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Abstract

Tabular data is critical across diverse domains,001
yet high-quality datasets remain scarce due to002
privacy concerns and the cost of collection.003
Contemporary approaches adopt large language004
models (LLMs) for tabular augmentation, but005
exhibit two major limitations: (1) dense depen-006
dency modeling among tabular features that007
can introduce bias, and (2) high computational008
overhead in sampling. To address these issues,009
we propose SPADA (for SPArse Dependency-010
driven Augmentation), a lightweight generative011
framework that explicitly captures sparse de-012
pendencies via an LLM-induced graph. We013
treat each feature as a node and synthesize014
values by traversing the graph, conditioning015
each feature solely on its parent nodes. We ex-016
plore two synthesis strategies: a non-parametric017
method using Gaussian kernel density esti-018
mation, and a conditional normalizing flow019
model that learns invertible mappings for condi-020
tional density estimation. Experiments on four021
datasets show that SPADA reduces constraint022
violations by 4% compared to diffusion-based023
methods and accelerates generation by nearly024
9,500× over LLM-based baselines.1025

1 Introduction026

With the rapid advancement of data science, tab-027

ular data has become a fundamental format for028

storing information across diverse domains, includ-029

ing finance (Sharma et al., 2024), medicine (Ulmer030

et al., 2020), cybersecurity (Buczak and Guven,031

2016), and many more. Systems powered by tabu-032

lar data, e.g., decision support tools (Borisov et al.,033

2021) and anomaly detection algorithms (Wang034

et al., 2024), have demonstrated irreplaceable value035

in real-world applications. Meanwhile, the high036

cost of data collection, coupled with privacy con-037

cerns, has rendered high-quality tabular datasets ex-038

tremely scarce in practice (Yang et al., 2024). This039

1Our code is available at https://anonymous.4open.
science/r/SPADA-5C7C
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Figure 1: A comparison between SPADA and LLM-
based approaches. Our approach leverages LLMs to
annotate sparse dependency structures, effectively mit-
igating the bias introduced by fully connected feature
assumptions in traditional methods.

scarcity underscores the urgent need for low-cost 040

tabular augmentation methods capable of generat- 041

ing realistic and privacy-preserving tables. 042

However, the complex tabular feature dependen- 043

cies pose significant challenges to high-quality gen- 044

eration (Ren et al., 2025). For example, in a popu- 045

lation census dataset, it is rather implausible for an 046

individual aged “18” to have the occupation “pro- 047

fessor.” Methods that rely solely on learning sta- 048

tistical information from data, such as TVAE (Xu 049

et al., 2019) and CopulaGAN (Kamthe et al., 2021), 050

lack external knowledge and therefore often gen- 051

erate samples with logical inconsistencies (Yang 052

et al., 2024). This failure to capture dependencies 053

not only reduces the fidelity of synthetic data with 054

respect to the real data, but also introduces unpre- 055

dictable biases that increase risks when used in 056

downstream systems (Park and Ko, 2024). 057

To capture tabular dependencies, LLMs have re- 058

cently been adopted as implicit knowledge bases. 059

Methods like GReaT (Borisov et al., 2023) pio- 060

neered this direction by converting each record into 061

a sequence of <subject, predicate, object>-phrases, 062
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i.e., “feature is value” templates, enabling fine-063

tuning of LLMs. Building on this, Xu et al. (2025)064

further optimized the ordering of these phrases to065

potentially strengthen these dependencies.066

Despite these advancements, we argue that LLM-067

based methods suffer from two critical limitations:068

Overly dense dependency modeling. LLMs the-069

oretically produce fully-connected information fu-070

sion among input features in hidden layers, whereas071

real-world entities are typically structured with072

sparse and heterogeneous relations (Liu et al.,073

2023). The fine-tuning leads to unintended asso-074

ciations between independent features, e.g., gen-075

der and education, reflecting inherent biases in the076

training data (More and Bradbury, 2025). There-077

fore, tables generated by fine-tuned LLMs may fail078

to achieve the realism compared to real-world data.079

High computational cost in sampling. LLM-080

based approaches require autoregressive genera-081

tion of each feature value, causing the model to082

repeatedly pass through all layers to produce a sin-083

gle sample. As reported by Borisov et al. (2023),084

GPT-2 (Radford et al., 2019) takes 17 seconds on085

average to generate one sample on two GPUs. This086

substantial time overhead (Xia et al., 2024) renders087

LLM-based methods impractical for realistic sce-088

narios that demand large-scale data augmentation.089

To address these limitations, we propose the090

SPADA, a novel synthesizer that explicitly models091

feature dependencies while dramatically reducing092

computational cost, as shown in Figure 1. Specif-093

ically, we treat each feature as a node and use an094

LLM to extract a relational structure among them095

to build a directed graph (Zhou et al., 2022). We096

then perform a topological traversal (Zheng et al.,097

2018) over this graph to sequentially generate fea-098

ture values. Unlike traditional approaches, SPADA099

enforces sparsity by conditioning the synthesis of100

a node’s value solely on its parent nodes. After101

that, we introduce two synthesis strategies instead102

of LLM-based generation: (1) non-parametric103

statistics and (2) conditional normalizing flows104

(NF) (Rezende and Mohamed, 2015a).105

Our contributions are summarized as follows:106

1. We propose a novel method for tabular aug-107

mentation. Our approach leverages LLMs to108

capture sparse dependencies among features109

and performs conditional generation using ei-110

ther KDE or NFs. This design decouples de-111

pendency modeling from generation, combin-112

ing the structural insight of LLMs with the ef-113

ficiency of lightweight models. It enables logi-114

cal consistency among features while avoiding 115

the costly autoregressive generation. 116

2. SPADA achieves an unprecedented improve- 117

ment in sampling efficiency compared to ex- 118

isting LLM-based baselines, reducing gener- 119

ation time by nearly 9,500× while improving 120

the quality of the generated data. 121

3. We conduct comprehensive experiments 122

against SoTA methods, across four datasets, 123

spanning binary, multi-class classification and 124

regression tasks. The evaluation includes 125

downstream utility, distributional alignment, 126

privacy leakage, visual comparison, and dis- 127

criminator measure. SPADA demonstrates re- 128

markably reliable, scalable, and high-quality 129

performance across the board. 130

2 Related Work 131

Recent advances in tabular data generation have 132

led to a diverse range of deep generative mod- 133

els, including GANs, VAEs, diffusion models and 134

LLMs. These approaches are often evaluated along 135

four key dimensions: utility, realism, statistical 136

fidelity, and privacy preservation (Borisov et al., 137

2022; Stoian et al., 2025). However, a critical 138

challenge persists in balancing these requirements 139

while maintaining scalability and transparency. 140

Contemporary methods focus on end-to-end gen- 141

eration, learning the full joint distribution of tabular 142

data using black-box neural architectures (Holl- 143

mann et al., 2025). GAN-based models such as CT- 144

GAN (Xu et al., 2019), Ganblr (Zhang et al., 2021), 145

and Ctab-gan+ improve sample realism and utility 146

but often suffer from mode collapse and poor in- 147

terpretability. More recently, diffusion-based meth- 148

ods like TabDDPM (Kotelnikov et al., 2023), Fin- 149

diff (Sattarov et al., 2023), and TabSyn (Zhang 150

et al., 2024) have shown promise in generating 151

high-quality samples with better coverage. Yet, 152

they entail significant computational overhead due 153

to their iterative sampling procedures. 154

A parallel line of research investigates alignment 155

by incorporating knowledge. Approaches such as 156

DRL (Stoian and Giunchiglia, 2025) encode struc- 157

tural constraints through Bayesian networks or aux- 158

iliary autoencoders, but these typically require man- 159

ual rule specification and are limited to discrete fea- 160

tures. LLM-based models such as GReaT (Borisov 161

et al., 2023), Pred-LLM (Nguyen et al., 2024), and 162

LLM-TabFlow (Long et al., 2025) attempt to model 163
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dependencies through textual representations; how-164

ever, they treat generation as a monolithic text com-165

pletion task, leading to excessive sampling latency166

and entangled dependencies.167

Unlike prior work, SPADA decouples depen-168

dency modeling from generation. We use LLMs169

to extract a sparse, interpretable dependency graph,170

which then guides sampling via either parametric171

or non-parametric models. This design enhances in-172

terpretability, accelerates generation, and improves173

logical consistency, offering a scalable and trans-174

parent framework for structure-aware synthesis.175

3 Methodology176

3.1 Problem Formulation177

Let T = {t1, . . . , tN} denote a tabular dataset with178

N samples. Each ti ∈ RM is a record consisting179

of M values, i.e. ti = {vi1, . . . , viM}, where vij180

denotes the value of feature fj ∈ F in sample ti.181

Following the standard taxonomy in tabular tool-182

box (Patki et al., 2016), we partition the feature set183

F = {f1, . . . , fM} into two disjoint subsets:184

• Fnum contains numerical features, and185

• Fcat: contains categorical features such as186

boolean and discrete text strings.187

A key distinction lies in their value domains. For188

fj ∈ Fnum, the domain is continuous and poten-189

tially unbounded. Therefore, a generated value190

v′ij ∈ R may not appear in T . On the other hand,191

for fj ∈ Fcat, the domain is a finite unordered set.192

Hence, any synthesized value must be drawn from193

the observed support: v′ij ∈ Vj = {v1j , . . . , vNj}.194

Our objective is to synthesize a new dataset T ′ =195

{t′1, . . . , t′N ′} with low computational cost, where196

each t′i /∈ T follows the same feature structure in197

T . That is, for all j ∈ {1, . . . ,M}, the value v′ij198

corresponds to the same feature fj ∈ F in T .199

To ensure the realism of synthetic data, we im-200

pose the following constraints: (1) Distributional201

similarity, that is, the marginal and joint distribu-202

tions of T ′ should match those of T ; specifically,203

DT ′ ≈ DT , where DT denotes the empirical dis-204

tribution of the original dataset, and (2) Logical205

consistency, i.e., for any subset of feature values206

{v′ij , . . . , v′ik} within a synthesized sample, there207

should be no semantic implausibilities or contra-208

dictions (e.g, a retired 18-years-old professor).209

3.2 Dependency Graph 210

In traditional LLM-based methods (Borisov et al., 211

2023), fully-connected modeling typically intro- 212

duce training bias (Liu et al., 2023). For example, 213

given two logically independent features fa and 214

fb, the attention weight Att(va, vb) between their 215

corresponding values va and vb should ideally ap- 216

proach zero. However, due to the lack of explicit 217

constraints on feature correlations, the Att(va, vb) 218

will inevitably produce positive values (Vaswani 219

et al., 2017), resulting in a spurious correlation that 220

distorts the feature dependency structure. 221

To introduce the sparse constraints among fea- 222

tures, we employ LLMs to explicitly generate the 223

logical dependencies. Specifically, we prompt GPT- 224

4o (Achiam et al., 2023) with the following inputs: 225

(1) PIntro, a brief description of T ; (2) F ; and (3) 226

PTask, a task-specific instruction describing the goal 227

of dependency identification. For each target fea- 228

ture fj ∈ F , the model returns a subset F̂fj ⊆ F 229

representing the features on which fj depends: 230

F̂fj = LLM(F , fj ,PIntro,PTask),

where fj /∈ F̂fj and F̂fj ⊆ F .
(1) 231

Here, the prompt template we used are detailed 232

in Appendix G. In designing prompts, we follow 233

the standard methodology outlined in (Amatriain, 234

2024). For example, an output may be “marital 235

status → age”, indicating that “marital status” 236

constrains “age”, i.e., individuals below a certain 237

age are unlikely to be married or divorced. 238

To structurally represent the generated depen- 239

dencies, we construct a directed dependency graph 240

G = (F , E). Here, each node fj ∈ F is a feature, 241

and each edge (f → fj) ∈ E denotes that feature 242

fi constrains feature fj . In practice, for fj which 243

is not constrained by any other feature, its depen- 244

dency set F̂fj can be empty. Such features typically 245

represent inherent properties of an entity, such as 246

“gender”. To ensure that all features are integrated 247

into a unified graph, we introduce an artificial root 248

node froot /∈ F . For any feature fj with F̂fj = ∅, 249

we define a dependency from froot to fj , resulting 250

in the following extended definition of the edge set: 251

E =
⋃

fj∈F

{{
(fi → fj)

∣∣∣ fi ∈ F̂fj

}
, if F̂fj ̸= ∅

{(froot → fj)} , if F̂fj = ∅
(2) 252

Note that froot does not hold realistic significance. 253

We refer readers to Appendix H for the complete 254

dependencies extracted from the datasets we used. 255
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Following (Xu et al., 2025), we prioritize fea-256

tures that impose constraints on others, and subse-257

quently generate the values of child nodes condi-258

tioned on their parent node values to prevent log-259

ical inconsistencies. In practice, we traverse the260

dependency graph G starting from froot and follow261

the directed edges to generate feature values in a262

dependency-aware manner:263

∀fj ∈ F, vj ∼ p(vj | {vk : fk ∈ F̂fj}). (3)264

Mathematically, given G, we define a topological265

ordering over the F , denoted as:266

f (1) ≺ f (2) ≺ · · · ≺ f (M), (4)267

where f (i) ≺ f (j) implies that f (i) is a parent node268

of f (j) in G. During inference, we synthesize fea-269

ture values following this topological order and270

consider the constraints from their parent nodes271

v(i) ∼ p(v(i) | {v(k) | f (k) ∈ F̂f (i)}),
for i = 1, . . . ,M

(5)272

Nevertheless, the generated constraints F̂f may273

introduce cycles in the graph G, thereby preventing274

the derivation of a valid topological ordering. For275

instance, “latitude” and “longitude” could deter-276

mine the “country”, while the “country” might also277

constrain the ranges of “latitude” and “longitude”.278

To avoid encountering cycles, we employ an Integer279

Linear Programming (ILP) algorithm (Nemhauser280

and Wolsey, 1988) to break the cycles by deleting281

the fewest edges that participate in any cycle of G.282

Our objective function OILP is shown in Eq. (6).283

OILP = min
∑

(fi→fj)∈E

e(fi→fj), (6)284

where e(fi→fj) ∈ {0, 1} ∀(fi → fj) ∈ E. Af-285

ter obtaining a directed acyclic graph (DAG), we286

proceed to synthesize feature values for each node287

sequentially, as defined in Eq. (5). To reduce the288

training and sampling costs, we propose two LLM-289

independent strategies: a non-parametric method290

and a Normalizing Flow (NF) approach.291

3.3 Non-parametric Synthesis292

We propose a training-free method based on KDE293

to estimate conditional probabilities of a value294

v from its similar instances in T . Our motiva-295

tion is rooted in the fact that probabilistic mod-296

els are often more effective than the neural mod-297

els when the training data T is not sufficient (Xu298

et al., 2021; Grinsztajn et al., 2022). Furthermore, 299

non-parametric synthesis eliminates the need for 300

resource-intensive training associated with LLMs. 301

Specifically, for a target feature fj to be synthe- 302

sized, given its dependency set F̂fj , we filter T to 303

obtain a subset T̂ consisting of samples that match 304

the values of all features in F̂fj : 305

T̂ =
{
ti ∈ T

∣∣∣ ∀fk ∈ F̂fj , vik = v∗k

}
, (7) 306

where v∗k denotes the generated value for feature 307

fk ∈ F̂fj during the inference process. After that, 308

we estimate the conditional distribution of p(vj | 309

T̂ ) and sample a synthesized value from it. 310

3.3.1 Fuzzy Matching 311

However, T̂ may be empty when {v∗k} are rarely 312

observed in the original dataset. To avoid this issue, 313

we employ a range query to relax the exact match 314

constraint, instead of requiring all (v∗k, vik) pairs to 315

match exactly. For each target feature fj , we define 316

the fuzzy candidate set as: 317

T̃ =

{
ti ∈ T

∣∣∣∣ Dist
(
v∗
F̂fj

,vi,F̂fj

)
≤ ϵ

}
(8) 318

Here, v∗
F̂fj

is the vector of previously generated 319

conditioning values, vi,F̂fj
is the corresponding 320

vector of values in sample ti, and Dist(·, ·) denotes 321

a Hamming distance (Norouzi et al., 2012) for cat- 322

egorical features in Fcat and an L1-Norm for nu- 323

merical features in Fnum, and ϵ is the tolerance 324

threshold controlling the fuzziness of the match. 325

This fuzzy matching ensures that we can always 326

obtaine a non-empty T̂ , even under sparse condi- 327

tioning combinations. 328

3.3.2 BallTree 329

To accelate the matching process, we construct a 330

BallTree (Omohundro, 1989) on T in advance, re- 331

ducing the time complexity of nearest neighbor 332

search. Specifically, for each sample ti ∈ T , we 333

project it onto the subspace spanned by the depen- 334

dency features F̂fj , and organize these projected 335

vectors into a BallTree structure: 336

Bfj = BallTree
({

v
F̂fj

ij | ti ∈ T

})
, (9) 337

where v
F̂fj

ij denotes the feature vector of sample ti 338

restricted to the dependency set F̂fj . 339

The BallTrees make our synthesis method signif- 340

icantly more effective, especially when T is large. 341
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Figure 2: An overview of the proposed method. We
leverage an LLM to extract dependencies among tabular
features. Based on the resulting dependency graph, we
obtain synthetic data using KDE or NF-based sampling.

By pre-building a BallTree for each fj ∈ Fnum342

based on the corresponding dependency features,343

we achieve fast query times while maintaining the344

fidelity of conditional sampling. We refer readers345

to Appendix A.3 for the time complexity optimiza-346

tion introduced by the BallTree.347

3.3.3 Kernel Density Estimation348

For f in Fnum, we adopt KDE, aiming to model the349

distribution of continuous variables and can create350

new, smooth values. For categorical features, we351

simply draw from the finite set of observed cate-352

gories represented as p(vj | T̂ ), which is merely353

applicable to Fcat with a finite set of discrete values354

and can only generate values previously observed355

in T . To estimate the continuous probability den-356

sity of a numerical feature fj ∈ Fnum, we apply a357

Gaussian Kernel to model the distribution (Bishop358

and Nasrabadi, 2006), as defined below:359

p̂(vj | T̃ ) =
1

|T̃ |h

∑
ti∈T̃

K

(
vj − vij

h

)
, (10)360

where K(·) is the Gaussian kernel and h is the361

bandwidth parameter.362

Finally, we generate a new sample t′ by sequen-363

tially assigning values to nodes following the traver-364

sal order in Eq. (4). This non-parametric synthesis365

strategy eliminates the need for model training,366

while enabling the generation of continuous values367

beyond the discrete support of the original dataset.368

As a result, it reduces the synthesis cost and en-369

hances the diversity of the synthesized data.370

3.4 Conditional Normalizing Flow 371

The non-parametric synthesis method achieves a 372

theoretically lower computational cost compared 373

to LLM-based generation. However, when the size 374

of T is small, the number of matching samples 375

in T̂ may be insufficient, leading to biased proba- 376

bility estimates under the fuzzy matching strategy. 377

Conversely, when T is large, repeated access to 378

the dataset during sampling increases the sampling 379

overhead. To address this, we introduce a paramet- 380

ric generative method based on conditional NFs, 381

enabling efficient synthesis without data access. 382

3.4.1 Theoretical Framework 383

NFs transform a standard Gaussian distribution into 384

the probability density of our target feature value 385

v through a sequence of differentiable mappings. 386

Specifically, let z ∼ pZ(z) be a latent variable sam- 387

pled from the standard Gaussian distribution, and 388

let fθ be a learnable transformation parameterized 389

by θ. The target feature value v is then given by: 390

v = fθ(z | {vk | fk ∈ F̂f}), (11) 391

where the transformation is conditioned on the val- 392

ues of features in F̂f . We encode categorical fea- 393

tures in Fcat by using a label encoder (Pedregosa 394

et al., 2011) into continuous representations. The 395

conditional density is: 396

p(v | {vk}) = pZ(f
−1
θ (v | {vk}))

∣∣∣∣∣det
(
∂f−1

θ

∂v

)∣∣∣∣∣ ,
(12) 397

where the Jacobian determinant (Rezende and Mo- 398

hamed, 2015b) captures the local volume change 399

induced by the transformation. 400

3.4.2 Implementation Strategy 401

In training, we maximize the likelihood of observed 402

feature values under the modeled conditional dis- 403

tribution. The loss funtion is shown in Eq. (13): 404

L(θ) = − 1

N

N∑
i=1

log p(v | {vk}; θ). (13) 405

In practice, we parameterize fθ using a fully con- 406

nected neural layer with SwiGLU (Shazeer, 2020). 407

The model takes as input the latent variable z and 408

the conditioning values {vk}, and outputs the syn- 409

thesized value v. This NF enables learning expres- 410

sive conditional distributions over both continuous 411

and categorical features, facilitating high-fidelity 412

and efficient data synthesis. An overview of our 413

framework is shown in Figure 2. 414
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Dataset
Original TVAE CTGAN GReaT TabSyn Ours (w/KDE) Ours (w/NF)

ACC/MSE F1 ACC/MSE F1 ACC/MSE F1 ACC/MSE F1 ACC/MSE F1 ACC/MSE F1 ACC/MSE F1

Income (↑)
DT 80.83% 0.73 79.50% 0.71 76.27% 0.64 59.85% 0.60 77.58% 0.70 77.30% 0.69 78.95% 0.71
RF 85.40% 0.78 82.43% 0.75 82.50% 0.71 69.42% 0.69 83.67% 0.77 84.18% 0.75 84.14% 0.75
LR 80.32% 0.67 78.05% 0.66 78.90% 0.61 69.57% 0.70 80.21% 0.70 80.42% 0.62 78.61% 0.56

HELOC (↑)
DT 61.67% 0.61 64.30% 0.64 63.90% 0.64 61.31% 0.61 62.13% 0.62 59.85% 0.60 63.24% 0.63
RF 71.39% 0.71 68.91% 0.68 62.78% 0.63 70.18% 0.70 70.73% 0.71 69.41% 0.69 70.58% 0.71
LR 69.72% 0.70 65.06% 0.65 65.47% 0.65 68.51% 0.68 69.77% 0.70 69.57% 0.70 70.53% 0.70

Iris (↑)
DT 100% 1.00 55.17% 0.47 62.07% 0.56 41.38% 0.36 96.55% 0.97 89.66% 0.90 100% 1.00
RF 100% 1.00 55.17% 0.49 41.38% 0.37 44.83% 0.35 100% 1.00 100% 1.00 100% 1.00
LR 100% 1.00 62.07% 0.56 51.72% 0.44 41.38% 0.34 100% 1.00 100% 1.00 100% 1.00

Housing (↓)
DT 0.14 N/A 1.28 N/A 5.49 N/A 0.27 N/A 0.29 N/A 0.23 N/A 0.17 N/A
RF 0.08 N/A 0.52 N/A 3.23 N/A 0.13 N/A 0.13 N/A 0.11 N/A 0.11 N/A
LR 0.38 N/A 0.48 N/A 1.62 N/A 0.40 N/A 0.40 N/A 0.44 N/A 0.45 N/A

Table 1: Performance of classifiers/regressors trained on synthetic data for downstream tasks. Bold indicates the
best performance, and underline indicates the second-best. “Original” is the original dataset T . “ACC” stands for
accuracy and “MSE” stands for mean squared error. Besides in the original dataset, all classifiers are trained on
synthetic data and tested on real ones.

Table 2: Violation rates ↓. We present measurements with 95% confidence interval. Bold indicates the best
performance, and underline indicates the second-best.

Dataset TVAE CTGAN GReaT TabSyn Ours (w/KDE) Ours (w/NF)

Income 4.21 ±0.64% 34.31 ±1.18% 0.00 ±0.00% 2.32 ±0.49% 3.56 ±0.98% 0.00 ±0.00%
Housing 15.55 ±0.55% 34.48 ±0.72% 3.61 ±0.28% 10.70 ±0.72% 5.26 ±0.62% 1.37 ±0.18%

Mean (↓) 9.88% 34.40% 1.81% 6.51% 4.41% 0.69%

4 Experiments415

4.1 Datasets416

Binary Classification. The Adult Income dataset417

(Becker and Kohavi, 1996) contains 16 demo-418

graphic and occupational features, which are used419

to predict an individual’s annual income level. The420

Home Equity Line of Credit (HELOC) dataset (Oli-421

abev, 2022) includes 24 credit-related features ex-422

tracted from people’s credit reports. The task is423

to predict whether an individual will repay their424

HELOC amount within the next two years.425

Multi-class Classification. The well-known Iris426

dataset (Fisher, 1936) comprises four numerical427

features describing the sepal and petal dimensions428

of iris flowers. The task is to classify the sample429

into an iris species.430

Regression. The California Housing dataset (Nu-431

gent, 2018) consists of 10 features related to hous-432

ing and geographic attributes. Our task is to predict433

the latitude and longitude of a property.434

4.2 Evaluation Metrics435

Downstream Utility. We generated synthetic436

datasets of the same size as the original datasets437

and trained decision tree (DT), random forest (RF),438

and logistic regression (LR) models as classifiers439

and regressors, following the respective tasks of the440

datasets used. For classification, we reported accu-441

racy and F1, while for regression tasks, we reported442

Mean Squared Errors. The results are presented in443

Table 1.444

Privacy Protection. Following (Zhang et al., 445

2024), we used the L1 norm to calculate the Dis- 446

tance to Closest Records (DCR) to T . We normal- 447

ize each column and compute the average. A high 448

DCR suggests minimal overlap between the fea- 449

ture values of synthetic data and those in the origi- 450

nal dataset, which contributes to stronger privacy 451

preservation. The results are presented in Figure 3. 452

Data Fidelity. Following (Xu et al., 2025), we com- 453

pute the two kinds of violation rates pre-defined on 454

the Income and California Housing datasets. For 455

the Income dataset, the violation rate refers to the 456

proportion of generated samples exhibiting incon- 457

sistencies between the “educational-num” and 458

“education” features. For the Housing dataset, it 459

refers that of falling outside the geographic bound- 460

aries of California. The results are presented in Ta- 461

ble 2. Additionally, we visualized the geographic 462

coordinates of the synthetic samples generated 463

from the California Housing dataset, as shown in 464

Figure 4. 465

5 Results 466

5.1 Computational Cost and Time Cost 467

Table 3 presents the training time and the average 468

sampling time per sample for both the baseline 469

methods and our proposed approaches. 470

5.2 Discussion 471

SPADA consistently outperforms all the baselines 472

in terms of downstream utility, as shown in Table 1. 473
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Figure 3: DCR for the California Housing dataset, evaluated with respect to the original training set. A smaller
DCR suggests that the model may overfit and copy certain feature values from the original data.

Dataset TVAE CTGAN GReaT TabSyn Ours (w/KDE) Ours (w/NF)

Income
Training 57 sec 108 sec 6h 10m 34 sec 34 min 0 sec 36 sec
Sampling <1 ms <1 ms 9 sec 5 sec 16 ms <1 ms

HELOC
Training 29 sec 41 sec 1h 47min 38sec 29 min 0 sec 45 sec
Sampling <1 ms <1 ms 45 sec 2 sec 65 ms 2 ms

Iris
Training <1s 3 sec 17 sec 14 min 0 sec <1s
Sampling <1 ms <1 ms 4 sec 254 ms <1 ms <1 ms

Housing
Training 33 sec 50 sec 1h 18min 8sec 30 min 0 sec 1min 8 sec
Sampling <1 ms <1 ms 8 sec 2 sec 74 ms 3 ms

Table 3: Average training time and sampling time per instance. The devices we used are shown in Appendix D.1.
Bold indicates the best performance.

The most striking result is observed on the multi-474

class Iris dataset, where all three classifiers trained475

by our NF-based method achieve perfect accura-476

cies. We analyze that the small sample size and477

low feature dimensionality of the Iris dataset hinder478

the ability of LLM-based methods such as GReaT479

to effectively learn the underlying data distribu-480

tion, thereby resulting in suboptimal performance.481

Moreover, we observe that the NF-based approach482

slightly outperforms the KDE-based one on aver-483

age. This supports our hypothesis mentioned in484

§3.4: with small size T̂ , fuzzy matching can lead to485

biased density estimation, making it less accurate486

than trainable neural networks.487

In terms of privacy protection, we observe that488

the DCR values of synthetic data generated by most489

baselines are close to zero, as shown in Figure 3.490

The most severe overlap is observed in our KDE-491

based method. Since KDE estimates probability492

densities by retrieving from the original dataset,493

it inevitably results in a large amount of similar494

feature values. Similarly, the DCR means for syn- 495

thetic data produced by TVAE, GReaT, and Tab- 496

Syn are all below 0.1. In contrast, our NF-based 497

method and CTGAN achieve average DCR values 498

around 0.2, indicating better privacy preservation 499

compared to other methods. Mendelevitch and 500

Lesh (2021) reported that synthetic datasets with 501

higher DCR values exhibit reduced risks of unin- 502

tended memorization and re-identification. There- 503

fore, increasing the DCR from 0.1 to 0.2 extremely 504

enhances privacy protection by doubling the dis- 505

tinguishability between synthetic and real records, 506

thereby reducing the likelihood of re-identification 507

attacks. This aligns with established research 508

indicating that higher DCR values contribute to 509

stronger privacy safeguards. However, we note 510

that the high DCR of CTGAN may stem from its 511

difficulty in faithfully capturing the underlying dis- 512

tribution of the real data. 513

Figure 4 illustrates that SPADA faithfully cap- 514

tures the real data distributions. Notably, CT- 515

7



Figure 4: Comparison of the generated samples for the California Housing dataset, which includes characteristic
information about various properties in California, USA. Joint histogram plots of the highly correlated variables
Latitude and Longitude are shown. The black outline represents the true boundary of the state of California.

GAN exhibits the most severe boundary violations,516

where the spatial outline of California becomes517

unrecognizable. Compared to baselines, SPADA518

produces samples that remain largely within valid519

geographic boundaries, indicating that they better520

model the relationship between latitude and lon-521

gitude. These findings are further supported by522

Table 2. Our NF-based method achieves a 2% re-523

duction in the violation rate compared to the LLM-524

based GReaT model on the Housing dataset. This525

substantial improvement highlights the effective-526

ness of incorporating sparsity-aware dependency527

structures during data generation. Unlike fully-528

connected generative strategies adopted by LLM-529

based methods, our approach explicitly models and530

respects the true conditional dependencies among531

features, thereby ensuring higher logical fidelity in532

synthesized data.533

SPADA demonstrates high efficiency in both534

training and sampling stages, as shown in Ta-535

ble 3. Compared to parameter-heavy models such536

as GREAT and TABSYN, our NF-based model537

reduces training time by over 100× and approx-538

imately 30×, respectively. During sampling, the539

NF-based model synthesizes each sample in under540

one millisecond, achieving efficiency comparable541

to TVAE and CTGAN. Remarkably, our model542

is on average 9,500× faster than the LLM-based543

GREAT, highlighting its potential for large-scale 544

data augmentation. On the other hand, although 545

our KDE-based method is slightly slower than the 546

NF-based approach, it estimates the need of train- 547

ing and thus advantageous in scenarios with limited 548

computational resources. 549

6 Conclusion 550

We proposed SPADA, a novel and lightweight 551

framework for tabular augmentation that disentan- 552

gles dependency modeling from data generation. 553

By leveraging LLMs to extract sparse feature de- 554

pendencies and employing lightweight generators, 555

our approach significantly improves the fidelity 556

of synthetic data by 2% while achieving 9,500x 557

speedup in sampling. Extensive experiments across 558

multiple datasets and evaluation metrics demon- 559

strate the effectiveness of SPADA in maintaining 560

downstream utility, enhancing realism, and ensur- 561

ing privacy preservation. Overall, our findings un- 562

derscore the potential of leveraging LLM-derived 563

structural priors in conjunction with lightweight 564

generative models for scalable, high-fidelity, and 565

privacy-preserving tabular synthesis. Future work 566

may explore domain-specific adaptations and fur- 567

ther integration with interdisciplinary evaluation 568

frameworks to better assess the societal impact of 569

synthetic data technologies. 570
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7 Limitation571

While SPADA significantly enhances the effective-572

ness of LLM-based approaches and greatly reduces573

the cost of data augmentation, it still has two key574

limitations:575

1) Reliance on the quality of LLM-annotated576

dependencies. Both of our synthesis strategies577

rely on the dependency graph produced by an LLM.578

As such, the accuracy of this graph may theoreti-579

cally affect downstream model performance. Nev-580

ertheless, recent studies have demonstrated the581

reliability of LLMs in annotation tasks (Gilardi582

et al., 2023), and in our experiments, the GPT-4o-583

generated dependency graphs enabled our mod-584

els to achieve strong performance across multiple585

datasets. Therefore, although this limitation ex-586

ists in theory, we have not observed significant587

evidence that it affects practical performance.588

2) Inability to model complex data types.589

SPADA, following convention, categorizes tabu-590

lar values into categorical and numerical features.591

However, for multimodal datasets that include im-592

ages, videos, or other high-dimensional data types,593

our current framework is not applicable. Moreover,594

categorical features are assumed to be finite and595

text-representable. As a result, SPADA cannot gen-596

erate open-domain text or novel tokens outside the597

original dataset; instead, it selects from a fixed set598

of observed values. We also note that this limitation599

is shared by existing methods such as TVAE and600

SynTab, which are similarly restricted to structured601

tabular data.602

Despite these limitations, SPADA remains603

broadly applicable and offers significant improve-604

ments in efficiency and effectiveness over existing605

approaches. The observed limitations either have606

minimal empirical impact or are inherent to the607

general problem setting, rather than specific to our608

solution. Therefore, we argue that they do not di-609

minish the core contributions of our work.610
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A Theory Analysis883

A.1 Asymptotic Consistency of the KDE with884

Gaussian Kernel885

Problem Setup Given a target feature fj ∈ F886

and its parent features F̂fj ⊆ F . For the dataset887

T = {ti}ni=1, we first retrieve a subset T̂ via fuzzy888

matching on F̂fj :889

T̂ =

{
ti ∈ T

∣∣∣∣Dist
(
vi,F̂fj

, v∗
F̂fj

)
≤ ϵ

}
, (14)890

where v∗
F̂fj

are the parent feature values generated,891

and Dist(·) combines Hamming distance for cat-892

egorical features and L1 distance for numerical893

features, as we mentioned in §3.3.1.894

The conditional density of fj is then estimated895

via Gaussian KDE on T̂ :896

f̂(vj |{vk}) =
1

|T̂ |b

∑
ti∈T̂

exp
(
− (vj−vij)

2

2b2

)
√
2π

,

(15)897

where b > 0 is the bandwidth.898

Key Assumptions899

A1. The real conditional density f(vj |{vk}) is900

twice continuously differentiable.901

A2. The bandwidth b → 0 and |T̂ |b → ∞ as902

n → ∞.903

A3. The fuzzy matching tolerance ϵ → 0 such that904

T̂ asymptotically covers the real conditional905

support.906

Bias-Variance Decomposition The pointwise907

MSE is:908

MSE = E
[(

f̂(vj |{vk})− f(vj |{vk})
)2]

= Bias2 + Var.
(16)909

Bias Analysis Using Taylor expansion (Bishop,910

2006), we have:911

Bias = E[f̂(vj |{vk})]− f(vj |{vk}) (17)912

=
b2

2

∂2f

∂v2j
(vj |{vk})

∫
u2K(u)du+ o(b2)

(18)

913

=
b2

2

∂2f

∂v2j
(vj |{vk}) + o(b2). (19)914

Variance Analysis

Var = E
[
f̂(vj |{vk})2

]
−
(
E[f̂(vj |{vk})]

)2
(20)

915

=
1

|T̂ |b

(∫
K(u)2du

)
f(vj |{vk}) (21) 916

+ o

(
1

|T̂ |b

)
(22) 917

=
1

|T̂ |b
√
4π

f(vj |{vk}) + o

(
1

|T̂ |b

)
. (23) 918

Consistency Proof Under assumptions A1-A3, 919

the Gaussian KDE estimator is asymptotically con- 920

sistent: 921

lim
n→∞

E
[∣∣∣f̂(vj |{vk})− f(vj |{vk})

∣∣∣2] = 0.

(24) 922

1. Bias Convergence: 923

|Bias| ≤ C1b
2 + o(b2) → 0 as b → 0. (25) 924

2. Variance Convergence: 925

Var ≤ C2

|T̂ |b
+ o

(
1

|T̂ |b

)
→ 0

if |T̂ |b → ∞.

(26) 926

3. MSE Dominance: Choosing b ∼ |T̂ |−1/5 927

yields: 928

MSE = O
(
|T̂ |−4/5

)
→ 0 as |T̂ | → ∞. (27) 929

A.2 Conditional Likelihood Lower Bound 930

Analysis for Conditional Normalizing 931

Flows 932

Problem Setup We model the conditional dis- 933

tribution p(vj |{vk : fk ∈ F̂fj}) via Conditional 934

NFs. Let z ∼ N (0, I) be the latent variable, and 935

fθ : R× R|F̂fj
| → R be the invertible transforma- 936

tion conditioned on parent feature values. 937

Change of Variables Theorem Following 938

Eq. (12), the log-likelihood is given by: 939

log p(vj |{vk}) = log pZ(z) + log

∣∣∣∣∣det ∂f−1
θ

∂vj

∣∣∣∣∣
(28) 940

where z = f−1
θ (vj |{vk}). 941
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Figure 5: Comparison of synthesis performance using parent-only conditioning vs. ancestor-aware conditioning
strategies. To facilitate comparison, we multiplied the MSE values by a factor of 10.

Lipschitz-Constrained Transformation To en-942

sure a stable gradient propagation, we constrain943

each layer f (i)
θ in our flow to be L-Lipschitz con-944

tinuous (Adler and Lunz, 2018):945

∥f (i)
θ (z(i−1)|{vk})− f

(i)
θ (z′(i−1)|{vk})∥

≤ L∥z(i−1) − z′(i−1)∥
(29)946

Lower Bound Derivation 1. Layer-wise Jaco-947

bian Bound: For each layer, the Lipschitz continu-948

ity (Kingma and Dhariwal, 2018) implies:949 ∣∣∣∣∣det ∂f
(i)
θ

∂z(i−1)

∣∣∣∣∣ ≥ L−d
i (30)950

where d is the dimension of z(i−1).951

2. Recursive Likelihood Decomposition:952

log p(vj |{vk}) = log pZ(z0)+ (31)953

K∑
i=1

log

∣∣∣∣∣det ∂f
(i)−1
θ

∂z(i)

∣∣∣∣∣ (32)954

≥ log pZ(z0)−
K∑
i=1

d logLi (33)955

3. Equality Condition: Here, the bound be-956

comes tight when each layer achieves exact Lips-957

chitz constant Li = 1.958

Stability Analysis The gradient of the loss 959

L(θ) = − log p(vj |{vk}) satisfies: 960

∥∇θL∥ ≤
√
K · max

1≤i≤K

(
∥Ji∥F
Li

)
(34) 961

where Ji is the Jacobian of layer f (i)
θ . 962

Using the Lipschitz property and the chain rule: 963

∥∇θL∥ ≤
K∑
i=1

∥∥∥∥∥ ∂L
∂f

(i)
θ

∥∥∥∥∥ · ∥∇θf
(i)
θ ∥

≤
√
K ·max

i

(
∥Ji∥F
Li

) (35) 964

Implementation Consistency 965

• SwiGLU Parameterization: The SwiGLU 966

activation σ(xW )⊙ xV naturally satisfies L- 967

Lipschitz continuity with L = ∥W∥∥V ∥ 968

A.3 Time Complexity Optimization by Using 969

BallTrees 970

Compared to the original brute-force search, the 971

BallTree significantly improves efficiency. Given 972

a dependency set F̂fj of size d = |F̂fj |, the time 973

complexity of brute-force search is: 974

O(N · d). (36) 975
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TabSyn Gemini 2.0 Flash Deepseek-R1 Claude 3.7 Sonnet GPT-4o

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

DT (↑) 77.58% 0.70 78.37% 0.71 77.14% 0.69 80.13% 0.73 78.95 0.71
RF (↑) 83.67% 0.77 84.99% 0.77 85.05% 0.77 85.13% 0.78 84.14 0.75
LR (↑) 80.21% 0.70 80.05% 0.65 80.43% 0.65 80.31% 0.67 78.61 0.56

Table 4: Performance of classifiers trained on synthetic data for income-level classificaton. Bold indicates the best
performance, and underline indicates the second-best. “ACC” stands for accuracy.

1 2 3 4

1
2

3
4

1.00 1.00 0.93 0.93
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Figure 6: Heatmap of Jaccard similarities between the
dependency graphs constructed from four annotation
runs of the GPT-4o model. The high similarity values
indicate strong consistency.

In contrast, BallTrees reduce the average-case976

complexity of approximate nearest neighbor search977

to:978

O(logN + d), (37)979

under the assumption that the number of dependen-980

cies d is much smaller than dataset size N .981

B Ablation Study982

To further demonstrate the effectiveness of our pro-983

posed methods, we conduct three ablation studies984

to answer the following questions:985

1. Are the LLM-based annotations robust?986

2. Does the bandwidth significantly affect the987

performance of KDE-based synthesis?988

3. Is the dependency relation transitive in the989

generated dependency graph?990

Cross-LLM Annotation. As mentioned in §7,991

the accuracy of annotations produced by LLMs992

could theoretically affect the effectiveness of our993

approach. To assess this, we evaluated the robust-994

ness of the NL-based method by testing the down-995

stream performance of synthetic data generated us-996

ing annotations derived from different LLMs, while997

keeping the training and sampling settings exactly 998

the same. We selected the Adult dataset—on which 999

all baselines perform well according to Table 1 for 1000

this experiment. We employed Deepseek-R1 (Guo 1001

et al., 2025), Gemini 2.0 Flash (Team et al., 2023), 1002

and Claude 3.7 Sonnet (Anthropic, 2024), and com- 1003

pared them with the best-performing baseline, Tab- 1004

Syn. The results are presented in Table 4. SPADA 1005

remains effective regardless of which LLM anno- 1006

tation is used. Notably, the best performance was 1007

achieved using annotations from Claude 3.7 Sonnet, 1008

which outperformed other baselines across nearly 1009

all evaluation metrics. This suggests that for a 1010

given dataset, there may not be a single unique 1011

set of complete dependency relations, further con- 1012

firming the robustness of SPADA to variations in 1013

LLM-generated annotations. 1014

Repeated Annotation. We conducted four re- 1015

peated annotations using GPT-4o on the 16 mixed- 1016

type features in the Adult Income dataset. We then 1017

computed the pairwise Jaccard similarity between 1018

the resulting dependency graphs, as shown in Fig- 1019

ure 6. We observe a high degree of consistency 1020

across multiple annotations, with the first and sec- 1021

ond annotations, also the third and fourth, produc- 1022

ing identical dependency graphs. This highlights 1023

the reliability of using LLMs for dependency anno- 1024

tation. 1025

Scott’s Rule vs Silverman’s Rule. For the 1026

KDE-based method, the bandwidth h in Eq. (10) 1027

is selected using two widely adopted empirical 1028

rules: Scott’s rule (Scott, 2015) and Silverman’s 1029

rule (Silverman, 2018): 1030

hScott = n−1/(d+4), (38) 1031
1032

hSilverman =

(
4

d+ 2

)1/(d+4)

n−1/(d+4), (39) 1033

where n is the number of samples and d is the 1034

dimensionality of the feature space. 1035

The comparison results are shown in Figure 7. 1036

We observe that the downstream performance is 1037
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Figure 7: Impact of Bandwidth Selection on KDE-based Synthesis: Scott’s rule vs. Silverman’s rule.

Dataset TVAE CTGAN GReaT TabSyn Ours (w/KDE) Ours (w/NF)

Income (↓) 77.62 ± 0.63% 63.88 ± 0.49% 100% 52.74 ± 0.58% 75.96 ± 0.65% 67.05 ± 0.70%
HELOC (↓) 74.33 ± 1.20% 70.49 ± 6.81% 67.91 ± 1.13% 52.59 ± 1.22% 58.30 ± 0.72% 66.38 ± 0.83%
Iris (↓) 83.33 ± 7.97% 82.92 ± 10.72% 68.33 ± 8.06% 52.08 ± 3.17% 65.42 ± 7.03% 65.52 ± 7.68%
Housing (↓) 59.65 ± 1.60% 62.70 ± 1.07% 58.14 ± 1.35% 50.48 ± 0.48% 76.75 ± 1.15% 68.33 ± 0.95%

Mean (↓) 73.73 69.99 73.59 51.97 69.05 68.92

Table 5: Discriminator measure with a 5-fold cross-validation. Lower accuracy values indicate that the discriminator
struggles to distinguish synthetic records from real data.

similar regardless of the choice of bandwidth rule.1038

This indicates that the effectiveness of KDE-based1039

synthesis is not sensitive to hyperparameter selec-1040

tion, further supporting the robustness of SPADA.1041

Parent-only Conditioning vs Ancestor-aware1042

Conditioning. For the NF-based method, we1043

compare two strategies for conditioning on feature1044

dependencies: one that conditions only on direct1045

parents, and another that conditions on all ances-1046

tors. As shown in Figure 5, both approaches yield1047

nearly identical downstream performance. This1048

suggests that the constraints are not transitive, vali-1049

dating the precision of our dependency annotation.1050

It further confirms the reliability of using LLMs to1051

construct accurate dependency graphs.1052

C More Experiment1053

Realism. We trained a support vector ma-1054

chine (Cortes and Vapnik, 1995) using 5-fold1055

cross-validation to distinguish between the original1056

dataset T and the synthetic dataset T ′. The accu-1057

racy serves as the discriminator measure. High-1058

quality synthetic data should be difficult for the1059

discriminator to distinguish from real data. The1060

results are shown in Table 5.1061

Based on Table 5, we observe that SPADA pro-1062

duces synthetic data that substantially confuses1063

classifiers trained on real data, indicating a high1064

degree of realism. Although our approach underper-1065

forms TabSyn in terms of the average discriminator1066

accuracy, it still demonstrates an advantage over1067

the other baselines. Theoretically, for perfectly1068

realistic data, the discriminator accuracy should1069

approach 50%. Among all methods, only TabSyn, 1070

which is based on diffusion models, achieves this 1071

ideal. We attribute this to TabSyn’s use of a score 1072

function in the latent space, which guides the gener- 1073

ation process toward high-probability regions and 1074

thus produces samples closely aligned with the 1075

original data distribution. However, this close re- 1076

semblance may also result in considerable feature 1077

overlap between real and synthetic samples, poten- 1078

tially raising privacy concerns. 1079

Synthetic Data Size. To demonstrate that the 1080

classifier/regressors used in our evaluation have 1081

been sufficiently trained on our augmented data, 1082

we assessed the impact of varying augmentation 1083

sizes on model performance. 1084

As shown in Figure 8, we observe that the perfor- 1085

mance of nearly all classifier/regressors converges 1086

to their respective optima when the size of syn- 1087

thetic data reaches approximately 0.5 times that of 1088

the original dataset. This finding supports that all 1089

evaluation models in our experiments have been ad- 1090

equately trained, further validating the soundness 1091

and reproducibility of our experimental setup. 1092

Visualization. To compare the distributional dif- 1093

ferences between our synthetic data and the original 1094

data, we visualize the density distributions of the 1095

four numerical features used to determine the iris 1096

species in the Iris dataset—namely, the lengths and 1097

widths of the Sepal and Petal. As shown in Fig- 1098

ure 9, we observe that both of our methods are able 1099

to accurately capture the distributional patterns of 1100

the original data. 1101
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(a) Adult Income (b) HELOC

(c) Iris (d) Housing

Figure 8: Model performance with increasing synthetic data (ratio to the original dataset size).

Dataset Domain #Samples #Features Task #Classes

Income (Becker and Kohavi, 1996) Social 48,842 15 Classification 2
HELOC (Oliabev, 2022) Finance 10,459 24 Classification 2
Iris (Fisher, 1936) Biology 150 5 Classification 3
Housing (Nugent, 2018) Real Estate 20,640 10 Regression N/A
CDC (Burrows, 2017) Healthcare 253,680 20 Classification 3
Mushroom (Wagner et al., 2021) Biology 61,068 19 Classification 2

Table 6: The statistics of the datasets employed in our experiments.

D Reproducibility1102

D.1 Hardware Environment1103

The experimental hardware environment we used1104

is shown in Table 7.

Memory 1012G
CPU AMD EPYC 7763 2.45G Hz
GPU 4 x NVIDIA A100 80G
Operating Ubuntu
System 20.04.6 LTS

Table 7: Experimental hardware environment.1105

D.2 Training Details1106

In our experiments, the conditional batch normal-1107

ization module is implemented using a single linear1108

layer, a single SwiGLU activation layer, and a layer1109

normalization module. The linear layer contains 1110

128 neurons, with a dropout rate of 0.1. During 1111

training, we employ batch gradient descent with the 1112

AdamW optimizer (Loshchilov and Hutter, 2017), 1113

and the learning rate is set to 5 × 10−4. The ini- 1114

tial input distribution for the normalizing flow NF 1115

is a standard normal distribution, and the kernel 1116

density estimation is based on a standard Gaussian 1117

kernel. The statistics of the datasets used is shown 1118

in Table 6. 1119

D.3 Hyperparameter Search 1120

We adopt a temperature-based sampling strategy to 1121

adjust the sharpness of the predicted distribution 1122

during synthesis. Specifically, given the estimated 1123

density function p(v), we sample from the tem- 1124
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Figure 9: A visualization of the density distributions of Sepal and Petal lengths and widths on the Iris dataset,
comparing the original and synthetic data.

Figure 10: Grid Search for sampling temperature with
our KDE-based method on the Adult Income dataset.
The numbers stand for accuracy on the downsteam task.

pered distribution defined as:1125

pτ (v) =
p(v)1/τ∫
p(u)1/τ du

, (40)1126

where τ > 0 denotes the temperature parameter. A1127

lower τ results in a more peaked distribution (i.e.,1128

less diverse samples), while a higher T smooths1129

the distribution and encourages greater diversity.1130

In Figure 10, we take the Adult Income dataset1131

as an example to illustrate how we tune the tem-1132

perature hyperparameter via grid search. We report1133

the downstream utility of the KDE-based method1134

under different temperature settings, demonstrating1135

the impact of temperature on sample quality and1136

task performance. 1137

E Scalability Analysis 1138

The scalability of tabular augmentation methods 1139

may become crucial when dealing with high- 1140

dimensional datasets. In domains such as ge- 1141

nomics (Kelleher et al., 2013), the feature counts 1142

are extremely high in theory. Our framework in- 1143

herently addresses this challenge through two key 1144

designs: sparse dependency modeling and modu- 1145

lar generation pipelines. 1146

Traditional LLM-based methods incur quadratic 1147

memory overhead in self-attention layers, making 1148

them impractical for datasets with excessive fea- 1149

tures. In contrast, our sparse dependency extraction 1150

reduces pairwise interactions to O(M · k), where 1151

k ≪ M is the average number of parent nodes per 1152

feature (empirically k ≤ 6 across our four datasets). 1153

Topological traversal ensures linear time complex- 1154

ity O(M) during sampling. 1155

E.1 Memory and Storage Optimization 1156

We recommend the following optimizations: 1157

1. Sparse Graph Representation: Use adja- 1158

cency lists for dependency edges, reducing 1159

memory from O(M2) to O(M · k). 1160

2. Parallelized NF Training: Deploy feature- 1161

specific normalizing flows on GPUs, sharing 1162

parameters for categorical features with simi- 1163

lar dependencies. 1164
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Dataset Original TVAE CTGAN Ours (w/NF)

ACC F1 ACC F1 ACC F1 ACC F1

CDC (↑)
DT 73.65% 0.40 71.96% 0.46 71.51% 0.36 71.19% 0.36
RF 83.15% 0.38 82.44% 0.43 82.67% 0.35 82.96% 0.31
LR 82.70% 0.40 81.62% 0.48 81.98% 0.36 82.77% 0.31

Mushroom (↑)
DT 52.49% 0.47 51.30% 0.51 51.38% 0.50 51.79% 0.45
RF 59.22% 0.44 63.96% 0.58 60.57% 0.53 64.06% 0.54
LR 55.97% 0.36 55.96% 0.35 55.88% 0.35 55.97% 0.36

Table 8: Performance of classifiers trained on synthetic data for downstream tasks.

3. On-Demand KDE Sampling: Cache Ball-1165

Tree indices in distributed key-value stores for1166

large datasets.1167

E.2 Practical Limitations and Mitigations1168

While theoretically scalable, two bottlenecks1169

emerge in practice:1170

• LLM Annotation Overhead: Prompting1171

LLMs for a large number of features in-1172

curs prohibitive costs. Future work may use1173

lightweight predictors, e.g., GNN (Scarselli1174

et al., 2008), to bootstrap the process.1175

• Feature Interaction Sparsity: Assumes local1176

dependencies dominate, which holds empir-1177

ically in real-world tabular data (Liu et al.,1178

2023). For systems with global interactions,1179

hybrid architectures combining SPADA with1180

low-rank attention layers (Hu et al., 2022)1181

could be explored.1182

F Experimental Evaluations on1183

Real-world and Large-scale Datasets1184

Based on the scalability discussion above, we con-1185

ducted experiments on two additional large-scale1186

datasets and reported the downstream utility un-1187

der synthetic data, as shown in Table 8. Due to1188

the large scale of the datasets, it was impractical1189

to compare with LLM- and diffusion-based meth-1190

ods. Therefore, we compared against TVAE and1191

CTGAN.1192

CDC Diabetes Health Indicators. The CDC1193

dataset (Burrows, 2017) comprises over 250,0001194

samples, containing healthcare statistics and1195

lifestyle survey responses, along with diabetes di-1196

agnoses. It includes 35 features covering demo-1197

graphics and laboratory test results. The task is1198

to predict whether a patient is healthy, Diabetes1199

mellitus Typ 1, or Diabetes mellitus Typ 2.1200

Mushroom. The Mushroom dataset (Wagner 1201

et al., 2021) comprises over 61,000 samples, con- 1202

taining biological features of mushrooms for binary 1203

classification into edible and poisonous. 1204

The experiments conducted on larger-scale 1205

datasets further support the conclusions drawn 1206

from Table 1, demonstrating the scalability of 1207

SPADA. 1208

G Prompt Used 1209

The prompt template we used is shown in Table 9. 1210

LLM Prompt

Given a tabular dataset with the following description:
“{description}”

The dataset holds the following features, represented
in numbers or text strings:
{numerical_feature + categorical_feature}

Please list the constraints for each feature based
on the others. Return the results in the following
format: for each feature, first output the feature name
followed by a colon, and then a set of constraints
represented by square brackets. The ‘->‘ symbol
indicates that the former is the cause and the latter is
the effect. Different constraints should be separated
by commas.

Here is an example:
Feature A: [Feature B->Feature A, Feature
C->Feature A]
This means that both Feature B and Feature C
determine the range of Feature A.

Please leave it blank if there is no relation between a
feature and others.

Table 9: Prompt used for dependency annotation.

H Dependencies Extracted 1211

The follows are the complete dependencies ex- 1212

tracted from the datasets we used, as shown in 1213

Table 10, 11, 12, 13, 14 and 15. 1214
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Feature Dependencies

Sepal-
Length-Cm

—

Sepal-Width-
Cm

—

Petal-Length-
Cm

—

Petal-Width-
Cm

—

Species SepalLengthCm, SepalWidthCm, Petal-
LengthCm, PetalWidthCm → Species

Table 10: Extracted Feature Dependencies for Iris
Dataset.

Feature Dependencies

age —
fnlwgt —
educational-
num

education → educational-num

capital-gain occupation → capital-gain
capital-loss occupation → capital-loss
hours-per-
week

occupation → hours-per-week

workclass occupation, education → workclass
education educational-num → education
marital-
status

age → marital-status

occupation education, workclass → occupation
relationship marital-status, gender → relationship
race —
gender —
native-
country

—

income education, workclass, occupation, capital-
gain, capital-loss, hours-per-week → income

Table 11: Extracted Feature Dependencies for Income
Dataset.

Feature Dependencies

cap-diameter —
stem-height —
stem-width —
class cap-shape, cap-surface, cap-color, does-

bruise-or-bleed, gill-attachment, gill-
spacing, gill-color, stem-root, stem-
surface, stem-color, veil-type, veil-color,
has-ring, ring-type, spore-print-color,
habitat, season → class

cap-shape —
cap-surface —
cap-color —
does-bruise-or-
bleed

—

gill-attachment —
gill-spacing —
gill-color —
stem-root —
stem-surface —
stem-color —
veil-type —
veil-color —
has-ring —
ring-type —
spore-print-color —
habitat —
season —

Table 12: Extracted Feature Dependencies for
Mushroom Dataset.
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Feature Dependencies

longitude —
latitude longitude → latitude
housing_median_age longitude, latitude, ocean_proximity → housing_median_age
total_rooms population, households, median_income → total_rooms
total_bedrooms total_rooms, population, households → total_bedrooms
population households, total_rooms, total_bedrooms → population
households population, total_rooms, total_bedrooms → households
median_income longitude, latitude, ocean_proximity → median_income
median_house_value median_income, housing_median_age, ocean_proximity, latitude, longitude → me-

dian_house_value
ocean_proximity longitude, latitude → ocean_proximity

Table 13: Extracted Feature Dependencies for Housing Dataset.

Feature Dependencies

ExternalRiskEstimate NumSatisfactoryTrades, PercentTradesNeverDelq, NumTotalTrades, Num-
Trades90Ever2DerogPubRec → ExternalRiskEstimate

MSinceOldestTradeOpen —
MSince-Most-Recent-Trade-
Open

MSinceOldestTradeOpen → MSinceMostRecentTradeOpen

AverageMInFile MSinceOldestTradeOpen, MSinceMostRecentTradeOpen → AverageMInFile
NumSatisfactoryTrades NumTotalTrades, PercentTradesNeverDelq → NumSatisfactoryTrades
Num-Trades-60-Ever-2-Derog-
Pub-Rec

NumTotalTrades → NumTrades60Ever2DerogPubRec

Num-Trades-90-Ever-2-Derog-
Pub-Rec

NumTotalTrades → NumTrades90Ever2DerogPubRec

PercentTradesNeverDelq NumSatisfactoryTrades, NumTotalTrades → PercentTradesNeverDelq
MSinceMostRecentDelq MSinceMostRecentTradeOpen → MSinceMostRecentDelq
Max-Delq-2-Public-Rec-Last-
12M

NumTrades60Ever2DerogPubRec, NumTrades90Ever2DerogPubRec →
MaxDelq2PublicRecLast12M

MaxDelqEver MaxDelq2PublicRecLast12M → MaxDelqEver
NumTotalTrades NumSatisfactoryTrades, NumTrades60Ever2DerogPubRec, Num-

Trades90Ever2DerogPubRec → NumTotalTrades
Num-Trades-Open-in-Last-
12M

MSinceMostRecentTradeOpen, NumTotalTrades → NumTradesOpeninLast12M

PercentInstallTrades NumInstallTradesWBalance, NumTotalTrades → PercentInstallTrades
M-Since-Most-Recent-Inqexc-
l7days

—

NumInqLast6M MSinceMostRecentInqexcl7days → NumInqLast6M
NumInqLast6Mexcl7days NumInqLast6M → NumInqLast6Mexcl7days
Net-Fraction-Revolving-
Burden

NumRevolvingTradesWBalance → NetFractionRevolvingBurden

NetFractionInstallBurden NumInstallTradesWBalance → NetFractionInstallBurden
Num-Revolving-Trades-W-
Balance

NumTotalTrades → NumRevolvingTradesWBalance

Num-Install-Trades-W-Balance NumTotalTrades → NumInstallTradesWBalance
NumBank-2-Natl-Trades-W-
High-Utilization

NumRevolvingTradesWBalance → NumBank2NatlTradesWHighUtilization

PercentTradesWBalance NumRevolvingTradesWBalance, NumInstallTradesWBalance, NumTotalTrades →
PercentTradesWBalance

RiskPerformance ExternalRiskEstimate, PercentTradesNeverDelq, NumTrades90Ever2DerogPubRec,
MaxDelqEver, NetFractionRevolvingBurden, NumInqLast6M → RiskPerformance

Table 14: Extracted Feature Dependencies for HELOC Dataset
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Feature Dependencies

Diabetes_012 HighBP, HighChol, BMI, Smoker, Stroke, HeartDiseaseorAttack, PhysActivity, Fruits,
Veggies, HvyAlcoholConsump, GenHlth, MentHlth, PhysHlth, DiffWalk, Age, Sex,
Income, Education → Diabetes_012

HighBP BMI, Age, Sex, PhysActivity, HeartDiseaseorAttack, GenHlth, Income → HighBP
HighChol BMI, Age, HighBP, PhysActivity, GenHlth, Income → HighChol
CholCheck AnyHealthcare, Income, Education → CholCheck
BMI PhysActivity, Fruits, Veggies, Sex, Age → BMI
Smoker Age, Sex, Education, Income → Smoker
Stroke HighBP, HeartDiseaseorAttack, Age, GenHlth, BMI → Stroke
HeartDiseaseorAttack HighBP, HighChol, Stroke, Age, BMI → HeartDiseaseorAttack
PhysActivity Age, Sex, Income, Education → PhysActivity
Fruits Income, Education, Sex → Fruits
Veggies Income, Education, Sex → Veggies
HvyAlcoholConsump Sex, Age, Income → HvyAlcoholConsump
AnyHealthcare Income, Education → AnyHealthcare
NoDocbcCost Income, AnyHealthcare → NoDocbcCost
GenHlth PhysHlth, MentHlth, DiffWalk → GenHlth
MentHlth Income, Age, Sex → MentHlth
PhysHlth Age, Income, Sex → PhysHlth
DiffWalk Age, BMI, HeartDiseaseorAttack → DiffWalk
Sex —
Age —
Education —
Income —

Table 15: Extracted Feature Dependencies for CDC Diabetes Dataset.
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