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ABSTRACT

Due to the advances in deep learning and data accessibility, image steganogra-
phy has become a critical and widely-used tool for information hiding. Image
steganography mainly embeds and recovers secret data within cover images. With
the increasing variety and volume of data, multimodal secret data steganogra-
phy is urgently required. However, the framework of existing image steganogra-
phy often directly embeds multimodal secret information into cover images in a
modality-by-modality and sequential manner, leading to unsatisfactory steganog-
raphy performance. This implies that current image steganography is a modal-
specific framework, which is almost effective for hiding the specific modal se-
cret data. This paper presents a unified framework for multimodal secret
data steganography, which is capable of concurrently concealing image, text,
and audio data within a cover image and permits reversible recovery. How-
ever, two principal challenges arise: (1) The catastrophic forgetting seriously
undermines the consistent performance across various modalities of secret data
steganography; (2) The mitigation of catastrophic forgetting further induces sig-
nificant interference originating from intra- and inter-modal information conflicts
among distinct modal secret data and cover images, consequently compromising
steganography fidelity. To achieve coherent multimodal secret data knowledge
preservation and interaction, our unified framework firstly establishes a co-
ordinated coupling between steganography tasks and continual learning to
preserve learned multimodal knowledge for maintaining model learning capac-
ity and performance stability. Subsequently, a Multi-Gap Collaborative Fu-
sion mechanism utilizes cover images as anchors to effectively integrate mul-
timodal knowledge, resolving intra- and inter-modal conflicts while bolstering
security through directed secret data customization and encryption. Experiments
demonstrate that our model can achieve secure and high-quality multimodal secret
data steganography, outperforming existing state-of-the-art (SOTA) methods.

1 INTRODUCTION

The widespread adoption of multimodal data
across various fields has heightened the need
for its secure transmission to prevent unau-
thorized access. Given the prevalence of im-
age data and rising security requirements, im-
age steganography has emerged as a criti-
cal domain within information security. This
steganography system is capable of concealing
secret data within ordinary cover images with
complete visual and statistical imperceptibility,
all while guaranteeing lossless data recovery.
Conventional image steganography methods,
such as Least Significant Bit (LSB) encod-
ing, are mainly designed for text steganogra-
phy tasks. They usually modify the low-order

Figure 1: Comparative Analysis: (a) existing
models vs. (b) the proposed model. Existing
methods are modal-specific and require retrain-
ing for each new modal, whereas the proposed
model achieves multimodal secret data conceal-
ment within a unified model.

bits of pixel values to hide secret data. The advent of Deep Neural Networks (DNNs) has ac-
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Figure 2: (a) Illustration of Catastrophic Forget-
ting. The first two columns show performance for
image and text data, respectively. Using the text–
trained model on image data (right column) shows
severe catastrophic forgetting in the baseline, with
significant performance drop. Conversely, the pro-
posed method sustains robust cross-modal perfor-
mance. (b) Under parameter perturbations (±0.5
to 10%; ±0.25 to 20% parameters), steganography
performance was significantly compromised, con-
firming high parameter sensitivity.

Figure 3: Intra- and Inter-modal informational
discrepancies, exemplified by text, audio, and
image. (a) Heatmap distributions exhibit sig-
nificant divergences across text, audio, and im-
age modals. (b) Intra-modal and inter-modal
cosine similarity exhibit marked dissimilarity
patterns across and within modals. (c) The
trained model exhibits significant performance
degradation on unseen modals. These findings
collectively demonstrate underlying informa-
tional conflict inherent in multimodal data.

celerated the development of learning-based steganography methods and significantly expanded the
variety of concealable data types. Current methods can conceal diverse data, including text Lan et al.
(2023); Ma et al. (2025); Xu et al. (2025), image Baluja (2017); Jing et al. (2021); Yu et al. (2024b);
Yang et al. (2024); Zhou et al. (2025), audio Soundarya et al. (2018); Krishnan et al. (2025), video
Gandikota et al. (2022) and so on. However, current steganography methods are mainly tailored
to specific modal and exhibit limited adaptability in increasingly multimodal environments. This
limitation forces extensive retraining when encountering new modal data (as depicted in Figure 1),
leading to inefficient and non-scalable systems.

To tackle modal-specific constraints and accommodate multimodal environments, this paper pro-
poses a novel unified multimodal secret data steganography framework that conceals three
major modals (image, text, and audio) within cover images using a single model. However, two
critical challenges must be resolved: (1) Firstly, multimodal secret data concealment requires the
model capable of sustainable learning across diverse modals. Within a steganography model trained
on prior modals, data from a novel modality represents a distinct category and constitutes a separate
steganography task. When learning a new task (Task N ), parameter optimization interferes with
knowledge acquired from previous tasks (Tasks 1, 2, · · · , N − 1). However, steganography systems
are subject to high parameter sensitivity, i,e., even minor adjustments can disrupt the model’s ability
to extract previously recoverable data. This interference leads to catastrophic performance degra-
dation on established tasks and complete erosion of system reliability, as illustrated in Figure 2,
ultimately resulting in catastrophic forgetting. (2) Furthermore, mitigating catastrophic forgetting
during concurrent concealing multimodal secret data within a single image induces competition for
spatial steganography resources. As illustrated in Figure 3, significant information conflicts ex-
ist among these heterogeneous data types. Such conflicts cause substantial intra- and inter-modal
interference among the concealed multimodal secret data. This will greatly degrade the steganog-
raphy fidelity and pose critical security risks to the concealed multimodal secrets. Consequently,
these two issues, coupled with the objective of multimodal secret data steganography, form a
self-reinforcing cycle of performance degradation that represents a core challenge in this field.

To address these issues, the proposed method incorporates multimodal knowledge preservation
and cross-modal interaction. Inspired by the capacity of continual learning to emulate human
lifelong cognitive processes, this study initiates by systematically bridging steganography tasks and
continual learning paradigms to overcome single-modal constraints and prevent catastrophic forget-
ting. This coupling preserves acquired multimodal knowledge, maintains model plasticity, ensures
performance stability, and effectively mitigates catastrophic forgetting. Furthermore, both the modal
and content of secret data undergo dynamic variation in multimodal secret data steganography. To
mitigate both intra- and inter-modal information conflicts within such variable data, a Multi-Gap
Collaborative Fusion mechanism is further proposed, which employs cover images, owing to their
relative stability, as anchors to directionally refine the secret data. This approach enables targeted
customization and encryption of secret data aligned with anchor characteristics, thereby supporting
cross-modal interaction while simultaneously reducing conflicts and increasing security. Experi-
mental results demonstrate that the proposed model surpasses SOTA methods in multimodal secret
data steganography performance, capacity, and security. The primary contributions of this work are:
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• We propose a novel unified multimodal secret data steganography framework that
firstly achieves simultaneous learning of multimodal secret data steganography tasks within
a unified model and delivers superior performance validated by extensive experiments.

• We pioneer achieve preservation of acquired multimodal knowledge, the sustained re-
tention of learning capacity, and consistency of performance in dynamic multimodal
settings through a structured linkage between image steganography and continual learning.

• We propose a Multi-Gap Collaborative Fusion mechanism to directionally refine the mul-
timodal secret data with cover images serve as anchors, thereby enabling cross-modal in-
teraction, mitigating intra- and inter-modal information conflicts, and enhancing security.

2 RELATED WORK

2.1 IMAGE STEGANOGRAPHY

Image steganography seeks to conceal data within a cover image, ensuring the visual imperceptibil-
ity of the stego image and the perfect recovery of the secret. Traditional techniques, such as the LSB
Mielikainen (2006) method, were primarily designed for textual data. The advent of Deep Neural
Networks (DNNs) has driven the development of learning-based steganography methods, leading to
the proposal of high-performance text-hiding methods like SteganoGAN Zhang et al. (2019), FNNS
Kishore et al. (2022), LISO Chen et al. (2023), MDDM Xu et al. (2025), and so on. Subsequently,
the scope of steganography has expanded beyond text to include image hiding, with techniques such
as DDH Baluja (2017), UDH Zhang et al. (2020), various INN-based approaches Lu et al. (2021);
Jing et al. (2021); Guan et al. (2022); Zhang et al. (2024a;b); Zhou et al. (2025), and diffusion
model-based methods Yu et al. (2024b); Yang et al. (2024). The technology has been expanded to
incorporate diverse modals such as audio Soundarya et al. (2018); Huu et al. (2019); Nokhwal et al.
(2023); Krishnan et al. (2025), video Gandikota et al. (2022), and so on.

Conventional methods, however, are constrained to static modality configurations, limiting their
applicability amidst proliferating multimodal data. In contrast, the proposed framework supports
multimodal secret data, thereby significantly broadening its practical applicability.

2.2 CONTINUAL LEARNING

Continual learning is a sequential learning framework and aims to empower machine learning mod-
els to learn continually from new data, while building upon previously acquired knowledge without
forgetting. Formally, given a task sequence T = [D1, D2, · · · , DT ] of size T , whereDt, 1 ≤ t ≤ T
is the t-th task. The dataset for t-th task Dt = {(xt,i, yt,i)}Nt

i=1 consists of input samples Xt and
target samples Yt, where Nt represents the number of samples in the t-th task. For a neural network
f trained with the task T ′ = [D1, D2, · · · , Dt−1], the task Dt is a new task. The objective is to
learn the new task while maintaining performance on old tasks. Specifically, given an unseen test
sample x ∈ X from any trained tasks, the trained model f should perform well in inferring the label
y = f(x) ∈ Y . More releated work is documented in Appendix B.

This work systematically develops a novel framework for continuous multimodal secret data
steganography to resolve intra- and inter-modal information conflicts and catastrophic forgetting.
Beyond addressing these dual challenges, the integration of Multi-Gap Collaborative Fusion reduces
cover-secret discrepancy, thereby mitigating inherent information conflicts.

3 PROPOSED METHOD

3.1 UNIFIED FRAMEWORK

This work proposes a novel multimodal steganographic framework, as illustrated in Figure 4. Lever-
aging the established effectiveness of invertible neural networks in frequency-domain steganography
Jing et al. (2021); Guan et al. (2022), the proposed method first processes a cover image xcov via
discrete wavelet transform (DWT) to derive a latent representation zcov . Simultaneously, a con-
cealed payload xsec is transformed into a latent representation zsec of compatible dimensionality.
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Figure 4: The overall structure of the proposed model. In the conceal stage, multimodal secret
data xsec undergoes customization align with anchor xcov . The customized secret latent representa-
tion z̃sec is concatenated with the cover image xcov and processed by an invertible neural network
(INN)-based steganography network, yielding the stego image xstego. The reveal process inversely
executes this conceal and optimize pipeline to reveal the multimodal secret data xrev .

A Multi-Gap Collaborative Fusion mechanism is subsequently employed to optimize zsec utiliz-
ing a symmetric key ksym and the cover latent zcov , thereby generating an enhanced latent secret
representation z̃sec. This optimized representation z̃sec, along with zcov , is processed by the invert-
ible steganography network to produce the stego latent representation zstego. The final stego image
xstego is reconstructed by applying the inverse wavelet transform (IWT) to zstego. The reveal pro-
cess executes the inverse sequence of operations to recover the original secret payload xrev . The
entire pipeline is presented in Appendix A.

3.2 MULTIMODAL SECRET DATA CONTINUOUS STEGANOGRAPHY

We begin with establishing the definition of task sequence and defining the core problem of multi-
modal secret data continuous steganography.

Task Sequence. Let C = {xicov|1 ≤ i ≤ Nt} denote the cover images, St = {xt,isec|1 ≤ i ≤ Nt}
the secret data of the t-th modal, and Y t = {xt,istego|1 ≤ i ≤ Nt} the stego images obtained after
embedding the secret data of the t-th modal, where Nt represents the number of samples in the
t-th modal. The dataset for the steganography task corresponding to the t-th modal is defined as
Dt = {(xicov, xt,isec, x

t,i
stego|1 ≤ i ≤ Nt}, where t = 1, 2, · · · , T . The sequence of multimodal

secret data continuous steganography tasks is defined as T = [D1, D2, · · · , DT ], and the set of
task identifiers is given by T = [1, 2, · · · , T ] and ∀t ∈ T, T t = Dt.

It should be noted that in cover-based image steganography, the stego image is required to be per-
ceptually indistinguishable from the cover image, and thus could theoretically be represented by the
same symbol. However, for clarity and precision in exposition, distinct symbols C and Y are used
to denote the set of cover images and the set of stego images, respectively.

In the multimodal environment under investigation, the steganography of secret data from each
modal is conceptualized as a distinct task. Consequently, the involved modalities collectively con-
stitute a sequence of steganographic tasks. In the proposed method, image concealing is explicitly
designated as the first task within the steganography task sequence.

Problem Definition. Given a sequence of multimodal secret data to be concealed, consider the
secret data associated with the t-th modal. Relative to the steganography model trained on data from
preceding modals, the data from t-th modal constitutes an entirely novel type, thereby defining a new
steganography task. The objective of multimodal secret data continuous steganography is to acquire
proficiency in this new task while preserving the model’s performance on previously learned tasks,
thus mitigating catastrophic forgetting. Specifically, for an unseen test sample xsec ∈ S drawn from
any trained task and a cover image xcov ∈ C, the optimized multimodal secret data steganography
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model H̃ : C × S → Y should demonstrate effective performance in both the conceal process

xstego = H̃(xsec, xcov) ∈ Y,

and the reveal process
xrev = H̃−1(xstego, za) ∈ S,

where H̃−1 is the reveal process of H̃.

This section subsequently describes the multimodal continuous data steganography task into two
components: Initial Steganography Task and Forthcoming Steganography Task.

3.2.1 INITIAL STEGANOGRAPHY TASK

The initial steganography task, targeting the concealment of a single modal secret data. Following
the pipeline of HiNet Jing et al. (2021) and DeepMIH Guan et al. (2022), we utilize the invertible
neural network as the base model. For the initial task, unimodal steganography task is implemented
via the base model. Cover image spectral coefficients zcov derived via discrete wavelet transform
and customized secret data representations z̃sec, constitute the input arguments.

The conceal process of the single modal steganography modelH is defined as:{
zicov = zi−1

cov ⊙ exp(α(ϕ(z̃i−1
sec ))) + ψ(z̃i−1

sec ),

z̃isec = z̃i−1
sec ⊙ exp(α(φ(zicov))) + χ(zicov),

(1)

where ⊙ represents the Hadamard product and exp(•) is the exponential function. zcov and z̃sec
denote cover and concealed secrets latent representations, respectively. The scaling factor α imple-
ments a sigmoid function scaled by constant c. Learnable transformations ϕ(•), ψ(•), φ(•), and
χ(•) are neural-parameterized functions, instantiated via DenseNet Huang et al. (2017).

The conceal process outputs the stego latent representation zstego and redundant information zr.
After that, zstego is transformed back to the spatial domain and obtain the final stego image xstego.

The reveal process H−1 is the inverse of the conceal process H. The stego image xstego under-
goes discrete wavelet transformation to latent representation zstego, which is concatenated with a
Gaussian noise auxiliary variable za as input to the backward reveal process. It is defined as:{

z̃i−1
sec = (z̃isec − χ(zicov))⊙ exp(−α(φ(zicov))),
zi−1
cov = (zicov − ψ(z̃i−1

sec ))⊙ exp(−α(ϕ(z̃i−1
sec ))).

(2)

The iterative refinement process described above enables progressive decoupling of concealed secret
data from stego latent representation zstego.

The reveal and conceal processes utilize identical architectural configurations and parameters. The
reveal process outputs customized and encrypted payloads z̃rev , which undergo subsequent decryp-
tion to yield the final revealed payloads xrev , with the decryption process detailed later.

3.2.2 FORTHCOMING STEGANOGRAPHY TASK

Upon completion of the initial steganography task, training proceeds sequentially through the re-
maining tasks. Following this procedure, each forthcoming steganography task incorporates the
complete parameter set from the initial steganography modelH to obtain the final model H̃.

Spcifically, to facilitate multimodal secret data steganography, modal adaptivers are incorporated
into the original unimodal steganography model. These layers enable the acquisition of novel modal
information while preserving capabilities learned from the original modality. The modal adaptivers
are implemented using LoRA Hu et al. (2022): specifically, a lightweight LoRA convolution layer
is appended to each standard convolution layer to capture new modal features. The output of the
modal adaptive convolution layer is given by:

Ocov(z) = Conv(z) + β · LoRA(z), (3)

where β ∈ R1×C×1×1 is the learnable scaling parameter and z is the input of the convolution layer
corresponds to either the cover image or the secret data.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The LoRA layer is implemented via two convolutional layers, as depicted in Hu et al. (2022). The
output of this layer is expressed as follows:

LoRA(z) = Conv(SiLU(Conv(z))). (4)

During training, solely the LoRA convolution parameters and scaling parameter β are optimized,
while the parameters retained from the initial steganography model remain invariant.

The remaining settings of H̃ and H̃−1 are preserved from the base initial steganography model H,
enabling multimodal secret data steganography with negligible structural alterations.

3.3 MULTI-GAP COLLABORATIVE FUSION

Within the described multimodal secret data continuous steganography pipeline, the secret data from
distinct modals exhibit significant intra- and inter-modal information conflicts. These conflicts in-
duce substantial information interference, which severely compromises the quality of steganography
images and the accuracy of secret data extraction. Consequently, mitigating these conflicts is essen-
tial for high-fidelity steganography.

Given that the modalities and content of the secret data un-
dergo continuous variation, the resulting information con-
flicts are inherently dynamic. Thus, addressing these con-
flicts requires a stable anchor point. The cover image xcov ,
being relatively fixed, serves as this natural anchor. By di-
rectionally customizing and optimizing the multimodal se-
cret data align with this anchor to minimize their disparity,
the information conflicts can be effectively mitigated.
Based on the cover image xcov , we propose a Multi-Gap
Collaborative Fusion mechanism F to directionally cus-
tomize the secret data xsec. As shown in Figure 5, the for-
ward customization process is defined as

Figure 5: Illustration of Multi-Gap
Collaborative Fusion.

z̃sec = F (xsec, xcov, ksym), s.t d(z̃sec, xcov) ≤ d(xsec, xcov), (5)
where ksym is the symmetric key generated with the cover image xcov and concealed payloads xsec
following the pipeline in Wang et al. (2025). Distance function d(•) serves to compute the distance
between xsec and z̃sec against the anchor xcov . While retaining the original pipeline, the AlexNet
Krizhevsky et al. (2012) is replaced with SHA-256 hashing to calculate the hash value of secret
data and cover image, respectively. This modification enables multimodal payload classification
while reducing computational complexity. To recover the secret information xrev , the output z̃rev
generated by the reveal process H̃−1 is leveraged within the backward restoration process F−1 of
the forward customization process follows:

xrev = F−1(z̃rev, xcov, ksym). (6)

This mechanism minimizes the divergence between the cover image and the secret data, enhancing
the compatibility of the secret data for concealing within the cover. Since multi-modal secret data
are optimized relative to the same anchor point, the customized data converge toward that point,
thereby reducing mutual information conflicts among them.

Specifically, the Multi-Gap Collaborative Fusion mechanism adopts an invertible architecture con-
sistent with that of the steganography network. Crucially, while the steganography network gener-
ates cover image as forward output, this mechanism yields customized secret data z̃sec. Meanwhile,
a symmetric key (detailed in the Appendix C) is incorporated within this mechanism to enhance
secret data security. This enables simultaneous secret data customization and encryption.

The forward customization process F is formulated as:{
zicov = zi−1

cov ⊙ exp(α(η(ksym)⊙ ϕ(z̃i−1
sec ))) + ψ(z̃i−1

sec ),

z̃isec = z̃i−1
sec ⊙ exp(α(η(ksym)⊙ φ(zicov))) + χ(zicov),

(7)

and z̃0sec = zsec, the non-optimized concealed payloads. The key-related weight generation module
η(•) with symmetric key ksym as input, is defined as:

η(ksym) = Conv(θ)⊙ Conv(SiLU(Conv(ksym))), θ ∈ RB×C×H×W . (8)
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The customized secret data z̃sec and cover image latent representation zcov are subsequently pro-
cessed by the steganography network H̃ to synthesize the latent zstego of the stego image xstego.

The backward restoration process F−1, which constitutes the inverse operation of the previously
described forward customization process, is:{

z̃i−1
sec = (z̃isec − χ(zicov))⊙ exp(−α(η(ksym)⊙ φ(zicov))),
zi−1
cov = (zicov − ψ(z̃i−1

sec ))⊙ exp(−α(η(ksym)⊙ ϕ(z̃i−1
sec ))).

(9)

During the initial phase of the restoration process, auxiliary variable zaux must be introduced to
maintain dimensional compatibility within the invertible neural network. However, discrepancies
between these auxiliary variable zaux and the redundant variable zr ultimately generated during the
forward encryption process can degrade the quality of the decrypted secret information.

To mitigate this issue, the frequency representation of the cover image zcov is utilized as the intro-
duced auxiliary variable. Furthermore, to ensure consistency between the redundant variable zr and
auxiliary variable zaux, the constraint is imposed on the redundant variable produced in the forward
customization process. This constraint, denoted as Encryption loss Le, will be detailed later.

3.4 LOSS FUNCTION

Our loss function comprises conceal loss, reveal loss, encryption loss, low-frequency wavelet loss:

Conceal loss. The steganography process outputs the stego image xstego based on the cover image
xcov and secret image xsec. For security purposes, the stego image xstego should closely match the
cover image xcov making them indistinguishable. Thus, we define the conceal loss as:

Lc = ls(xstego, xcov). (10)

Besides, the low-frequency wavelet loss Lf utilized to conceal the secret data within the high-
frequency region of the cover image is formulated as:

Lf = ls(DLL(xstego), DLL(xcov)), (11)

where ls represents the l1 or l2 norm, serving as a measure of the difference between two latents. In
our experiments, we use the l2 norm as the default.

Reveal loss. To ensure that the revealed data xrev aligns with the secrets xsec, the reveal loss is:

Lr = ls(xrev, xsec). (12)

Encryption loss. The encryption loss function Le minimizes the reconstruction error between de-
crypted secret data xrev and original secret data xsec, where error originates from the auxiliary
variable zaux introduction during decrypt the secret data. It is formulated as:

Le = ls(zcov, zaux). (13)

Total loss. The total loss function LTotal is the weighted sum of the conceal loss Lc, reveal loss Lr,
encryption loss Le and low-frequency wavelet loss Lf , formulated as:

LTotal = λ1Lc + λ2Lr + λ3Le + λ4Lf , (14)

where λ1, λ2, λ3 and λ4 are trade-off parameters set to 2.0, 1.0, 0.5 and 1.0, respectively, for balance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Our model is implemented with PyTorch and trained on the DIV2K Agustsson & Timofte (2017)
training dataset. The evaluation is performed on the DIV2K Agustsson & Timofte (2017) test
dataset, COCO Lin et al. (2014), and ImageNet Russakovsky et al. (2015) at a resolution of
256× 256. More implementation details are presented in the Appendix D.
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Table 1: Numerical comparisons with different steganography methods across various datasets,
highlighting the best results in bold and the second-best in underline.

Method Time(s)
Cover/Stego

Image(DIV2K) Text(3bpp) Audio

PSNR↑ SSIM↑ MAE↓ RMSE↓ PSNR↑ SSIM↑ MAE↓ RMSE↓ PSNR↑ SSIM↑ MAE↓ RMSE↓
SteganoGAN 0.04 - - - - 21.22 0.6124 16.59 22.53 - - - -

FNNS-D 5.95 - - - - 23.02 0.6907 13.82 18.47 - - - -
LISO 0.08 - - - - 30.44 0.8541 5.85 7.88 - - - -

VoI-GAN 2.86 - - - - - - - - 34.86 0.8457 4.86 7.89
ASA 1.89 - - - - - - - - 42.54 0.9858 1.94 2.87
ISN 0.23 39.28 0.9853 2.34 2.91 19.45 0.5403 21.87 27.75 36.31 0.9585 2.81 3.93

HiNet 0.18 39.53 0.9868 2.08 2.87 20.10 0.5372 19.71 26.40 37.08 0.9575 2.73 3.65
DeepMIH 0.15 43.72 0.9895 1.94 2.81 20.91 0.5861 17.91 24.40 39.15 0.9681 2.54 3.57
iSCMIS 0.17 45.78 0.9924 1.62 2.42 21.14 0.5927 17.44 23.91 40.61 0.9714 2.46 3.49

StegFormer 0.15 48.08 0.9963 1.51 2.37 21.20 0.5989 17.31 23.74 41.98 0.9725 2.22 3.13

Ours 0.16 50.72
(2.64↑)

0.9987
(0.0024↑)

0.55
(0.96↓)

0.78
(1.59↓)

42.35
(11.91↑)

0.9951
(0.1451↑)

1.46
(4.39↓)

1.99
(5.89↓)

45.51
(2.97↑)

0.9965
(0.0107↑)

1.01
(0.93↓)

1.39
(1.48↓)

Method Time(s)
Secret/Reveal

Image(DIV2K) Text(3bpp) Audio

PSNR↑ SSIM↑ MAE↓ RMSE↓ Error Rate (%) ↓ PSNR↑ SSIM↑ MAE↓ RMSE↓
SteganoGAN 0.03 - - - - 13.74 - - - -

FNNS-D 4.62 - - - - 0.10 - - - -
LISO 0.07 - - - - 2E-03 - - - -

VoI-GAN 2.37 - - - - - 45.37 0.9698 2.83 3.53
ASA 1.30 - - - - - 45.02 0.9651 2.97 3.79
ISN 0.23 37.06 0.9672 2.80 4.30 19.45 35.63 0.9567 3.49 5.87

HiNet 0.18 46.64 0.9962 0.93 1.31 20.87 38.07 0.9696 2.67 4.04
DeepMIH 0.15 42.56 0.9851 1.94 2.91 20.58 36.30 0.9501 3.27 5.41
iSCMIS 0.17 42.53 0.9836 2.11 3.04 17.39 37.07 0.9608 2.83 4.30

StegFormer 0.15 48.25 0.9961 1.47 2.38 18.11 40.01 0.9617 2.59 3.92

Ours 0.16 53.10
(4.85↑)

0.9996
(0.0034↑)

0.41
(0.52↓)

0.61
(0.7↓)

0
(2E-03↓)

46.58
(1.21↑)

0.9947
(0.0249↑)

0.89
(1.7↓)

1.00
(2.53↓)

Figure 6: Visual comparisons of stego images and revealed secret images for the proposed model
and various steganography models on the DIV2K dataset.

4.2 QUALITY ANALYSIS

Quantitative results. The steganography performance was initially evaluated on DIV2K datasets,
with comprehensive results detailed in Table 1. On the DIV2K benchmark, our model demon-
strates significant improvements: PSNR increases by 2.64dB and SSIM by 0.24% for cover/stego
image pairs, while PSNR rises by 4.85dB and SSIM by 0.34% for secret/revealed secret pairs.
Concurrently, MAE and RMSE exhibit reductions of 0.96/1.59 and 0.52/0.7 for these respective
pairs. Furthermore, the table presents the time consumed of various methods, and the proposed
method demonstrates comparable time efficiency. More detailed efficiency analysis is presented
in Appendix E. These results illustrate that the proposed model is associated with significant im-
provements in the quality of both the stego and the revealed secret images relative to other methods.

The proposed method was also evaluated on text and audio datasets. As demonstrated in Table 1,
for text secret data, the proposed method yields an improvement of 11.91dB in PSNR and a 14.51%
gain in SSIM for cover/stego image pairs. The extracted secret data also exhibits a reduced error
rate. In the case of audio data, the method demonstrates enhanced steganographic performance and
achieves a 0.53dB increase in PSNR and a 0.4% increase in SSIM for cover/stego pairs. Further-
more, for extracted audio spectrograms, it delivers superior results, with PSNR and SSIM gains
of 1.21dB and 0.3% for secret/reveal pairs, respectively. Concurrently, it reduces both MAE and
RMSE for all cover/stego and secret/reveal data pairs. These results indicate that the proposed
method achieves robust steganography performance across diverse data modals, highlighting its
strong capability and adaptability in multimodal environments.

Qualitative Results. The Figure 6 assesses the visual results of image-in-image steganography and
presents the stego and recovered images generated by various methods. The figure also displays
residual maps between the cover/stego and secret/revealed image pairs. The results demonstrate
that the proposed method produces the smallest residuals, confirming its superiority in generating
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Figure 7: Security performance
detected by StegExpose.

Figure 8: Comparison of information conflicts before/after
MGCF processing.

Table 2: The detection accuracy (%) detected by
SRNet, XuNet and YeNet.

Weng UDH ISN HiNet Deep
MIH

iSC
MIS

Steg
Former Ours

SRNet 89.25 85.31 84.91 79.32 75.54 69.64 58.39 53.98(4.41↓)
XuNet 82.24 79.26 77.42 75.37 74.12 67.86 57.23 55.04(2.19↓)
YeNet 85.18 82.13 80.27 77.86 69.24 68.92 58.03 54.61(3.42↓)

Table 3: Effectiveness of Secret optimize
module and Encryption Loss Le.

MGCF Le
Cover/Stego Srcret/Reveal

PSNR SSIM MAE RMSE PSNR SSIM MAE RMSE

% % 43.72 0.9895 1.94 2.81 42.56 0.9851 1.94 2.91
! % 45.16 0.9969 1.08 1.54 48.41 0.9975 0.76 1.09
! ! 50.72 0.9987 0.55 0.78 53.10 0.9996 0.41 0.61

higher-quality stego images and achieving more accurate secret image reconstruction. More results
are presented in the Appendix F and Appendix H. These results exemplify that the proposed
model achieves notable improvements in effectiveness and security over existing SOTA models.

4.3 ABLATION STUDIES

Steganographic analysis. To evaluate the anti-steganalysis capability of various methods, we em-
ploy StegExpose Boehm (2014) and three steganalysis networks: SRNet Boroumand et al. (2018),
XuNet Xu et al. (2016), and YeNet Ye et al. (2017). Lower detection accuracy and a smaller area
under curve (AUC) indicates better security performance. The evaluate results are presented in Fig-
ure 7 and Table 2 respectively. These steganalysis results indicate that the proposed model achieves
superior anti-steganalysis performance compared to other SOTA methods.

Effect of the Multi-Gap Collaborative Fusion (MGCF). As illustrated in Table 3, the intro-
duced MGCF mechanism significantly enhances steganography performance. Quantitative analy-
sis demonstrates PSNR improvements of 1.44dB for cover/stego image pairs and 5.85dB for se-
cret/revealed image pairs, with corresponding SSIM gains of 0.74% and 1.24% respectively. Con-
currently, the module reduces MAE and RMSE metrics for both image pairs. These highlight
the crucial role of the introduced Multi-Gap Collaborative Fusion mechanism in strengthening the
steganography performance. Further analysis are provided in Appendix G.

Mitigate Information Conflicts. The MGCF is proposed to mitigate the intra- and inter-modal in-
formation conflict in multimodal secret data. It leverages the cover image as an anchor to achieve
targeted customization of the secret data. To validate its efficacy, relevant experiments were con-
ducted with a fixed cover image and 100 samples per modality. Figure 8 presents the t-SNE visual-
ization and cosine similarity measurements of data samples before and after MGCF processing. The
results confirm that the proposed directed customization significantly reduces feature divergence and
enhances similarity across the secret data. This reduction in feature divergence, coupled with a sig-
nificant improvement in steganography performance, demonstrates the mechanism’s effectiveness
in alleviating both intra- and inter-modal information conflicts.

5 CONCLUSION

This paper proposes a novel multimodal secret data steganography framework that enables concur-
rent concealment and recovery of multimodal secret data within a unified architecture. It achieves
this outcome through multimodal knowledge preservation and cross-modal interaction. By estab-
lishing a systematic coupling between steganography tasks and continuous learning, the method
effectively retains acquired multimodal knowledge and sustains learning capability. Furthermore,
leveraging the cover image as an anchor, the proposed method performs targeted customization of
secret data through Multi-Gap Collaborative Fusion mechanism. This process concurrently enables
cross-modal interaction and mitigates inherent intra- and inter-modal information conflicts among
the multimodal secret data. Empirical evaluations demonstrate the model’s superior performance
over existing steganography models in multimodal secret data steganography tasks.

9
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6 REPRODUCIBILITY STATEMENT

During the publication phase, we will provide full access to all codes, logs, and result files to ensure
transparency and reproducibility of our work.
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sight: Disguising data stealing attacks in federated learning. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
krx55l2A6G.

Chendi Ge, Xin Wang, Zeyang Zhang, Hong Chen, Jiapei Fan, Longtao Huang, Hui Xue, and
Wenwu Zhu. Dynamic mixture of curriculum loRA experts for continual multimodal instruction
tuning. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=zpGK1bOlHt.

Zhenyu Guan, Junpeng Jing, Xin Deng, Mai Xu, Lai Jiang, Zhou Zhang, and Yipeng Li. Deepmih:
Deep invertible network for multiple image hiding. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(1):372–390, 2022.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

Quang Pham Huu, Thoi Hoang Dinh, Ngoc N Tran, Toan Pham Van, and Thanh Ta Minh. Deep
neural networks based invisible steganography for audio-into-image algorithm. In 2019 IEEE 8th
Global Conference on Consumer Electronics (GCCE), pp. 423–427. IEEE, 2019.

10

https://openreview.net/forum?id=ll2nz6qwRG
https://openreview.net/forum?id=krx55l2A6G
https://openreview.net/forum?id=krx55l2A6G
https://openreview.net/forum?id=zpGK1bOlHt
https://openreview.net/forum?id=zpGK1bOlHt
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Junpeng Jing, Xin Deng, Mai Xu, Jianyi Wang, and Zhenyu Guan. Hinet: Deep image hiding
by invertible network. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 4733–4742, 2021.

Xiaolong Ke, Huanqi Wu, and Wenzhong Guo. Stegformer: Rebuilding the glory of autoencoder-
based steganography. In AAAI Conference on Artificial Intelligence, 2024. URL https://
api.semanticscholar.org/CorpusID:268678322.

Varsha Kishore, Xiangyu Chen, Yan Wang, Boyi Li, and Kilian Q Weinberger. Fixed neural network
steganography: Train the images, not the network. In International Conference on Learning
Representations, 2022.

A Aravind Krishnan, Yukta Ramesh, Udbhav Urs, and Megha Arakeri. Audio-in-image steganogra-
phy using analysis and resynthesis sound spectrograph. IEEE Access, 2025.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in Neural Information Processing Systems, 25, 2012.

Yuhang Lan, Fei Shang, Jianhua Yang, Xiangui Kang, and Enping Li. Robust image steganography:
Hiding messages in frequency coefficients. In AAAI Conference on Artificial Intelligence, 2023.
URL https://api.semanticscholar.org/CorpusID:259722426.

Fengyong Li, Yang Sheng, Xinpeng Zhang, and Chuan Qin. iscmis:spatial-channel attention
based deep invertible network for multi-image steganography. IEEE Transactions on Multi-
media, 26:3137–3152, 2024. URL https://api.semanticscholar.org/CorpusID:
261168031.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Aojun Lu, Hangjie Yuan, Tao Feng, and Yanan Sun. Rethinking the stability-plasticity trade-off in
continual learning from an architectural perspective. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=yO95ALeoGw.

Shao-Ping Lu, Rong Wang, Tao Zhong, and Paul L Rosin. Large-capacity image steganography
based on invertible neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10816–10825, 2021.

Nils Lukas, Abdulrahman Diaa, Lucas Fenaux, and Florian Kerschbaum. Leveraging optimization
for adaptive attacks on image watermarks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=O9PArxKLe1.

Zehua Ma, Han Fang, Xi Yang, Kejiang Chen, and Weiming Zhang. Ropass: Robust watermark-
ing for partial screen-shooting scenarios. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 19332–19339, 2025.

Jarno Mielikainen. Lsb matching revisited. IEEE signal processing letters, 13(5):285–287, 2006.

Sahil Nokhwal, Saurabh Pahune, and Ankit Chaudhary. Embau: A novel technique to embed audio
data using shuffled frog leaping algorithm. In proceedings of the 2023 7th international confer-
ence on intelligent systems, metaheuristics & swarm intelligence, pp. 79–86, 2023.

Chaofan Pan, Xin Yang, Yanhua Li, Wei Wei, Tianrui Li, Bo An, and Jiye Liang. A survey of
continual reinforcement learning. arXiv preprint arXiv:2506.21872, 2025.

Feng Pan, Jun Li, and Xiaoyuan Yang. Image steganography method based on pvd and modulus
function. In 2011 International Conference on Electronics, Communications and Control, pp.
282–284. IEEE, 2011.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115:211–252, 2015.

11

https://api.semanticscholar.org/CorpusID:268678322
https://api.semanticscholar.org/CorpusID:268678322
https://api.semanticscholar.org/CorpusID:259722426
https://api.semanticscholar.org/CorpusID:261168031
https://api.semanticscholar.org/CorpusID:261168031
https://openreview.net/forum?id=yO95ALeoGw
https://openreview.net/forum?id=O9PArxKLe1


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qianqian Shi, Faqiang Liu, Hongyi Li, Guangyu Li, Luping Shi, and Rong Zhao. Hybrid neural
networks for continual learning inspired by corticohippocampal circuits. Nature Communications,
16(1):1272, 2025.

J Soundarya, P Sharath Chander, R Priyadharsini, and P Mirunalini. Audio hiding in an image
using steganographic methods. In 2018 3rd International Conference on Inventive Computation
Technologies (ICICT), pp. 82–86. IEEE, 2018.

Jiannian Wang, Yao Lu, and Guangming Lu. SSHR: More secure generative steganography with
high-quality revealed secret images. In Forty-second International Conference on Machine Learn-
ing, 2025.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE transactions on pattern analysis and machine
intelligence, 46(8):5362–5383, 2024.

Xinyu Weng, Yongzhi Li, Lu Chi, and Yadong Mu. High-capacity convolutional video steganogra-
phy with temporal residual modeling. In Proceedings of the 2019 on International Conference on
Multimedia Retrieval, pp. 87–95, 2019.

Guanshuo Xu, Han-Zhou Wu, and Yun-Qing Shi. Structural design of convolutional neural networks
for steganalysis. IEEE Signal Processing Letters, 23(5):708–712, 2016.

ZiHao Xu, Dawei xu, Zihan Li, and Chuan Zhang. MDDM: Practical message-driven generative
image steganography based on diffusion models. In Forty-second International Conference on
Machine Learning, 2025.

Yiwei Yang, Zheyuan Liu, Jun Jia, Zhongpai Gao, Yunhao Li, Wei Sun, Xiaohong Liu, and Guang-
tao Zhai. Diffstega: Towards universal training-free coverless image steganography with diffusion
models. In 33rd International Joint Conference on Artificial Intelligence (IJCAI), 2024.

Jian Ye, Jiangqun Ni, and Yang Yi. Deep learning hierarchical representations for image steganaly-
sis. IEEE Transactions on Information Forensics and Security, 12(11):2545–2557, 2017.

Dianzhi Yu, Xinni Zhang, Yankai Chen, Aiwei Liu, Yifei Zhang, Philip S Yu, and Irwin King.
Recent advances of multimodal continual learning: A comprehensive survey. arXiv preprint
arXiv:2410.05352, 2024a.

Jiwen Yu, Xuanyu Zhang, Youmin Xu, and Jian Zhang. Cross: Diffusion model makes controllable,
robust and secure image steganography. Advances in Neural Information Processing Systems, 36,
2024b.

Chaoning Zhang, Philipp Benz, Adil Karjauv, Geng Sun, and In So Kweon. Udh: Universal deep
hiding for steganography, watermarking, and light field messaging. Advances in Neural Informa-
tion Processing Systems, 33:10223–10234, 2020.

Kevin Alex Zhang, Alfredo Cuesta-Infante, Lei Xu, and Kalyan Veeramachaneni. Steganogan: High
capacity image steganography with gans. arXiv preprint arXiv:1901.03892, 2019.

Le Zhang, Yao Lu, Tong Li, and Guangming Lu. Joint adaptive robust steganography network. IEEE
Transactions on Industrial Informatics, 20(8):10156–10166, 2024a.

Le Zhang, Yao Lu, and Guangming Lu. Contrastive noise-guided invertible network for image
steganography. IEEE Transactions on Consumer Electronics, 2024b.

Junchao Zhou, Yao Lu, Jie Wen, and Guangming Lu. Efficient and separate authentication image
steganography network. In Forty-second International Conference on Machine Learning, 2025.

J Zhu. Hidden: hiding data with deep networks. arXiv preprint arXiv:1807.09937, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PIPELINE

Algorithm 1 The Concealing Process

Require: The secret image xsec which will be concealed, the cover image xcov , trained Multi-Gap
Collaborative Fusion F and multimodal secret data steganography model H̃, Discrete Wavelet
Transform (DWT), Inverse Wavelet Transform (IWT), SHA-256 hash function, MLP for private
key generation, the weight W for public key derivation.

Ensure:
zsec = DWT (xsec), zcov = DWT (xcov)

Hs ← SHA− 256(xsec), Hc ← SHA− 256(xcov)
kpri−i ←MLP (Hi), i ∈ s, c
kpub−s ←W · kpri−s

ksym ← kpub−s · kpri−c # Symmetric key generation.
z̃sec = F (xsec, xcov, ksym) # Directionally customize the secret data.
zstego = H̃(zcov, z̃sec) # Conceal the customized secret data with steganography model.
xstego ← IWT (zstego)

Algorithm 2 The Revealing Process

Require: The stego image xstego which contains the secret data, the cover image xcov , trained
Multi-Gap Collaborative Fusion F and multimodal secret data steganography model H̃, Discrete
Wavelet Transform (DWT), Inverse Wavelet Transform (IWT), public key of secret image kpub−s,
random Gaussian noise zaux, SHA-256 hash function, MLP for private key generation, the weight
W for public key derivation.

Ensure:
zstego = DWT (xstego)

z̃rev = H̃−1(zstego, zaux) # Reveal the customized secret data with steganography model.
Hc ← SHA− 256(xcov)
kpri−c ←MLP (Hc)
kpub−s ←W · kpri−s

ksym ← kpub−s · kpri−c # Symmetric key generation.
zrev = F−1(z̃rev, xcov, ksym) # Directionally customize the secret data.
xsec = IWT (zrev)

B RELATED WORK

B.1 IMAGE STEGANOGRAPHY

Traditional image steganography methods, such as Least Significant Bits (LSB) Mielikainen (2006),
Pixel Value Differencing (PVD) Pan et al. (2011), and so on, accomplish the concealment of secret
information by embedding it into the pixel space of an image or a certain transform space (e.g.,
Discrete Fourier Transform (DFT), and Discrete Wavelet Transform (DWT)).

The advancement of deep learning has spurred growing interest in deep learning-based image
steganography methods, which have exhibited superior performance in steganography tasks. These
methods substantially improve embedding capacity and broaden the range of concealed data types.

In the domain of text hiding, SteganoGAN Zhang et al. (2019) employs a generative adversarial
network (GAN) framework and utilizes adversarial training to accomplish steganography objectives.
FNNS Kishore et al. (2022) capitalizes on the sensitivity of neural networks to subtle perturbations,
generating adversarially perturbed images to guarantee precise information recovery. LISO Chen
et al. (2023) introduces a novel gradient-based neural optimization algorithm that integrates the
capacity of neural networks to learn image manifolds with the precision of constrained optimization.
MDDM Xu et al. (2025) encodes the secret message into the initial noise for image generation by
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utilizing a Cardan grille and leverages the reversibility of DDIM to develop a message-driven image
steganography framework based on diffusion models.

The increasing prevalence of diverse data types in social media has created a growing need for
steganography techniques capable of handling multiple modalities. For image, Baluja was the first
to achieve the steganography of an entire secret image through the encoder-decoder neural net-
work DDH Baluja (2017; 2019). UDH Zhang et al. (2020), on the other hand, provided a different
perspective from DDH for the image steganography task. Subsequently, with the development of
reversible neural networks and flow models, researchers turned to using reversible neural networks
to achieve high-capacity image steganography, and ISN Lu et al. (2021) was the earliest work in
this regard. In subsequent research Jing et al. (2021); Guan et al. (2022); Zhang et al. (2024a;b);
Zhou et al. (2025), relevant researchers explored multi-image steganography using Invertible Neural
Networks, increasing the steganographic capacity once again. CRoSS Yu et al. (2024b) and Diff-
Stega Yang et al. (2024) use diffusion models to achieve the steganography of secret images. They
use text prompts and image prompts to guide the generation of stego images, enabling stable and
controllable generative steganography.

Steganography research has extended beyond text and image data to encompass various other modal-
ities, including Soundarya et al. (2018); Huu et al. (2019); Nokhwal et al. (2023); Krishnan et al.
(2025), video Gandikota et al. (2022), watermark Lukas et al. (2024); Garov et al. (2024); Arabi
et al. (2025) and so on, with studies across these domains demonstrating effective performance.

Conventional methods, however, are constrained to static modality configurations, limiting their
applicability amidst proliferating multimodal data. In contrast, the proposed framework supports
multimodal secret data, thereby significantly broadening its practical applicability.

B.2 CONTINUAL LEARNING

Continual learning is designed to equip models with the capacity for sequential knowledge acqui-
sition when encountering new data distributions or tasks, while avoiding catastrophic forgetting
of previously acquired knowledge. Its fundamental objective lies in achieving a balance between
model stability—the retention of prior knowledge—and plasticity, the integration of new knowl-
edge, thereby approximating human lifelong cognitive processes.

Formally, given a task sequence T = [D1, D2, · · · , DT ] of size T , where Dt, 1 ≤ t ≤ T is the t-th
task. The dataset for t-th taskDt = {(xt,i, yt,i)}Nt

i=1 consists of input samplesXt and target samples
Yt, where Nt represents the number of samples in the t-th task. For a neural network f trained with
the task T ′ = [D1, D2, · · · , Dt−1], the task Dt is a new task. The objective is to learn the new task
while maintaining performance on old tasks. Specifically, given an unseen test sample x ∈ X from
any trained tasks, the trained model f should perform well in inferring the label y = f(x) ∈ Y .

In previous work, Shi et al. (2025) propose a dual-representation mechanism that emulates specific
and generalized memory systems, substantially mitigating catastrophic forgetting while reducing
computational energy consumption. Lu et al. Lu et al. (2025) establish a stability–plasticity equi-
librium through synergistic interactions between deep-narrow architectures, optimized for plastic-
ity, and wide-shallow structures, enhanced for stability. The framework D-MoLE Ge et al. (2025)
employs gradient-guided dynamic parameter allocation to enable on-demand resource adaptation
across visual and textual modalities. Additionally, Wang et al. (2024) provide a comprehensive sur-
vey of continual learning, aiming to establish connections between fundamental settings, theoretical
foundations, representative methods, and practical applications. Yu et al. (2024a) begin by outlin-
ing essential background knowledge in multimodal continual learning and proceed to conduct the
first systematic review dedicated to this emerging field. Pan et al. (2025) provides a comprehensive
review of contemporary applications of continual learning within reinforcement learning.

This work systematically develops a novel framework for continuous multimodal secret data
steganography to resolve inter-modal information conflicts and catastrophic forgetting. Beyond ad-
dressing these dual challenges, the integration of cover-secret gap reduction and encryption reduces
cover-secret discrepancy, thereby mitigating inherent information conflicts.
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C KEY GENERATION

Building upon Wang et al. (2025), symmetric key ksym is derived with cover image and concealed
payloads, which is formulated as:

ksym = kpub−s · kpri−c

= ((WL +WS) · kpri−s) · kpri−c

= ((WL +WS) · kpri−c) · kpri−s

= kpub−r · kpri−s ,

(15)

where WL denote the MLP weight matrix employed for private key generation, and WS is the
weight associated with secret data. The private keys are derived as kpri−i =MLP (Fi) for i ∈ c, s,
yielding kpri−c and kpri−s as private keys for cover image xcov and secret data xsec respectively.

While retaining the original pipeline, the AlexNet Krizhevsky et al. (2012) —previously extracting
Fs (payload features) and Fc (cover features)—is replaced with SHA-256 hashing to calculate the
hash value Hs and Hc of secret data and cover image, respectively. This modification enables
multimodal payload classification while reducing computational complexity.

During stego image (xstego) transmission, the associated public key (kpub−s = (WL+WS) ·kpri−s)
is transmitted concurrently. The receiver employs the pipeline defined in Equation (15) to derive the
symmetric key (ksym), identical to the sender’s concealment procedure. This facilitates accurate se-
cret data revealing, completing the reveal process. Following the previous work Wang et al. (2025),
we generate the symmetric key ksym with the cover image and the secret data. The pipeline is the
same as the method introduced in Wang et al. (2025) and we replace the AlexNet utilized to extract
the features Fs and Fc from the secret and cover image, respectively, with the SHA-256 hash func-
tion. This can not only classify the secret data, but also satisfy the multimodal secret data. Besides,
it also can reduce the computation flops.

The aforementioned key generation mechanism is constructed following the ECDHE algorithm. A
comparative overview of the standard ECDHE process and the implemented protocol is presented
below:

(1) The Principle of the ECDHE:

If we have two private keys kpri−a and kpri−b (belonging to A and B, respectively) and an ECC
elliptic curve with generator pointG, we can exchange over an insecure channel the values kpub−a =
kpri−a · G and kpub−b = kpri−b · G (the public keys of A and B) and then we can derive a shared
secret symmetric key: ksym = kpub−b · kpri−a = kpub−a · kpri−b. The ECDH algorithm is trivial:

• A generates a random ECC key pair: kpri−a, kpub−a = kpri−a ·G.

• B generates a random ECC key pair: kpri−b, kpub−b = kpri−b ·G.

• A and B exchange their public keys through the insecure channel (e.g. over Internet).

• A calculates ksym = kpub−b · kpri−a.

• B calculates ksym = kpub−a · kpri−b.

Now both A and B have the same key ksym = kpub−b · kpri−a = kpub−a · kpri−b.

(2) Our implementation:

• The sender (A) and receiver (B) share the same cover image for image concealment.

• A calculates the private keys kpri−i = MLP (Hi), i ∈ s, c, the public key related to the
secret image kpub−s = W · kpri−s and the symmetric key ksym = kpub−s · kpri−c. Here,
W = WL +WS , where WL represents static parameters derived from a fixed linear layer,
and WS denotes dynamic parameters generated based on the secret image. This process
is analogous to the selection of specific base points (G) and elliptic curves (E) within the
ECDHE algorithm.

• B calculates the private keys kpri−c =MLP (Hc).

• A transmits the public key kpub−s to B.
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• B calculates the symmetric key ksym = kpub−s · kpri−c.

• B reveals the secret image with ksym.

Throughout the steganography process, only the stego image and the public key associated with
the secret image are transmitted, with all the private key remaining undisclosed. Consequently, the
proposed key generation mechanism maintains compliance with the ECDHE protocol and retains its
provable security guarantees.

D IMPLEMENTATION DETAILS

Datastes and Setting. The model is implemented in PyTorch and trained on the DIV2K Agustsson
& Timofte (2017) training dataset. The evaluation is performed on the DIV2K Agustsson & Timofte
(2017) test dataset(100 images), COCO Lin et al. (2014) (5000 images), and ImageNet Russakovsky
et al. (2015) (10,000 images). Training images are randomly cropped to 256× 256 and augmented
with random horizontal and vertical flips. Comparatively, test images in the DIV2K dataset are
center-cropped, while in the other datasets, the images are resized to 256 × 256. The AdamW
optimizer with an initial learning rate of 1× 10−5 is used for training.

The text data comprises randomly-generated binary data. For the steganography capacity of 3 bits
per pixel (3 bpp) examined in this study, the data consists of 196,608 characters. This data is subse-
quently reconfigured into a three-dimensional array of size 3× 256× 256, which serves as the input
to the subsequent steganography process.

The audio data was obtained from the publicly accessible Dani-Voice dataset. Following the standard
methodology for audio information hiding, the data was converted into spectrogram representations
via the Short-Time Fourier Transform (STFT) to facilitate subsequent embedding and extraction op-
erations. The steganography performance was subsequently assessed based on these spectrograms.
All experiments are conducted on a Nvidia 4090 GPU.

As the proposed method is grounded in image steganography, the carrier is inherently an image.
This design necessitates that the Multi-Gap Collaborative Fusion mechanism aligns the secret data
from all modalities toward the image domain. Consequently, initializing the model with the image
modality task is optimal for performance. Based on this rationale, the image modality is employed
as the first modality by default in all experiments.

Benchmarks. To rigorously evaluate the effectiveness of the proposed method, a comprehensive
comparative analysis was conducted against SOTA image steganography methods developed for
different modalities. These include methods designed for text, such as SteganoGAN Zhang et al.
(2019), FNNS Kishore et al. (2022), and LISO Chen et al. (2023); as well as methods tailored for
image, including Baluja et al. Baluja (2017), HiDDeN Zhu (2018), Weng et al. Weng et al. (2019),
UDH Zhang et al. (2020), ISN Lu et al. (2021), HiNet Jing et al. (2021), DeepMIH Guan et al.
(2022), iSCMIS Li et al. (2024), and StegFormer Ke et al. (2024). To ensure a fair and objective
comparison, all methods were re-trained using the same dataset employed in this study.

Evaluation Metrics. To assess the quality of secret/recovery pairs, we utilize Peak Signal-to-Noise
Ratio(PSNR), Structural Similarity Index(SSIM) , Root Mean Square Error(RMSE), and Mean Ab-
solute Error(MAE) as performance metrics for image and audio data. For the text data hiding sce-
nario, the quality of stego images is evaluated employing the same metrics applied to image data,
while the extraction accuracy of the embedded text is assessed using the Error Rate consistent with
prior research Kishore et al. (2022); Chen et al. (2023).

E EFFICIENCY ANALYSIS

This section presents a systematic analysis of the efficiency of the proposed model. Build upon the
Invertible Neural Network (INN), the main resource consumption of the proposed model arises from
three stages: key generation, the directed customization of secret data with Multi-Gap Collaborative
Fusion, and the steganography process.

In the initial steganography task, the proposed model is functionally equivalent to the original HiNet
Jing et al. (2021) and the single-image DeepMIH Guan et al. (2022) model and has the identical com-
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putational complexity. To accommodate new modal data, the model incorporates modal adapters.
The output of each layer is then computed as

Ocov(z) = Conv(z) + β · LoRA(z),
where z is the input of each layer. During inference, the parameters of these adapters θada are
integrated with the original convolutional layer parameters θori to obtain new parameters, as defined
by the equation

θnew = θori + β · θada,
where β is a scaling factor that balances the contribution of the original θori and adapter parameters
θada. Thus, this integration introduces no additional computational overhead during the testing
phase.

The additional computational requirements introduced by the model are mainly originate from: the
Multi-Gap Collaborative Fusion mechanism for secret data customization and the key generation
process. The Multi-Gap Collaborative Fusion mechanism is a three-layer INN whose parameter
processing is consistent with the method described above during inference phase, resulting in a
parameter overhead of only 18.75% compared to the original HiNet. The key generation process,
which is based on the ECDHE key exchange algorithm, is devoted to a two-layer MLP, contributing
minimal resource consumption relative to the overall model.

A set of experiments was also conducted to evaluate computational efficiency, with the results pre-
sented in Table 4. It is observed that compared to iSCMIS Li et al. (2024), the proposed model
increases FLOPs by a marginal 10.75% yet reduces the runtime by 0.02 seconds. Compared to
StegFormer StegFormer Ke et al. (2024), the proposed method uses only 23% of the parameters
and 14.73% of the FLOPs. These results demonstrate that the proposed model achieves significant
gains in multi-modal steganography performance without a considerable increase in computational
resource consumption. When considered alongside its steganography performance, these findings
validate the model’s high effectiveness and efficiency.

F ADDITIONAL EXPERIMENTS

Single-image steganography. We further evaluated the proposed model on the COCO and Ima-
geNet datasets, and the corresponding experimental results are presented in Table 4. Consistent
performance gains were observed for the proposed model on these two benchmark datasets. On the
Imagenet dataset, it yields improvements of 12.18dB and 0.7% for cover/stego image pairs, and
12.4dB and 0.46% enhancement for secret/reveal pairs. Corresponding gains on the COCO dataset
reached 9.1dB/0.93% (cover/stego) and 10.19dB/0.43% (secret/reveal). Concurrently, significant
reduction in both MAE and RMSE were demonstrated on both datasets. These findings establish
the proposed model’s superior steganography fidelity, demonstrating significantly enhanced quality
for both stego and revealed secret images relative to benchmark methods.

High-capacity steganography. To assess the efficacy of the proposed method for high-capacity
steganography, image data were employed as a representative case. The steganography performance
of various methods was evaluated under conditions of concealing 3, 5, and 7 images. The experi-
mental results, presented in Table 5, demonstrate the superiority of the proposed approach. Specifi-
cally, when hiding 3 images on the DIV2K dataset, the proposed method achieved gains of 8.34dB
in PSNR and 2.76% in SSIM for cover/stego pairs, and 12.46dB in PSNR and 3.48% in SSIM
for secret/reveal pairs. On the COCO dataset, corresponding improvements for cover/stego and se-
cret/reveal pairs were 10.99dB/2.91% and 10.74dB/3.68%, respectively. Consistent performance
enhancements were also observed for 5 and 7 hidden images. These results confirm the method’s
exceptional capability for large-capacity data hiding.

Multimodal Secret Data steganography. To further assess the adaptability and steganography
performance of the proposed model in multimodal scenarios involving diverse data combinations, a
comprehensive evaluation was conducted. The results, presented in Table 6, demonstrate the model’s
superior performance across all tested conditions. As a representative case, the simultaneous con-
cealment of image and text data resulted in a 22.42dB increase in PSNR and a 46.03% enhancement
in SSIM for cover/stego pairs. For the secret/reveal pairs, the model yielded a 26.77dB PSNR gain
and a 45.65% SSIM gain for image data, alongside a 26.08% reduction in error rate for text data.
Significantly enhanced data hiding and extraction performance was also consistently observed under
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Table 4: Numerical comparisons with different steganography methods on COCO and Imagenet
datasets, highlighting the best results in bold and the second-best in underline.

Method Paras(M) Flops(G) Times(s)
Cover/Stego

COCO Imagenet

PSNR↑ SSIM↑ MAE↓ RMSE↓ PSNR↑ SSIM↑ MAE↓ RMSE↓
Baluja 2.77 173.77 0.24 36.38 0.9563 5.98 7.43 36.59 0.9520 5.61 5.41
UDH 17.40 50.62 0.22 38.90 0.9650 2.77 2.90 38.96 0.9624 2.75 2.88
ISN 2.99 196.46 0.46 37.95 0.9751 2.76 3.23 40.13 0.9748 1.95 2.51

HiNet 4.05 20.59 0.36 39.01 0.9844 2.09 2.96 44.61 0.9927 1.52 1.63
DeepMIH 5.40 22.13 0.30 40.30 0.9805 2.83 4.14 40.31 0.9800 2.87 4.16
iSCMIS 5.48 27.63 0.34 41.53 0.9818 2.53 3.78 40.31 0.9818 2.59 3.79

StegFormer 34.96 207.78 0.29 42.62 0.9897 2.09 2.94 42.87 0.9875 1.92 2.83

Ours 8.04 30.60 0.32 51.72(9.1↑) 0.9990(0.0093↑) 0.49(1.6↓) 0.69(2.25↓) 56.79(12.18↑) 0.9997(0.0070↑) 0.26(1.26↓) 0.38(1.25↓)

Method
Srcret/Reveal

COCO Imagenet

PSNR↑ SSIM↑ MAE↓ RMSE↓ PSNR↑ SSIM↑ MAE↓ RMSE↓
Baluja 35.01 0.9341 6.52 8.00 34.13 0.9247 5.31 8.37
UDH 35.07 0.8220 3.77 4.67 35.39 0.8252 3.73 4.58
ISN 36.58 0.9016 3.04 3.78 37.73 0.9548 2.97 3.31

HiNet 44.05 0.9952 1.17 1.70 46.78 0.9952 1.94 2.74
DeepMIH 36.55 0.9613 5.09 6.48 36.63 0.9604 4.16 6.07
iSCMIS 39.47 0.9754 3.74 5.48 39.44 0.9718 3.79 5.48

StegFormer 42.04 0.9884 2.74 4.11 42.39 0.9862 2.24 3.47

Ours 54.24(10.19↑) 0.9995(0.0043↑) 0.36(0.81↓) 0.55(0.1.15↓) 59.18(12.4↑) 0.9998(0.0046↑) 0.22(1.72↓) 0.28(1.86↓)

Table 5: Numerical comparisons of diverse steganography approaches on the DIV2K and COCO
datasets for multi-image hiding, highlighting the best results in bold and the second-best in
underline.

N Method
DIV2K COCO

Cover/Stego Secret/Reveal Cover/Stego Secret/Reveal

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

3

ISN 31.23 0.8203 30.05 0.8401 33.53 0.8262 31.85 0.8110
DeepMIH 31.29 0.7685 27.30 0.8321 33.99 0.8192 29.56 0.8373
iSCMIS 33.39 0.7994 30.78 0.8302 34.75 0.8636 33.82 0.8046

StegFormer 39.67 0.9709 36.81 0.9642 38.25 0.9691 39.21 0.9621
Ours 48.01(8.34↑) 0.9985(0.0276↑) 49.27(12.46↑) 0.9990(0.0348↑) 49.24(10.99↑) 0.9982(0.0291↑) 49.95(10.74↑) 0.9989(0.0368↑)

5

ISN 26.74 0.6923 27.37 0.7131 30.52 0.7772 29.08 0.7903
DeepMIH 29.48 0.0.6925 22.19 0.7164 32.51 0.7926 26.31 0.7862
iSCMIS 30.68 0.7124 22.07 0.7142 32.68 0.8125 25.99 0.7851

StegFormer 35.12 0.9317 33.88 0.9290 34.97 0.9432 33.65 0.9168
Ours 43.08(7.96↑) 0.9968(0.0651↑) 43.39(9.51↑) 0.9973(0.0683↑) 44.78(9.81↑) 0.9961(0.0529↑) 45.04(11.39↑) 0.9957(0.0798↑)

7

ISN 24.28 0.6759 24.91 0.6895 28.48 0.7567 27.80 0.7830
DeepMIH 27.32 0.6813 20.94 0.6083 30.21 0.7751 24.54 0.7597
iSCMIS 28.46 0.6942 21.26 0.6054 30.35 0.7838 26.13 0.7905

StegFormer 35.05 0.9224 32.61 0.9119 33.95 0.9175 32.28 0.9017
Ours 41.79(6.74↑) 0.9961(0.0737↑) 42.06(9.45↑) 0.9963(0.0844↑) 42.97(9.02↑) 0.9947(0.0772↑) 42.27(9.99↑) 0.9952(0.0935↑)

the other three multimodal combinations. These findings substantiate the model’s robust steganog-
raphy capabilities and its strong adaptability to complex multimodal environments.

G MORE ANALYSIS

Steganographic analysis. The anti-steganalysis ability is a critical metric for assessing the security
of image steganography, as it measures the likelihood that stego images can be distinguished from
reference images using steganalysis tools. To evaluate the anti-steganalysis capability of our model
alongside other methods, we employ the open-source steganalysis tool StegExpose Boehm (2014)
and three steganalysis networks: SRNet Boroumand et al. (2018), XuNet Xu et al. (2016), and
YeNet Ye et al. (2017). Lower detection accuracy and a smaller area under curve (AUC) indicates
better security performance. The evaluate results are presented in Figure 7 and Table 2 respectively.
These steganalysis results indicate that the proposed model achieves superior anti-steganalysis per-
formance compared to other SOTA methods.

The Security of Concealed Secret Data. The Multi-Gap Collaborative Fusion mechanism seam-
lessly integrates the symmetric key ksym to simultaneously customize and encrypt multimodal se-
cret data during mitigating the information conflict. Its security enhancement efficacy was also
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Table 6: Numerical comparisons of diverse steganography approaches in multimodal environments,
highlighting the best results in bold and the second-best in underline.

Method
Cover/Stego Secret/Reveal

Image+Text Image Text

PSNR↑ SSIM↑ PSNR↑ SSIM↑ Error Rate(%)↓
ISN 16.57 0.4821 17.04 0.4853 27.53

HiNet 17.08 0.4872 17.52 0.4905 28.06
DeepMIH 17.52 0.5019 18.60 0.5113 27.91
iSCMIS 18.01 0.5167 18.14 0.5198 25.82

StegFormer 18.27 0.5204 19.01 0.5179 26.16

Ours 40.69(22.42↑) 0.9807(0.4603↑) 45.78(26.77↑) 0.9763(0.4565↑) 0.08(26.08↓)

Method
Cover/Stego Secret/Reveal

Image+Audio Image Audio

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
ISN 33.68 0.8582 32.15 0.8437 28.58 0.8013

HiNet 35.74 0.8791 34.59 0.8681 29.86 0.8357
DeepMIH 36.68 0.8773 35.87 0.8724 30.29 0.8329
iSCMIS 37.92 0.9091 37.14 0.9083 30.05 0.8502

StegFormer 38.99 0.9447 39.43 0.9379 31.85 0.8429

Ours 48.51(9.52↑) 0.9937(0.0490↑) 48.79(9.36↑) 0.9914(0.0535↑) 43.92(12.07↑) 0.9852(0.1350↑)

Method
Cover/Stego Secret/Reveal

Text+Audio Audio Text

PSNR↑ SSIM↑ PSNR↑ SSIM↑ Error Rate(%)↓
ISN 15.72 0.4711 16.44 0.4707 28.79

HiNet 17.01 0.4708 16.82 0.4749 28.54
DeepMIH 17.47 0.4873 17.41 0.4826 27.99
iSCMIS 17.79 0.4937 17.98 0.4951 26.57

StegFormer 18.10 0.5109 18.43 0.5317 25.94

Ours 38.97(20.87↑) 0.9826(0.4717↑) 39.57(21.14↑) 0.9683(0.4366↑) 0.13(25.81↓)

Method
Cover/Stego Secret/Reveal

Image+Text+Audio Image Text Audio

PSNR↑ SSIM↑ PSNR↑ SSIM↑ Error Rate(%)↓ PSNR↑ SSIM↑
ISN 14.57 0.4130 14.25 0.4029 34.57 13.88 0.4001

HiNet 15.29 0.4207 14.83 0.4187 32.81 14.07 0.4073
DeepMIH 15.77 0.4214 15.49 0.4195 30.49 14.72 0.4115
iSCMIS 16.01 0.4305 16.47 0.4383 29.14 15.52 0.4293

StegFormer 16.23 0.4293 16.50 0.4311 28.98 15.76 0.4300

Ours 36.09(19.86↑) 0.9653(0.5348↑) 42.87(26.37↑) 0.9537(0.5154↑) 0.79(28.19↓) 38.74(22.98↑) 0.9277(0.4977↑)

empirially validated, as illustrated in Table 7 and Figure 9. These results confirm that high-fidelity
reconstruction was achieved only with the authenticated key, whereas severe errors occurred when
an incorrect key was used. These findings underscore the essential role of the proposed Multi-Gap
Collaborative Fusion mechanism in enhancing the security of the concealed multimodal secret data.

Effect of the Encryption Loss Le. The Le is introduced to mitigate reconstruction errors between
decrypted secret data xrev and the original secret data xsec, where auxiliary variable zaux introduces
perturbations during the decryption process. As evidenced by Table 3, the proposed Le substantially
enhances reconstruction fidelity, yielding PSNR improvements of 5.56dB for cover/stego pairs and
4.69dB for secret/revealed pairs, with corresponding SSIM gains of 0.18% and 0.21% respectively.
Concurrently, MAE and RMSE exhibit marked reductions of 0.53/0.76 and 0.35/0.48 for cover/stego
and secret/revealed pairs respectively. These quantitative improvements substantiate the efficacy of
the proposed Encryption Loss Le in enhancing steganography performance.
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Table 7: Comparative Performance of Secret Image Extraction with Correct and Incorrect Keys.

Cover/Stego Correct Key Random Key Public Key

PSNR↑ 50.72 53.10 8.71 7.67
SSIM↑ 0.9987 0.9996 0.1810 0.0856
MAE↓ 0.55 0.41 86.99 97.2

RMSE↓ 0.78 0.61 98.73 110.84

Figure 9: Visual results on DIV2K dataset. The secret images are revealed with three types of keys:
correct keys, random keys and the public keys tied to secret images.

H ADDITIONAL QUALITATIVE RESULTS

The qualitative comparison outcomes for the stego and recovery images of our model and other
models are presented in Figure 10, Figure 11, Figure 12, and Figure 13. Figure 10, Figure 11,
Figure 12, and Figure 13 present visual comparisons for image-in-image, text-in-image, audio-in-
image, and multimodal secret data (image+text+audio) concealing tasks, respectively. Each figure
includes the residual maps (magnified by a factor of 10 for clarity) between the cover and stego
images, as well as the original and revealed secret data. The comparisons demonstrate the superior
performance of the proposed method across all tasks, outperforming existing approaches in both
single-modal and multimodal secret data concealing scenarios. These results confirm the model’s
efficacy and strong adaptability in multimodal secret data steganography.

I USE OF LARGE LANGUAGE MODELS (LLMS)

This manuscript underwent language polishing and editorial refinement with the assistance of a large
language model (LLM). The model’s function was solely to enhance the expressive quality of the
author’s original writing without contributing to any core research components such as ideation,
experimental design, data analysis, or technical interpretation.
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Figure 10: Visual comparisons of our model with other steganography models for concealing image
on the DIV2K datasets.

Figure 11: Visual comparisons of our model with other steganography models for concealing ran-
domly generated binary text data.
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Figure 12: Visual comparisons of our model with other steganography models for concealing audio
data on the Dani-Voice datasets.
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Figure 13: Visual comparisons of our model with other steganography models for concealing three
modalities of secret data on the DIV2K and Dani-Voice datasets. The text data is randomly generated
binary data.
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