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Abstract

We study the problem of monitoring machine learning models under temporal dis-
tribution shifts, where circumstances change gradually over time, often leading to
unnoticed yet significant declines in accuracy. We propose Incremental Uncertainty-
aware Performance Monitoring (IUPM), a novel label-free method that estimates
model performance by modeling time-dependent shifts using optimal transport.
IUPM also quantifies uncertainty in performance estimates and introduces an active
labeling strategy to reduce this uncertainty. We further showcase the benefits of
IUPM on different datasets and simulated temporal shifts over existing baselines.

1 Introduction

Figure 1: Illustration of Incremental
Uncertainty-aware Performance Moni-
toring (IUPM) with label intervention.

Deployed machine learning models often face the critical
challenge of distribution shifts, where the data encoun-
tered in production deviates from the data used during
training. Many relevant shift scenarios involve changes
over time, which are often gradual and continuous [26, 25].
These shifts are characterized by the fact that the statis-
tical properties of the data or the environment change
progressively rather than abruptly. This gradual nature
can make time-dependent shifts more insidious, as they
may not be immediately apparent but can still lead to sub-
stantial degradation in prediction quality over time [12].
Therefore, anticipating and understanding temporal per-
formance changes is essential for ensuring the reliability
and effectiveness of a machine learning model in dynamic
environments [7]. However, directly monitoring the per-
formance during the deployment is challenging as labeled
data is often unavailable in production. Moreover, ob-
taining labels can be cumbersome, time-consuming, and
costly, leading to delays in the assessment. Therefore, an
increasing number of label-free estimation methods have
been proposed that aim to anticipate the model perfor-
mance purely based on unlabeled data available at runtime.
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While this task is provably impossible in general [6], it can be approached by leveraging prior
knowledge about the structure of the shift [13]. Existing techniques leverage strategies based on
feature statistics [9], importance weighting [23, 3], model confidence [14, 13], disagreement between
models [16, 1], or model differences after retraining [27]. However, only a few works explicitly try
to incorporate the additional structure arising from the temporal nature of shifts into the estimation
process [2, 28]. Furthermore, existing techniques are unable to quantify any uncertainty related to the
performance estimate, cannot anticipate model degradation for arbitrary loss functions, and provide
no information on how to best aid estimation with limited labeled data. To address these challenges
we make the following contributions:

• We propose Incremental Uncertainty-aware Performance Monitoring (IUPM), as a novel
label-free performance estimation method tailored to temporal distribution shifts (see Figure 1).

• We quantify the uncertainty of the estimated performance to ensure reliable detection of model
degradation during deployment.

• We introduce an active intervention step to reduce uncertainty in the performance estimate by
labeling examples contributing the highest uncertainty to the performance estimate.

2 Incremental Uncertainty-aware Performance Monitoring (IUPM)

Optimal Transport Optimal Transport (OT) aims at finding the cost-minimizing way to transform
one probability measure into another [22]. Consider having n0 samples from a domain Ω0 = {xi

0}
n0
i=1

and n1 samples from another domain Ω1 = {xi
1}

n1
i=1 with corresponding empirical distributions

p̂0 =
∑

x0∈Ω0

1

n0
δx0

p̂1 =
∑

x1∈Ω1

1

n1
δx1

where δx denotes the Dirac measure. For a cost function c : Ω0 × Ω1 → R+, the transformation of
p̂0 into p̂1 can be formalized by a coupling γ which represents a valid distributions over (Ω0 × Ω1)
with marginals corresponding to p̂0 and p̂1. Identifying the cost-optimal coupling reads:

γ̂ = argmin
γ∈Γ

∑
x0∈Ω0

∑
x1∈Ω1

c(x0, x1)γ(x0, x1) with Γ = {γ ∈ Rn0×n1 | γ1n1
= p̂0, γ

T1n0
= p̂1}

which can be solved using different algorithmic approaches [22]. In the discrete sample case the
obtained γ ∈ Rn0×n1 simply is a matrix with entries γ(x0, x1). Moreover, the conditional coupling

γ(X0 = x0|X1 = x1) =
γ(x0, x1)∑

x0∈Ω0
γ(x0, x1)

is a left-stochastic matrix whose entries can be interpreted as transition probabilities when moving
from samples of X1 to samples of X0 following the most cost-efficient path.

Incremental Performance Estimation using OT Consider a machine learning model f that has
been trained with labeled data {(X0, Y0)} from the distribution P0(X0, Y0). Suppose f is deployed
in order to make predictions over time t > 0 with respect to data {(Xt, Yt)}Tt=1 each distributed
with Pt(Xt, Yt). During runtime (t > 0) we only have access to unlabeled data from Xt and our
goal is to estimate only based on this information how well the model performs over time. To do so
we proceed as follows: Let γt(Xt−1|Xt) be the conditional coupling linking data from Xt to data
from Xt−1 in a cost-efficient way. Further, we define Ψt(X0|Xt) =

∏t
i=1 γi(Xi−1|Xi) describing

the transition matrix obtained from composing all incremental transition matrices γi(Xi−1|Xi) via
matrix multiplication. It expresses the overall transition probabilities of going back to the labeled
data available at t = 0 by connecting samples of two subsequent time points incrementally using an
individual optimal transport coupling. Based on this we propose the following strategy to estimate
missing labels for performance evaluation over time.

P̂ (Yt|Xt) = EΨt(X0|Xt) [P (Y0|X0)]

This means that our label estimate P̂ (Yt|Xt) arises as mixture distribution [10] combining labeled
data in X0 according to the accumulated incremental coupling results. This strategy is explicitly
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reasonable for temporal shifts as we leverage their gradual nature by modeling subsequent distribution
shifts incrementally using Optimal Transport. It implicitly assumes that the true decision boundary
around data points from Xt is similar to the ones of data points from Xt−1 that are linked via the
cost-efficient coupling, which again suits in particular gradual shifts over time. Given an arbitrary loss
function L to measure model performance and a set of samples Ωt from Xt, the resulting performance
estimate for IUPM at time t, denoted by L̂IUPM

t , is given by:

L̂IUPM
t = EP (Xt)EP̂ (Yt|Xt)

[L(f(Xt), Yt)] =
1

nt

∑
xt∈Ωt

EP̂ (Yt|Xt=xt)
[L(f(xt), Yt)]

Note that P̂ (Yt|Xt) is an actual predictive distribution that also internalized uncertainty for cases
where linked samples have contradicting labels. Thus, we can use it to quantify the uncertainty of
the anticipated performance using the expected standard deviation (SD) of the sample-wise loss
estimates:

U(L̂IUPM
t ) = EP (Xt)SDP̂ (Yt|Xt)

[L(f(Xt), Yt)]

Labeling Intervention In addition to providing a means for users to consolidate their trust in the
performance estimate, the quantified uncertainty U(L̂IUPM

t ) can also be used to automatically trigger
efficient relabeling when the uncertainty exceeds an acceptable level. To make the most efficient use
of a limited labeling budget allowing to label only m samples, we propose a Uncertainty Intervention
(UI) strategy only querying ground truth labels for critical samples xt that contribute the largest
uncertainty to the overall performance estimate:

arg top-mxt∈ΩtSDP̂ (Yt|Xt=xt)
[L(f(xt), Yt)]

where arg top-m denotes the operator selecting the top m elements maximizing the objective. The
new labels are used to update Ψt(X0|Xt) such that P̂ (Yt|Xt = xt) assigns a fixed label removing
the accumulated uncertainty for sample xt.

3 Experiments

We evaluate our proposed IUPM approach on two different settings and data modalities. First, to
assess the general functionality of IUPM, we present results based on synthetic toy examples with
continuous shifts in two-dimensional space. Second, to emphasize the connection to real-world
scenarios, we perform experiments based on MNIST [18] and continuous image perturbations, e.g.,
resembling a gradual camera degradation. Throughout the experiments, we compare our approach
to four existing performance estimation methods described in [13]. Average Confidence (AC)
simply estimates the prediction accuracy as the expectation of the confidence for the predicted
class across the data set. The more sophisticated Difference Of Confidence (DOC) [14] uses the
discrepancy between the model confidence on the source and target data sets as an estimate of
performance degradation. Average Threshold Confidence (ATC) [13] learns a threshold for model
confidence on the initialization data set Ω0 and estimates accuracy on the current set as the fraction
of examples where model confidence exceeds this threshold. Lastly, we consider Importance re-
weighting as proposed by [3]. Additionally, we evaluate the use of the direct mapping γ(X0|Xt) for
label transport and performance estimation inspired by [8]. We call this approach Non-Incremental
Performance Estimation (NIPM). Across all experiments, we consider the model accuracy as the
loss criteria L to evaluate performance. For more details, we also refer to Appendix A.1 and A.2.

Figure 2: Synthetic two-dimensional toy datasets
and corresponding shifts.

Translation and Rotation in Input Space
We use three two-dimensional toy data sets (Fig.
2) provided by [21]. For all three datasets, we
train a Random Forest (RF), XGBoost (XGB),
and a Multilayer Perceptron (MLP) classifier in
the initial source distribution. After training at
t = 0, all data sets are shifted for t = 1, . . . , 100
steps to simulate gradual changes over time. For
the "Clusters" and "Moons" data sets, this shift results from rotating both classes by 2° per step. The
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Table 1: Mean Average Error (MAE) between ground truth and estimated accuracy using baseline
methods and IUPM across three synthetic data sets and three different models.

Method Clusters Moons Circles
RF XGB MLP RF XGB MLP RF XGB MLP

ATC 0.4482 0.4701 0.4378 0.3821 0.3596 0.3696 0.3513 0.3455 0.3545

AC 0.4370 0.4908 0.4436 0.3264 0.3753 0.3532 0.2793 0.3342 0.3268

DOC 0.4417 0.4564 0.4522 0.3657 0.3501 0.3708 0.3594 0.3436 0.3495

IM 0.4580 0.4700 0.4746 0.3980 0.3609 0.3807 0.3572 0.3448 0.3508

NIPM 0.4303 0.4260 0.4731 0.2514 0.2256 0.2325 0.0822 0.0823 0.0793

IUPM 0.2852 0.2837 0.2996 0.0897 0.0837 0.1065 0.0330 0.0368 0.0335

IUPMUI 0.0270 0.0272 0.0265 0.0244 0.0242 0.0222 0.0160 0.0157 0.0158

Table 2: Mean Average Error (MAE) between ground truth and estimated accuracy given random
sample selection during intervention (RI) and our proposed Uncertainty Intervention (UI) across three
synthetic data sets and three different models.

Method Clusters Moons Circles
RF XGB MLP RF XGB MLP RF XGB MLP

IUPM 0.2852 0.2837 0.2996 0.0897 0.0837 0.1065 0.0330 0.0368 0.0335

IUPMUI 0.0270 0.0272 0.0265 0.0244 0.0242 0.0222 0.0160 0.0157 0.0158
IUPMRI 0.0336 0.0327 0.0296 0.0256 0.0234 0.0198 0.0160 0.0177 0.0176

"Circles" dataset experiences a translation shift by 0.02 in the x-direction only on the inner circle
class. The results in Table 1 show that IUPM consistently outperforms all baselines across all datasets
and models. The error in the accuracy estimate can be further reduced by intervening on the labels. In
this case, we relabel the top 50% of Ωt according to our introduced UI strategy once U(L̂IUPM

t ) > 0.1.

Table 3: Mean Average Errors (MAE) between
ground truth and estimated accuracy for a LeNet
across three different shifts on the MNIST data set.

Method Rotation Scaling Translation

ATC 0.3413 0.1715 0.3280

AC 0.4908 0.2284 0.3916

DOC 0.4695 0.2533 0.4165

IM 0.4303 0.6209 0.5701

NIPM 0.2025 0.0603 0.3150

IUPM 0.0833 0.0372 0.1177

IUPMUI 0.0581 0.0355 0.0693

Comparison between Targeted and Ran-
dom Label Intervention To validate the
utility of our proposed uncertainty indicator,
we provide an additional experiment that
quantifies the benefit of actively selecting
the samples xk to be relabeled during label
intervention. More Specifically, we compare
relabeling m samples based on our pro-
posed instance-wise performance uncertainty
arg top-mxt∈ΩtSDP̂ (Yt|Xt=xt)

[L(f(xt), Yt)]

with randomly selected m samples from Ωt.
The results in Table 2 show a considerable
benefit of targeted sampling for the majority
of scenarios, demonstrating that it can improve
the efficiency of the labeling intervention
under a limited labeling budget. This supports
the hypothesis that correcting the labels of
examples with the highest instance-wise uncertainty also has an increased benefit to the overall
performance estimation.

Monitoring Performance Degradation due to Image Perturbations To assess more complex
shifts, we monitor a model classifying handwritten digits [18] that experience a shift caused by
common image perturbations [20] such as rotation, used in a related context in [24], translation, and
scaling of the digits. For this experiment, we trained a LeNet [19]. Further, we perform the matching
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based on representations of the second classification layer of this LeNet, reducing the dimensional of
the matched samples from 784 to 84 and demonstrating a generalizing approach to deal with higher
dimensional data also used in [5]. All shifts are evaluated for 20 steps, where Figure 3 illustrates the
performance estimation for a 180° rotation. Even without intervention, IUPM can best estimate the
performance. By allowing label intervention with the same settings as in the previous experiment,
the performance estimation error can be reduced and the associated uncertainty can be limited to
the predefined value U(L̂IUPM

t ) < 0.1. The observations are further supported by the results on two
additional shifts in Table 3.

Figure 3: Performance estimation over time for the rotational shift on the MNIST digits accumulating
to a 180° rotation after 20 steps. Left: IUPM is compared to the different baselines clearly illustrating
that it offers the highest fidelity for the performance estimation. Right: IUPM with label interventions
further increases estimation quality and limits the uncertainty to the predefined threshold.

4 Conclusion

We have introduced a novel method tailored to monitor a deployed machine learning model facing
gradual distribution shifts over time. Our IUPM approach takes a step towards achieving a more
reliable assessment of the quality of a model’s output at run time by explicitly taking the uncertainty
of the performance estimate into account, which current methods lack. This allows to simultaneous
increase the user’s confidence in the estimate and to perform a targeted label intervention to efficiently
restore a sufficient trustworthiness of the system only when needed. We have shown that over
two different data modalities and five different shifts, IUPM outperforms a number of existing
performance estimation approaches. Incorporating additional insights from related fields such as
gradual domain adaption [15] or active testing [17] as well as scaling to more complex data sets with
real-world shifts, are interesting avenues for future research.
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A Appendix

A.1 Baseline Methods

In this section we provide some additional information to the used baselines.
For the four existing baseline methods we relied on the implementations provided by [13]. Average
Confidence (AC) simply estimates the prediction accuracy as the expectation of the confidence for
the predicted class across the data set in step t as ACΩt

= Ex∼Ωt
[maxj∈Y fj(x)]. Difference Of

Confidence (DOC) [14] uses the discrepancy between the model confidence on the source and target
data sets as an estimate of performance degradation. To obtain an approximation of the performance
in step t, the degradation is subtracted from the performance on the initialization data set t = 0
DOCΩt = Ex,y∼Ω0 [argmaxj∈Y fj(x) ̸= y] + Ex∼Ωt [maxj∈Y fj(x)]− Ex∼Ω0 [maxj∈Y fj(x)].

A.2 Experimental Details

This section provides additional implementation details for the experiments.
For our IUPM implementation we rely on the entropic regularization optimal transport implementation
with logarithmic Sinkhorn by [11].
As for the synthetic two-dimensional datasets, we used the data generator functionality provided by
[21]. The "Clusters" data set is generated using the make_blobs function with a distance parameter
of 1.0. The "Moons" and "Circles" data sets are generated using the corresponding functions with a
noise parameter of 0.2 and a circle factor of 0.3. For the training and initialization step, a training
set of 800 samples is generated, from which a validation and initialization set Ω0 of 200 samples is
partitioned. In each consecutive step, a set Ωk with a different random seed is generated. We then
apply a shift to the set corresponding to the step k, i.e. k · 2◦ for rotation and k · 0.02 for translation.
For the synthetic data, we use a Random Forest Classifier (RF) and a XGBoost Classifier (XGB) [4]
with 50 estimators and a maximum depth of 5 as well as a Multilayer Perceptron (MLP) with a single
hidden layer of size 128. For optimal transport matching, we use a regularization parameter of 10−4.
Concerning the MNIST experiments, we adapt the image perturbation implementation introduced
in [20] to the continuous setting. The used LeNet model has been trained for 100 epochs with early
stopping based on a patience of 10 epochs and PyTorch’s Adam optimizer with a batch size of 16 and
a learning rate of 1e− 3. For the optimal transport matching, we use a regularization parameter of 1.
In this experiment, Ω0 also consists of 200 validation samples.
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