiles (Cardot et al., 2013; 2015; Godichon-Baggioni, 2016) to name a few.Various methods have been
developed to solve this optimization problem, generally categorized into iterative and recursive approaches.
Iterative methods involve approximating the minimizer of an empirical function derived from the sample
using convex optimization techniques (Boyd & Vandenberghe, 2004), or more advanced refinements like
mini-batch algorithms (Konečnỳ et al., 2015). While effective, these methods face scalability issues with
large datasets and are unsuitable for sequential data. In contrast, recursive methods adapt naturally to
sequential data and are computationally efficient.

Among recursive methods, the stochastic gradient algorithm (SGD) (Robbins & Monro, 1951) and its aver-
aged version (Ruppert, 1988; Polyak & Juditsky, 1992) are particularly well-known. Given sequential data
X1, . . . , Xn, Xn+1, . . ., the stochastic gradient algorithm (θn)n≥0 and its averaged version (θ̄n)n≥0 are defined
recursively for all n ≥ 0 by

θn+1 = θn − γn+1∇hg (Xn+1, θn) , θn+1 = θn + 1
n + 2

(
θn+1 − θn

)
1
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where (γn) is a positive step sequence converging to 0. These algorithms have been extensively studied, with
asymptotic results in works like (Pelletier, 1998; 2000) and non-asymptotic results focusing on quadratic mean
convergence (Bach & Moulines, 2013; Gadat & Panloup, 2017; Gower et al., 2019). Averaged estimates are
particularly appealing as they achieve asymptotic efficiency under regularity conditions, often attaining the
Cramer-Rao bound (up to negligible terms).

Despite these advantages, a significant limitation of SGD lies in its step size sequence (γn), which cannot
adapt to varying gradient directions, leading to suboptimal performance in ill-conditioned problems. This
issue has motivated the development of adaptive stochastic gradient algorithms. These methods take the
form:

θn+1 = θn − γn+1An∇hg (Xn+1, θn)

where (An) is a sequence of (random) matrices which enables the descent step to be adapted in each coordi-
nate. Prominent examples include Adagrad (Duchi et al., 2011), which effectively standardizes the gradient,
and stochastic Newton algorithms that use estimates of the inverse Hessian (Bercu et al., 2020; Boyer &
Godichon-Baggioni, 2020). These methods are particularly advantageous when the Hessian has eigenvalues
of different magnitudes.

While asymptotic properties of adaptive methods are well-studied (e.g., (Leluc & Portier, 2020; Gadat
& Gavra, 2020)), non-asymptotic results remain less explored. Notable exceptions include high-probability
bounds for Kalman recursions in logistic regression (De Vilmarest & Wintenberger, 2021) and L2 convergence
rates for Adagrad and Adam (Défossez et al., 2020). Furthermore, Bercu et al. (2021) obtain the rate of
convergence in quadratic mean of stochastic Gauss-Newton algorithms for optimal transport. However, these
results often assume uniformly bounded gradients, a condition violated in cases such as linear regression.

This paper addresses these gaps by focusing on non-asymptotic convergence rates for strongly convex func-
tions with unbounded gradients. Our contributions include: (i) establishing convergence rates for adaptive
methods when An may diverge, with a controlled divergence bound, (ii) deriving standard convergence
rates under the additional assumption that An has uniformly bounded fourth-order moments, (iii) provid-
ing a general framework for analyzing the convergence of stochastic Newton and Adagrad algorithms, with
applications to linear regression and ridge-regularized generalized linear models.

The paper is organized as follows: Section 2 introduces the general framework. Section 3 presents the
algorithms and theoretical convergence results. Applications to linear regression and generalized linear
models are detailed in Sections 4 and 5, respectively. Proofs are provided in Section 7 and the Appendix.

2 Framework

In what follows, we consider a random variable X taking values in a measurable space X and fix d ≥ 2. We
focus on the estimation of the minimizer θ of a strongly convex function G : Rd −→ R defined for all h ∈ Rd
by

G(h) := E [g (X, h)] ,

with g : X × Rd −→ R. Let us suppose from now on that the following assumptions are fulfilled:

(A1) For almost every x ∈ X with respect to the distribution of X, the functional g(x, .) is differentiable
on Rd. Moreover, there exist p ≥ 2 and non-negative constants C

(p)
1 , C

(p)
2 such that for all h ∈ Rd,

E
[
∥∇hg (X, h)∥2p

]
≤ C

(p)
1 + C

(p)
2 ∥h − θ∥2p

.

(A2) The functional G is twice continuously differentiable.

(A3) The Hessian of G is uniformly bounded on Rd, i.e there is a positive constant L∇G such that for all
h ∈ Rd, ∥∥∇2G(h)

∥∥
op

≤ L∇G

where ∥.∥op is the usual spectral norm for matrices.
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(A4) There exists µ > 0 such that the functional G is µ-strongly convex : for all h, h′ ∈ Rd,

G(h′) − G(h) ≥ ∇G(h)T (h′ − h) + µ

2 ∥h′ − h∥2.

Let us now discuss these assumptions. First, note that Assumption (A1), for p = 1, ensures that the second-
order moment of the gradient is bounded by a constant and a term that, at worst, grows quadratically—an
assumption already present in the literature (Bach & Moulines, 2013). When combined with Assumption
(A3), this can be linked to the expected smoothness condition (Gower et al., 2019). Remark that we
require a higher order of boundedness in Assumption (A1), compared for example to (Bach & Moulines,
2013), because of the presence of the random preconditioning An. Assumption (A2) justifies the use of
gradient-based algorithms, while twice differentiability is crucial for Newton-type methods.

It is worth noting that Theorems 3.1 and 3.2, which only concern the convergence of G(θn), remain valid
even without assuming strong convexity or the convexity of the function G, provided that G satisfies the
Polyak–Lojasiewicz condition (see Guo et al. (2025); Gower et al. (2021); Karimi et al. (2016), among others).
That is, if the following condition holds:

(A4’) There is µ > 0 such that for all h ∈ Rd,

∥∇G(h)∥2 ≥ 2µ (G(h) − G(θ)) .

Theorem 3.3 however needs strong convexity in order to translate the convergence of G(θn) into a convergence
of θn. In the case where the convergence of An only requires the one of G(θn), (A4) can be replaced by
(A4’) for Theorem 3.3 to hold with θn replaced by G(θn).

3 Adaptive stochastic gradient algorithms

3.1 The algorithms

Let X1, . . . , Xn, Xn+1, . . . be an i.i.d sequence of random variables with the same distribution as X. Then,
an adaptive stochastic gradient algorithm is defined recursively for all n ≥ 0 by

θn+1 = θn − γn+1An∇hg (Xn+1, θn) ,

where θ0 is arbitrarily chosen, γn = cγn−γ with cγ > 0, γ ∈ (0, 1) and An is a sequence of symmetric and
positive matrices such that there is a filtration (Fn)n≥0 satisfying:

• For all n ≥ 0, An is Fn-measurable.

• Xn+1 is independent of Fn.

Typically, one can consider An only depending on X1, . . . , Xn, θ0, . . . , θn and consider the filtration
generated by the sample, i.e Fn = σ (X1, . . . , Xn). Considering An diagonal with (An)k,k =(

1
n+1

(
ak +

∑n
i=1 ∇hg (Xi, θi−1)2

i,i

))−1/2
leads to Adagrad algorithm (Duchi et al., 2011). The case

where An is a recursive estimate of the inverse of the Hessian corresponds then to the stochastic New-
ton algorithm (Bercu et al., 2020; Boyer & Godichon-Baggioni, 2020), while the case where An =

1
n+1

((
A0 +

∑n
i=1 ∇hg (Xi, θi−1) ∇hg (Xi, θi−1)T

))−1
corresponds to the stochastic Gauss-Newton algo-

rithm (Cénac et al., 2020; Bercu et al., 2021).

3.2 Convergence results

3.2.1 A first convergence result

In order to obtain a first rate of convergence of the estimates, let us now introduce some assumptions on the
sequence of random matrices (An)n≥0:
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(H1 ) One can control the smallest and largest eigenvalues of An:

(H1a) There exist (vn)n≥0, λ0 > 0 and δ, q ≥ 0 such that

P [λmin (An) ≤ λ0t] ≤ vn+1tq(n + 1)−δ,

for 0 < t ≤ 1, with (vn+1(n + 1)−δ)n≥0 decreasing.
If γ ≤ 1/2, one also assumes the stronger hypothesis of the existence of λ′

n = λ′
0(n + 1)−λ′ with

λ′
0 > 0, λ′ < γ such that for all n ≥ 0,

λmin(An) ≥ λ′
n.

(H1b) There exists a sequence βn = cβnβ for n ≥ 0 with cβ ≥ 0 and 0 < β < γ
2 if γ ≤ 1/2 or

0 < β < γ − 1/2 if γ > 1/2 such that for all n ≥ 0,

∥An∥op ≤ βn+1.

Remark that the case δ = 0 is allowed in (H1a) and that one can always choose β in the allowed range of
(H1b). In most cases and especially for Adagrad and stochastic Newton algorithm, (H1a) is easily verified.
The presence of the decreasing term vn in (H1a) takes into account a general phenomenon (usually implied
by Rosenthal inequality) that error contributions from higher moments of X, albeit dominant for small n,
fade as n goes to infinity. Concerning (H1b), some counter-examples showing that the estimates possibly
diverge in the case where this last assumption is not fulfilled are given in Appendix F, meaning that this
assumption is unfortunately crucial. Up to our knowledge, it is still an open problem to know whether such
assumption can be lifted in the specific case of the linear or logistic regression. However, it is apparent in the
proofs and counterexamples that the failing of the convergence in quadratic mean is due to the exponential
explosion of the algorithm on an event of negligible probability. It is then still possible to deduce good
quadratic bounds on the convergence of θn even without Assumption (H1b), see for example Corollary 4.1
for such a result for the linear regression.

Anyway, an easy way to enforce Assumption (H1b) is to replace the random matrices An by

Ãn =
min

{
∥An∥op , βn+1

}
∥An∥op

An

and one can directly check that
∥∥Ãn

∥∥
op

≤ βn+1. Similar adjustment can be used to ensure (H1a) in the
case γ ≤ 1/2. It is worth noting that when the matrix An is not diagonal, computing the operator norm can
be too costly. In this case, we instead consider the Frobenius norm. This does not affect the results, and the
proofs remain strictly analogous.

Let us consider the case of Newton’s method, and especially the case where the estimates of the Hes-
sian are of the form Hn = 1

n+1
(
H0 +

∑n
k=1 akΦkΦTk

)
and which can be so recursively invert with the

help of Riccati/Shermann-Morrisson’s formula (see Bercu et al. (2020); Boyer & Godichon-Baggioni (2020);
Godichon-Baggioni et al. (2022)), Assumption (H1b) can also be enforced by considering the following
version of the estimate of the Hessian

H̃n = Hn + 1
n + 1

n∑
k=1

c̃β
kβ

ekeTk

where ek is the k-th (modulo d) canonical vector (see Bercu et al. (2021); Godichon-Baggioni et al. (2022)).

Regardless, these assumptions remain less restrictive than the standard ones in the literature. For instance,
in the literature on stochastic Newton algorithms (see Byrd et al. (2016); Ye et al. (2017); Agarwal et al.
(2017), among others), it is often assumed that Hessian estimators are uniformly bounded from above and
below, implying that their inverses are also uniformly bounded.
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Similarly, in the literature on Adagrad, a penalty term is introduced to upper bound the largest eigenvalue
of An. This corresponds in our framework to setting ak = η(n + 1) (see equation 2), where η is the penalty :
this would amounts to choose the strictest hypothesis β = 0 in Assumption (H1b). Likewise, it is generally
assumed that gradients are bounded in order to ensure a uniform lower bound on An (see Défossez et al.
(2020) and Duchi et al. (2011), for example) : this would then amounts to choose vn=1 = 0 in Assumption
(H1a). It is worth noting that in Guo et al. (2025), gradients are not assumed to be bounded, yet the
"regularization" term is still present.

Finally, one can examine the proofs of Theorems 4.1, 4.2, 5.1, and 5.2 to understand how these assumptions
can be verified in practice.

We can now obtain a first rate of convergence of the estimates. For the sake of simplicity, let us now denote
the risk error by Vn := G (θn) − G(θ). Note that since G is µ strongly convex, one has ∥θn − θ∥2 ≤ 2

µVn.

Theorem 3.1. Suppose Assumptions (A1) to (A4) and (H1) hold. Then, for all n ≥ 1 and for any
λ < min {γ − 2β, 1 − γ},

E [Vn] ≤ exp
(

−cγµλ0n1−(λ+γ)(1 − ε(n))
)(

K
(1)
1 + K

(1)
1′ max

1≤k≤n+1
kγ−2β−δ/2−(q/2+1)λ√

vk

)
+ K

(1)
2 n−(γ−2β−λ) + K

(1)
3

√
v⌊n/2⌋n−(δ+qλ)/2,

with ε(n) = o(1) given in equation 19 and K
(1)
1 , K

(1)
1′ , K

(1)
2 , K

(1)
3 constants respectively given in equation 20

and equation 21.

In the particular case where δ/2 ≥ γ − 2β (which happens as soon as δ ≥ 1), one can simply set λ = 0
in the above formula : we will see that it is the case for the generalized linear model with the stochastic
Newton algorithm. However, for Adagrad algorithms, one can not avoid using first λ > 0, since An depends
on ∇g(X, ·) rather than ∇2g(X, ·) (while the expectation of the latter is bounded on Rd, the one of the
former is generally unbounded). To get rid of this weaker statement, we will need the following equivalent
of Theorem 3.1 for higher moments.
Proposition 3.1. Suppose that Assumptions (A1) with p > 2, (A2) to (A3) and (H1) hold. Then for
any 2 ≤ p′ < p and any λ < min{γ − 2β, 1 − γ},

E
[
V p′

n

]
≤ exp

(
−cγµλ0n1−(λ+γ)(1 − ε′(n)

)(
K

(1′)
1 + K

(1′)
1′ max

1≤k≤n+1
kγ−2β−λ− p−p′

p (δ+qλ)v
p−p′

p

k

)
+ K

(1′)
2 n−p′(γ−2β−λ) + K

(1′)
3 v

p−p′
p

⌊n/2⌋(n + 1)− p−p′
p (δ+qλ),

with ϵ′(n), K
(1′)
1 , K

(1′)
1′ , K

(1′)
2 and K

(1′)
3 constants respectively given in equation 67, equation 68 and equa-

tion 70.

3.2.2 Convergence when An has bounded moments

In order to get a better rate of convergence, let us now introduce some new assumptions on the sequence of
random matrices (An):

(H2a) The random matrices An admit uniformly bounded second order moments. There exists CS > 0
such that for all n ≥ 0:

E
[
∥An∥2

]
≤ C2

S .

(H2b) The random matrices An admit uniformly bounded fourth order moments. There exists CS > 0
(which can be taken equal to the one of (H2a), up to increasing the latter) such that for all n ≥ 0:

E
[
∥An∥4

]
≤ C4

S .
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For a simpler statement, we assume here and in the next paragraph that q > 0 in (H1a), although similar
bound would hold in full generality.
Theorem 3.2. Suppose Assumptions (A1) to (A4) for some p > 2, (H1) and (H2a) hold with δ > 0.
Then, for all n ≥ 0,

E [Vn] ≤ exp
(
−cγµλ0n1−γ (1 − ε(n))

)
·
(

K
(2)
1 + K

(2)
1′ max

1≤k≤n+1
v

p−1
p

k kγ−2β− p−1
p δ

)
+ K

(2)
2 v

p−1
p

⌊n/2⌋n− (p−1)
p δ + K

(2)
3 n−γ ,

where ε(n) = o(1) is given in equation 24 and K
(2)
1 , K

(2)
1′ , K

(2)
2 , K

(2)
3 are constants respectively given in

equation 25, equation 26 and equation 27.

It is worth noting that, using calculations analogous to ours and those in Bach & Moulines (2013), a bound
in the case of the online stochastic gradient algorithm would take the form

E [Vn] ≤ K0e−k0µn
1−γ

+ K1n−γ .

Thus, we obtain similar bounds, but with the additional presence of the term λ0 in the exponent, which
arises from the smallest eigenvalue of the conditioning matrix, as well as the term vn, which controls the
extent to which our conditioning matrix cannot be smaller than this value.

Similar to the gradient method, we obtain a bound with two phases: (i) an exponential decay for the
initialization error, followed by (ii) a convergence rate of order n−γ once the algorithm has stabilized. One
might be tempted to choose γ = 1, but this would result in the loss of exponential decay (or an increase
in variance). Thus, finding an optimal trade-off for the choice of γ is challenging. In any case, a common
approach to accelerate convergence is to introduce an averaging step (see Ruppert (1988), Polyak & Juditsky
(1992), Boyer & Godichon-Baggioni (2020), among others).

Finally, in order to get the rate of convergence in quadratic mean of stochastic Newton estimates, we now
give the L2 rate of convergence of G (θn) when γ > 1/2.
Proposition 3.2. Suppose Assumptions (A1) to (A4) for some p > 2, (H1) and (H2b) hold with γ >
1/2, δ > 0 and β < γ − 1/2. Then

E
[
V 2
n

]
≤ exp

(
−3

2cγλ0µn1−γ
)(

K
(2′)
1 + K

(2′)
1′ max

1≤k≤n+1
v

p−2
p

k kγ− p−2
p δ

)
+ K

(2′)
2 n−2γ + K

(2′)
3 v

(p−2)/p
⌊n/2⌋ n−δ(p−2)/p =: Mn.

with K
(2′)
1 , K

(2′)
1′ , K

(2′)
2 , K

(2′)
3 constants respectively given in equation 73, equation 74 and equation 75.

In other words, one has Mn = O

(
n

− min
{

2γ, δ(p−2)
p

})
. Hence, for δ large enough (namely δ > 2p

p−2 γ), the
main contribution comes from the second term of the latter bound, i.e we obtain the good rate of convergence
O(n−γ).

3.2.3 Convergence results for stochastic Newton algorithms

Let us now focus on the rate of convergence of stochastic Newton algorithm. To this end, let us set H :=
∇2G(θ) and suppose from now that the following assumptions are also fulfilled:

(A1’) There exists L∇g > 0 such that for all h ∈ Rd,

E
[
∥∇hg (X, h) − ∇hg (X, θ)∥2

]
≤ L∇g ∥h − θ∥2 (1)

(A5) There is a non negative constant Lδ such that for all h ∈ Rd,∥∥∇G(h) − ∇2G(θ) (θ − h)
∥∥ ≤ Lδ ∥h − θ∥2
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(H3) The estimate An converges to H−1: there is a decreasing positive sequence (vA,n)n≥0 such that for
al n ≥ 0,

E
[∥∥An − H−1∥∥2

]
≤ vA,n.

Observe that assumption (A1’) is often called expected smoothness in the literature (Bach & Moulines, 2013)
and is satisfied in most of examples such as linear and logistic regressions (Bach & Moulines, 2013; Bach,
2014) or the estimation of geometric quantiles and medians (Cardot et al., 2013) among others. Concerning
(A5), under (A3), it is satisfied as soon as the Hessian is Lipschitz on a neighborhood of θ. For instance,
in the case of the linear regression, Lδ = 0. Finally, Assumption (H3) is satisfied if having a first rate of
convergence of the estimates of θ (thanks to Theorem 3.2 or Proposition 3.2 for instance) leads to a first rate
of convergence of An, which is often verified in practice (see Boyer & Godichon-Baggioni (2020) for instance,
see also Lemma 7.9 in the specific case of the linear regression).
Theorem 3.3. Suppose Assumptions (A1’), (A1) to (A5), and (H1) to (H3) hold with γ > 1/2, δ > 0
and β < γ − 1/2. Then,

E
[
∥θn − θ∥2

]
≤ e− 1

2 cγn
1−γ

(
K

(3)
1 + K

(3)
1′ max

0≤k≤n
(k + 1)γdk

)
+ n−γ

(
23+γcγTr

(
H−1ΣH−1)+ K

(3)
2

nγ
+ K

(3)
2′ vA,n/2

)
+ d⌊n/2⌋.

where Σ is the covariance matrix of X, K
(3)
i , i = 1, 1′, 2, 2′ are defined in equation 28, equation 29 and

equation 30, and dk only depending on Mk and vA,k is given in equation 29.

Recall that Mk is given by Proposition 3.2. Remark from equation 29 that dk ≤ C(vA,k + Mk) for some
constant C > 0. The latter results can be further simplified if we also assume a sufficiently large exponent
δ in (H1a).
Corollary 3.1. Suppose Assumptions (A1’), (A1) to (A5), and (H1) to (H3) hold with γ > 1/2, δ > 2γp

p−2
and β < γ − 1/2. Then,

E
[
∥θn − θ∥2

]
≤n−γ

(
23+γcγTr

(
H−1ΣH−1)+ K

(3′)
2
nγ

+ K
(3′)
2′ vA,n/2 + K

(3′)
2′′

√
vA,n/2

)
+ K

(3′)
1 e− 1

2 cγn
1−γ

,

with K
(3′)
i , i = 1...2′′ given in equation 31 and equation 32.

Then, if vA,n converges to 0, we obtain the usual rate of convergence 1
nγ . Indeed, under analogous as-

sumptions, a bound for the online stochastic gradient algorithm would take the form (Bach & Moulines,
2013):

E
[
∥θn − θ∥2

]
≤ K0e− 1

4 cγµn
1−γ

+ 4cγC
(1)
1

µ
n−γ .

However, we can observe two interesting differences compared to standard gradient algorithms: (i) the
smallest eigenvalue no longer influences the exponential decay of the first term, and (ii) the variance term is
modified. Observation (i) is one of the main advantages motivating the use of a stochastic Newton algorithm.

3.2.4 Convergence results for adaptive gradient (Adagrad)

Recall that the Adagrad algorithm amounts to specify d initial parameters a1, . . . , ad ∈ R+ and choose An

diagonal with
(An)kk′ = δkk′

1√
1

n+1

(
ak +

∑n−1
i=0 n (∇hg(Xi+1, θi)k)2

) . (2)

The original Adagrad algorithm would then amount to take γ = 1/2. To guarantee non-degeneracy of the
matrices (An)n≥0, we assume some minimal fluctuation of the gradient at the minimizer θ.
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(A6) There is α > 0 such that for all 1 ≤ i ≤ d,

E
[
(∇hg(X, θ))2

i

]
> α. (3)

(A6’) There is α > 0 such that for all h ∈ Rd and 1 ≤ i ≤ d,

E
[
(∇hg(X, h))2

i

]
> α. (4)

Remark that (A6’) is much stronger as (A6). However, the former is often satisfied, as it is the case for
the linear regression with noise. Then, we consider the following modification of An: (An)kk′ = (An)kk′ for
k ̸= k′ and

(An)kk =

min
{

cβnβ , (An)kk
}

, if γ > 1/2

max
{

min
{

cβnβ , (An)kk
}

, λ′
0n−λ′

}
, if γ ≤ 1/2

(5)

for 1 ≤ k ≤ d, where βn = cβnβ with β < min{γ/2, 1/4} and λ′ < γ (where λ′
0 and cβ > 0 are chosen

arbitrarily).

We then have the following convergence result for the mean quadratic distance. We only state the result for
γ ≤ 1/2, but a similar statement holds for 1/2 ≤ γ < 1 with different constants.
Theorem 3.4. Suppose Assumptions (A1’), (A1) to (A4) and (A6) are satisfied for γ ≤ 1/2 and β <

min
(

(1−γ)γ2p
8−4γ+2pγ(1−γ) , 1/4

)
. Then, with (An)n≥1 given in equation 5,

E
[
∥θn − θ∥2] ≤ K̃

(4)
1 exp

(
−cγµλ̃0n1−γ (1 − ε̃(n))

)
+ K̃

(4)
2 log(n + 1)

p−1
p n

− (p−1)
p min

{
2(1−γ)γ(γ−2β)p

2−γ ,1
}

+ K̃
(4)
3 n−γ ,

with ε̃(n) given in equation 34, vn = v0 log(n + 1), with v0, C4
S and λ̃0 given in equation 85, equation 86

and equation 84 with p′ = 2(1−γ)
2−γ p. In addition, K

(4)
1 , K

(4)
2 and K

(4)
3 are given in equation 35. If (A6’) is

satisfied, the same conclusion holds for β < 1/4 with CS given in equation 87 taking p′ = 2(1−γ)
2−γ p.

In the special case where γ = 1/2, which corresponds to the usual Adagrad algorithm, we get

E
[
∥θn − θ∥2] ≤ K

(4)
1 exp

(
−cγµλ0

√
n (1 − ε(n))

)
+ 1√

n

(
K

(4)
2 log(n + 1)n1/2− (1−4β)(p−1)

6 + K
(4)
3

)
,

and we so achieve the usual rate of convergence 1√
n

as soon as 1/2− (1−4β)(p−1)
6 < 0, i.e as soon as p > 4 1−β

1−4β .

Remark that the advantage of using Adagrad algorithm compared to a standard stochastic gradient algorithm
does not appear in the bounds of Theorem 3.4. Since Adagrad algorithm amounts to a regularization of the
gradient descent by a diagonal matrix, not much can be deduced in full generality. However, one expects
better bounds to hold in the case where the Hessian matrix at the minimizer is also diagonal. For example in
practice, the parameter β should be tuned in such a way that cβnβ >> λmin(H)−1 at the time n of interest,
where λmin(H) is the smallest eigenvalue of the Hessian at the minimizer : the influence of such a choice
of the parameter β would appear in the first term of the bound of Theorem 3.4 in the case of a diagonal
Hessian at the minimizer.

4 Application to linear model

Let us now consider the linear model Y = XT θ + ϵ where X ∈ Rd and ϵ is a centered random real variable
independent from X. We suppose from now on that E

[
XXT

]
is positive. Then, θ is the unique minimizer

of the functional G : Rd −→ R defined for all h ∈ Rd by

G(h) = 1
2E
[(

Y − XTh
)2]

.
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If X admits a second order moment, the function G is twice continuously differentiable with ∇G(h) =
−E

[(
Y − XTh

)
X
]

and ∇2G(h) = E
[
XXT

]
.

4.1 Stochastic Newton algorithm

The stochastic Newton algorithm is defined recursively for all n ≥ 0 by (Boyer & Godichon-Baggioni, 2020)

θn+1 = θn + γn+1S̃−1
n

(
Yn+1 − XT

n+1θn
)

Xn+1 (6)

where S̃n = αn

n+m
(
mS0 +

∑n
i=1 XiX

T
i

)
with S0 positive, m ≥ 1 and (αn)≥0 a deterministic modulating

sequence satisfying, for some 0 < α− < α+ and α > 0,

α− ≤ αn ≤ α+, and |αn − 1| ≤ α

n
, n ≥ 0.

The parameter m ≥ 1 reflects the expected quality of the initial approximation of the Hessian at the
minimizer by S0. The usual stochastic Newton algorithm corresponds to the choice m = 1, αn = 1. Build
then a regularized version by setting

S
−1
n =

min
(∥∥S̃−1

n

∥∥
op

, βn+1

)
∥∥S̃−1

n

∥∥
op

S̃−1
n

with βn = cβnβ . Remark that S̃−1
n+1 can be easily updated with only O

(
d2) operations using Sherman

Morrison (or Ricatti’s) formula. More precisely, considering Sn = (n + 1)S̃n, one has

S−1
n+1 = S−1

n −
(
1 + XT

n+1S−1
n Xn

)−1
S−1
n Xn+1XT

n+1S−1
n .

Then, one can easily update S̃n and Sn. We call regularized stochastic Newton algorithm the algorithm
equation 6 with S̃n replaced by S̄n.

In order to avoid singularities in the estimation of the Hessian, we will assume in the sequel that the
distribution of X is non-degenerate on Rd. Formally, this amounts to suppose the existence of a constant
LMK > 0 such that for any h ∈ Sd−1,

√
E [hXXTh] ≤ LMKE

[∣∣XTh
∣∣]. We can now rewrite Theorem 3.3

for the regularized algorithm as follows:
Theorem 4.1. [Regularized Stochastic Newton] Suppose that there is p > 2 such that X and ϵ respectively
admit a moment of order 4p and 2p. Suppose also that there is a positive constant LMK such that for any
h ∈ Sd−1,

√
E [hXXTh] ≤ LMKE

[∣∣XTh
∣∣]. Then, for any 1/2 < γ < 1, the regularized algorithm (θn)n≥0

satisfies the mean quadratic error

E
[
∥θn − θ∥2

]
≤ e− 1

2 cγn
1−γ

(
K

(3)
1,lin + K

(3)
1′,lin max

0≤k≤n
dk(k + 1)γ

)
+ n−γ

(
23+γcγE

[
ϵ2]Tr

(
H−1)+

K
(3)
2,lin

nγ
+ K

(3)
2′,linvH,n/2 + nγd⌊n/2⌋

)
,

where K2,lin, K
(3)
2′,lin, K

(3)
1,lin, K

(3)
1′,lin, dn are given by equation 44 while vH,n is defined in equation 43.

Observe that nγdn = O

(
1

n
max{ p−2

2 −γ,γ}

)
and vH,n = O

(
n−1), and since p > 4, these terms are both

negligible. Using this theorem, it is possible to prove a non-asymptotic quadratic concentration bound for
the convergence of the original stochastic Newton algorithm, at the cost of imposing a sub-gaussian decay
on the tail of X. Namely, following (Vershynin, 2018, Sec. 2.5), we say that X is sub-gaussian if there exists
c > 0 such that

P [|X| > t] ≤ 2 exp(−t2/c)
for all t > 0, and we then define the sub-gaussian norm ∥X∥ψ2 of X as

∥X∥ψ2 = inf
{

t > 0,E
[
exp(∥X∥2/t2)

]
≤ 2
}

.

9
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Remark that any gaussian distributed or bounded random variable is sub-gaussian. Under a sub-gaussian
hypothesis for X, we then have the following concentration bound.
Corollary 4.1 (Original stochastic Newton). Suppose that X is sub-gaussian with sub-gaussian norm
∥X∥ψ2 > 0 and ϵ admits moments of order 2p, p > 2. Suppose also that there is a positive constant
LMK such that for any h ∈ Sd−1,

√
E [hXXTh] ≤ LMKE

[∣∣XTh
∣∣]. Then, for any 1/2 < γ < 1, we have for

all δ > 0 and n ≥ c0, with c0 only depending on S0, d, γ and the second moment of X,

P (∥θn − θ∥ > δ) ≤ 1
δ2

[
n−γ24+γcγE

[
ϵ2]Tr

(
H−1)+ C1

(
e− 1

2 cn
1−γ

E[V p
0 ]2/p + 1

n

)]
+ C2n−2γ ,

with c, C1, C2 depending on the parameters of the algorithm, LMK , the first 4p moments of X and ∥X∥ψ2 ,
and the first 2p moments of ϵ.

In view of the central limit theorem proven in Boyer & Godichon-Baggioni (2020), this non-asymptotic bound
is optimal in the fluctuation regime up to the numerical constant 24+γ and the error terms.

4.2 Adagrad algorithm

For linear model, we define Adagrad algorithm for all n ≥ 0 by

θn+1 = θn + γn+1D̄−1
n

(
Yn+1 − XT

n+1θn
)

Xn+1,

with D̄n diagonal with, for γ ≤ 1/2,

(D̄n)kk = min

max

n−β

cβ
,

√√√√ 1
n + 1

(
ak +

n−1∑
i=0

((
Yi+1 − XT

i+1θi
)

(Xi+1)k
)2
) ,

nλ
′

λ′
0

 .

where 0 < β < (γ − λ′)/2 for some ak > 0 and if γ > 1/2,

(D̄n)kk = max

n−β

cβ
,

√√√√ 1
n + 1

(
ak +

n−1∑
i=0

((
Yi+1 − XT

i+1θi
)

(Xi+1)k
)2
) ,

for some 0 < β < γ − 1/2. The usual Adagrad algorithm is done with γ = 1/2, which yields for us

(θn+1)k = (θn)k +
(
Yn+1 − XT

n+1θn
)

(Xn+1)k

min
{

max
{
n−β+1/2

cβ
,

√
ak +

∑n−1
i=0

((
Yi+1 − XT

i+1θi
)

(Xi+1)k
)2
}

, n
λ′+1/2

λ′
0

} .

Note that a first convergence analysis yields that almost surely there exists n0 ≥ 0 such that for n ≥ n0,

(θn+1)k = (θn)k +
(
Yn+1 − XT

n+1θn
)

(Xn+1)k√
ak +

∑n−1
i=0

((
Yi+1 − XT

i+1θi
)

(Xi+1)k
)2

,

which is the usual Adagrad algorithm. We can then rewrite Theorem 3.4 as follows (remark that we only
state the result for γ ≤ 1/2, but a similar statement holds for 1/2 ≤ γ < 1 with different constants).
Theorem 4.2. Suppose that there is p > 2 such that X and ϵ admit a moment of order 2p. Then, for
γ ≤ 1/2 and β < 1/4, we have

E
[
∥θn − θ∥2] ≤ Kada

1,lin exp
(
−cγλminλada0,linn1−γ (1 − εadan,lin

))
+ Kada

2,lin log(n + 1)
p−1

p n
− (p−1)

p min
{

2(1−γ)γ(γ−2β)p
2−γ ,1

}
+ Kada

3,linn−γ ,

where εadan,lin = o(1) is given in equation 51 and Kada
1,lin, Kada

2,lin Kada
3,lin are given by equation 52, equation 53 and

equation 54.

Observe that in the case where γ = 1/2, the 1√
n

rate of convergence is achieved as soon as (p−1)(1−4β)/3 ≥
1/2, i.e as soon as p > 5−4β

2(1−4β) .
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5 Application to generalized linear models

The framework of the linear regression can be easily generalized to the more general setting of finite dimen-
sional linear models. Let ℓ : Y × Y → R be a cost function on some domain Y ⊂ R. The general learning
problem is to solve the minimization problem

arg min
f∈F

E [ℓ(Y, f(X))] ,

with (X, Y ) ∼ P and F is a given class of measurable functions from X to Y, where X is a measurable space.
In the case of finite dimensional linear models, Y = R and F =

{
hTΦ(·), h ∈ Rm

}
, with Φ : X → Rm a known

design function (remark that the setting can be easily generalized to the case Y = Rp and Φ : X → Rm and
h ∈ Mm,p(R)). Then, assuming that ℓ is convex and adding a regularization term on θ, the minimization
problem turns into the framework of this paper with

G(h) = E
[
g
(
Z̃, h

)]
,

with Z̃ = (Y, Φ(X)) := (Y, X̃) and for all h ∈ Mm,p(R), g(Z̃, h) = ℓ(Y, hT X̃). In what follows, let us suppose
from now that the cost function ℓ is twice differentiable for the second variable and that there is a positive
constant L∇l such that for all h ∈ Rd ∣∣∇2

hℓ
(
Y, hT X̃

)∣∣ ≤ L∇l, (7)
where ∇2

hℓ(., .) is the second order derivative with respect to the second variable. Remark that such a
bound is generally assumed if we require that ∥∇2G(h)∥op ≤ L∇G < +∞ for all h ∈ Rd. This is for
example satisfied when ℓ(y, y′) = f(y − y′) with supy |f ′′(y)| < +∞. For example, in the simplest case of
the logistic regression, we consider a couple of random variables (X, Y ) lying in Rd × {−1, 1}, Φ = Id and
ℓ(y, y′) = log(1 + exp(−yy′)), and we indeed have for all h and Y ∈ {−1, 1}

∇2
hℓ(Y, hTX) = 1

1 + exp(hTX) · 1
1 + exp(−hTX) ≤ 1.

There are then two main cases to deal with the convexity of the minimization problem : either assume strong
convexity or use a regularization. The first consists in assuming that the functional h 7−→ E

[
ℓ
(
Y, hTX

)]
is

strongly convex, which is in particular verified when there exists α > 0 such that

inf
y′∈R

∇2
hℓ(y, y′) > α. (8)

and E
[
XXT

]
is positive. This case is called the elliptic case in the sequel and the results are very analogous

to the ones for the linear regression and are thus not repeated. We will then focus on the regularized
case. Without uniform lower bound on ∇2

hℓ(y, y′), one needs a regularization term, yielding the following
regularized minimization problem

arg min
θ∈Rm

E
[
ℓ(Y, ⟨θ, θTX⟩)

]
+ σ

2 ∥θ∥2 (9)

for some σ > 0. In what follows, we suppose that the minimizer exists and we denote it by θσ.

5.1 Stochastic Newton algorithm

The stochastic Newton algorithm is defined recursively for all n ≥ 0 by

θn+1 = θn − γn+1S
−1
n

(
∇hl

(
Yn+1, θTnXn+1

)
Xn+1 + σθn

)
,

where, using the trick introduced in Bercu et al. (2021) and developed in Godichon-Baggioni et al. (2022),
Sn is the natural recursive estimate of the Hessian given by

Sn = 1
n + 1

n−1∑
i=0

∇2
hℓ(Yi+1, ⟨θi, Xi+1⟩)Xi+1XT

i+1 + σd

n + 1

n∑
i=1

ei[d]+1eTi[d]+1, (10)

11
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with i[d] denoting i modulo d. Remark that one can easily update the inverse using the Riccati’s formula
used twice, i.e considering Sn = (n + 1)Sn and

S−1
n+ 1

2
= S−1

n − ∇2
hℓ(Yn+1, ⟨θn, Xn+1⟩)

(
1 + ∇2

hℓ(Yn+1, ⟨θn, Xn+1⟩)XT
n+1S−1

n Xn+1
)−1

S−1
n Xn+1XT

n+1S−1
n

Sn+1 = S−1
n+ 1

2
− σd

(
1 + σdeT(n+1)[d]+1S−1

n+ 1
2
e(n+1)[d]+1

)−1
S−1
n+ 1

2
e(n+1)[d]+1eT(n+1)[d]+1S−1

n+ 1
2
,

one has S
−1
n+1 = (n + 2)S−1

n+1. In what follows, let us suppose that the following assumptions hold:

(GLM1) There is L∇2L ≥ 0 such that the function h 7−→ E
[
∇2
hℓ
(
Y, hTX

)
XXT

]
is L∇2L-Lispchitz with

respect to the spectral norm.

(GLM2) There is p > 2 such that X admits a moment of order 2p and such that there is a positive constant
Lσ satisfying for all 0 ≤ a ≤ 2p

E
[∥∥∇hℓ

(
Y, XT θσ

)
X + σθσ

∥∥a] ≤ Laσ.

Remark that Assumption (GLM1) is verified when for all y, ∇2
hℓ(y, .) is Lipschitz and X admits a third

order moment, which can be easily verified for the logistic regression for instance. Assumption (GLM2) is
verified when the random variable ∇hℓ

(
Y, XT θσ

)
X admits a moment of order 2p.

Theorem 5.1. Suppose Assumptions (GLM1) and (GLM2) hold. Then,

E
[
∥θn − θσ∥2

]
≤ e− 1

2 cγn
1−γ

(
K

(3)
1,GLM + K

(3)
1′,GLM max

0≤k≤n
(k + 1)γdk,GLM

)
+ n−γ

(
23+γcγTr

(
H−1
σ ΣσH−1

σ

)
+

K
(3)
2,GLM

nγ
+ K

(3)
2′,GLMvl,n/2 + nγd⌊n/2⌋,GLM

)
,

where Hσ = E
[
∇2
hℓ
(
Y, XT θσ

)
XXT

]
+σId, Σσ = E

[(
∇hℓ

(
Y, XT θσ

)
X + σθσ

) (
∇hℓ

(
Y, XT θσ

)
X + σθσ

)T ],
K

(3)
1,GLM, K

(3)
1′,GLM, K

(3)
2,GLM, K

(3)
2′,GLM, dn,GLM are defined in equations equation 60, equation 61 and equa-

tion 62, and vl,n is defined in Proposition 7.5.

Remark that nγd⌊n/2⌋,GLM = O(n− min(γ,1−γ)), see Section 5.

5.2 Adagrad algorithm

For generalized linear model, Adagrad algorithm is defined for all n ≥ 0 by

θn+1 = θn − γn+1D̄−1
n ∇hℓ

(
Yn+1, θTnXn+1

)
Xn+1,

where D̄n is diagonal and for γ > 1/2,

(D̄n)kk = max

n−β

cβ
,

√√√√ 1
n + 1

(
ak +

n−1∑
i=0

(
∇hℓ

(
Yi+1, θTi Xi+1

)
(Xi+1)k + σ(θi)k

)2
) ,

for some 0 < β < γ − 1/2, and for γ ≤ 1/2,

(D̄n)kk = min

max

n−β

cβ
,

√√√√ 1
n + 1

(
ak +

n−1∑
i=0

(
∇hℓ

(
Yi+1, θTi Xi+1

)
(Xi+1)k + σ(θi)k

)2
) ,

nλ
′

λ′
0

 .

where 0 < β < (γ − λ′)/2 and ak > 0. The usual Adagrad algorithm is done with γ = 1/2, which yields for
us

(θn+1)k = (θn)k +
∇hℓ

(
Yn+1, θTnXn+1

)
(Xn+1)k + σ(θn)k

min
{

max
{
n−β+1/2

cβ
,

√
ak +

∑n−1
i=0

(
∇hℓ

(
Yi+1, θTi Xi+1

)
(Xi+1)k + σ(θi)k

)2
}

, n
λ′+1/2

λ′
0

} .
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Like the linear regression, the general linear model needs minimal randomness to ensure the expected rate
of convergence of Adagrad. Indeed, in the extreme case of a deterministic sequence (Xn, Yn)n≥0, Ada-
grad algorithm may diverge in the unfortunate situation where ∇hℓ

(
Yi+1, θTi Xi+1

)
(Xi+1)k vanishes or

remains very small. Such behavior can be averted by requiring at the minimizer θσ a minimal variance for
∇hℓ

(
Y, θTσX

)
(X)k for all 1 ≤ k ≤ d.

(GLM3) There is a positive constant ασ > 0 such that for all 1 ≤ k ≤ d

V ar
[
∇hℓ

(
Y, XT θσ

)
(X)k

]
> ασ.

Remark that
V ar

[
∇hℓ

(
Y, XT θσ

)
(X)k

]
= E

[∣∣∇hℓ
(
Y, XT θσ

)
(X)k + σ(θσ)k

∣∣2] , (11)

so that (GLM3) can be seen as a mirror assumption to (GLM2). We should stress that the existence of
such ασ is almost automatic when a minimal randomness between X and Y is assumed. Indeed, having
∇hl

(
Y, θTσX

)
Xk deterministic would imply an analytic relation between Y and X. The main computational

issue is to estimate a concrete value of ασ. An example dealing with the logistic regression is given in Section
E.

When (GLM3) is assumed, one can show using Theorem 5.2 that there exists almost surely n0 ≥ n such
that for n ≥ n0,

(θn+1)k = (θn)k +
∇hℓ

(
Yn+1, θTnXn+1

)
(Xn+1)k + σ(θn)k√

ak +
∑n−1
i=0

(
∇hℓ

(
Yi+1, θTi Xi+1

)
(Xi+1)k + σ(θi)k

)2
,

so that we recover the usual Adagrad algorithm for large n. We can then rewrite Theorem 3.4 as follows
(remark that we only state the result for γ ≤ 1/2, but a similar statement holds for 1/2 ≤ γ < 1 with
different constants).
Theorem 5.2. Suppose Assumptions (GLM1), (GLM2) and (GLM3) hold. Then, assuming that γ ≤ 1/2
and β < min

(
(1−γ)γ2p

8−4γ+2pγ(1−γ) , 1/4
)

, we have

E
[
∥θn − θσ∥2

]
≤ Kada

1,GLM exp
(
−cγσλ̃0,GLMn1−γ(1 − ε(n)

)
Kada

2,GLM log(n + 1)
p−1

p n
− (p−1)

p min
{

2(1−γ)γ(γ−2β)p
2−γ ,1

}
+ Kada

3,GLMn−γ ,

where ε(n) = o(1), Kada
1,GLM, Kada

2,GLM and Kada
3,GLM have explicit formulas depending on the parameters of the

model.

We do not specify the exact value of the constants here, since they can easily be obtained along the lines of
previous results. Once again, when γ = 1/2, the 1√

n
rate of convergence is achieved as soon as p > 5−4β

2(1−4β) .

6 Simulation study

In this simulation study, we consider the following scenarios:

Stochastic Newton Algorithm: We set cγ = 1 and initialize An = 1
10 Id to stabilize the algorithm during

the first iterations. Additionally, and again for stabilization purposes, as suggested in Boyer & Godichon-
Baggioni (2020), we use a modified step size, taking γn = cγ

(n+20)γ . We consider:

• The choice of γ: γ = 0.66 or γ = 0.75.

• The use of truncation or not, with cβ = 1 and β = γ − 1/2, while employing the Frobenius norm.

13
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Adagrad: We set cγ = 1 and initialize An = Id. For stabilization purposes, as suggested in Boyer &
Godichon-Baggioni (2020), we use a modified step size, taking γn = cγ

(n+20)γ . We consider:

• The choice of γ: γ = 0.5 or γ = 0.75.

• The use of truncation or not, with cβ = 1, λ′
0 = 1, β = 0.25 (resp. 0.125) and λ′ = 0.385 (resp.

0.25) if γ = 0.75 (resp. if γ = 0.5).

6.1 Linear model

We consider the linear model:

Y = XT θ + ϵ, where X ∼ N (0, diag(1, . . . , d)) and ϵ ∼ N (0, 1).

The parameter θ is set as θ = (−d/2, −(d − 1)/2, . . . , d/2). In the following experiments, we set d = 10
and generate 50 datasets of size n = 105. Moreover, we consider random initializations θ0 = θ + U , where
U ∼ N (0, Id). In Figures 1 and 2, we analyze the evolution of the quadratic mean error of the estimates

Figure 1: Evolution of the mean squared error of the estimators obtained using the stochastic Newton
algorithm in the linear model as a function of the sample size n, for γ = 0.66 or γ = 0.75, with or without
truncation.

as a function of the sample size n. Unsurprisingly, we observe that the estimators achieve the expected
convergence rates. Although it is possible to construct counterexamples where truncation is essential, we
see here that it has little to no impact on the quality of the estimators. This is not surprising, considered
Corollary 4.1 obtained for the linear regression : the possible failing of the convergence in quadratic mean
would be due to an event of exponentially small probability, and such an event would only appear with
reasonable probability on a very large sample of datasets.

6.2 Logistic regression

We now consider the logistic regression case:

Y |X ∼ B
(
π
(
θTX

))
, where X ∼ N (0, diag(1, . . . , d)) and π(x) = ex

1 + ex
.

It is well known that θ is the minimizer of the functional G : Rd −→ R defined for all h ∈ Rd by

G(h) = E
[
log
(
1 + exp

(
XTh

))
− Y XTh

]
.

However, this function is not strongly convex. To address this, we consider Ridge logistic regression, where
we aim to estimate the minimizer of the penalized function Gσ : Rd −→ R defined for all h ∈ Rd by

Gσ(h) = E
[
log
(
1 + exp

(
XTh

))
− Y XTh

]
+ σ

2 ∥h∥2.
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Figure 2: Evolution of the quadratic mean error of the estimates obtained using the Adagrad algorithm in
the linear model as a function of the sample size n, for γ = 0.5 or γ = 0.75, with or without truncation.

In the sequel, the parameter θ is set as θ = (−d/2, −(d − 1)/2, . . . , d/2). In addition, we set σ = 0.1
and denote by θ∗ the minimizer of Gσ (in practice, we generate a sample of size 107 and approximate the
minimizer using the R function glmnet). Moreover, we generate 50 datasets of size n = 105 and we consider
random initializations θ0 = θ∗ + U , where U ∼ N (0, Id). In Figures 3 and 4, we analyze the evolution of the

Figure 3: Evolution of the mean squared error of the estimators obtained using the stochastic Newton
algorithm in the ridge logistic model as a function of the sample size n, for γ = 0.66 or γ = 0.75, with or
without truncation.

quadratic mean error of the estimates as a function of the sample size n. Unsurprisingly, we observe that the
estimators achieve the expected convergence rates. Contrary to the linear case, we can see here that there
is a little impact of the truncation on the behaviour of the estimates, especially for Adagrad algorithm with
γ = 0.5. Indeed, the truncation seems to have a little impact on the rate of convergence.

Conclusion

In this paper, we have proposed a relatively simplified framework in which we can establish the conver-
gence rates of adaptive algorithms. More specifically, the relaxation of assumptions primarily concerns the
conditions imposed on adaptive step sizes to achieve the desired convergence results.

However, it is now necessary to complement these relaxed assumptions on step sizes with a similar relaxation
of assumptions on the studied functions, particularly by providing theoretical guarantees in the non-convex

15
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Figure 4: Evolution of the quadratic mean error of the estimates obtained using the Adagrad algorithm
in the ridge logistic model as a function of the sample size n, for γ = 0.5 or γ = 0.75, with or without
truncation.

setting. This is especially important since, in most machine learning applications, and particularly in deep
learning, the function to be minimized is typically non-convex (typically, for neural networks).

7 Proofs

Throughout our proofs, to alleviate notations, we will denote by the same way ∥.∥ the Euclidean norm of Rd
and the spectral norm for square matrices. Moreover, since we always assume Assumption (A1), we denote
by C1, C ′

1, C2, C ′
2 constants such that for all h ∈ Rd,

E
[
∥∇hg (X, h)∥2

]
≤ C1 + C2 ∥h − θ∥2

, E
[
∥∇hg (X, h)∥4

]
≤ C ′

1 + C ′
2 ∥h − θ∥4

. (12)

7.1 Sketch of the proofs and a useful proposition

7.1.1 Proofs of the results of Section 3

The proofs of Theorem 3.1 and Theorem 3.2 rely on the following Taylor’s decomposition of the function G.
Denoting Vn = G (θn) − G(θ) and g′

n+1 = ∇hg (Xn+1, θn),

Vn+1 ≤ Vn − γn+1∇G (θn)T Ang′
n+1 + L∇G

2 γ2
n+1 ∥An∥2 ∥∥g′

n+1
∥∥2

.

Then, taking the conditional expectation, it comes

E [Vn+1|Fn] ≤ Vn − γn+1∇G (θn)T An∇G (θn) + L∇G

2 γ2
n+1 ∥An∥2 E

[∥∥g′
n+1
∥∥2 |Fn

]
.

Furthermore, since Assumption (A4) implies that G(h) − G(θ) ≤ 1
2µ∥∇G(h)∥2 for h ∈ Rd, and thanks to

Assumption (A1), it comes

E [Vn+1] ≤
(

1 − 2µγn+1λmin (An) + C2L∇G

µ
γ2
n+1 ∥An∥2

)
E [Vn] + C1L∇G

2 γ2
n+1 ∥An∥2

.

Then, the goal of the proofs of both theorems is to control the eigenvalues of An in the latter inequality and
then to deduce a general bound on E [Vn] by using Proposition 7.1:

1. the stochastic bound on λmin(An) from Assumption (H1a) and the deterministic bound on ∥An∥
from Assumption (H1b) yield a first bound given in Theorem 3.1.
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2. further assuming a bound on the first moments of ∥An∥ (see Assumption (H2a-H2b)) yields a
refined bound in Theorem 3.2. The exact same pattern of proof also yields a bound on E

[
V 2
n

]
in

Proposition 3.2.

To prove Theorem 3.3, we use the defining recursion relation of θn,

θn+1 = θn − γn+1An∇hg (Xn+1, θn) ,

and, with the aim of using Assumption (H3), we write An = H−1 + (An − H−1) and take the square of the
latter relation to get

∥θn+1 − θ∥2 ≤ ∥θn − θ∥2 − 2γn+1
〈
g′
n+1, H−1 (θn − θ)

〉
− 2γn+1

〈(
An − H−1) g′

n+1, θn − θ
〉

+ 2γ2
n+1

∥∥H−1g′
n+1
∥∥2 + 2γ2

n+1
∥∥An − H−1∥∥2 ∥∥g′

n+1
∥∥2

.

The last three error terms can be controlled by Assumptions (A1’) and (A3) and by the crude bound on
E
[
V 2
n

]
obtained from Proposition 3.2; remark that the penultimate term is the main contribution to the

constant in front of the n−γ term in the final bound of Theorem 3.3. The second error term is the one
contributing to the exponential term in the final bound. The crucial point is that, after taking conditional
expectation on Fn, this second term simplifies into

E
[
2γn+1

〈
g′
n+1, H−1 (θn − θ)

〉
|Fn
]

=2γn+1
〈
∇G(θn), H−1 (θn − θ)

〉
=2γn+1

〈
H−1 (H(θn − θ) + o

(
∥θn − θ∥2)) , θn − θ

〉
=2γn+1∥θn − θ∥2 (1 + o

(
∥θn − θ∥2)) ,

where o(∥θn − θ∥2) is an error term controlled by Assumption (A5) and Proposition 3.2.

The proof of Theorem 3.4 consists in checking the hypothesis of Theorem 3.2. The only delicate part is the
proof of Assumption (H2a-H2b) : in order to get bounds on the moments of the preconditioner An in the
case of Adagrad, one needs to first use a convergence of θn towards θ by using Theorem 3.1 and the strong
convexity of G (see Lemma 7.4 and Lemma 7.5).

7.1.2 Proofs of the results of Section 4 and Section 5

The proof of the results of Section 4 and Section 5 mainly consist in checking all necessary hypotheses to
apply Theorem 3.3 and Theorem 3.4. Most computations are straightforward, except when considering the
Stochastic Newton algorithm, for which checking Assumption (H2a-H2b) in the case of the linear regression
and Assumption (H3) in the generalized linear case are slightly more delicate.

In the case of the stochastic Newton algorithm for the linear regression, one needs to have a lower bound on
σmin

(
1

n+1 (S0 +
∑n
i=1 XiX

T
i )
)

in order to get bounds on the moments of An (see Proposition 7.3). Since the
bound on the moments has to be independent of n, we use a general result from random matrix theory, see
Koltchinskii & Mendelson (2015). This only holds for random vectors Xi having a certain non-degeneracy
condition which is described by the constant LMK appearing in the statement of Theorem 4.1.

In the case of the generalized linear regression, Assumption (H2a-H2b) is directly implied by the regularizing
term. However, Assumption (H3) is not straightforward, since An depends on (θk)1≤k≤n (which was not
the case for the linear regression). In order to prove this assumption, one first applies Theorem 3.2 and the
strong convexity to get a first convergence result of θn towards θ. This then allow us to prove Assumption
(H3) in Proposition 7.7.

7.2 A useful inequality

The last step of all the proofs of the main results consists in applying the following technical result from
(Godichon-Baggioni et al., 2021, Proposition A.5) to adequate sequences.
Proposition 7.1. Let (γt)t≥1, (ηt)t≥1, and (νt)t≥1 be some positive and decreasing sequences and let (δt)t≥0,
satisfying the following:
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• The sequence δt follows the recursive relation:

δt ≤ (1 − 2ωγt + ηtγt) δt−1 + νtγt, (13)

with δ0 ≥ 0 and ω > 0.

• Let γt and ηt converge to 0.

• Let t0 = inf {t ≥ 1 : ηt ≤ ω}, and let us suppose that for all t ≥ t0 + 1, one has ωγt ≤ 1.

Then, for all t ∈ N, we have the upper bound:

δt ≤ exp

−ω

t∑
j=t/2

γj

 exp
(

2
t∑
i=1

ηiγi

)(
δ0 + 2 max

1≤i≤t

νi
ηi

)
+ 1

ω
max

t/2≤i≤t
νi.

with the convention that
∑t/2
t0

= 0 if t/2 < t0.

7.3 Proof of Theorem 3.1

Remark that thanks to a Taylor’s expansion of the gradient, denoting Vn = G (θn) − G(θ) and g′
n+1 =

∇hg (Xn+1, θn),

Vn+1 ≤ Vn − γn+1∇G (θn)T Ang′
n+1 + L∇G

2 γ2
n+1 ∥An∥2 ∥∥g′

n+1
∥∥2

≤ Vn − γn+1∇G (θn)T Ang′
n+1 + L∇G

2 γ2
n+1β2

n+1
∥∥g′
n+1
∥∥2

, (14)

where we used Hypothesis (H1b) on the last line. Then, taking the conditional expectation, thanks to
assumption (A1), and since ∥θn − θ∥2 ≤ 2

µVn,

E [Vn+1|Fn] ≤
(

1 + C2L∇G

µ
β2
n+1γ2

n+1

)
Vn − γn+1∇G (θn)T An∇G (θn) + C1L∇G

2 γ2
n+1β2

n+1

Furthermore, since Assumption (A4) implies that G(h) − G(θ) ≤ 1
2µ∥∇G(h)∥2 for h ∈ Rd, it comes

∇G (θn)T An∇G (θn) ≥ λmin (An) ∥∇G (θn)∥2

≥ 2λnµVn1λmin(An)≥λn

= 2λnµVn − 1λmin(An)<λn
2λnµVn, (15)

with λn = λ0(n + 1)λ with 0 ≤ λ < 1 − γ. Applying Cauchy-Schwarz yields

E
[
∇G (θn)T An∇G (θn)

]
≥2λnµE [Vn] − 2λnµ

√
E[V 2

n ]
√

P [λmin (An) < λn]

≥2λnµE [Vn] − 2λnµV
√
P [λmin (An) < λn],

with V 2 ≥ supn≥0 E[V 2
n ] calculated later. Then, Assumption (H1a) gives P [λmin (An) < λn] ≤ vn+1(n +

1)−δ−qλ := v̄n, so that

E [Vn+1] ≤
(

1 − 2µλ0(n + 1)−λγn+1 + C2L∇G

µ
β2
n+1γ2

n+1

)
E [Vn]

+ 2λ0(n + 1)−λµV γn+1
√

v̄n + C1L∇G

2 γ2
n+1β2

n+1.
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In order to apply Proposition 7.1, let us denote

CM = max
{

C2L∇Gc2
βcγ

µ
, (µλ0)

2γ−2β
γ+λ c

γ−2β−λ
γ+λ

γ

}
, (16)

the last upper bound being added so that the terms of equation 17 below satisfy the third condition of
Proposition 7.1. Set γ̃n = cγn−(λ+γ), and remark that

E [Vn+1] ≤
(
1 − 2µλ0γ̃n+1 + CM (n + 1)2β+λ−γ γ̃n+1

)
E [Vn] + 2λ0µV

√
vnγ̃n+1

+ C1L∇G

2 (n + 1)λγn+1β2
n+1γ̃n+1. (17)

Then, since 2γ − 2β − 1 ̸= 1, with the help of Proposition 7.1 and an integral test for convergence to get∑n
k=1 k2β−2γ ≤ 1 + n(1+2β−2γ)+

|2γ−2β−1| and
∑n
t=⌊n/2⌋ t−γ ≥ 1−2γ−1

1−γ n1−γ ≥ n1−γ for γ ∈ (0, 1) ,

E [Vn] ≤ exp
(

−cγµλ0n1−(λ+γ)
)

exp
(

2CMcγ

(
1 + n(1+2β−2γ)+

|2γ − 2β − 1|

))
·(

E [V0] + 4λ0µV

CM
max

1≤k≤n
kγ−2β−λ√

v̄k +
C1L∇Gcγc2

β

CM

)
+ 2V

√
v̄n/2 + C1L∇G

21+λµλ0
nλβ2

n/2γn/2, (18)

where we recall that v̄n = vn+1(n + 1)−δ−qλ ≥ P [λmin (An) < λn]. Remark that

kγ−2β−λ√
v̄k = √

vk+1(k + 1)γ−2β−λ(k + 1)−(δ+qλ)/2 =√
vk+1(k + 1)γ−2β−δ/2−(q/2+1)λ,

so that max0≤k≤n(k + 1)γ−2β−λ√
v̄k = max1≤k≤n+1 kγ−2β−δ/2−(q/2+1)λ√

vk. Hence, we get

E [Vn] ≤ exp
(

−cγµλ0n1−(λ+γ)
)

exp
(

2CMcγ

(
1 + n(1+2β−2γ)+

|2γ − 2β − 1|

))

·

(
E [V0] + 4λ0µV

CM
max

1≤k≤n+1
kγ−2β−δ/2−(q/2+1)λ√

vk +
C1L∇Gcγc2

β

CM

)

+ 21+(δ+qλ)/2V
√

v⌊n/2⌋n−(δ+qλ)/2 + 2γ−2β−λ−1 C1L∇Gcγc2
β

µλ0
n2β+λ−γ

where V is defined in Lemma 7.1. Hence, as long as γ + λ + (1 + 2β − 2γ)+ < 1 ,which is satisfied since
λ < min{γ − 2β, 1 − γ}, we have

E [Vn] ≤ exp
(

−cγµλ0n1−(λ+γ)(1 − ε′(n)
)(

K
(1)
1 + K

(1)
1′ max

1≤k≤n+1
kγ−2β−δ/2−(q/2+1)λ√

vk

)
+ K

(1)
2 n−(γ−2β−λ) + K

(1)
3

√
v⌊n/2⌋n−(δ+qλ)/2,

with

ε′(n) = 2CMn−1+λ+γ

µλ0

(
1 + n(1+2β−2γ)+

|2γ − 2β − 1|

)
, (19)

K
(1)
1 =

(
E [V0] +

C1L∇Gcγc2
β

CM

)
, K

(1′)
1 = 4λ0µV

CM
, (20)

where CM is given in equation 16 and V in Lemma 7.1 and

K
(1)
2 = 2γ−2β−λ−1 C1L∇Gcγc2

β

µλ0
, K

(1)
3 = 21+(δ+qλ)/2V. (21)
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Lemma 7.1. Suppose Assumption (A1) for p ≥ 2 and (H1b) hold. Then, for all n ≥ 0, if γ > 1/2 then

E [V p
n ] ≤ eapc

2
γc

2
β

2γ−2β
2γ−2β−1 max

{
1,E

[
V 2

0
]}

:= V p
n

and if γ ≤ 1/2 then

E [V p
n ] ≤ exp

−pµλ′
0cγ

1 +
1 +

(
cγc

2
βap

pµλ′
0

) 1−γ−λ′
γ−2β−λ′

1 − γ − λ′

+ c2
γc2
βap

1 +
1 +

(
cγc

2
βap

pµλ′
0

) 1−2γ+2β

γ−2β−λ′

1 − 2γ + 2β


 =: V p

p

with a2 given in equation 79 and ap is given by equation 78 for p > 2.

The proof of this Lemma is given in Section B.

7.4 Proof of Theorem 3.2

Remark that thanks to Assumption (H1b), one has

E
[
∥An∥2 ∥∥g′

n+1
∥∥2 |Fn

]
≤ C1 ∥An∥2 + C2L∇G

µ
∥An∥2

Vn ≤ C1 ∥An∥2 + β2
n+1

C2L∇G

µ
Vn.

Moreover, with the help of Assumption (H2a),

E
[
∥An∥2 ∥∥g′

n+1
∥∥2
]

≤ C1C2
S + β2

n+1
C2L∇G

µ
Vn

leading as in the proof of Theorem 3.1 to

E [Vn+1] ≤
(

1 − 2µλ0γn+1 + C2L∇G

µ
β2
n+1γ2

n+1

)
E [Vn] + 2λ0γn+1µE

[
1λmin(An)<λn

Vn
]

+ C1L∇GC2
S

2 γ2
n+1.

Using Hölder inequality with p yields then

E
[
1λmin(An)<λn

Vn
]

≤
(
P
[
1λmin(An)<λn

]) p−1
p E [V p

n ]1/p ≤ v̄
p−1

p
n Vp

with v̄n = vn+1(n + 1)−δ and Vp given in Lemma 7.1. Considering CM defined by

CM = max
{

C2L∇Gc2
βcγ

µ
, (µλ0)

2γ−2β
γ c

γ−2β
γ

γ

}
, (22)

one has

E [Vn+1] ≤
(
1 − 2µλ0γn+1 + CM (n + 1)2β−γγn+1

)
E [Vn] + 2λ0µVpv̄

p−1
p

n γn+1

+ C1L∇GC2
S

2 γ2
n+1.

Then, applying Proposition 7.1 and with the help of integral tests for convergence, it comes

E [Vn] ≤ exp
(
−cγµλ0n1−γ) exp

(
2CMcγ

(
1 + n(1+2β−2γ)+

|2γ − 2β − 1|

))
·E [V0] + 4λ0µVp max1≤k≤n kγ−2β v̄

p−1
p

k

CM
+ C1L∇GcγC2

S

CM

+ 2Vpv̄
p−1

p

n/2

+ 2γ−1 C1L∇GcγC2
S

µλ0
n−γ . (23)

20



Published in Transactions on Machine Learning Research (06/2025)

Concluding as in the proof of Theorem 3.1, we get

E [Vn] ≤ exp
(
−cγµλ0n1−γ (1 − ε(n))

)
·
(

K
(2)
1 + K

(2)
1′ max

1≤j≤n+1
v

p−1
p

k kγ−2β− p−1
p δ

)
+ K

(2)
2 v

p−1
p

⌊n/2⌋n− (p−1)
p δ + K

(2)
3 n−γ ,

with

ε(n) = 2CMn−1+γ

µλ0

(
1 + n(1+2β−2γ)+

|2γ − 2β − 1|

)
, (24)

where CM is defined by equation 22 and

K
(2)
1 =

(
E [V0] + C1L∇GcγC2

S

CM

)
, K

(2)
1′ = 4λ0µVp

CM
, (25)

K
(2)
2 = 21+δ p−1

p Vp, (26)

K
(2)
3 = 2γ−1 C1L∇GcγC2

S

µλ0
. (27)

7.5 Proofs of Theorem 3.3 and Corollary 3.1

Proof of Theorem 3.3. Remark that one can rewrite

θn+1 − θ = θn − θ − γn+1H−1g′
n+1 − γn+1

(
An − H−1) g′

n+1

leading, since H is symmetric, to

∥θn+1 − θ∥2 ≤ ∥θn − θ∥2 − 2γn+1
〈
g′
n+1, H−1 (θn − θ)

〉
− 2γn+1

〈(
An − H−1) g′

n+1, θn − θ
〉

+ 2γ2
n+1

∥∥H−1g′
n+1
∥∥2 + 2γ2

n+1
∥∥An − H−1∥∥2 ∥∥g′

n+1
∥∥2

First, thanks to Assumption (A3) and by Cauchy-Schwarz inequality,

(∗) :=
∣∣E [2γn+1

〈(
An − H−1) g′

n+1, θn − θ
〉

|Fn
]∣∣ = 2γn+1

∣∣〈(An − H−1)∇G (θn) , θn − θ
〉∣∣

≤ 2L∇Gγn+1
∥∥An − H−1∥∥ ∥θn − θ∥2

.

Then, using Assumption (A1’), one has

(∗∗) := E
[
2γ2
n+1

∥∥H−1g′
n+1
∥∥2 |Fn

]
≤ 4γ2

n+1Tr
(
H−1ΣH−1)+ 4γ2

n+1
∥∥H−1∥∥2

L∇g ∥θn − θ∥2

Finally, one has

(∗ ∗ ∗) = E
[
−2γn+1

〈
g′
n+1, H−1 (θn − θ)

〉
|Fn
]

≤ −2γn+1 ∥θn − θ∥2 + 2γn+1
∥∥H−1∥∥ ∥δn∥ ∥θn − θ∥

with, using Assumption (A5), ∥δn∥ := ∥∇G (θn) − H (θn − θ)∥ ≤ Lδ ∥θn − θ∥2. Hence,

(∗ ∗ ∗) ≤ −2γn+1 ∥θn − θ∥2 + 2γn+1
∥∥H−1∥∥Lδ ∥θn − θ∥3

,

which yields, using that ∥θn − θ∥3 ≤ 1
2a ∥θn − θ∥2 + a

2 ∥θn − θ∥4 with a =
∥∥H−1

∥∥Lδ,

(∗ ∗ ∗) ≤ −γn+1 ∥θn − θ∥2 + γn+1
∥∥H−1∥∥2

L2
δ ∥θn − θ∥4

.

Furthermore,

(∗ ∗ ∗∗) := E
[
2γ2
n+1

∥∥An − H−1∥∥2 ∥∥g′
n+1
∥∥2 |Fn

]
≤ 2γ2

n+1
∥∥An − H−1∥∥2

C1 + 2γ2
n+1C2

∥∥An − H−1∥∥2 ∥θn − θ∥2

≤ 2γ2
n+1

∥∥An − H−1∥∥2
C1 + C2γn+1 ∥θn − θ∥4 + C2γ3

n+1
∥∥An − H−1∥∥4

.
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As a conclusion, one has (after using Cauchy-Schwartz inequality on (∗)),

E
[
∥θn+1 − θ∥2

]
≤
(

1 − γn+1 + 4
∥∥H−1∥∥2

γ2
n+1L∇g

)
E
[
∥θn − θ∥2

]
+ 4γ2

n+1Tr
(
H−1ΣH−1)

+ γn+1

(∥∥H−1∥∥2
L2
δ + C2

)
E
[
∥θn − θ∥4

]
+ C2γ3

n+1E
[∥∥An − H−1∥∥4

]
+ 2C1γ2

n+1E
[∥∥An − H−1∥∥2

]
+ 2γn+1L∇G

√
E
[
∥θn − θ∥4

]
E
[
∥An − H−1∥2

]
,

leading, using Proposition 3.2 with the fact that E
[
∥θn − θ∥4] ≤ 4

µ2 E
[
V 2
n

]
by (A2), and (H2b) and (H3),

to

E
[
∥θn+1 − θ∥2

]
≤
(

1 − γn+1 + 4
∥∥H−1∥∥2

γ2
n+1L∇g

)
E
[
∥θn − θ∥2

]
+ 4γ2

n+1Tr
(
H−1ΣH−1)

+ γn+1

(∥∥H−1∥∥2
L2
δ + C2

) Mn

µ2 + C2γ3
n+123

(
C4
S + 1

µ4

)
+ 2C1γ2

n+1vA,n + 2γn+1
L∇G

µ

√
MnvA,n

≤
(

1 − γn+1 + 4
∥∥H−1∥∥2

γ2
n+1L∇g

)
E
[
∥θn − θ∥2

]
+ γn+1 ·

[
4γn+1Tr

(
H−1ΣH−1)+

(
L2
δ

µ2 + C2

)
4Mn

µ2

+ C2γ2
n+123

(
C4
S + 1

µ4

)
+ 2C1γn+1vA,n + 4L∇G

µ

√
MnvA,n

]
.

Finally, let us denote CA = cγ max
{

4
∥∥H−1

∥∥2
L∇g,

1
4

}
. Then, with the help of Proposition 7.1, one has

E
[
∥θn − θ∥2

]
≤ e− 1

2 cγn
1−γ

e2CAcγ
2γ

2γ−1

(
E
[
∥θ0 − θ∥2

]
+

8Tr
(
H−1ΣH−1)

CA
+ cγ

16C2
(
µ−4 + C4

S

)
CA

+ 4C1vA,0
CA

)

+ e− 1
2 cγn

1−γ

e2CAcγ
2γ

2γ−1 max
1≤k≤n

(k + 1)γ ·
(

8L2
δµ

−2 + C2

µ2CA
Mk−1 + 8L∇G

CAµ

√
Mk−1vA,k−1

)

+
23+γcγTr

(
H−1ΣH−1)

nγ
+

8
(
L2

δ

µ2 + C2

)
µ2 Mn/2 + 8L∇G

µ

√
Mn/2vA,n/2

+
24+2γC2cγ

(
µ−4 + C4

S

)
c2
γ

n2γ +
22+γC1cγvA,n/2

nγ
.

Finally,

E
[
∥θn − θ∥2

]
≤ e− 1

2 cγn
1−γ

(
K

(3)
1 + K

(3)
1′ max

0≤k≤n
dk(k + 1)γ

)
+ n−γ

(
23+γcγTr

(
H−1ΣH−1)+ K

(3)
2

nγ
+ K

(3)
2′ vA,n/2

)
+ d⌊n/2⌋.

with

K
(3)
1 =e2CAc

2
γ

2γ
2γ−1

(
E
[
∥θ0 − θ∥2

]
+

8Tr
(
H−1ΣH−1)

CA
+ cγ

16C2
(
µ−4 + C4

S

)
CA

+ 4C1vA,0
CA

)
, (28)

K
(3)
1′ = 1

CA
e2CAc

2
γ

2γ
2γ−1 ,, dn = 8L∇G

√
MnvA,n + 8L2

δµ
−2 + C2

µ2 Mn, (29)

where we recall that CA = cγ max
{

4
∥∥H−1

∥∥2
L∇g,

1
4

}
, and

K
(3)
2 = 24+2γC2cγ

(
µ−4 + C4

S

)
c2
γ , K

(3)
2′ = 22+γC1cγ . (30)
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Proof of Corollary 3.1. Remark that as long as δ p−2
p ≥ 2γ, by Proposition 3.2 and the following discussion,

max
0≤k≤n

dk(k + 1)γ = max
0≤k≤n

(
(k + 1)γ8L∇G

√
MkvA,k + 8L2

δµ
−2 + C2

µ2 Mk

)
≤ 8L∇G

√
vA, 0

cγ

√
w∞(2γ) + 8L2

δµ
−2 + C2

µ2 w∞(γ).

Likewise,

Mn/2 ≤ 22γw∞(2γ)
n2γ .

Hence, plugging these inequalities into Theorem 3.3 yields

E
[
∥θn − θ∥2

]
≤n−γ

(
23+γcγTr

(
H−1ΣH−1)+ K

(3′)
2
nγ

+ K
(3′)
2′ vA,n/2 + K

(3′)
2′′

√
vA,n/2

)
+ K

(3′)
1 e− 1

2 cγn
1−γ

,

with
K

(3′)
1 = K

(3)
1 + K

(3′)
1

(
8L∇G

√
vA, 0

cγ

√
w∞(2γ) + 8L2

δµ
−2 + C2

µ2 w∞(γ)
)

, (31)

K
(3′)
2 = K

(3)
2 + 2L2

δµ
−2 + C2

µ2 22γw∞(2γ), K
(3′)
2′ = K

(3)
2′ , K

(3′)
2′′ = 22+γL∇G

√
w∞(2γ). (32)

7.6 Proof of Theorem 3.4

To prove this theorem, we will apply Theorem 3.2. We first need to check that (An)n≥0 satisfies Assumptions
(H1a), (H1b) and (H2). Assumption (H1b) is given by construction (see equation 5) while (H1a) is given
by the following lemma:
Lemma 7.2. Assume (A1) is satisfied for some p > 2. Then, for all 0 < t < 1,

P [λmin (An) < cβt] ≤ vnt2p,

with

vn = cpβ

((
1
n

d∑
i=1

ak

)p
+ C ′′

1 +
2pC ′′

2 V p
p

µp

)
.

The proof is given in Appendix B. Remark that E [V p
n ] < +∞ by Lemma 7.1 with (A1). Assume from now

that p > 2 and let p′ = 2(1−γ)
2−γ p and λ = (1 − γ)(γ − 2β). Remark that λ < 1 − γ, λ < γ − 2β and p′ < p.

Hence, applying Proposition 3.1 with λ0 = cβ , δ = 0, q = 2p,

E
[
V p′

n

]
≤ exp

(
−cγµλ0n1−(λ+γ)(1 − ε′(n)

)(
K

(1′)
1 + K

(1′)
1′ max

1≤k≤n+1
kγ−2β−λ−2(p−p′)λv

p−p′
p

0

)
+ K

(1′)
2 n−p′(γ−2β−λ) + K

(1′)
3 v

p−p′
p

0 (n + 1)−2(p−p′)λ,

with ϵ′(n), K
(1′)
1 , K

(1′)
1′ , K

(1′)
2 and K

(1′)
3 respectively given in equation 67, equation 68 and equation 70 with

λ0 = cβ . By the choice of λ, p′ one has

p′(γ − 2β − λ) = p
2(1 − γ)

2 − γ
γ(γ − 2β) = 2(p − p′)λ,
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so that
E
[
V p′

n

]
≤ K̃1 exp

(
−cγµcβn1−((1−γ)(γ−2β)+γ)(1 − ε′(n)

)
+ K̃2(n + 1)− 2(1−γ)γ(γ−2β)

2−γ p := cn (33)

with
K̃1 = K

(1′)
1 + K

(1′)
1′ v

γ
2−γ

0 , K̃2 = K
(1′)
2 + K

(1′)
3 v

γ
2−γ

0 .

By strong convexity, one can so obtain a first rate of convergence of the estimates. The following lemma
enables to ensure that (H1a) is satisfied, but with a possibly better rate than with Lemma 7.2.
Lemma 7.3. Assume (A1) is satisfied for some p > 2. Then,

P[λmin(An) < λ̃0] ≤ v0 log(n + 1)
(n + 1)

2(1−γ)γ(γ−2β)
2−γ p∧1

,

with λ̃0 =
[

2(1−γ)
2−γ p

(
C( 2(1−γ)

2−γ

) + 1
)]− 2−γ

2(1−γ)p

and v0 is given in equation 85 with p′ = 2(1−γ)
2−γ p.

The proof is given in Appendix B. We can also deduce from equation 33 a bound on E
[
∥An∥4] in case only

(A6) holds.
Lemma 7.4. Assume Assumptions (A1)-(A6) and (A1’) hold for some p > 2. Then, for β <

min
{

(1−γ)γ(γ−2β)p
4(2−γ) , 1/4

}
, the sequence of random matrices (An) defined by equation 2 verifies

E
[
∥An∥4] ≤ C4

S ,

with C4
S given in equation 86.

The proof is given in Appendix B. If the stronger hypothesis (A6’) holds, an improved and simpler bound
on E

[
∥An∥4] can be reached, as next lemma shows.

Lemma 7.5. Assume Assumptions (A1)-(A6’) and (A1’) hold for some p > 2. Then, for β < min{γ/2 ∧
1/4}, the sequence of random matrices (An) defined by equation 2 verifies

E
[
∥An∥4] ≤ C4

S ,

with C4
S given in equation 87.

The proof is given in Appendix B. Theorem 3.4 is then a consequence of Theorem 3.2 whose hypotheses are
satisfied thanks to Lemma 7.2, 7.3 and 7.4 (or 7.5). We then have

E [Vn] ≤ exp
(
−cγµλ̃0n1−γ (1 − ε(n))

)
·
(

K
(2)
1 + K

(2)
1′ max

1≤j≤n+1
v

p−1
p

k kγ−2β− p−1
p δ

)
+ K

(2)
2 v

p−1
p

⌊n/2⌋n
− (p−1)

p min
{

2(1−γ)γ(γ−2β)p
2−γ ,1

}
+ K

(2)
3 n−γ

with K
(2)
1 , K

(2)
1′ , K

(2)
2 and K

(2)
3 respectively given in equation 25, equation 26 and equation 27 with δ =

min
{

2(1−γ)γ(γ−2β)p
2−γ , 1

}
, λ0 given in equation 84, vn = v0 log(n + 1) with v0 given in equation 85 and CS

given in equation 86 or equation 87 depending on whether (A6) or (A6’) holds. By strong convexity

E
[
∥θn − θ∥2] ≤ K̃

(4)
1 exp

(
−cγµλ̃0n1−γ (1 − ε̃(n))

)
+ K̃

(4)
2 (v0 log(n + 1))

p−1
p n

− (p−1)
p min

{
2(1−γ)γ(γ−2β)p

2−γ ,1
}

+ K̃
(4)
3 n−γ ,

with λ̃0 defined in equation 84

ε̃(n) = 2CMn−1+(1−γ)(2γ−β)+γ

µλ̃0

(
1 + n(1+2β−2γ)+

|2γ − 2β − 1|

)
, (34)

with

K̃
(4)
1 = 2

µ

(
K

(2)
1 + K

(2)
1′ v0

)
, K̃

(4)
2 = 2K

(4)
2

µ
, K̃

(4)
3 = 2K

(4)
3

µ
. (35)

where v0 is given in equation 85.
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7.7 Proofs of Theorem 4.1, Corollary 4.1 and Theorem 4.2

The proof relies on the verification of each assumption needed in Theorem 3.3.

Verifying Assumptions (A1), (A1’) to (A6). First, remark that

∥∇hg (X, Y, h)∥ ≤
∥∥(XTh − XT θ − ϵ

)
X
∥∥ ≤ |ϵ| ∥X∥ + ∥X∥2 ∥h − θ∥ .

Then, if X and ϵ respectively admit moments of order 4p and 2p, since ϵ and X are independent,

E
[
∥∇hg (X, Y, h)∥2p

]
≤ σ(2p) + C(2p) ∥h − θ∥2p

with σ(t) = 2t−1E [|ϵ|t]E [∥X∥t] and C(t) = 2t−1E
[
∥X∥2t]. In a particular case, if p ≥ 2, Assumption

(A1) is verified. Furthermore, since for all h, ∇2G(h) = E
[
XXT

]
is positive, (A2) to (A4) hold with

µ = λmin
(
E
[
XXT

])
=: λmin, L∇G = λmax

(
E
[
XXT

])
=: λmax and (A5) holds with Lδ = 0. Finally

Assumption (A1’) is verified since

E
[
∥∇hg (X, Y, h) − ∇hg (X, Y, θ)∥2

]
=E

[∥∥XT (h − θ)X
∥∥2]

≤E
[
∥X∥4

]
︸ ︷︷ ︸

=:L∇g

∥h − θ∥2
.

We can now prove Theorem 4.1

Proof of Theorem 4.1. Verifying Assumption (H1) for stochastic Newton algorithm. Let us first
check Assumption (H1) for S̃n = αn

n+m
[
mS0 +

∑n
i=1 XiX

T
i

]
.

Lemma 7.6. Suppose that X admits 4p-moments, with p > 2. Then, for λ0 = 1
2α+E∥X∥2 , we have

P
[
λmin

(
S̃−1
n

)
< λ0

]
≤ ṽn

with
ṽn = 2p−1

(E [∥X∥2])p
(

C1(p)n1−pE [|Z|p] + C2(p)n−p/2 (E [|Z|2
])p/2 + mp ∥S0∥p n−p

)
,

where Z = ∥X∥2 − E
[
∥X∥2] and C1(p), C2(p) are numerical constants given in Rosenthal inequality, see

Pinelis (1994).

If moreover X is subgaussian with subgaussian norm ∥X∥ψ2 and m ≤ nE[∥X∥2]
2∥S0∥ , then one can set

v̄n = 2 exp
(

−cnE[∥X∥2]
∥X∥ψ2

)
,

with c numeric.

The proof is given in Section C. To deal with Sn = ∥S̃−1
n ∥

min(nβ ,∥S̃−1
n ∥)

S̃n, one first needs the following control on

the behavior of λmin(S̃n). Set H = E
[
XXT

]
.

Proposition 7.2 (See Koltchinskii & Mendelson (2015), Theorem 1.5 and Theorem 3.3). Suppose that 0 <
λminId ≤ H := E

[
XXT

]
≤ λmaxId and that there exists LMK > 0 such that E

[
⟨X, t⟩2] ≤ LMKE [|⟨X, t⟩|]

for all t ∈ Sd−1. Then, for n ≥ c1d,

P

[
λmin

(
1
n

n∑
i=1

XiX
T
i

)
≤ c2

]
≤ 2 exp (−c3n) ,

with c1 = λ2
max(16LMK )4

λ2
min

, c2 = λmin
8

√
2L2

MK

and c3 = 1
128L4

MK

.
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Remark that the constant c1, c2 and c3 are fairly explicit in terms of LMK and λmin. For the latter result
and Lemma 7.6 and Proposition 7.2 we deduce Hypothesis (H1) for Sn. We will need several times the
threshold

n0 = max
{

c1d,

(
1

cβα−c2

(
1 + 1

c1d

))1/β
m,

2∥S0∥
E[∥X∥2]m

}
. (36)

Lemma 7.7. Suppose that X satisfies hypothesis of Proposition 7.2 and admits 4p-moments, with p > 2.
Then, for λ0 = 1

2α+E[∥X∥2] , we have

P
[
λmin

(
S

−1
n

)
< λ0

]
≤ vn+1(n + 1)−p/2

with δ = p/2, vn+1 = (n + 1)δ for n ≤ n0 and, for n > n0,

vn = 2 exp(−c3n)np/2 +
2p−1

(
C2(p)E

[
|Z|2

]p/2 + C1(p)n1−p/2E [|Z|p] + mp ∥S0∥p n−p/2
)

E [∥X∥2]p , (37)

where c1, c2, c3 are given in Proposition 7.2, C1(p) and C2(p) are numerical constants depending on p and
Z = ∥X∥2 − E

[
∥X∥2].

In the case X is subgaussian with subgaussian norm ∥X∥ψ2 , for n ≥ n0, one has instead

vn = 2
[
exp(−c3n) + exp

(
−cn(E[∥X∥2])

∥X∥ψ2

)]
np/2, (38)

with c > 0 same as in Lemma 7.6.

The proof is given in Section C. In particular, in the subgaussian case and for n ≥ n0

vn = O (exp(−c′n)) (39)

for some constant c′ only depending on ∥X∥ψ2 and E[∥X∥2]. As a particular case, Assumption (H1a) is
verified with a rate δ = p/2 when γ > 1/2.

Verifying Assumption (H2) for stochastic Newton algorithm. A straightforward deduction of the
above lemma is the following.

Lemma 7.8. Suppose that hypothesis of Proposition 7.2 holds and that X admits a moment of order 4p
with p > 2. Then, for all κ > 0, we have

E
[
∥S̄−1

n ∥κ
]

≤ 2βκn+1 exp(−c3n) + (α−c2/2)−κ

for n ≥ c1d ∨ m and

E
[
∥S̄−1

n ∥κ
]

≤
[

c1d + 2
α−

∥S−1
0 ∥

]κ
for n ≤ c1d ∨ m, with c1, c2, c3 given in Proposition 7.2.

The proof is given in Section C. Finally, the following proposition gives a precise bound for Assumption
(H2).

Proposition 7.3. Suppose that hypothesis of Proposition 7.2 hold and that X admits a moment of order 4p
with p > 2. Then

E
[
∥S̄−1

n ∥2] ≤ max
{

2c2
β

(
2β

ec3

)2β
+ (α−c2/2)−2,

[
c1d + 2

α−

∥∥S−1
0
∥∥]2
}

≤ C2
S
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and

E
[
∥S̄−1

n ∥4] ≤ max
{

2c4
β

(
4β

ec3

)4β
+ (α−c2/2)−4,

[
c1d + 2

α−

∥∥S−1
0
∥∥]4
}

≤ C4
S

for all n ≥ 0, with CS := max
{(

2c2
β

(
4β
ec3

)2β
+ (α−c2/2)−2

)2
,
[
c1d+2
α−

∥∥S−1
0
∥∥]4
}1/4

The proof is given in Section C. Remark that CS = O(d).

A first convergence result. Since in the case of the linear model, one as C1 = σ(2), C ′
1 = σ(4), C2 =

C(2), C ′
2 = C(4), L∇G = λmax, µ = λmin, λ0 = 1

2E[∥X∥2] δ = p/2, Proposition 3.2 can now be written as follows:

Proposition 7.4. Suppose that there is p > 2 such that X, ϵ respectively admit moments of orders 4p
and 2p. Suppose also that there is a positive constant LMK such that for any h ∈ Sd−1,

√
E [hXXTh] ≤

LMKE
[∣∣XTh

∣∣]. Then, denoting λmin and λmax the smallest and largest eigenvalues of E
[
XXT

]
,

E
[
V 2
n

]
≤ exp

− 3cγλmin

4E
[
∥X∥4

]n1−γ

(K
(2′)
1,lin + K

(2′)
1′,lin max

1≤k≤n+1
v

p−2
p

k kγ− p−2
p

)
+ K

(2′)
2,linn−2γ + K

(2′)
3,linv

(p−2)/p
⌊n/2⌋ n−(p−2)/2 := cn,lin.

with vn given in equation 37 in the general case and in equation 38 in the subgaussian case, and

K
(2′)
1,lin = e2aM,lin

2γ−2β
2γ−2β−1

(
E
[
V 2

0
]

+
2a1,linc2

γ

aM,lin

)
, K

(2′)
1′,lin = e2aM,lin

2γ−2β
2γ−2β−1

4λminV 2
p,lin

aM,linE
[
∥X∥2

] ,

K
(2′)
2,lin =

21+2γa1,linc2
γE
[
∥X∥2

]
3λmin

, K
(2′)
3,lin = 2p/2+1

3 V 2
p,lin,

where, recalling the notations σ(t) = 2t−1E
[
|ϵ|t
]
E
[
∥X∥t

]
and C(t) = 2t−1E

[
∥X∥2t

]
,

aM,lin := max


(2λmaxC(2)

λmin
+ 2λ2

max
λ2

min

(
4C(2) + C(4)c

2
γc2
β

))
cγc2

β ,

 3λmin

4E
[
∥X∥2

]


2γ−2β
γ

c
γ−2β

γ
γ

 ,

with CS given by Proposition 7.3, a1,lin := C4
Sλ2

max

(
16λ2

maxσ
2
(2)E[∥X∥2]
λ3

min
+ σ(4)cγ

2 + 2C2
(2)E[∥X∥2]
λmin

)
and

E [V p
n ] ≤ eap,linc

2
γc

2
β

2γ−2β
2γ−2β−1 max {1,E [V p

0 ]} := V p
p,lin

where

ap,lin := p

(
C(2)

λmin
+

σ(2)

2

)
+ 2p−2(p − 1)pλ2

max

(
c2
γc2
β

(
σ(4) +

4C(4)

λ2
min

)
+

2σ(2)

λmin
+

4C(2)

λ2
min

)
+ 2p−2(p − 1)pλpmax

(
c2p−2
γ c2p−2

β

(
σ(2p) +

2pC(2p)

λ2
min

)
+ cp−2

γ cp−2
β

(
1
2σ(2p) + 2p

λ2
min

(
1
2 +

√
C(2p)

)))
. (40)

Remark that putting together the above expressions yields that, in the subgaussian case and for n ≥ 2n0 for
n0 defined in equation 36,

cn,lin = O

(
exp(−Cn1−γ)

(
E
[
V 2

0
]

+ mγ+(δ−1)(p−2)/pV 2
p,lin

)
+ n−2γ + V 2

p,lin exp
(

−p − 2
2p

c′n

))
. (41)

Verifying Assumption (H3) for stochastic Newton algorithm. Hypothesis (H3) is then a straight-
forward combination of the convergence of Sn towards H, together with Hypothesis (H2).

27



Published in Transactions on Machine Learning Research (06/2025)

Lemma 7.9. Suppose that X admits moments of order 2p with p > 4, and let suppose as well that the
distribution of X satisfies hypothesis of Proposition 7.2. Then, for n ≥ n0 (with n0 defined in equation 36),

E
[∥∥∥S

−1
n − H−1

∥∥∥2
]

≤
16α+

(
∥S0∥ +

(
E
[
∥X∥2p])2/p

)
(λminβn)2 e−c3(p−2)n/p +

2E
[
∥X∥4]

(n + m) (λminα−c2/2)2 (42)

+ 2 ∥mS0 − H∥2
F

(n + m)2 (λminα−c2/2)2 + 2Cα
n2(λminα−c2/2)2

(
∥S0∥2 + E[∥X∥2]

)
=: vH,n. (43)

For n < n0, we simply bound

E
[∥∥∥S

−1
n − H−1

∥∥∥2
]

≤ max
{

2
λ2

min
+ 2C2

S , vH,n0

}
:= vH,n.

Remark that vH,n = O
( 1
n

)
uniformly on m ≥ 1. By Lemma 7.7, (H1a) is satisfied with δ = p/2. Applying

Theorem 3.3 with the constants computed in the previous lemmas and proposition, we get finally,

E
[
∥θn − θ∥2

]
≤ e− 1

2 cγn
1−γ

(
K

(3)
1,lin + K

(3)
1′,lin max

0≤k≤n
dk(k + 1)γ

)
+ n−γ

(
23+γcγE

[
ϵ2]Tr

(
H−1)+

K
(3)
2,lin

nγ
+ K

(3)
2′,linvH,n/2

)
+ d⌊n/2⌋.

with vH,n defined by equation 43, recalling that λmin and λmax are the smallest and largest eigenvalues of
E
[
XXT

]
, and since for the linear case one has CA = 4cγ

E[∥X∥4]
λ2

min
≥ 4cγ ,

K
(3)
1,lin = e

8
E[∥X∥4]

λ2
min

c3
γ

2γ
2γ−1

(
E
[
∥θ0 − θ∥2

]
+

2E
[
ϵ2]Tr

(
H−1)

cγ
+ 4C(2)

(
λ4

min + C4
S

)
+

σ(2)vH,0

cγ

)
,

K
(3)
1′,lin = 1

4cγ
e

8
E[∥X∥4]

λ2
min

c3
γ

2γ
2γ−1 ,

, dn = 8λmax
√

cn,linvH,n + 8
C(2)

λ2
min

cn,lin,

K
(3)
2,lin = 24+2γC(2)cγ

(
λ−4

min + C4
S

)
c2
γ , K

(3)
2′,lin = 22+γσ(2)cγ , (44)

and cn,lin and C4
S are respectively defined in Propositions 7.4 and 7.3.

From the asymptotic behavior of vH,n and cn,lin (see equation 41) and the bound on Vp,lin in terms of E [V p
0 ]

given in Proposition 7.4, we deduce that, for n ≥ 2n0,

dn = O

(
exp(−Cn1−γ)

(
E
[
V 2

0
]

+ mγ+(δ−1)(p−2)/pE [V p
0 ]2/p

)
+ E [V p

0 ]2/p exp
(

−p − 2
2p

c′n

)
+ 1

n

)
. (45)

We can deduce Corollary 4.1 from Theorem 4.1. Remark first that we have the following rough bound on
E
[
V 2
m

]
for the usual stochastic Newton algorithm with adaptive matrix An = S̃−1

n with αn = 1, m = 1.
Lemma 7.10. Let Vn = G(θn) for the stochastic Newton algorithm with An = S̃−1

n . Then,

E [V p
n ] ≤ exp

(
(p − 1) log(2)n + Clin,1

n3−2γ

3 − 2γ

)(
1 + Clin,2

n(p+1)−pγ

(p + 1) − pγ

)
E [V p

0 ] ,

with Clin,1 and Clin,2 given in equation 91.
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Proof of Corollary 4.1. Set m0 = ⌊R log(n)⌋ + 1 with R > 0 to tune later, and let (θn)n≥0 be the sequence
induced by the stochastic Newton algorithm with m = 1, αn = 1 for n ≥ 1, initial estimated Hessian matrix
S0 and starting point θ0. Set θ̃0 = θm0 , and set θ̃n for the n-step of the regularized stochastic Newton
algorithm with respect to the sequence of random variables (Xm0+k, ϵm0+k)k≥1 parameters m = m0 + 1,
initial estimator of the Hessian S̃0 = 1

m0+1 (S0 +
∑m0
k=1 XkXT

k ), αn = (n+1)γ

(n+1+m0)γ and β = 0, cβ = 2c−1
2 (with

c2 given in Proposition 7.2). Then, remark that on the event Bm0 = {σinf(S̃n) ≥ c2, n ≥ 0}, θ̃n = θm0+n :
indeed on this event, by the choice of the previous parameters and a simple recursion,

θ̃n+1 =θ̃n + αncγn−γÃn∇hg((Xm0+n+1, ϵm0+k+1), θ̃n)

=θm0+n + cγ(m0 + n + 1)−γ

(
1

m0 + n + 1

(
S0 +

m0+n∑
k=1

XkXT
k

))−1

∇hg((Xm0+n+1, ϵm0+n+1), θm0+n)

=θm0+n+1.

Hence, for n ≥ m0 + 1, by Markov’s inequality

P [∥θn − θ∥ > ϵ) =P ({∥θn − θ∥ > ϵ} ∩ Bm0 ] + P
[
{∥θn − θ∥ > ϵ} ∩ Bc

m0

]
≤P
[{

∥θ̃n−m0 − θ∥ > ϵ
}

∩ Bm0

]
+ P

[
Bc
m0

]
≤
E
[
∥θ̃n−m0 − θ∥2]

ϵ2 + P
[
Bc
m0

]
. (46)

Suppose that n ≥ 2 max(n0, m0), with n0 given in equation 36 for m = m0. By Theorem 4.1 and the fact
that n ≥ 2m0,

E
[
∥θ̃n−m0 − θ∥2] =(n − m0)−γ23+γcγE

[
ϵ2]Tr

(
H−1)

+ O

(
e− 1

2 cγ (n−m0)1−γ (
E[∥θ̃0 − θ∥2] + dn−m(n + 1)γ

)
+ 1

n
+ d⌊n/2⌋

)
. (47)

Set Ṽ0 = G(θ̃0) − G(θ) and let us bound dn/2 and dn−m0 . By Lemma 7.10 and the fact that Ṽ0 = Vm0 , with
Vm0 = G(θm0) − G(θ), and m0 = R log n,

E[Ṽ p
0 ] = O

(
exp(Cm3−2γ

0 ))E[V p
0 ]
)

= O
(
exp

(
C ′ log(n)3−2γ)E[V p

0 ]
)

, (48)

for some constant C, C ′ > 0. Hence, by equation 45,

dn = O

(
exp

(
−Cn1−γ)E[V p

0 ]2/p + 1
n

)
for some constant C > 0 only depending on the first moments of X and the parameters of the algorithm.
Therefore, using the strong convexity and Lemma 7.10 to bound E[∥θ̃0 − θ∥2] as in equation 48, we finally
get, for n ≥ 2 max(n0, m0),

O

(
e− 1

2 cγ (n−m0)1−γ (
E[∥θ̃0 − θ∥2] + dn−m(n + 1)γ

)
+ 1

n
+ d⌊n/2⌋

)
= O

(
e− 1

2 cn
1−γ
(
E[V p

0 ]2/p
)

+ 1
n

)
, (49)

with c > 0 only depending on the first moments of X and the parameters of the algorithm. Finally, by
Proposition 7.2 and choosing R = 2γ

c3
yields

P
[
Bc
m0

]
≤
∑
n≥m0

P

[
λmin

(
1
n

n∑
i=1

XiX
T
i

)
≤ c2

]
≤2

∑
n≥m0

exp (−c3n)

≤ 2
1 − exp(−c3) exp(−c3m0) ≤ C

n2γ (50)
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for some C > 0. Putting equation 50 and equation 47 together with equation 49 in equation 46 yields, for
n ≥ 2 max(n0, m0),

P [∥θn − θ∥ > δ] ≤ 1
δ2

[
n−γ24+γcγE

[
ϵ2]Tr

(
H−1)+ O

(
e− 1

2 cn
1−γ

E[Ṽ p
0 ]2/p + 1

n

)]
+ O(n−2γ).

Finally, since m0 = ⌊R log n⌋ + 1with R = 2γ
c3

and n0 = max(c1d, Cm0) for some constant C > 0 depending
on the second moment of X, d and S0 (see equation 36), we deduce that n ≥ 2 max(n0, m0) as long as
n ≥ c0, where c0 is a threshold only depending on γ, d, S0 and the second moment of X.

Proof of Theorem 4.2. Let us first prove that Assumption (A6’) is fulfilled. For all h,

E
[
∇hg (X, Y, h) ∇hg (X, Y, h)T

]
=E

[(
Y − XTh

)2
XXT

]
=E

[
ϵ2]E [XXT

]
+ E

[(
XTh − XT θ

)2
XXT

]
and (A6’) is satisfied with α = E

[
ϵ2]λmin. Hence, we have by equation 87

E
[
∥An∥4] ≤

4d
(

1 + σ(4) + C(4)
4V 2

2,ada

λ2
min

)
E [ϵ2]2 λ2

min
:= C4

S,ada,

with V2 given by Lemma 7.1 for p = 2. Then, applying Theorem 3.4,
E
[
∥θn − θ∥2] ≤ Kada

1,lin exp
(
−cγλminλada0,linn1−γ (1 − εadan,lin

))
+ Kada

2,lin
(
vada0,lin log(n + 1)

) p−1
p n

− (p−1)
p min

{
2(1−γ)γ(γ−2β)p

2−γ ,1
}

+ Kada
3,linn−γ ,

with λada0,lin =
[

4(1−γ)p
2−γ

(
C( 4p(1−γ)

2−γ

) + 1
)]− 2−γ

4p(1−γ)

and, recalling that λmin and λmax are the smallest and

largest eigenvalues of E
[
XXT

]
,

εadan,lin =
2Cada

M,linn−1+(1−γ)(2γ−β)+γ

λminλada0,lin

(
1 + n(1+2β−2γ)+

|2γ − 2β − 1|

)
, (51)

Kada
1,lin = 2

λmin

(
E [V0] +

cγλmaxσ(2)C
2
S,ada

Cada
M,lin

+
4λminλada0,linV ada

p,lin

Cada
M,lin

)
, (52)

Kada
2,lin = 1

λmin
2p/2+3/2V ada

p,lin (53)

Kada
3,lin =

2γcγλmaxσ(2)C
2
S,ada

λ2
minλada0,lin

. (54)

where v0 = dM(β) +

d2
2(1−γ)

2−γ
p

σ( 4(1−γ)
2−γ

p

)+2
2(1−γ)

2−γ
p
C( 4(1−γ)

2−γ
p

) V

2(1−γ)
2−γ

p

p,ada

λ

2(1−γ)
2−γ

p

min


σ( 4(1−γ)

2−γ
p

)+1 .

Cada
M,lin = max

{
C(2)λmaxc2

βcγ

λmin
, (λminλada0,lin)

2γ−2β
γ c

γ−2β
γ

γ

}
and

V p
p,ada = e

−pλminλ
′
0cγ

1+

1+

(
cγ c2

β
aada

p,lin

pλminλ′
0

) 1−γ−λ′
γ−2β−λ′

1−γ−λ′

+c2
γc

2
βap

1+

1+

(
cγ c2

β
aada

p,lin

pλminλ′
0

) 1−2γ+2β

γ−2β−λ′

1−2γ+2β


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where

aadap,lin = p

(
C(2)

λmin
+

σ(2)

2

)
+ 2p−2(p − 1)pλ2

max

(
c2
γc2
β

(
σ(4) +

4C(4)

λ2
min

)
+

2σ(2)

µ
+

4C(2)

λ2
min

)
+ 2p−2(p − 1)pλpmax

(
c2p−2
γ c2p−2

β

(
σ(2p) +

2pC(2p)

λ2
min

)
+ cp−2

γ cp−2
β

(
1
2σ(2p) + 2p

λ2
min

(
1
2 +

√
C(2p)

)))
, (55)

and
aada2,lin = σ(2) +

2C(2)

λmin
+ 4λ2

max
λmin

σ(2) +
8λ2

maxC(2)

λ2
min

+ 2λ2
maxσ(4)c

2
γc2
β +

8λ2
maxC(4)

λ2
min

c2
γc2
β (56)

7.8 Proof of Theorem 5.1

The proof relies on the verification of each Assumption in Theorem 3.3.

Verifying Assumptions (A1), (A1’) to (A6). First, remark that taking for all 0 ≤ a ≤ 2p, one has

E
[∥∥∇hl

(
Y, XTh

)
X + σh

∥∥a] ≤ 2a−1E
[∥∥∇hl

(
Y, XT θσ

)
X + σθσ

∥∥a]
+ 2a−1E

[∥∥∇hl
(
Y, XTh

)
X − ∇hℓ

(
Y, XT θσ

)
X + σ (h − θσ)

∥∥a]
≤ 2a−1Laσ + 2a−1 E [(L∇l ∥X∥ + σ)a]︸ ︷︷ ︸

=:C(a)
GLM

∥h − θσ∥a (57)

and Assumption (A1) is so verified. In a same way,

E
[
∥(∇hg (X, h) − ∇hg (X, θσ))∥2

]
≤ E

[
(L∇l∥X∥ + σ)2

]
∥h − θσ∥2 ≤ C

(2)
GLM ∥h − θσ∥2

and (A1’) is so verified. Remark that (A2) and (A4) are satisfied by hypothesis. For (A3), one has∥∥E [∇2
hℓ
(
Y, XTh

)
XXT + σId

]∥∥
op

≤ L∇lE
[
∥X∥2

]
+ σ =: CGLM. (58)

Observe that Assumption (A5) is given by (GLM1) while for Assumption (A6), (GLM3) together equa-
tion 11, which yields

E
[
(∇hg(X, θv))2

k

]
= E

[∣∣∇hl
(
Y, XT θσ

)
Xk + σ(θσ)k

∣∣2] > ασ

for all 1 ≤ k ≤ d.

Verifying Assumption (H1). The following lemma ensures that Assumption (H1) is fulfilled.
Lemma 7.11. Assume first equation 7 and that X admits a moment of order 2p for some p > 2. In the
regularized case defined by equation 9, denoting λ0 = 1

2L∇lE[∥X∥2]+2λ
, we have

P
[
λmin

(
S

−1
n

)
< λ0

]
≤ vn+1(n + 1)−p/2

with

vn+1 = 2p−1(
L∇lE

[
∥X∥2

]
+ σ

)p
(

(n + 1)p/2

np
∥S0∥p + C1(p) (n + 1)p/2

np−1 E [|T |p]

+ C2(p)
(

n + 1
n

)p/2 (
E
[
|T |2

])p/2
)

,

where T = L∇l

(
∥X∥2 − E

[
∥X∥2

])
+ σ

(
∥Z∥2 − 1

)
and Z being a standard d-dimensional random variable

independent of X. In addition, C1(p) and C2(p) are given in Pinelis (1994).
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The proof is given in Appendix D.

Verifying Assumption (H2). The following proposition ensures that (H2) is fulfilled.
Proposition 7.5. Considering from the regularized problem given by equation 9, one has for all n ≥ 0,∥∥S̄−1

n

∥∥ ≤ 2d max
{

1
σ

,
∥∥S−1

0
∥∥} =: CS,σ

Remark 7.1. Remark that if equation 8 holds for some constant α > 0 and if E
[
XXT

]
is positive, under

hypothesis of Proposition 7.2, for all n ≥ 0 and for σ = 0, one has

E
[
∥S̄−1

n ∥2] ≤ 1
α2 max

{
2c2
β

(
2β

ec3

)2β
+ c−2

2 ,
(
(c1d + 1)

∥∥S−1
0
∥∥)2
}

≤ C2
S,0,

E
[
∥S̄−1

n ∥4] ≤ 1
α4 max

{
2c4
β

(
2β

ec3

)4β
+ c−4

2 ,
(
(c1d + 1)

∥∥S−1
0
∥∥)4
}

≤ C4
S,0

with C4
S,0 = 1

α4 max
{(

2c2
β

(
2β
ec3

)2β
+ c−2

2

)2
,
(
(c1d + 1)

∥∥S−1
0
∥∥)4
}

.

A first result

Remark that one can rewrite Proposition 3.2 as follows:
Proposition 7.6. Suppose there exists p > 2 such that X admits a 2p-th order moment and that there is
Lσ verifying

E
[∣∣∇hl

(
Y, XT θσ

)∣∣p ∥X∥p
]

+ σθσ ≤ Lpσ. (59)

Then,

E
[
V 2
n

]
≤ exp

(
− 3cγσ

4CGLM
n1−γ

)(
K

(2′)
1,GLM + K

(2′)
1′,GLM max

1≤k≤n+1
v

p−2
p

k kγ− p−2
2

)
+ K

(2′)
2,GLMn−2γ + K

(2′)
3,GLMv

(p−2)/p
⌊n/2⌋ n−(p−2)/2 =: vn,GLM,

with vn defined in Lemma 7.11, CS,σ defined in Lemma 7.5, CGLM and C
(a)
GLM defined in equations equation 58

and equation 57,

a1,GLM = C4
S,σC2

GLM

(
64L4

σC5
GLM

σ3 + 4cγL4
σ + 4L4

σCGLM

σ

)
aM,GLM = max

{(
4CGLMC

(2)
GLM

σ
+ 2C2

GLM
σ2

(
8C

(2)
GLM + 8C

(4)
GLMc2

γC2
S,σ

))
cγC2

S,σ,

(
3σ

4CGLM

)2
cγ

}

K
(2′)
1,GLM = exp

(
2aM,GLM

2γ

2γ − 1

)(
E
[
V 2

0
]

+
2a1,GLMc2

γ

aM,GLM

)

K
(2′)
1′,GLM = exp

(
2aM,GLM

2γ

2γ − 1

)
·

4σV 2
p,GLM

aM,GLMCGLM

K
(2′)
2,GLM =

22γ+1a1,GLMCGLMc2
γ

3σ

K
(2′)
3,GLM = 22+(p−2)/2

3 V 2
p,GLM,

with V p
p,GLM = eap,GLMc2

γC
2
S,σ

2γ
2γ−1 max {1,E [V p

0 ]} where

ap,GLM : = p

(
2C(2)

GLM
σ

+ L
2
σ

)
+ 2p−2(p − 1)pC2

GLM

(
c

2
γC

2
S,σ

(
8L4

σ +
32C(4)

GLM
σ2

)
+

4L2
σ

σ
+

8C(2)
GLM
σ2

)
+ 2p−2(p − 1)pCp

GLM

(
c

2p−2
γ C

2p−2
S,σ

(
22p−1

L
2p
σ +

23p−1C
(2p)
GLM

σ2

)
+ c

p−2
γ C

p−2
S,σ

(
22p−2

L
2p
σ +

2p
σ2

(
1
2

+ 2p−1/2
√
C

(2p)
GLM

)))
.
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Remark that for p > 2, vn,GLM = O(n− min(1,2γ)).

Verifying Assumption (H3). We prove here that (H3) holds for general linear models. We now denote

Hσ =: E
[
∇2
hℓ
(
Y, θTσX

)
XXT

]
+ σId.

Proposition 7.7. Suppose Assumptions (GLM1) and (GLM2) hold, then for all n ≥ 0,

E
[∥∥S̄−1

n − H−1
σ

∥∥2] ≤
4C2

S,σ

σ2n

(
L2

∇lE
[
∥X∥4

]
+ L2

∇2L

σ

n−1∑
i=0

vi,GLM + 1
n

∥S0 − H (θσ) ∥2

)
+

16d4C2
S,σ

n2 =: vℓ,n

with vi,GLM defined in Proposition 7.6.

We can now finish the proof of Theorem 5.1. In this aim, let us first remark that for all h, h′,

E
[∥∥∇hℓ

(
y, XTh

)
X + σh − ∇hℓ

(
y, XTh′)X − σh′∥∥2] ≤ 2

(
L2

∇lE
[
∥X∥2

]
+ σ2

)
∥h − h′∥2

.

Then, with the help of Theorem 3.3, one has

E
[
∥θn − θσ∥2

]
≤ e− 1

2 cγn
1−γ

(
K

(3)
1,GLM + K

(3)
1′,GLM max

0≤k≤n
(k + 1)γdk,GLM

)
+ n−γ

(
23+γcγTr

(
H−1
σ ΣσH−1

σ

)
+

K
(3)
2,GLM

nγ
+ K

(3)
2′,GLMvl,n/2

)
+ d⌊n/2⌋,GLM,

with Σσ := E
[(

∇hℓ
(
y, XT θσ

)
X + σθσ

) (
∇hℓ

(
y, XT θσ

)
X + σθσ

)T ] and since cγ4C
(2)
GLM
σ2 ≥ CA,GLM =≥ 4cγ ,

K
(3)
1,GLM =e8

C
(2)
GLM
σ2 c3

γ
2γ

2γ−1

(
E
[
∥θ0 − θσ∥2

]
+

2Tr
(
H−1
σ ΣσH−1

σ

)
cγ

+ 8σ2 (σ−4 + C4
S,σ

)
+ 2L2

σvl,0
cγ

)
, (60)

K
(3)
1′,GLM = 1

4cγ
e8

C
(2)
GLM
σ2 c3

γ
2γ

2γ−1 ,, dn,GLM = 8CGLM
√

vn,GLMvl,n + 8L2
∇2Lσ−2 + 2C

(2)
GLM

σ2 vn,GLM, (61)

K
(3)
2,GLM =25+2γC

(2)
GLMcγ

(
σ−4 + C4

S,σ

)
c2
γ , K

(3)
2′,GLM = 23+γL2

σcγ . (62)

Proof of Theorem 5.2. The proof follows exactly the same pattern as the proof of Theorem 4.2, using As-
sumption (A6) together with Lemma 7.4 to compute the constant CS such that (H2) is satisfied.

A Proofs of technical proposition

A.1 Proof of Proposition 3.1

Let us recall that
Vn+1 = Vn −γn+1

(
g′
n+1
)T

An

∫ 1

0
∇G (θn + t (θn+1 − θn)) dt︸ ︷︷ ︸

=:Un+1

Remark that for a ≥ 2 and x, h ∈ R such that x ≥ 0 and x + h ≥ 0, we have by Taylor’s expansion

(x + h)a ≤ xa + axa−1h + 2a−2a(a − 1)(xa−2|h|2 + |h|a). (63)

This yields for a = p′, x = Vn and h = Un+1 and after conditioning on Fn

E
[
V p′

n+1|Fn
]

≤ V p′

n + p′V p′−1
n E [Un+1|Fn]

+ 2p
′−2p′(p′ − 1)

(
E
[
|Un+1|2|Fn

]
V p′−2
n + E

[
|Un+1|p

′
|Fn
])

. (64)
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Since G is convex and ∇G is Lipschitz,

E
[
Un+1V p′−1

n |Fn
]

≤ −E
[
γn+1

(
g′
n+1
)T

An

∫ 1

0
∇G (θn) dt|Fn

]
V p′−1
n

+ E
[
γn+1

(
g′
n+1
)T

An

∫ 1

0
(∇G (θn) − ∇G (θn + t (θn+1 − θn))) dt|Fn

]
V p′−1
n

≤ −γn+1∇G (θn)T An∇G (θn) V p′−1
n + L∇G

2 γ2
n+1E

[∥∥g′
n+1
∥∥2 |Fn

]
∥An∥2

V p′−1
n .

≤ −γn+1∇G (θn)T An∇G (θn) V p′−1
n + γ2

n+1β2
n+1

L∇G

2

(
C1V p′−1

n + 2C2

µ
V p′

n

)
.

By strong convexity, we have

∇G (θn)T An∇G (θn) V p′−1
n ≥ λmin (An) ∥∇G (θn)∥2

V p′−1
n

≥ 2λnµV p′

n 1λmin(An)≥λn

= 2λnµV p′

n − 21λmin(An)<λn
λnµV p′

n ,

where λn = λ0(n + 1)λ with 0 ≤ λ < min{γ − 2β, 1 − γ}. Applying Hölder inequality yields then

E
[
∇G (θn)T An∇G (θn)

]
≥2λnµE

[
V p′

n

]
− 2λnµE[V p

n ]p
′/p (P [λmin(An) < λn])

p−p′
p

≥2λnµE
[
V p′

n

]
− 2λnµV p′

p (P [λmin(An) < λn])
p−p′

p ,

with V p
p ≥ supn≥0 E[V p

n ] given by Lemma 7.1. Then, Assumption (H1a) gives P [λmin (An) < λn] ≤ vn+1(n+
1)−δ−qλ := v̄n, so that finally

E
[
Un+1V p′−1

n

]
≤ − 2γn+1λnE

[
µV p′

n

]
+ 2λnγn+1µV p′

p v̄
p−p′

p
n + γ2

n+1β2
n+1

L∇G

2

(
C1E

[
V p′−1
n

]
+ 2C2

µ
E
[
V p′

n

])
. (65)

Furthermore, since ∇G is L∇G-Lipschitz, one has∥∥∥∥∫ 1

0
∇G (θn + t (θn+1 − θn)) dt

∥∥∥∥ ≤ L∇G

∫ 1

0
(∥θn − θ∥ + t ∥θn+1 − θn∥) dt

≤ L∇G

(
∥θn − θ∥ + 1

2γn+1 ∥An∥
∥∥g′
n+1
∥∥) . (66)

Hence, using (H1b) and the strong convexity of G yields

E
[
|Un+1|p

′
|Fn
]

≤ Lp
′

∇G ∥An∥p
′
γp

′

n+1E
[∥∥g′

n+1
∥∥p′ (

2p
′−1 ∥θn − θ∥p

′
+ 2−1γp

′

n+1 ∥An∥p
′ ∥∥g′

n+1
∥∥p′)

|Fn
]

≤
Lp

′

∇G
2 γp

′

n+1βp
′

n+1

(
2p

′

(
C

(p′/2)
1

2p′/2V
p′/2
n

µp′/2 + C
(p′/2)
2

2p′
V p′

n

µp′

)

+ γp
′

n+1βp
′

n+1

(
C

(p′)
1 + C

(p′)
2

2p′
V p′

n

µp′

))

Specializing the latter inequality with p′ = 2 yields then (recalling inequalities equation 12)

E
[
|Un+1|2 |Fn

]
V p′−2
n

≤ L2
∇G
2 γ2

n+1β2
n+1

(
2p

′
(

C1
2Vn
µ

+ C2
22V 2

n

µ2

)
+ γ2

n+1β2
n+1

(
C ′

1 + C ′
2

4V 2
n

µ2

))
V p′−2
n ,
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so that

E
[
|Un+1|p

′
|Fn
]

+ E
[
|Un+1|2 |Fn

]
V p′−2
n

≤
Lp

′

∇GC
(p′)
1

2 γ2p′

n+1β2p′

n+1 + 23p′/2−1Lp
′

∇GC
(p′/2)
1

µp′/2 γp
′

n+1βp
′

n+1V p′/2
n + 2p′

L2
∇GC1

µ
γ2
n+1β2

n+1V p′−1
n

+ L2
∇GC ′

1
2 γ4

n+1β4
n+1V p′−2

n + V p′

n

(
22p′−1Lp

′

∇GC
(p′/2)
2

µp′ γp
′

n+1βp
′

n+1 + 2p′−1Lp
′

∇GC
(p′)
2

µp′ γ2p′

n+1β2p′

n+1

+ 2p′+1C2L2
∇G

µ2 γ2
n+1β2

n+1 + 2C ′
2L2

∇G
µ2 γ4

n+1β4
n+1

)
.

Using the latter inequality with equation 65 in equation 64 yields then

E
[
V p′

n+1

]
≤E

[
V p′

n

]
− 2p′µγn+1λnE

[
V p′

n

]
+ 2p′λnγn+1µV p′

p v̄
p−p′

p
n + E

[
P
(
γ2
n+1β2

n+1, Vn
)]

with P (x, y) = A0xp
′ + Ap′/2xp

′/2yp
′/2 + Ap′−1xyp

′−1 + Ap′−2x2yp
′−2 + Ap′xyp

′
, where

A0 = 2p
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′

∇GC
(p′)
1 , Ap′/2 = 25p′/2−3p′(p′ − 1)Lp

′

∇GC
(p′/2)
1

µp′/2 ,

Ap′−1 = p′ L∇G

2 + 22p′−2p′(p′ − 1)L2
∇GC1

µ
, Ap′−2 = 2p

′−3p′(p′ − 1)L2
∇GC ′

1,

and

Ap′ = p′L∇GC2

µ
+ p′(p′ − 1)

(
23p′−3Lp

′

∇GC
(p′/2)
2

µp′ cp
′−2
γ cp

′−2
β + 22p′−3Lp

′

∇GC
(p′)
2

µp′ c2p′−2
γ c2p′−2

β

+ 22p′−1C2L2
∇G

µ2 + 2p′−1C ′
2L2

∇G
µ2 c2

γc2
β

)
.

Applying now Young’s inequality, which implies aibp
′−i ≤ iap′

p′ + (p′−i)bp′

p′ for 0 < i < p′ and a, b ≥ 0, yields
for any t > 0 and i ∈ {1, 2, p′/2}

Ap−ix
iyp

′−i =
(

A
1/i
i x

(tλnγn)
p′−i
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)i (
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i
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i
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(tλnγn) p′−i
i

+ (p′ − i)tλnγnyp
′

p′ ,

so that using the latter inequality with t = p′2µ
3(p′−i)µ for i ∈ {1, 2, p′/2} and using that

γ2p′

n+1β2p′

n

(γn+1λ) p′
i −1

= (γn+1λn)c
2i−1
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i
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γ c2p′
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i
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gives

E
[
P
(
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n+1β2
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)]

≤ L

(
p′µ

2 λnγn+1

)
(n + 1)−p′(γ−2β−λ) +

(
p′µ(λnγn+1) + Ap′(γn+1βn+1)2)E [V p′

n

]
with

L =
c2p′−1
γ c2p′

β

λ0
A0 +

3c
2(p′−1)c2p′

β
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0
√

Ap′

4µ
Ap′/2 +
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′
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Putting together the previous inequalities and taking the expectation yield then

E
[
V p′

n+1

]
≤

(
1 − p′µγn+1λn +

Ap′cγc2
β

λ0
(n + 1)−γ+2β+λγn+1λn

)
E
[
V p′

n

]
+ λnγn+1

(
2p′µV p′

p v̄
p−p′

p
n + Lp′µ

2 (n + 1)−p′(γ−2β−λ)
)

.

Then, recalling that v̄n = vn+1(n + 1)−δ−qλ and using Proposition 7.1 yields

E
[
V p′

n

]
≤ exp

(
−cγp′µλ0

2 n1−(λ+γ)(1 − ε(n)
)(

K
(1′)
1 + K
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1≤k≤n+1
kγ−2β−λ− p−p′
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p

k
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2 n−p′(γ−2β−λ) + K
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3 v
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p

⌊n/2⌋(n + 1)− p−p′
p (δ+qλ),

with

ε(n) = 4C ′
Mn−1+λ+γ

µp′λ0

(
1 + n(1+2β−2γ)+

|2γ − 2β − 1|

)
, (67)

and

K
(1′)
1 =

(
E [V0] + p′µL

C ′
M

)
, K

(1′)
1′ =

4p′µV p′

p

C ′
M

, (68)

where

C ′
M = max

{
Ap′cγc2

β

λ0
,

(
µp′λ0

8

) 2γ−2β
γ+λ

c
γ−2β−λ

γ+λ
γ

}
, (69)

and

K
(1′)
2 = 2p

′(γ−2β−λ)L, K
(1′)
3 = 22+ p−p′

p (δ+qλ)V p′

p . (70)

where Vp is given in Lemma 7.1.

A.2 Proof of Proposition 3.2

Remark that with the help of a Taylor’s expansion of G, one has

Vn+1 = Vn + (θn+1 − θn)T
∫ 1

0
∇G (θn + t (θn+1 − θn)) dt

= Vn − γn+1
(
g′
n+1
)T

An

∫ 1

0
∇G (θn + t (θn+1 − θn)) dt.

Then, using equation 66 one has

V 2
n+1 ≤ V 2

n −

:=(⋆)︷ ︸︸ ︷
2γn+1Vn

(
g′
n+1
)T

An

∫ 1

0
∇G (θn + t (θn+1 − θn)) dt
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∇G ∥An∥2 ∥∥g′
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∥∥2

γ2
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(
2 ∥θn − θ∥2 + 1

2γ2
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n+1
∥∥2
)

︸ ︷︷ ︸
:=(⋆⋆)
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We now bound (⋆) and (⋆⋆). First, thanks to Assumption (H1) and since ∥θn − θ∥2 ≤ 2
µVn, one has

E [(⋆⋆)|Fn] ≤ 4L2
∇GC1

µ
γ2
n+1 ∥An∥2
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∇GC2
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Then, taking the expectation with Assumption (H2b),
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[
V 2
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]
.

Moreover, since ∇G is L∇G-Lipschitz, one can check that∥∥∥∥∫ 1

0
∇G (θn + t (θn+1 − θn)) − ∇G (θn) dt

∥∥∥∥ ≤L∇G

∫ 1

0
tdtγn+1 ∥An∥
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≤L∇G

2 γn+1 ∥An∥
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∥∥ .

Then, one has
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µ
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Furtermore, with the help of inequality equation 15 it comes

γn+1∇G (θn)T An∇G (θn) Vn ≥ 2λ0µγn+1V 2
n − 2λ0µγn+11An<λ0V 2

n .

Then, with the help of Holder’s inequality, coupled with (H1a) for t = 1, one has

E [(⋆)] ≥ 7
2λ0µγn+1V 2
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n V 2
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γ2
n+1β2
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[
V 2
n

]
with Vp defined in Lemma 7.1 and v̄n := vn(n + 1)−δ is the upper bound from (H1a) on P [λmin (An) ≤ λ0].
Let

aM := max
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2L∇GC2

µ
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2c2
γc2
β
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γ

c
γ−2β

γ
γ

}
, (71)

one has

E
[
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n+1
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≤
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γ3
n+1 (72)
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Applying Proposition 7.1, it comes (with analogous calculus to the ones in the proof of Theorem 3.1)

E
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where Vp is given by Lemma 7.1 and v̄⌊n/2⌋ ≤ vn/22δ(n + 1)−δ. Setting

K
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with aM given in equation 71, a1 given in equation 72 and Vp given in Lemma 7.1, and

K
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we finally get
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Then, for any 0 ≤ γ′ ≤ min
{

2γ, δ(p−2)
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}
, only depending on vn and γ, we have

w∞(γ′) := sup
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Mnnγ
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The function w∞ :
[
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→ R can be computed numerically, but in any case note that
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+ K
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We will see in most applications that under suitable assumptions, γ′ can be equal to 2γ (namely when
δ ≥ 2p

p−2 γ).

B Proofs of technical lemmas

B.1 Proof of Lemma 7.1

Observe that since the proofs are analogous, we only make the proof for p > 2, and for the case where p = 2,
if there are some differences in the proof, it will be indicated with the help of remarks.

With the help of a Taylor expansion of the functional G, one has

Vn+1 = Vn − γn+1
(
g′
n+1
)T

An

∫ 1

0
∇G (θn + t (θn+1 − θn)) dt.
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Then, applying the inequality

(a + h)p ≤ ap + pap−1h + p(p − 1)h2

2 max(1, 2p−3)(ap−2 + |h|p−2)

≤ ap + pap−1h + p(p − 1)2p−3h2(ap−2 + |h|p−2)
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Remark B.1. Observe that in the case where p = 2, one has

(a + h)2 = a2 + 2ah + h2 = ap + 2ap−1h + p(p − 1)2p−3h2|h|p−2

the last term on the right hand-side of previous inequality can be considered equal to 0.

Recalling that since ∇G is L∇G-Lipschitz, one has∥∥∥∥∫ 1
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Furthermore, one has
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(∇G (θn + t (θn+1 − θn)) − ∇G (θn)) dtV p−1

n

Since An is positive and since ∇G is L∇G-lipschitz, taking the conditional expectation, it comes, since for
all a, b ≥ 0, ab ≤ 1

pap + p−1
p bp/(p−1) and with the help of Assumption (H1a),

E [(∗)|Fn] ≤ −pγn+1∇G (θn)T An∇G (θn) V p−1
n + p

2γ2
n+1 ∥An∥2 E

[∥∥g′
n+1
∥∥2 |Fn

]
V p−1
n

≤ −pγn+1λmin (An) ∥∇G (θn)∥2
V p−1
n + p

2β2
n+1γ2

n+1

(
C1 + C2 ∥θn − θ∥2

)
V 2
n

≤ −pµγn+1λmin (An) V p
n + pC2

µ
β2
n+1γ2

n+1V p
n + pC1

2 β2
n+1γ2

n+1V p−1
n

≤ −pµγn+1λ′
n+11γ≤1/2V p

n +
(

pC2

µ
+ C1(p − 1)

2

)
β2
n+1γ2

n+1V p
n + C1

2 β2
n+1γ2

n+1,
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with λ′
n = λ′

0n−λ′ . We also used Assumptions (A1) on the first inequality and the fact that, by µ-strong
convexity, ∥θn − θ∥2 ≤ 2

µVn ≤ 2
µ2 ∥∇G (θn)∥2 on the third inequality. For the same reasons, one has

E [(∗∗)|Fn] ≤ 2p−2p(p − 1)L2
∇G

(
γ4
n+1β4

n+1

(
C ′

1 + 4C ′
2

µ2 V 2
n

)
+ γ2

n+1β2
n+1

(
2C1

µ
Vn + 4C2

µ2 V 2
n

))
V p−2
n

≤ 2p−2(p − 1)L2
∇Gγ4

n+1β4
n+1

(
2C ′

1 +
(

(p − 2)C ′
1 + 4pC ′

2
µ2

)
V p
n

)
+ 2p−2(p − 1)L2

∇Gγ2
n+1β2

n+1

(
2C1

µ
+
(

2(p − 1)C1

µ
+ 4pC2

µ2

)
V p
n

)
In a same way, thanks to Assumptions (A1”) and (H1), one has

E [(∗ ∗ ∗)|Fn] ≤ 2p−2p(p − 1)Lp∇Gγ2p
n+1β2p

n+1

(
C

(p)
1 + 2pC(p)

2
µp

V p
n

)

+ 2p−2p(p − 1)Lp∇Gγpn+1βpn+1

(
1
2C

(p)
1 + 2p

µp

(
1
2 +

√
C

(p)
2

)
V p
n

)
Taking the expectation on E [(∗)|Fn] + E [(∗∗)|Fn] + E [(∗ ∗ ∗)|Fn], applying the latter inequalities, it comes

E
[
V p
n+1
]

≤ max {E [V p
n ] , 1}

(
1 − pµλ′

n+1γn+11γ≤1/2 + apγ
2
n+1β2

n+1
)

with

ap : = p

(
C2

µ
+ C1

2

)
+ 2p−2(p − 1)pL2

∇G

(
c2
γc2
β

(
C ′

1 + 4C ′
2

µ2

)
+ 2C1

µ
+ 4C2

µ2

)
+ 2p−2(p − 1)pLp∇G

(
c2p−2
γ c2p−2

β

(
C

(p)
1 + 2pC(p)

2
µ2

)
+ cp−2

γ cp−2
β

(
1
2C

(p)
1 + 2p

µ2

(
1
2 +

√
C

(p)
2

)))
. (78)

Remark B.2. Observe that in the case where p = 2, one has

a2 = C1 + 2C2

µ
+ 4L2

∇G
µ

C1 + 8L2
∇GC2

µ2 + 2L2
∇GC ′

1c2
γc2
β + 8L2

∇GC ′
2

µ2 c2
γc2
β (79)

If γ > 1/2, by summation,

E [V p
n ] ≤ eapc

2
γc

2
β

2γ−2β
2γ−2β−1 max {1,E [V p

0 ]} =: V p
p .

If γ ≤ 1/2, let n0 be the smallest integer such that γ2
n+1β2

n+1ap > pµλ′
nγn+1. Recording that λ′

n =

λ′
0(n + 1)−λ′ , we have n0 =

⌊(
cγc

2
βap

pµλ′
0

) 1
γ−2β−λ′

⌋
. Then,

E [V p
n ] ≤ exp

(
n0∑
n=0

−pµλ′
nγn+1 + apγ

2
n+1β2

n+1

)
max {1,E [V p

0 ]}

≤ exp

−pµλ′
0cγ

1 +
1 +

(
cγc

2
βap

pµλ′
0

) 1−γ−λ′
γ−2β−λ′

1 − γ − λ′

+ c2
γc2
βap

1 +
1 +

(
cγc

2
βap

pµλ′
0

) 1−2γ+2β

γ−2β−λ′

1 − 2γ + 2β


 =: V p

p .

B.2 Proof of Lemma 7.2

Recall that (An)kk′ = max
{

min
{

cβnβ ,
(
An

)
kk′

}
, λ′

0n−λ′1γ≤1/2

}
with

(
An

)
kk′ =

δkk′√
1

n+1

(
ak+
∑n−1

i=0
(∇hg(Xi+1,θi)k)2

) . Since λmin (An) ≥ λmin
(
An

)
on the event

{
λmin

(
An

)
< cβ

}
, we
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have for 0 < t < 1

P [λmin (An) < tcβ ] ≤P
[
λmin

(
An

)
< tcβ

]
≤P

[
max

1≤k≤d

1
n + 1

(
ak +

n−1∑
i=0

(∇hg (Xi+1, θi))k)2

)
>

1
c2
βt2

]
.

Then, Markov inequality for p > 2 and Jensen inequality yields

P

 max
1≤k≤d

√√√√ 1
n + 1

(
ak +

n−1∑
i=0

(∇hg (Xi+1, θi)k)2

)
>

1
cβt


≤ c2p

β t2pE

[(
max

1≤k≤d

1
n + 1

(
ak +

n−1∑
i=0

(∇hg (Xi+1, θi)k)2

))p]

≤ c2p
β t2pE

[(
1

n + 1

(
d∑
i=1

ak +
n−1∑
i=0

∥∇hg (Xi+1, θi)∥2

))p]

≤ c2p
β t2p 1

n + 1

((
d∑
i=1

ak

)p
+
n−1∑
i=0

E
[
∥∇hg (Xi+1, θi)∥2p

])
.

Then, using Assumption (A1) and then (A2) we get

P

 max
1≤k≤d

√√√√ 1
n + 1

(
ak +

n−1∑
i=0

(∇hg(Xi+1, θi)k)2

)
>

1
cβt


≤ c2p

β t2p 1
n + 1

((
d∑
i=1

ak

)p
+ nC ′′

1 + C ′′
2

n−1∑
i=0

E
[
∥θi − θ∥2p

])

≤ c2p
β t2p 1

n + 1

((
d∑
i=1

ak

)p
+ nC ′′

1 + 2pC ′′
2

µp

n−1∑
i=0

E [V p
n ]
)

.

By the bound E [V p
n ] ≤ V p

p from Lemma 7.1, we finally get

P

 max
1≤k≤d

√√√√ 1
n + 1

(
ak +

n−1∑
i=0

(∇hg (Xi+1, θi)k)2

)
>

1
cβt

 ≤ vnt2p

with

vn = c2p
β

((
1
n

d∑
i=1

ak

)p
+ C ′′

1 +
2pC ′′

2 V p
p

µp

)
. (80)

B.3 Proof of Lemma 7.3

Set Ek = E
[
∇hg (X, θ)2

k

]
and ∂2

kg(h) = E
[
∇hg(X, h)2

k

]
. Then, by Jensen’s inequality for p′ ≥ 2,

∣∣(An

)
kk

∣∣−2p′

≤ 2p
′−1

∣∣∣∣∣ 1
n + 1

n−1∑
i=0

∇hg (Xi+1, θi)2
k − ∂2

kg (θi)
∣∣∣∣∣
p′

+ 2p
′−1

∣∣∣∣∣ ak
n + 1 + 1

n + 1

n−1∑
i=0

∂2
kg(θi)

∣∣∣∣∣
p′

.
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Hence, for any x > 0,

P
[∣∣(An

)
kk

∣∣ <
1
x

]
= P

[∣∣(An

)
kk

∣∣−2p′

> x2p′
]

≤P

∣∣∣∣∣ 1
n + 1

n−1∑
i=0

∇hg (Xi+1, θi)2
k − ∂2

kg (θi)
∣∣∣∣∣
p′

>
x2p′

2p′


+P

∣∣∣∣∣ ak
n + 1 + 1

n + 1

n−1∑
i=0

∂2
kg(θi)

∣∣∣∣∣
p′

>
x2p′

2p′

 . (81)

Set M0 = 0 and for n ≥ 1,

Mn =
n−1∑
i=0

∇hg(Xi+1, θi)2
k − ∂2

kg(θi).

Then, (Mn)n≥0 is a martingale, and thus by Burkholder’s inequality, see (Hall & Heyde, 2014, Theorem
2.10) there exists an explicit constant Cp′ such that

E
[
|Mn|p

′
]

≤ Cp′E

∣∣∣∣∣
n∑
i=1

(Mi − Mi−1)2

∣∣∣∣∣
p′/2
 ≤Cp′np

′/2−1
n∑
i=1

E
[
|Mi − Mi−1|p

′]

≤Cp′np
′/2−1

n−1∑
i=0

E
[∣∣∣∇hg (Xi+1, θi)2

k − ∂2
kg (θi)

∣∣∣p′]
,

where we used Jensen’s inequality on the second inequality. By Assumption (A1), the strong convexity of
G and Lemma 7.1,

E
[(

∇hg (Xi+1, θi)2
k − ∂2

kg (θi)
)p′]

≤ 2p
′
E
[
(∇hg (Xi+1, θi)k)2p

]
≤2p

′
E
[
∥∇hg (Xi+1, θi) ∥2p′

]
≤2p

′
C

(p′)
1 + 2p

′
C

(p′)
2 E

[
∥θi − θ∥2p′

]
≤2p

′
C

(p′)
1 + 22p′

C
(p′)
2

V p′

p

µp
.

Hence,

E

∣∣∣∣∣ 1
n + 1

n−1∑
i=0

∇hg (Xi+1, θi)2
k − ∂2

kg (θi)
∣∣∣∣∣
p′ = E

[∣∣∣∣ 1
n + 1Mn

∣∣∣∣p′]
≤ 2p

′ C
(p′)
1 + 2p′

C
(p′)
2

V p′
p

µp′

(n + 1)p′/2 , (82)

which yields for x > 0

P

∣∣∣∣∣ 1
n + 1

n−1∑
i=0

∇hg (Xi+1, θi)2
k − ∂2

kg (θi)
∣∣∣∣∣
p′

>
x2p′

2p′

 ≤ 22p′

x2p′

C
(p′)
1 + 2p′

C
(p′)
2

V p′
p

µp′

(n + 1)p′/2 . (83)

Next, by Jensen inequality,∣∣∣∣∣ ak
n + 1 + 1

n + 1

n−1∑
i=0

(
∂2
kg (θi)

)∣∣∣∣∣
p′

≤ 1
n + 1

(
|ak|p

′
+
n−1∑
i=0

∣∣∂2
kg(θi)

∣∣p′
)

.

Using Assumption (A1) and then strong convexity yields

∣∣∂2
kg (θi)

∣∣p′

≤C
(p′)
1 + 2p

′
C

(p′)
2

V p′

p

µp′ ,
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so that ∣∣∣∣∣ ak
n + 1 + 1

n + 1

n−1∑
i=0

(
∂2
kg (θi)

)∣∣∣∣∣
p′

≤ C
(p′)
1 + |ak|p

′

n + 1 + 2p′
C

(p′)
2

µp′

(
1

n + 1

n−1∑
i=0

V p′

i

)
.

Hence, for x2p′

2p′ > C
(p′)
1 ,

P

∣∣∣∣∣ ak
n + 1 + 1

n + 1

n−1∑
i=0

∂2
kg(θi)

∣∣∣∣∣
p′

>
x2p′

2p′

 ≤P

[
1

n + 1

(
|ak|p

′
+ 2p′

C
(p′)
2

µp′

n−1∑
i=0

V p′

i
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>

x2p′

2p′ − C
(p′)
1

]

≤ 1
n + 1

E
[
|ak|p

′
+ 2p′

C
(p′)
2

µp′
∑n−1
i=0 V p′

i

]
x2p′

2p′ − C
(p′)
1

.

By equation 33 and the fact that 1
n+1

∑n−1
i=0 (i + 1)− 2(1−γ)γ(γ−2β)p

2−γ ≤ 1
n+1 +

1∣∣∣1− 2(1−γ)γ(γ−2β)p
2−γ 1 2(1−γ)γ(γ−2β)p

2−γ
̸=1

∣∣∣ log(n+1)

(n+1)
2(1−γ)γ(γ−2β)p

2−γ
∧1

, and denoting 1̃ = 1+ 1∣∣∣1− 2(1−γ)γ(γ−2β)p
2−γ 1 2(1−γ)γ(γ−2β)p

2−γ
̸=1

∣∣∣ ,
it comes

1
n + 1E

[
|ak|p

′
+ 2p′

C
(p′)
2

µp′
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V p′

i

]
=
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2
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2
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C
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2
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′
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∞∑
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−cγµλ0i1−(λ+γ)(1 − ε′(i)
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≤M(β) log(n + 1)
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with for n ≥ 2

M(β) = 2p′
C
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2
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′
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+∞∑
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λ0 =
[
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′
(C(p′)

1 + 1)
]− 1

2p′
(84)

yields then

P

∣∣∣∣∣ ak
n + 1 + 1

n + 1

n−1∑
i=0

∂2
kg(θi)
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0
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 ≤ M(β) log(n + 1)
(n + 1)

2(1−γ)γ(γ−2β)p
2−γ ∧1

.

Putting the latter inequality with equation 81 and equation 83 gives then

P
[
λmin

(
An

)
< λ0

]
≤

d∑
k=1

P
[∣∣(An

)
kk

∣∣ < λ0
]
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(
C
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C
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2
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p
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)
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with

v0 = dM(β) +
d2p′

(
C

(p′)
1 + 2p′

C
(p′)
2

V p′
p

µp′

)
C

(p′)
1 + 1

. (85)

Since P [λmin (An) < λ0] ≤ P
[
λmin

(
An

)
< λ0

]
, the result is deduced.

B.4 Proof of Lemma 7.4

Set Ek = E
[
∇h (X, θ)2

k

]
and ∂2

kg(h) = E
[
∇h(X, h)2

k

]
. Then

E
[∣∣∣(An

)−2
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∣∣∣p′]
≤2p

′−1E

∣∣∣∣∣ 1
n + 1
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By equation 82,

E
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2
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Next, by Jensen inequality,

E
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.

Using Cauchy-Schwarz inequality, Assumption (A1’) and then Assumption (A1) yields
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where ci is given in equation 33. Putting all the latter bounds together yields, using that Ek ≤ C1,
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Hence, noting that Vp < ∞ by Assumption (A1’) and Lemma 7.1,

E
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,

with, by equation 33, c̄n = O

(
log(n)n−

[
(1−γ)γ(γ−2β)p

2−γ ∧1
])

. Since by (A6) we have Ek ≥ α, we deduce by
Markov’s inequality that

P
[(

An

)−1
kk

≤
√

α/2
]

= P
[(

An

)−2
kk

≤ α/2
]

≤ 2p′

αp′ E
[∣∣∣(An

)−2
kk

− Ek

∣∣∣p′]
≤ 2p′

c̄n
αp′ .

Hence, we have

E
[
(An)4
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]
=E

[
1(An)

kk
≥

√
2
α

(An)4
kk

]
+ E

[
1(An)

kk
<

√
2
α

(An)4
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]
≤E

[
1(An)

kk
≥

√
2
α

c4
βn4β

]
+ E

[
1(An)

kk
<

√
2
α

(
An

)4
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]
≤c4

βn4βP
[(

An

)−1
kk

≤
√

α/2
]

+ 4
α2 ≤

2p′
c4
βn4β c̄n

αp′ + 4
α2 .

Since c̄n = O

(
log(n)n−

[
(1−γ)γ(γ−2β)p

2−γ ∧1
])

, for β < (1−γ)γ(γ−2β)p
4(2−γ) ∧ 1

4 we have
[

(1−γ)γ(γ−2β)p
2−γ ∧ 1

]
− 4β > 0

and thus
w(β) = sup

n≥1
c̄nn4β < +∞,

and finally

E
[
∥An∥4] ≤

d∑
k=1

E
[
(An)4

kk

]
≤ C4

S

with

C4
S = d

[
2p′

c4
βw(β)
αp′ + 4

α2

]
. (86)

B.5 Proof of Lemma 7.5

First, we have by (A6’)

E
[(

(An)kk
)−2] = E

[
1

n + 1

n−1∑
i=0

∇hg (Xi+1, θi)2
k

]
= 1

n + 1

n−1∑
i=0

E
[
∇hg (Xi+1, θi)2

k

]
≥ α.

Then, as in the proof of Lemma 7.4,

E

∣∣∣∣∣ 1
n + 1

n−1∑
i=0

∇hg (Xi+1, θi)2
k − 1

n + 1

n−1∑
i=0

E
[
∇hg (Xi+1, θi)2

k

]∣∣∣∣∣
2 ≤

C ′
1 + C ′

2
4V 2

2
µ2

n
.

Hence, by Markov inequality,

P
[(

(An)kk
)−2 ≤ α/2

]
≤P

∣∣∣∣∣ 1
n + 1

n−1∑
i=0

∇hg (Xi+1, θi)2
k − 1

n + 1

n−1∑
i=0

E
[
∇hg (Xi+1, θi)2

k

]∣∣∣∣∣
2

>
α2

4


≤

4
(

C ′
1 + C ′

2
4V 2

2
µ2

)
nα2 .
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We deduce as in Lemma 7.4 that

E
[
(An)4

kk

]
≤c4

βn4βP
[(

An

)−1
kk

≤
√

α/2
]

+ 4
α2 ≤

4
(

C ′
1 + C ′

2
4V 2

2
µ2

)
n1−4βα2 + 4

α2 .

When β < 1/4, we finally get

E
[
∥An∥4] ≤

d∑
k=1

E
[
(An)4

kk

]
≤ C4

S

with

C4
S =

4d
(

1 + C ′
1 + C ′

2
4V 2

2
µ2

)
α2 . (87)

C Proof of technical Lemma and Propositions for linear regression

C.1 Proof of Lemma 7.6

Remark that ∥∥∥S̃n

∥∥∥ ≤ α+

n + m

(
m ∥S0∥ +

n∑
i=1

∥∥XiX
T
i

∥∥) ≤ α+

n

(
m ∥S0∥ +

n∑
i=1

∥Xi∥2

)
.

Hence, for λ > 0,

P
[
λmin

(
S̃−1
n

)
< λ

]
= P

[
∥S̃n∥ > 1/λ

]
≤ P

[
α+

n

(
m ∥S0∥ +

n∑
i=1

∥Xi∥2

)
> λ−1

]
.

Taking λ0 =
(
2α+E

[
∥X∥2])−1 yields then

P
[
λmin

(
S̃−1
n

)
< λ0

]
≤ P

[
1
n

(
m ∥S0∥ +

n∑
i=1

(
∥Xi∥2 − E

[
∥X∥2])) > E

[
∥X∥2]] .

Taking the p-power, applying Markov inequality and then Rosenthal inequality yields that

P

[
1
n

(
m ∥S0∥ +

n∑
i=1

(
∥Xi∥2 − E

[
∥X∥2])) > E

[
∥X∥2]]

≤ P

[(
1
n

(
m ∥S0∥ +

∣∣∣∣∣
n∑
i=1

(
∥Xi∥2 − E

[
∥X∥2])∣∣∣∣∣

))p
>
(
E
[
∥X∥2])p]

≤ 1
(E [∥X∥2])pE

[
1

np

(
m ∥S0∥ +

∣∣∣∣∣
n∑
i=1

(
∥Xi∥2 − E

[
∥X∥2])∣∣∣∣∣

)p]

≤ 2p−1

(E [∥X∥2])p
(

C1(p)n1−pE [|Z|p] + C2(p)n−p/2 (E [|Z|2
])p/2 + mp ∥S0∥p n−p

)
,

with Z = ∥X∥2 − E
[
∥X∥2].

If X is a subgaussian with subgaussian norm ∥X∥ψ2 , a similar reasoning yields

P
[
λmin

(
S̃−1
n

)
< λ0

]
≤P

[
α+

n

(
m ∥S0∥ +

n∑
i=1

∥Xi∥2

)
> λ−1

0

]

≤P

[
n∑
i=1

(
∥Xi∥2 − E[∥Xi∥2]

)
> n(λ−1

0 /α+ − E[∥X∥2]) − m ∥S0∥

]

≤2 exp
(

−
c
(
n(λ−1

0 /α+ − E[∥X∥2]) − m ∥S0∥
)2

n∥X∥ψ2

)
,
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with c > 0 absolute constant, where we used the generalized Hoeffding inequality for sub-Gaussian random
variables and the fact that centering alters the sub-Gaussian norm by a universal constant, see (Vershynin,
2018, Theorem 2.6.2) and (Vershynin, 2018, Lemma 2.6.8). Taking λ0 =

(
2α+E

[
∥X∥2])−1 and assuming

that m ≤ nE[∥X∥2]
2∥S0∥ yields then

P
[
λmin

(
S̃−1
n

)
< λ0

]
≤ 2 exp

(
−cn(E[∥X∥2])

∥X∥ψ2

)
for some numeric c > 0.

C.2 Proof of Lemma 7.7

By definition of Sn, Sn = S̃n on the event Tn = {λmin

(
S̃n

)
≥ 1

cβnβ }. Hence, for the same λ0 as in Lemma
7.6,

P
[
λmin

(
S̄−1
n

)
< λ0

]
= P

[
Tn ∩

{
λmin

(
S̃−1
n

)
< λ0

}]
+ P [T cn]

≤ P
[
λmin

(
S̃−1
n

)
< λ0

]
+ P [T cn] . (88)

By Lemma 7.6,
P
[
λmin

(
S̃−1
n

)
< λ0

]
≤ ṽn, (89)

with ṽn given in Lemma 7.6. Then, for n ≥ n0, where n0 is defined in equation 36, we have n ≥(
1

cβc2α−

(
n+m
n

))−1/β
, and thus nα−

n+mc2 ≥ 1
cβnβ . In particular, on the event

{
λmin

( 1
n

∑n
i=1 XiX

T
i

)
≥ c2

}
, we

have
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(
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n∑
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XiX
T
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n + m
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1
n

n∑
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XiX
T
i

)
≥ nα−

n + m
c2 ≥ 1

cβnβ
.

Hence, for n ≥ n0,
{

λmin
( 1
n

∑n
i=1 XiX

T
i

)
≥ c2

}
⊂ Tn and thus by Proposition 7.2 and the fact that n ≥ c1d,

P [T cn] ≤ P

[
λmin

(
1
n

n∑
i=1

XiX
T
i

)
< c2

]
≤ exp(−c3n). (90)

Using equation 89 and equation 90 in equation 88 yields then

P
[
λmin

(
S

−1
n

)
< λ0

]
≤ ṽn + 2 exp(−c3n)

for n ≥ n0. The statement of the lemma is then a rewriting of the latter inequality.

C.3 Proof of Lemma 7.8

Since we have

∥S̄−1
n ∥ = min

{
∥S̃−1

n ∥, βn+1
}

= min
{

1
λmin

{
S̃n
) , βn+1

}
,

for c1, c2, c3 given in Proposition 7.2, n ≥ c1d ∨ m and κ > 0,

E
[
∥S̄−1

n ∥κ
]

≤βκn+1P

[
λmin

(
1
n

n∑
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XiX
T
i

)
≤ c2

]
+
(

n
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α−c2

)−κ

≤2βκn+1 exp (−c3n) + (α−c2/2)−κ.

Since S̃n = αn

n+m
(
mS0 +

∑n
i=1 XiX

T
i

)
and

∑n
i=1 XiX

T
i ≥ 0, αn ≥ α−, we have S̃n ≥ mα−

n+mS0 and thus
∥S̄−1

n ∥ ≤ ∥S̃−1
n ∥ ≤ (n+m)

α−m
∥S−1

0 ∥ for n ≥ 1. Hence, for n ≤ c1d ∨ m, ∥S̃−1
n ∥ ≤ (c1d+2)

α−
∥S−1

0 ∥ and we finally get
the result.
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C.4 Proof of Proposition 7.3

Recall that βn = cβnβ . Since,for κ > 0, the map g : t 7→ (cβtβ)κ exp(−c3t) is bounded from above by

cκβ

(
βκ
ec3

)βκ
, we get

sup
n≥c1d

E
[
∥S̄−1

n ∥κ
]

≤ 2cκβ

(
βκ

ec3

)βκ
+ (α−c2/2)−κ.

Taking into account the case n ≤ c1d ∨ m yields then
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E
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,

and
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E
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(
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)4β
+ (α−c2/2)−4,
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]4
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.

C.5 Proof of Lemma 7.9

First notice that ∥∥∥S
−1
n − H−1

∥∥∥ =
∥∥∥S

−1
n (H − Sn)H−1

∥∥∥ ≤
∥∥∥S

−1
n

∥∥∥∥∥H − Sn
∥∥∥∥H−1∥∥ .

Under hypothesis of Proposition 7.2,

P
[
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(
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)

≤ α−c2/2
]

≤ 2 exp (−c3n)

for n ≥ c1d ∨ m. Since
∥∥S̄−1

n

∥∥ ≤
∥∥S̃−1

n

∥∥, λmin
(
S̄n
)

≥ λmin
(
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)

and thus we also have

P
[
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(
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)

≤ α−c2/2
]

≤ 2 exp (−c3n)

for n ≥ c1d ∨ m. Hence, for n ≥ n0,

E
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n − H−1
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∥∥2]+ 1

(λminα−c2/2)2E
[∥∥S̃n − H

∥∥2]
,

where we used on the last equality that for n ≥ n0, S̄n = S̃n on the event {λmin(S̄n > α−c2/2)}, as in
the proof of Lemma 7.7. The first summand can be bounded using Hölder inequality with 1

q + 1
q′ = 1 and

q′ = p/2 as

E
[
1λmin(Sn)≤α−c2/2
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∥∥2] ≤P
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≤2 exp(−c3(p − 2)n/p)E
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.

Using the upper bound on H and the convexity inequality (a + b)p ≤ 2p−1(ap + bp) yields the rough bound

E
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∥∥p]2/p
≤ E
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(
E
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}
Since X admits moments of order 2p, we get

E
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≤ α+m

n + m
∥S0∥ + α+n
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1
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≤ α+∥S0∥ + α+
(
E
[
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.
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We hence get

E
[
1λmin(Sn)≤α−c2/2

∥∥Sn − H
∥∥2] ≤ 8 exp (−c3(p − 2)n/p) max

{
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max, 2α+

(
∥S0∥2 +

(
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(
E
[
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)
.

For the second summand, using the relation between Frobenius norm and operator norm yields

E
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(n + m)2 E

[
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)
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2

F


:= R1 + R2.

By hypothesis, |αn − 1| ≤ Cα

n so that by Jensen inequality the first term is bounded by

R1 ≤ 2Cα
n2

(
∥S0∥2 + E[∥X∥2]

)
,

and the second term is bounded by

R2 ≤ 2
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F

]
≤ 2
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F + 2

n + m
E
[
∥X∥4

]
.

Putting all the above bounds together yields the bound of the statement.

C.6 Proof of Lemma 7.10

Remark first that as in the proof of Lemma 7.1, one has

Vn+1 ≤ Vn − γn+1
(
g′
n+1
)T

An

∫ 1

0
∇G (θn + t (θn+1 − θn)) dt.

Then, ∥∥∥∥∫ 1

0
∇G (θn + t (θn+1 − θn)) dt

∥∥∥∥ ≤ L∇G
(
∥θn − θ∥ + γn+1 ∥An∥

∥∥g′
n+1
∥∥) ,

which implies that
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Using the fact that g′
n+1 = (ϵ + XT

n+1(θ − θn))Xn+1 yields then
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(
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,
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where we used the strong convexity of G and bounded An by (n + 1)∥S−1
0 ∥. Hence, taking the square in the

above inequality and taking the expectation conditioned on Fn gives, for p ≥ 1,

E[V p
n+1] ≤2p−1E[V p

n ]
(

1 + 2(n + 1)γn+1L∇G

µ
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n ] exp
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µ
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, (91)

Clin,2 =22p−1E
[
|ϵ|2p

]
Lp∇G

(
cγ∥S−1

0 ∥ + c2
γ∥S−2

0 ∥
)p

.

We deduce that

E [V p
n ] ≤ exp

(
(p − 1) log(2)n + Clin,1

n3−2γ

3 − 2γ

)(
1 + Clin,2

n(p+1)−pγ

(p + 1) − pγ

)
E [V p

0 ] .

D Proof of technical Lemma and Propositions for generalized linear model

D.1 Proof of Lemma 7.11

With the help of inequality equation 7, it comes

∥S̄n∥ ≤ 1
n + 1 ∥S0∥ + L∇l

n + 1

n∑
i=1

∥Xi∥2 + σd

n + 1

n∑
i=1

∥Zi∥2.

with Zi = ei[d]+1. Then, a similar proof as the one of Lemma 7.7 yields that for λ0 =(
2L∇lE

[
∥X∥2

]
+ 2σ

)−1
,

P
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]
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n
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(
∥Zi∥2 − 1

)
> L∇lE

[
∥X∥2]+ σ

]
.

Then, by Markov inequality for p ≥ 1, we then get

P
[
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(
S
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n

)
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]
≤

E
[(

1
n ∥S0∥ + 1
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(
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[
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+ σ

(
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))p]
(L∇lE [∥X∥2

2] + σ)p

≤ 2p−1(
L∇lE

[
∥X∥2

]
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)p (n−p ∥S0∥p + C1(p)n1−pE [|T |p] + C2(p)n−p/2 (E [∥T∥2])p/2
)

,

with T = L∇l
(
∥X∥2 − E

[
∥X∥2])+ σ

(
∥Z∥2 − 1

)
.

D.2 Proof of Proposition 7.5

One directly has for all n ≥ 2d

λmin
(
Sn
)

≥ ⌊n/d⌋σ

(n + 1) ≥ n + 1 − d

d(n + 1) σ ≥ 1
2d

σ,
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and Sn ≥ 1
2dS0 for n ≤ 2d − 1, so that

sup
n≥1

∥∥S̄−1
n

∥∥ ≤ 2d max
{

1
σ

,
∥∥S−1

0
∥∥} .

D.3 Proof of Proposition 7.7

Let us denote

H (θσ) = E
[
∇2
hℓ
(
Y, θTσX

)
XXT

]
and Hn = 1

n + 1

(
S0 +

n−1∑
i=0

∇2
hℓ (Yi+1, ⟨θi, Xi+1⟩) Xi+1XT

i+1

)
.

One can decompose Hn − H (θσ) as

Hn − H (θσ) = 1
n + 1

n−1∑
i=0

∇2
hℓ (Yi+1, ⟨θi, Xi+1⟩) Xi+1XT

i+1 + 1
n + 1S0 − H (θσ)

= 1
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i=0

∇2
hℓ (Yi+1, ⟨θi, Xi+1⟩) Xi+1XT

i+1 − H (θi)

+ 1
n + 1

n−1∑
i=0

(H (θi) − H (θσ)) + 1
n + 1 (S0 − H (θσ)) .

Let us now give a rate of convergence of each term on the right-hand side of previous equality. Set Mn :=∑n−1
i=0

(
∇2
hℓ
(
Yi+1, θTi Xi+1

)
Xi+1XT

i+1 − H(θi)
)
. Since E

[
∇2
hℓ
(
Yi+1, θTi Xi+1

)
Xi+1XT

i+1|Fi
]

= H (θi) , where
(Fi) is the σ-algebra generated by the sample, i.e Fi := σ ((X1, Y1) , . . . , (Xi, Yi)). Then, (Mn)n≥1 is a
martingale and thus

1
(n + 1)2E

[
∥Mn∥2

]
≤ 1

(n + 1)2

n−1∑
i=0

E
[∥∥(∇2

hℓ
(
Yi+1, θTi Xi+1

)
Xi+1XT

i+1 − H(θi)
)∥∥2] ≤

L2
∇lE

[
∥X∥4

]
n

It then remains to handle 1
n+1

∑n−1
i=0 (H(θi) − H (θσ)). With the help of Assumption (GLM1), one has

E

∥∥∥∥∥ 1
n + 1

n−1∑
i=0

(H(θi) − H (θσ))
∥∥∥∥∥

2 ≤ 1
n

n−1∑
i=0

E
[
∥H(θi) − H (θσ)∥2

]

≤
L2

∇2L

n

n−1∑
i=0

E
[
∥θi − θσ∥2

]
≤

L2
∇2L

σn

n−1∑
i=0

vi,GLM,

with vi,GLM defined in Proposition 7.6. Then, since∥∥∥∥∥dσ

n

n∑
i=1

ei[d]+1eTi[d]+1 − σId

∥∥∥∥∥
2

=

∥∥∥∥∥∥dσ

n

n∑
i=d⌊ n

d ⌋

ei[d]+1eTi[d]+1 +
(

dσ

n

⌊n

d

⌋
− σ

)
Ip

∥∥∥∥∥∥
2

and
d2σ2

n2

∥∥∥∥∥∥
n∑

k=d⌊ n
d ⌋

ei[d]+1eTi[d]+1

∥∥∥∥∥∥
2

≤ d2σ2

n2

(
n − d

⌊n

d

⌋) n∑
k=d⌊ n

d ⌋

∥∥∥ei[d]+1eTi[d]+1

∥∥∥2
≤ d4σ2

n2 ,

it comes

∥∥Sn − Hσ

∥∥2 ≤ 4
n

(
L2

∇lE
[
∥X∥4

]
+ L2

∇2L

σ

n−1∑
i=0

vi,GLM + 1
n

∥S0 − H (θσ) ∥2

)
+ 16d4σ2

n2
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Now, notice as in Lemma 7.9 that∥∥∥S
−1
n − H−1

σ

∥∥∥ =
∥∥∥S

−1
n (Hσ − Sn)H−1

σ

∥∥∥ ≤
∥∥∥S

−1
n

∥∥∥∥∥Hσ − Sn
∥∥∥∥H−1

σ

∥∥ ,

which yields, thanks to Proposition 7.5

E
[∥∥∥S

−1
n − H−1

σ

∥∥∥2
]

≤
C2
S,σ

σ2 E
[∥∥Sn − Hσ

∥∥2]
,

i.e one has

E
[∥∥∥S

−1
n − H−1

σ

∥∥∥2
]

≤
4C2

S,σ

σ2n

(
L2

∇lE
[
∥X∥4

]
+ L2

∇2L

σ

n−1∑
i=0

vi,GLM + 1
n

∥S0 − H (θσ) ∥2

)
+

16d4C2
S,σ

n2 . (92)

E How to verify (GLM3) for the logistic regression

Remark that θσ is the unique solution to E
[
∇hℓ

(
Y, XT θσ

)
X + σθσ

]
= 0, so that

E
[∣∣∇hl

(
Y, XT θσ

)
Xk + σ(θσ)k

∣∣2] = V ar
[
∇hl

(
Y, XT θσ

)
Xk

]
.

For the logistic regression, we have Y ∈ {−1, 1} and ∇hl
(
Y, XT θσ

)
= −Y exp(−Y θT

σX)
1+exp(−Y θT

σX) , and thus we need

to get a lower bound on the variance of −Y Xk exp(−Y θT
σX)

1+exp(−Y θT
σX) for all 1 ≤ k ≤ d. To guarantee Assumptions

(GLM3), we impose a minimal randomness on (X, Y ) given by the existence of a < b, η, ϵ > 0 M > 1 and
for all 1 ≤ k ≤ d an event Ak ∈ σ(Y, Xk′) with P

[
Ak ∩ {M−1 ≤ |Xk| ≤ M}

]
> η such that on Ak we have

P

∑
i̸=k

Xi(θσ)i < a|Y, Xk

 > ϵ and P

∑
i ̸=k

Xi(θσ)i > b|Y, Xk

 > ϵ.

In particular, since u 7→ α exp(−Y u)
1+β exp(−yu) is C1 and monotonic for all α, β > 0 and y ∈ {−1, 1}, for M small

enough, there exist constants c−, c+ explicitly depending on M, (θσ)k, a, b such that on Bk := Ak ∩ {M−1 ≤
|Xk| ≤ M},

P
[

−Y Xk exp(−Y θTσX)
1 + exp(−Y θTσX) > c+|Y, Xk

]
> ϵ,

and

P
[

−Y Xk exp(−Y θTσX)
1 + exp(−Y θTσX) < c−|Y, Xk

]
> ϵ.

We deduce that on the event Bk we have

V ar

[
−Y Xk exp(−Y θTσX)

1 + exp(−Y θTσX)

∣∣∣∣Y, Xk

]
≥ ϵ

(
c+ − c−

2

)2

.

Hence,

V ar

[
−Y Xk exp(−Y θTσX)

1 + exp(−Y θTσX)

]
≥ E

[
1BV ar

[
−Y Xk

1 + exp(−Y θTσX)

∣∣∣∣Y, Xk

]]
≥ ηϵ

(
c+ − c−

2

)2

,

and we can choose

ασ = ηϵ

(
c+ − c−

2

)2

.
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F Counter-example for the quadratic convergence of the stochastic Newton
algorithm without regularization

We show here that even in the simplest case d = 1, stochastic Newton algorithm may not converge in
quadratic mean. Suppose that we define here the naive Newton adaptive matrix An

An =
[

1
n + 1

(
Id +

n−1∑
i=0

∇2
hg(Xi+1, θi)

)]−1

.

Recall that is known (Boyer & Godichon-Baggioni, 2020) that θn converges almost-surely to the minimizer
θ0 at speed n−γ for γ ∈ (1/2, 1).

Counter-example with ∇g almost everywhere defined

Set g((x, y), θ) = (xθ)2 + y⌊θ⌋θ and let (X, Y ) be a random vector with independent coordinates such that
X ≃ Ber(1/2) and P[Y = 1] = P[Y = −1] = 1/2. Then, G(θ) = E

[
X2] θ2 + E[Y ]⌊θ⌋θ = θ2/2 and we have

Lebesgue almost surely ∇hg((x, y), h) = 2x2h + y⌊h⌋ and ∇2
hg((x, y), h) = 2x2.

Let n ≥ 1. Then, P [X1 = 0, . . . , Xn = 0, Y1 = −1, . . . , Yn = −1] = 2−2n and on the event {X1 = 0, . . . , Xn =
0, Y1 = −1, . . . , Yn = −1}, as long as θk ̸∈ N for all k ≥ 0 (which will be temporarily assumed),

A−1
k = 1

k

(
1 +

k−1∑
i=0

2X2
i+1

)
= 1

k
.

Hence, Ak = k and (θk)1≤k≤n is defined recursively by

θk = θk−1 − γkAk⌊θk−1⌋Yk = θk−1 + kγk⌊θk−1⌋.

If γk = k−α for some α < 1, we then have kγk = k1−α, and thus for θ0 > 1

θk ≥ (1 + k1−α/2)θk−1.

We deduce that θn ≥
∏n
k=1(1 + k1−α/2) ≥ (n!)1−α2−n. In particular,

E
[
∥θn − θ0∥2] ≥ 2−3n(n!)1−α n→∞−−−−→ ∞

when θk ̸∈ N for all k ≥ 0. Since for each k ≥ 1, θk ̸∈ N for almost every θ0 ∈ (1, 2], the latter hypothesis
holds for Lebesgue almost every choice of θ0 ∈]1, 2].

Counter-example with ∇g continuous

Let f be such that f ′′(θ) = 1Z+]−1/3,1/3[, and set g((x, y), θ) = (xθ)2 +yf(θ). Let (X, Y ) be a random vector
with independent coordinates satisfying X ≃ Ber(1/2) and Y ∼ U([−2, 2]). Then, G(θ) = E

[
X2] θ2 +

E[Y ]f(θ) = θ2/2 and ∇hg((x, y), θ) = 2x2θ + yf ′(θ). Then, A0 = 1,

A−1
k = k

k + 1(A−1
k−1 + 2X2

k + f ′′(θk−1)Yk)

for k ≥ 1 and

θn = θn−1 − An−1γn∇hg((Xn, Yn), θn−1) = θn−1 − An−1γn(2X2
nθn−1 + Ynf ′(θn−1)).

Set θ0 = 3/2 and γk = k−γ for k ≥ 1, and consider (Xi, Yi)0≤i≤n satisfying the following conditions:

• Xi = 0 for all 1 ≤ i ≤ n, which yields P [X1 = 0, . . . , Xn = 0] = 2−n and for all k ≥ 1,

θk = θk−1 − Ak−1γkYkf ′(θk−1).
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• θk−1 being known, Yk ∈ 1
γkAk−1f ′(θk−1) ((Z+]1/3, 2/3[) − θk−1)∩ [−2, −1] := Tk (remark that Tk will

be shown to be non-empty).

Lemma F.1. The following facts hold for k ≥ 1.

1. θk ≥ k + 1,

2. Ak = k + 1,

3. with ℓ denoting the Lebesgue measure,

ℓ

(
1

γkAk−1f ′(θk−1) ((Z+]1/3, 2/3[) − θk−1) ∩ [−2, −1])
)

≥ 1/6.

Proof. We will prove those three facts by induction on k ≥ 1. For k = 1, we have A0 = γ1 = 1 and
f ′(3/2) = 1 so that θ1 = 3/2 − Y1. Since

T1 = 1
A0γ1f ′(θ0) ((Z+]1/3, 2/3[) − θk−1) ∩ [−2, −1] =(−3/2 + Z+]1/3, 2/3[) ∩ [−2, −1]

=] − 7/6, −1] ∪ [−2, −11/6[,

ℓ(T1) ≥ 1/3. On the other hand, for Y1 ∈ T1, θ1 ≥ 3/2 + 1 ≥ 2.

Let us show the induction. Set k ≥ 2 and suppose the result is true for l ≤ k − 1. Then θl ∈ Z + [1/3, 2/3]
for all l ≤ k, which implies that Ak−1 = k − 1. Hence,

θk = θk−1 + k1−γYkf ′(θk−1).

By induction, θk−1 ≥ k, and since f ′(θ) ≥ θ/2 for θ ≥ 0,

Tk = ((b + aZ + a]1/3, 2/3[) ∩ [−2, −1]

with a = 1/(Ak−1γkf ′(θk−1)) ≤ 2
k2−γ ≤ 1 and b = −θk−1/a. We deduce by pigeonhole principle that

ℓ(Tk) ≥ 1/3 − 1
2 · a3 ≥ 1/6. Finally, for Yk ∈ Ak we have Yk ≤ −1 so that

θk ≥ k + 1
2k2−γ ≥ k + 1.

By the previous result,

P [X1 = · · · = Xn = 0, Y1 ∈ T1, . . . , Yn ∈ Tn] ≥ 2−n · 6−n = 12−n.

Moreover, from what we showed previously, on this event we have for 1 ≤ k ≤ n

θk = θk−1 − YkAk−1γkf ′(θk−1) ≥ θk−1 + k2−γ/2 ≥ θk−1k2−γ/2.

We deduce that θn ≥ θk−1(k − 1)1−γ/3 ≥ (n!)2−γ/2n. In particular,

E
[
∥θn − θ0∥2] ≥ (n!)2−γ/24n n→∞−−−−→ ∞.

Remark that the latter result can be easily adapted to get a counter-example with g as smooth as desired.
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