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Abstract

As training billion-scale transformers becomes increasingly common, employing multiple
distributed GPUs along with parallel training methods has become a standard practice. However,
existing transformer designs suffer from significant communication overhead, especially in
Tensor Parallelism (TP), where each block’s MHA–MLP connection requires an all-reduce
communication. Through our investigation, we show that the MHA-MLP connections can be
bypassed for efficiency, while the attention output of the first layer can serve as an alternative
signal for the bypassed connection. Motivated by the observations, we propose FAL (First
Attentions Last), an efficient transformer architecture that redirects the first MHA output to the
MLP inputs of the following layers, eliminating the per-block MHA-MLP connections. This
removes the all-reduce communication and enables parallel execution of MHA and MLP on a
single GPU. We also introduce FAL+, which adds the normalized first attention output to the
MHA outputs of the following layers to augment the MLP input for the model quality. Our
evaluation shows that FAL reduces multi-GPU training time by up to 44%, improves single-GPU
throughput by up to 1.18×, and achieves better perplexity compared to the baseline GPT. FAL+
achieves even lower perplexity without increasing the training time than the baseline.

1 Introduction

As transformers continue to grow following scaling law trends [1], Large Language Models (LLMs)
such as GPT [2] and LLaMA [3] demonstrate superior performance across a wide range of NLP tasks.
Given that the large transformers usually have billions of parameters which is far exceeding a single
GPU’s memory and computation limit, distributed training over multiple GPUs is necessary.

Among distributed training methods, Tensor Parallelism (TP) [4] has been considered as a standard
practice for multi-GPU training in each single-node, given its decent computation throughput and
memory efficiency [5, 6, 7]. However, the overall efficiency of TP can still be limited by the
communication overhead across the GPUs. For example, if the number of GPUs increases (and/or
the interconnect speed slows down), the efficiency of TP can be significantly degraded due to the
increased communication overhead. Hence, to further scale up transformers with more GPUs and
diverse interconnect configurations, it is essential to mitigate the communication overhead in TP.

One of the major sources of communication overhead in TP is the per-block communication (i.e.,
all-reduce) required across GPUs to transfer data between two main modules in each transformer
block: Multi Head Attention (MHA) and Multi Layer Perceptron (MLP). In TP, each GPU computes
a part of the MHA output, but the results must be aggregated via all-reduce to form a complete
activation before being passed to the MLP.
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Figure 1: Transformer block designs highlighting our proposed modifications. (a) Pre-LN archi-
tecture with Layer Normalization (LN), Multi Head Attention (MHA) and Multi Layer Perceptron
(MLP). (b) FAL blocks with reconfigured connections. (c) FAL+ blocks with augmented connections.
(d) End-to-end training time and perplexity comparison of Pre-LN architecture, FAL, and FAL+.

To reduce communication overhead in TP, we question whether the direct connections between two
main modules in each transformer block (i.e., MHA-MLP connections) are strictly necessary. To
answer this question, we conduct a series of analyses (Sec. 3), revealing two key observations:

1. MHA-MLP Connections Can Be Reconfigured: We find that the direct MHA-MLP connection
is not always essential, as the residual path already accumulates MHA outputs from prior blocks.
However, naively removing the connection causes a large drop in model quality, indicating
additional mechanisms are required to mitigate information loss.

2. First Attention is Key: Our analysis shows that the first MHA output has a disproportionately large
impact on final predictions. Thus, leveraging the first attention more effectively can compensate
for the information loss caused by the removed connections.

Motivated by our findings, we propose FAL (First Attentions Last), an efficient parallel transformer
architecture that redirects the high-impact first MHA output to the MLP inputs of following blocks,
rather than relying on the attention within each block (Fig. 1 (b)). This modification eliminates
expensive all-reduce communication within each block and also enables parallel execution of MHA
and MLP on a single GPU. As a result, FAL improves training throughput by 1.07-1.52× in multi-
GPU settings, and by 1.03-1.18× on a single GPU, compared to the standard transformer. Moreover,
carefully leveraging the high-impact first attention not only preserves model quality but improves it,
reducing validation perplexity and increasing the average SuperGLUE [8] score. To further improve
the model quality leveraging the high-impact first attention, we additionally propose FAL+, a variant
of FAL, which augments MHA–MLP connections rather than removing them (Fig. 1 (c)). FAL+
achieves even lower perplexity than FAL, further confirming the importance of the first attention.

2 Background

Transformer Architecture. A transformer model consists of a stack of transformer blocks.
Fig. 1 (a) depicts a diagram of Pre-LayerNorm (Pre-LN) architecture, which is widely adopted
for deep transformers due to its superior training stability and signal propagation [9, 10, 11]. Each
transformer block includes Multi Head Attention (MHA) for dependency modeling and a Multi Layer
Perceptron (MLP) for position-wise transformation using the dependencies computed by MHA.

The MHA first projects the input into multiple heads via query (Q), key (K), and value (V) layers ( 1⃝).
Each head independently learns dependencies through scaled dot-product attention. The outputs
from all heads are concatenated and merged by a linear layer ( 2⃝). The MLP then processes the
MHA output using position-wise transformations. It first projects the MHA output to a higher
dimensional space ( 3⃝), applies a GeLU (or ReLU) non-linearity, and then projects it back to its
original dimension ( 4⃝). As a result, given the block input Xi, the output of the i-th Transformer
block can be formulated as:

Xi +MHAi(LN(Xi)) +MLPi(LN(Xi +MHAi(LN(Xi)))) (1)

Here, Xi is progressively refined by the MHA and MLP, supported by residual connections [12] and
layer normalization (LN) [13]. These residual connections and layer normalizations are essential
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Figure 2: Forward pass during Transformer training with tensor parallelism across 2 GPUs. (a)
Standard training involves Broadcast, All-Reduce, and Aggregate communication. (b) FAL training
requires only Broadcast and Aggregate, reducing communication overhead.

for stabilizing gradients and preventing rank collapse [14]. Pre-LN design forms the basis for many
large-scale models such as GPT [2] and LLaMA [3]. In Sec. 4, we build upon this baseline to propose
structural modifications for efficiency and model quality.

Tensor Parallelism for Transformer. Fig. 2 (a) illustrates tensor parallelism (TP) [4], which is
one of the widely used parallel training methods. In TP, the parameters of the transformer are sliced
either along the row (input) or column (output) dimensions and distributed across GPUs.

The input is first broadcasted across GPUs and then fed into the sliced MHA. The outputs of the sliced
MHA are then summed up together to be passed to the subsequent MLP. This results in all-reduce
communication between GPUs to fully assemble the MHA output before passing it to the MLP.
After that, the assembled MHA output is fed into the sliced MLP. The outputs of the sliced MLP
also need to be summed up together to be passed to the next transformer block — this requires an
aggregate-broadcast communication.

Unlike data parallelism [15] and pipeline parallelism [16], which require moving model states or
introducing bubble periods, TP can achieve high computational occupancy when the model size is
much larger than the activation footprint [7].1 However, it still suffers from substantial communication
overhead as the number of GPUs increases or the interconnect speed slows down [5, 17]. Since TP
partitions MHA and MLP parameters across GPUs, each transformer block requires two all-reduces
in both forward and backward passes, creating significant overhead. To mitigate this, we focus on
reducing the necessity of all-reduce within each transformer block.

3 Motivation

A crucial principle in typical transformer architectures is that the MLP must always receive the most
recent MHA output within each block. This incurs all-reduce communication in TP affecting the
overall training time. Here, given that the residual path in a specific block already accumulates the
attention outputs of all preceding blocks, we question whether the MLP truly needs the most recent
MHA output. To answer the question, we conduct several analyses on GPT-2, using four linguistic
datasets — WikiText-2 [18], PTB [19], BookCorpus [20], and CC-News [21].

3.1 MHA-MLP Connections Can Be Reconfigured

To examine whether the direct MHA-MLP connection is strictly necessary, we first measure how
much a single MHA output has an impact on the MLP input within a block. Specifically, we quantify
the feature representation changes between the MHA output and MLP input by comparing their CKA
similarity [22] — similar practice is used in many prior works to quantify the feature representation
changes across activations in the model [23, 24].

Fig. 3 (a) shows the CKA similarity scores for MHA outputs, MLP inputs (Residual + MHA), and
MLP outputs across adjacent blocks. Although the MHA output, which largely varies across the

1A comparison of training times among data, pipeline, and tensor parallelism is provided in Apdx. B.
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Figure 3: Motivation for reconfiguring MHA-MLP connections. (a) CKA similarity analysis
across successive GPT-2 blocks. The x-axis indicates the block index, and the y-axis shows the
similarity between consecutive MHA outputs, Residual+MHA outputs (i.e., MLP inputs), and MLP
outputs. (b) Connection ablation results measured by perplexity. Original denotes the unaltered
model, All MHA removes all MHA layer, and All Connect removes all direct MHA-MLP connections.

Figure 4: The crucial role of the first attentions. (a) Normalized gradient magnitude of the MHA
outputs across Transformer blocks in GPT-2 for different datasets. The x-axis represents the block
index. (b) Layer ablation results measured by perplexity. The x-axis indicates the index of the
transformer block from which the MHA is omitted.

blocks, is added into the MLP input, the MLP input does not vary much across the blocks. This
suggests that a single MHA output change has a limited impact on the MLP inputs since the residual
connection already accumulates attention signals from the previous blocks. Note that the MLP still
produces different outputs, meaning that new information can be generated even if the inputs are
similar. This implies that the MLP may not always require the most recent MHA output (i.e., the
output of the MHA within the same block).

Given the observation that MHA output and MLP input within the same block consistently yields
similar representations, we hypothesize that the MHA-MLP connections can be selectively skipped
or reconfigured for efficiency gain — high representational similarity of intermediate features often
leaves potential for lightweight modifications or pruning [23]. To validate this hypothesis, we remove
either entire MHAs or only their connections to the MLP and quantify the impact of the removals.

Fig. 3 (b) illustrates two scenarios: removing all MHAs (All MHA) versus removing all MHA-
MLP connections (All Connect). As expected, removing All MHA severely degrades model quality,
since no attention can be utilized at all. In contrast, removing All Connect recovers much of the
lost performance compared to removing the entire MHAs. Although skipping connections is less
harmful than removing entire layers, the performance loss remains significant, indicating the need for
alternative signals for MLP.

3.2 First Attention is Key

To investigate alternative attention signals for MLP, we measure the gradient magnitude of the MHA
outputs across all blocks to find a crucial attention output with a high impact on final predictions.
Note gradient magnitude is also one of the widely used method to measure which input features the
model is focusing on as an importance score [25].

Fig. 4 (a) shows that the first MHA output consistently exhibits the highest gradient magnitude,
indicating that perturbations in the earliest attention result have a disproportionately large impact
on the final prediction. We further confirm this by measuring the perplexity after omitting the
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MHA from individual transformer blocks. As shown in Fig. 4 (b), removing the first attention
causes a far larger perplexity increase than removing later layers, verifying the crucial role of
the first attention in language modeling. These findings align with the well-known psychological
phenomenon of the primacy effect [26], commonly summarized as “first impressions matter.” The
primacy effect of the first attention is not limited to a specific model architecture — previous works
also identified the prominent impact of the first attention layer across various attention mechanisms
and tasks [27, 28, 29].

Our findings suggest that leveraging the first attention more effectively can compensate for the
information loss caused by skipping direct MHA-MLP connections.2

4 FAL: Harnessing First Attention for Enhanced Efficiency

Our analyses in Sec. 3 indicate 1) although MHA outputs can be bypassed, alternative signals for MLP
are needed (Sec. 3.1), and 2) the first MHA output could be the key to bridging the performance gap
(Sec. 3.2). Building on these findings, we propose FAL (First Attentions Last), a novel transformer
architecture designed to streamline MHA-MLP connections using the first MHA. We emphasize
three key considerations to balance efficiency and model quality:

• Retaining Crucial First-Attention Signal: Motivated by dual process theory [30] which suggests
that revisiting the initial judgement can improve accuracy, FAL carefully retains (and dwells on)
the crucial first attention signal in the subsequent blocks, by distinctly treating the first block as a
specialized "preparation" stage.

• Maintaining the Transformer Structure: Apart from rerouting the MLP input, FAL retains
the conventional ordering of sub-layers, residual paths, and multi head attention components.
Our design thus preserves the proven benefits of standard residual connections and MHA while
enabling more careful use of the first attention output.

• Minimizing Overhead: The reconfiguration must reduce data communication in multi-GPU
training while avoiding excessive memory usage or computations.

4.1 FAL Architecture

Fig. 1 (b) illustrates the core design of FAL. FAL revisits the first attention output in all subsequent
blocks, reducing the need to rely on the most recent attention output at each block. For reuse, we
apply layer normalization (LN) to the first attention output only once in the first block, thereby
maintaining a stable scale without incurring repeated LN overhead. Because the first attention output
is passed through every block, FAL acts akin to a dense skip connection [31] for this highly influential
first-stage signal.

The MLP now receives LN(Xi) + LN(MHA1(LN(X1))), instead of LN(Xi +MHAi(LN(Xi))).
By adding these two LN outputs together, LN(MHA1(LN(X1))) and LN(Xi), our design makes
the LN affine parameters learn the relative weight of each component. 3 Meanwhile, each block still
computes its own MHA (i.e., MHAi), which remains in the residual connection at the output of the
block to incorporate newly captured information. As a result, the ith FAL block output is formulated
as:

Xi +MHAi(LN(Xi)) +MLPi(LN(Xi) + LN(MHA1(LN(X1)))) (2)

4.2 Effectiveness of FAL

Reducing Communication in Multi-GPU Parallelism. With reconfigured connections, FAL
lowers communication overhead during multi-GPU training. Fig. 2 (b) illustrates FAL training using
TP, which fuses the all-reduce operation for MHA into that for MLP. By connecting the first MHA,
instead of the latest one, to the MLP, the MLP no longer requires the all-reduce output. As a result,
the outputs of the latest MHA and the MLP can be added locally on each GPU. This halves the
communication overhead, significantly improving the training time performance.

2Additional analyses (Apdx. C) consistently support (1) the feasibility of bypassing per-block MHA outputs,
and (2) the pivotal role of the first MHA output across transformer variants and domains.

3To avoid storing extra activations, we reposition the first layer’s LN from the MLP input to the MHA output.
This allows later blocks to reuse the normalized first-attention output without recomputation or extra memory, as
LN result is already cached during the forward pass for backpropagation.

5



Figure 5: Parallel kernel launch of FAL.

Single-GPU Acceleration. FAL also speeds up
single-GPU training. When executing a standard
transformer block on a single GPU, the MLP must
wait until the MHA finishes its operations. This se-
quential process can lead to sub-optimal utilization
of computational resources during training [32].

As depicted in Figure 5, because FAL modules (i.e., MHA and MLP) have no dependencies, they
can be executed in parallel accelerating single-GPU training.4 For example, while memory-intensive
operations (e.g., element-wise operations) of a module are executed, compute-intensive operations
(e.g., matrix multiplications) of the other module can be simultaneously executed. This concurrency
increases both computational and memory throughput, reducing overall training time.

Note, although we focus on the training efficiency in this paper, the benefits of FAL can also be
applied to multi-GPU inference scenarios — TP is widely used even for the multi-GPU execution of
inference due to its decent computation throughput and memory efficiency [7]. The detailed results
of FAL’s inference acceleration are presented in Apdx. D.3.

5 FAL+: Harnessing First Attention for Enhanced Quality

Our observations in Sec. 3.2 highlight the crucial role of the first MHA in language modeling. In
FAL, we exploit the first MHA output to reduce overhead by replacing subsequent direct MHA–MLP
connections. In this section, we introduce FAL+, which instead augments the original MHA-MLP
connections with the first MHA output to further enhance model quality.

Fig. 1 (c) illustrates the core design of FAL+. Rather than removing any MHA-MLP connections,
each transformer block integrates the first attention signal MHA1(LN(X1)) alongside its original
connection. FAL+ appends an additional LN on each block for the first attention signal, allowing the
LN affine parameters to control how much of the first attention is utilized.

As we show in Sec. 6.4, FAL+ consistently achieves lower perplexity than the baseline, demonstrating
that the first MHA output can be leveraged effectively even when the primary goal is to improve
model quality rather than training speed.

6 Evaluation Results and Analysis

6.1 Experimental Setup

We conduct our experiments on a variety of hardware, datasets, and models with various scales, as
briefly summarized below (further details in Apdx. A).

• Hardware: In order to comprehensively evaluate our approach across diverse GPU architectures
and scales, we conduct experiments on multi-GPU configurations (2–8 GPUs) with RTX 3090
and H200 devices connected via PCIe or NVLink, and on single-GPU setups with RTX 3090,
RTX 4090, and RTX A6000.

• Baselines: We compare FAL and FAL+ with a standard transformer-based language model GPT-2
and larger GPT variants — FAL and FAL+ are implemented atop the baselines.We also compare
FAL and FAL+ with a parallel configuration considered in [33, 34, 35] where MHA and MLP
modules are executed simultaneously using the same input, in order to validate that reusing the
first MHA output shows similar parallelism improvements with the parallel configuration while
even enhancing the model quality.
In multi-GPU scenarios, we further compare our proposed architectures with lossy communication
time reduction methods, such as gradient quantization [36] and low rank approximation [37].

• Datasets: We pre-train the models on OpenWebText corpus [38], a publicly available counterpart
to GPT-2’s WebText. For scalability analysis, we use the Pile dataset [39]. Zero-shot performance
is evaluated on language understanding tasks using the SuperGLUE benchmark suite [8].

4In practice, FAL enables overlapped execution of MHA and MLP on separate CUDA streams. Such overlap
allows the warp scheduler to better hide latency — when one warp stalls on a memory operation, another ready
warp in a different stream can be scheduled without delay.
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Figure 6: Normalized Multi-GPU Training Time of GPT2 and FAL.

6.2 Multi-GPU Performance

Fig. 6 shows the normalized training time of GPT-2 and FAL on multi-GPUs (i.e., H200 with NVLink
and RTX 3090 with PCIe) with model sizes from 774M to 8.3B. For high-end GPUs with NVLink,
FAL improves the training time performance by 13.2% on average (up to 20.1%) compared to
GPT-2. In the case of 2 GPUs, communication overhead is relatively low due to the high bandwidth
of NVLink. In this case, FAL’s performance improvement mainly comes from the single-GPU
acceleration. As the number of GPUs increases — for training larger models — the communication
overhead substantially increases. In such cases, FAL further improves performance (by 18.7% on
average) by reducing all-reduce communication within each transformer block.

In typical multi-GPU servers with PCIe (instead of NVLink) [40], the communication overhead
becomes more pronounced accounting for up to 80.6% of training time on 4 GPUs. In such cases,
FAL provides even greater benefit — it improves training time performance by 36.6% on average
(up to 43.1%) compared to GPT-2. These results demonstrate that FAL is not only effective in
high-performance setting, but also highly beneficial in typical PCIe-based settings, reinforcing its
scalability and practicality across a variety of deployment settings.

Figure 7: Validation perplexity and
training time breakdown of GPT-
2, gradient compression meth-
ods, and FAL. (FWD: forward,
BWD: backward, Comm: com-
munication, (De)Comp: compres-
sion/decompression time)

Comparison with Lossy Communication Reduction Meth-
ods. Fig. 7 shows the training time breakdown and perplex-
ity of GPT-2, FAL, and two gradient compression methods
(quantization [36] and low-rank approximation [37] denoted
as Grad-Q and Grad-LR, respectively) on a 2-GPU PCIe setup
with OpenWebText. While the compression techniques sub-
stantially reduce communication time (by 37.8% on average),
they significantly degrade model quality. On the other hand,
FAL reduces much more communication time overhead (by
49.4%) compared to the compression techniques without com-
promising the model quality — it even reduces the perplexity
compared to GPT-2. This result demonstrates that FAL can
strike much better performance-accuracy trade-off point com-
pared to the prior communication reduction techniques via the
connection reconfiguration.

6.3 Single-GPU Performance

Fig. 8 (a) shows the normalized throughput (tokens per second) of GPT-2 and FAL on single GPUs
(RTX3090, RTX4090, and RTX A6000); the throughput is normalized to that of GPT-2. As shown in
Fig. 8 (a), FAL improves single-GPU throughput by 1.08× on average (up to 1.18×) compared to
GPT-2. This is because FAL enables overlapped execution of MHA and MLP in each block better
utilizing resources — Fig. 8 (b) shows that FAL improves SM utilization, warp occupancy, tensor core
usage, and memory bandwidth by up to 8.2%, 45.9%, 13.9%, and 18.4%, respectively, on RTX-3090.

Note FAL typically shows better single GPU throughput when FlashAttention [41] is adopted. This
is because FlashAttention increases the computational intensity of attentions with kernel fusion,
giving more opportunity for FAL to overlap the computation-intensive operations and memory-
intensive operations in MHA and MLP leading to better resource utilization. Although MLP’s large
matrix multiplies are compute-heavy, each GEMM begins and ends with global-memory loads and
stores. These boundary memory transactions introduce unavoidable stalls, even if the core GEMM
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Figure 8: Single-GPU throughput comparison between GPT2 and FAL. (a) Normalized through-
put (tokens/sec). (b) Analysis of throughput gains on RTX 3090.

Table 1: Openwebtext validation perplexity, training time, and SuperGLUE zero-shot results.
Openwebtext (↓) SuperGLUE (↑) (CB, Record: F1 score, Others: Accuracy)

Model PPL / Time BoolQ [42] CB [43] COPA [44] MultiRC [45] ReCoRD [46] RTE [47] WIC [48] WSC [49] Avg.

GPT-2 774M 17.75 / 13.2d 55.7 19.4 54.0 52.3 57.4 54.2 49.8 45.2 48.5
Parallel 17.80 / 8.6d 50.0 19.4 58.0 53.8 48.6 51.6 49.1 36.5 45.9
FAL 17.55 / 8.6d 50.2 21.4 62.0 54.5 52.6 51.6 46.6 49.0 48.5
FAL+ 17.24 / 13.2d 51.8 21.1 58.0 55.7 56.2 51.3 51.3 48.1 49.2
GPT-2 1.5B 14.72 / 24.1d 58.0 24.1 65.0 57.2 78.4 53.1 50.0 40.4 53.3
FAL 14.23 / 16.1d 58.1 21.6 72.0 57.2 78.7 54.2 49.2 64.4 56.9
FAL+ 14.12 / 24.2d 58.8 26.2 65.0 57.2 79.0 56.0 49.8 51.0 55.4

is compute-bound. FlashAttention’s higher arithmetic intensity in the attention block lengthens its
compute phase relative to its memory phase, creating more opportunities to hide MLP’s boundary
stalls behind attention computation.

6.4 Model Quality and Training Efficiency

Training from Scratch. To validate the model quality of FAL and FAL+, we measure the perplexity
and end-to-end training time, respectively, while training GPT-2, parallel configuration (denoted as
Parallel), FAL, and FAL+ with OpenWebText dataset on 4-GPU PCIe setup.

Table 1 (left) reports the perplexity and total training time for the 774M (36 layer) and 1.5B (48
layer) scales. Both FAL and Parallel improve the training time by 34%, on average, compared to
GPT-2. However, Parallel degrades model quality compared to GPT-2, since it discards MHA-MLP
connections without providing any alternative features. On the other hand, FAL even improves model
quality — it lowers perplexity by 0.2 and 0.49, compared to GPT-2 774M and 1.5B, respectively.
This result demonstrates that reconnecting the first MHA output with LN is not just an alternative
signal of the removed connections, but a deliberate reuse of the crucial early representation which
leads to better understanding of the input.

FAL+ achieves even lower perplexity compared to GPT-2, by augmenting the MHA-MLP connections
with the first MHA output — its training time is thus almost same with the baseline. Here, the
perplexity improvements of FAL and FAL+ get larger as model scale increases — this is mainly
because the advantage of revisiting the first attention becomes increasingly effective in deeper models
(see Scalability Analysis for more details).

Scalability. To validate the scalability of FAL and FAL+, we compare token ingestion efficiency
of the Pre-LN Transformer, FAL, and FAL+ as their depth increases from 36 to 60 layers. Fig. 9
shows the loss curves under fast training conditions inspired by Cramming [50]. In the early stages
of training, both FAL and FAL+ reduce MLM loss more rapidly than the Pre-LN baseline. In case of
36-layer scale, all models end up show similar loss values.

As the model depth increases, both FAL and FAL+ converge to lower MLM loss values than the Pre-
LN baseline — FAL+ usually exhibits lower MLM loss values compared to FAL. In case of standard
Pre-LN transformers, residual connections cannot fully preserve early-layer information, which is
gradually diluted as activations accumulate through depth [9]. This limits deeper architectures from
revisiting the high-impact first attention signal that strongly influences the model’s final predictions.
In contrast, FAL and FAL+ repeatedly reintroduce the high-impact first attention output across depth,
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Figure 9: Loss comparison with increasing number of blocks across Pre-LN architecture, FAL,
and FAL+.

allowing later blocks to adaptively re-weight this signal. Moreover, the degradation from removing
direct MHA–MLP connections diminishes in deeper models, while the primacy of the first attention
persists (as we demonstrate in Apdx. C). This validates the benefit of the replacement strategy of FAL
in deeper architectures.

Generalizability. To further validate the generalizability of FAL and FAL+, we evaluate their
zero-shot performance on language understanding tasks using SuperGLUE benchmark. Table 1
(right) shows the zero-shot results, where CB and ReCoRD are evaluated using F1 score, while
the remaining tasks use accuracy. FAL largely preserves the language modeling capabilities of the
standard Pre-LN architecture. In the case of 774M scale, FAL achieves the same average score as
GPT-2 across SuperGLUE tasks. On the other hand, in the case of 1.5B scale, FAL surpasses GPT-2
due to the increased depth which gives more opportunity to revisit the first attention signal. FAL+
achieves higher average scores than GPT-2 in both scales, by augmenting the MHA-MLP connections
with the first MHA output. 5 Our motivational analyses on vision and multimodal tasks in Apdx. C
also demonstrate the feasibility of bypassing per-block MHA outputs using the pivotal first MHA
output. Hence, we believe FAL and FAL+ can further be generalized to other tasks.

We also validate FAL and FAL+ on various transformer variants, such as LLaMA (with Grouped
Query Attention, GQA) and Switch Transformer (with Mixture of Experts, MoE). Both FAL and
FAL+ consistently yield lower loss curves than the baseline GQA and MoE architectures, confirming
that our connection-level reconfiguration is broadly applicable — the detailed results and training
configurations are provided in Apdx. E.

Table 2: Instruction tuning robustness on Al-
paca. (stability vs. adaptation)

Model LR ∆ Val PPL Trained PPL
GPT2 1.5B 1e-5 0.01 30.93

1e-4 0.00 30.92
1e-3 0.01 28.10
1e-2 1.39 4.83

FAL+ 1.5B 1e-5 0.00 27.97
1e-4 0.00 27.98
1e-3 -0.01 27.22
1e-2 0.61 5.76

Downstream Robustness. We empirically ex-
amine how injecting the first attention signal
during instruction tuning affects the trade-off
between stability and adaptation. We fine-tune
both GPT-2 1.5B and FAL+ 1.5B on the Alpaca
instruction tuning dataset [53] using four learn-
ing rates (1e-5 to 1e-2).

Table 2 reports trained perplexity (Trained PPL)
on Alpaca, reflecting adaptation, and validation
perplexity degradation (∆ Val PPL) on Open-
WebText, reflecting forgetting. FAL+ consis-
tently preserves pretraining knowledge better
than GPT-2. Across all learning rates (LR),
FAL+ shows lower or equal ∆ Val PPL on Open-

5Although FAL+ exhibits lower perplexity compared to FAL during pretraining, its SuperGLUE score is
lower than that of FAL. This discrepancy suggests that the domain mismatch between the OpenWebText corpus
and SuperGLUE tasks may limit the direct transferability of perplexity improvements on the pretraining corpus
to downstream performance [51, 52]. However, we expect this gap can be mitigated through continual pretraining
on more diverse domain sources [51].
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WebText compared to GPT-2, indicating stronger stability. At LR=1e-3, FAL+ even shows a slight
improvement in validation PPL (-0.01), suggesting positive regularization rather than forgetting.

FAL+ also achieves better adaptation when forgetting is minimal. In Table 2, while maintaining zero
or negative ∆PPL, FAL+ attains the lowest trained PPL (27.22) at LR=1e-3, demonstrating high
adaptability with minimal forgetting. In contrast, GPT-2 reaches a lower trained PPL (4.83) at LR=1e-
2 only by severely compromising original domain knowledge (∆ Val PPL = 1.39). These results
show that reusing the impactful first attention in FAL+ enables robust adaptation while mitigating
catastrophic forgetting [54], ensuring that the improved model quality (Table 1) is not achieved at the
cost of stability or downstream adaptability.

7 Related Work

Parallel Training Methods: Training large-scale neural networks requires parallel methods to handle
high computation and memory demands. Data Parallelism (DP), Pipeline Parallelism (PP), and Tensor
Parallelism (TP) are the primary approaches. In DP, each GPU processes different data batches
with identical model replicas and synchronizes gradients, but scaling to large models incurs heavy
memory and communication costs. PP [16] partitions (sub)layers into sequential stages across GPUs,
introducing pipeline bubbles that slow training. TP [4] distributes model (sub)layers across GPUs to
avoid bubbles, but communication still remains a bottleneck. FAL tackles this by exploiting the first
attention to reduce communication while preserving information. Some works [5, 55] combine TP
and PP with DP for efficient GPU training. FAL can further boost these combinations by lowering
the communication cost introduced by TP.

Communication Reduction in Parallel Training: Overlapping communication with computation
can hide communication delays [6], but its effectiveness depends on how much communication can be
overlapped with the computation [56]. FAL offers more opportunity to overlap communication with
computation by reducing the communication frequency. Gradient compression using quantization [36]
or low-rank approximation [37] reduces data exchange, but the (de)compression overhead can negate
time savings given TP’s short communication intervals.

Parallel configurations within transformer blocks [33, 34, 35] lower TP communication [7] by using
the same input to the MHA and MLP, yet degrade quality on linguistic tasks. In contrast, FAL
reconfigures sequential connections using the first MHA output, thereby cutting communication
overhead while improving model quality.

8 Conclusion

Training large transformer models over multiple GPUs often incurs substantial communication
overhead. To alleviate the communication overhead, we propose FAL (First Attentions Last), a
novel architecture that leverages the output of the high-impact first MHA to streamline MHA–MLP
connections. Leveraging the first attention more effectively, FAL removes expensive all-reduce
communication within each block and enables parallel execution of MHA and MLP on a single GPU
without compromising the model quality. We also introduce FAL+, a variant that leverages the first
attention output to pursue additional quality gains, underscoring the flexibility of our connection-level
approach. In our evaluation across various linguistic tasks and hardware configurations, FAL shows
up to 44% of training time reduction, compared to the baselines of GPT architecture, while improving
model quality as the depth increases. Furthermore, FAL+ achieves even better model quality with
connection augmentation. We believe this connection-level perspective opens new avenues for
refining transformer architectures, both in terms of communication efficiency and model quality.

Limitation and Future Work. FAL slightly degrades accuracy for small models (0.3%, Apdx. E.2)
because shallow networks provide fewer layers to accumulate attention signals, making the replace-
ment of block-level connections less stable. FAL+, however, augments rather than replaces these
connections, allowing later blocks to leverage both the current attention and the first attention, which
avoids information loss and even yields a slight accuracy gain (0.14%). Building upon this, in-
corporating a connection-reconfiguration strategy centered on the first attention output into Neural
Architecture Search [57] or dynamically injecting the first attention through gating [58] presents an
interesting direction for future research.
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Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are clearly reflecting the contribu-
tions and scope of this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitation of this work in Sec. 8.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
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3. Theory assumptions and proofs
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complete (and correct) proof?
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Justification: There is no theoretical result in this paper.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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provide intuition.
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formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility
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mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
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and data are provided or not.
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make their results reproducible or verifiable.
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suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
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this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
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Justification: We included all the important hyperparameters and datasets we used in our experi-
ments in Apdx. A. We will also open-source our code after the review process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All the information necessary to train the models on OpenWebText, perform the
comparison using SuperGLUE, replicate results can be found in the paper (Sec. 6) and Apdx. A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We did not have the compute resources to train several versions of the same model
configuration and report perplexity and SuperGLUE results with error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: The number of GPU hours necessary to train the models is discussed in the paper
(Sec. 6) — other details of the used computed resources are summarized in Apdx. A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The Code of Ethics was reviewed carefully for full compliance.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [No]

Justification: While the paper does present pretrained language models, the accompanying societal
impacts and necessary safeguards are no different from that of existing language models. As such,
we expect that existing mitigation strategies will be applicable to the ideas presented in this paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The creators and original owners of assets used in this paper are properly credited,
and the license and terms of use are explicitly mentioned and respected, as evidenced by thorough
citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The experiments in this work did not directly include data from crowdsourcing or
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: None of the experiments in this work involved human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Appendix

In this appendix, each section provides the following:

• Section A (Technical Appendix): detailed hardware and software configurations used in our
experiments, including system specifications and common settings.

• Section B (Parallel Training Methods): comprehensive background on major distributed training
paradigms (Data, Pipeline, and Tensor Parallelism).

• Section C (Additional Motivation Analyses): extended motivation analyses across different
model scales, datasets, and architectures (GPT-2, ViT-B, LLaMA2-7B, CodeLLaMA-34B, and
LLaMA3.2-11B-Vision), confirming (1) the feasibility of bypassing per-block MHA outputs, and
(2) the pivotal role of the first MHA output across transformer variants and domains.

• Section D (Additional Evaluation Results and Analyses): further ablation studies, analyses
on information-dilution mitigation, and inference acceleration results demonstrating how FAL
improves both training and inference efficiency while preserving model stability and quality
through effective reuse of the first attention output.

• Section E (Evaluation of Generalizability to Transformer Variants): evaluation of FAL and
FAL+ on diverse transformer variants (e.g., GQA-based, MoE-based, and ViT architectures) to
confirm adaptability across attention mechanisms and modalities.

A Technical Appendix

A.1 Hardware & Software

We performed the experiments using PyTorch and Colossal-AI on our server and a public cloud
service.

Common Settings

• Version of PyTorch: 2.2.2

• Version of CUDA: 12.3

• Version of Colossal-AI: 0.4.0

System-1

• Operating system: Ubuntu 20.04.6

• CPU: AMD EPYC 7542 32-Core

• GPU: NVIDIA RTX 3090 24GB X 4

• Interconnect: PCIe Gen4 x16 (64GB/s)

System-2

• Operating system: Ubuntu 20.04.6

• CPU: AMD Ryzen Threadripper 3970X 32-Core

• GPU: NVIDIA RTX 4090 24GB X 2

• Interconnect: PCIe Gen4 x16 (64GB/s)

System-3

• Operating system: Ubuntu 20.04.6

• CPU: AMD Ryzen Threadripper 3970X 32-Core

• GPU: NVIDIA RTX A6000 48GB X 2

• Interconnect: PCIe Gen4 x16 (64GB/s)
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System-4 (Public Cloud)

• Operating system: CentOS 7.9
• CPU: Intel Xeon Emerald Rapids (Platinum 8558) / 2.10GHz (48-core) / 2 socket
• GPU: NVIDIA H200
• Interconnect: NVIDIA NVLink (900GB/s)

Figure 1 (d)

• System: 4
• GPU#: 8
• Model: GPT-2 774M
• Sequence Length: 1024
• Batchsize: 128

Figure 3 (a), (b), Figure 4 (a), (b) Motivation analyses are done with pretrained GPT-2 model on
four different text datasets – WikiText-2 [18], PTB [19], BookCorpus [20], and CC-News [21].

• System: 1
• Model: GPT-2 117M (pretrained: openai-community/gpt2-large [59] from Hugging Face)
• Max Sequence Length: 1024

Figure 6 We employ FlashAttention [41] and mixed-precision training [60] in all experiments to
maximize tensor core utilization and overall training efficiency. We benchmark using the largest
batch size (in powers of two) supported under each training setting.

• System: 4, 1
• GPU#: [2, 4, 8]
• Model: [GPT-2 774M, 1.5B, 2.5B, 8.3B]
• Batchsize: System4: 64 (774M, 2GPU), 16 (1.5B, 2GPU), 16 (2.5B, 2GPU), 8 (8.3B, 2GPU), 64

(774M, 4GPU), 32 (1.5B, 4GPU), 32 (2.5B, 4GPU), 16 (8.3B, 4GPU), 128 (774M, 8GPU), 64
(1.5B, 8GPU), 64 (2.5B, 8GPU), 32 (8.3B, 8GPU) System1: 4 (774M, 2GPU), 2 (1.5B, 2GPU), 8
(774M, 4GPU), 4 (1.5B, 4GPU)

• Sequence Length: 1024

Figure 7

• System: 1
• GPU#: 2
• Model: GPT-2 774M
• Total Batchsize: 32 (used gradient accumulation)
• Sequence Length: 1024
• Epochs: 1
• Learning rate: 0.0001
• Weight decay: 0.001
• Dropout: 0

Figure 8 (a) We compare GPT-2 and FAL under both the minimum (1) and maximum batch sizes
for each GPU setting. We also evaluate the speedup with and without acceleration techniques —
specifically, FlashAttention — on each GPU configuration.

• System: [1, 2, 3]
• GPU#: [1]
• Model: GPT-2 774M
• Sequence Length: 1024
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Figure 8 (b) We use NVIDIA Nsight Systems [61] to profile GPU performance, including SM
utilization, warp occupancy, tensor core usage, and memory bandwidth.

• System: 1
• GPU#: 1
• Model: GPT-2 774M
• Sequence Length: 1024

Table 1 We train each architecture on OpenWebText [38], an open-source replication of the WebText
dataset originally used to train GPT-2. The dataset comprises approximately 41.7 GB of text,
corresponding to 4 billion tokens. Given our limited computational resources, we use a compute-
efficient batch size of 32, which has been shown to be sufficient for stable hyperparameter transfer
in µP-based training [62, 63]. To evaluate language understanding performance, we report zero-
shot results on the SuperGLUE benchmark [8], which includes BoolQ [42], CB [43], COPA [44],
MultiRC [45], ReCoRD [46], RTE [47], WiC [48], and WSC [49]. No finetuning or additional
training was performed on any task. CB and ReCoRD are evaluated using F1 score, while the
remaining tasks use accuracy.

• System: 1
• Epochs: 1
• GPU#: 4
• Model: GPT-2 774M, 1.5B
• Parallel setting: 2TP/2DP
• Total batchsize: 32 (used gradient accumulation)
• Sequence Length: 1024
• Learning rate: 0.0001
• Weight decay: 0.001
• clip-grad-norm: 1
• embd-pdrop: 0.1

Figure 9 Motivated by Cramming [50], which demonstrated that scaling laws [1] can be observed
even under small-scale, fast-training settings, we compare FAL and FAL+ to the standard pre-LN
architecture by stacking transformer blocks with depths of 36 (equivalent to GPT-2 774M), 48 (GPT-2
1.5B), and 60. To evaluate scalability, we stack the transformer blocks of a pre-LN masked language
model architecture based on BERT-Large [64].

Training settings follow the original Cramming paper, including a budget-based one-cycle learning
rate scheduler [65] and batch size ramp-up for 24 hours on 1 GPU. Models of the same scale are
trained under identical system configurations.

• System: 1, 2
• GPU#: 1
• Hidden size: 1024
• Intermed size: 4096
• Nonlinear: GELU
• Max sequence length: 128
• Number of transformer block: 36, 48, 60
• Final Batchsize: 8192 (used gradient accumulation)
• Learning rate: 0.0001
• Weight decay: 0.001
• Clip-grad-norm: 1
• Hidden dropout probability: 0.1
• Attention dropout probability: 0.1
• Embedding dropout probability: 0.1
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B Parallel Training Methods

Figure 10: Comparison of Data parallelism(DP), Pipeline Parallelism(PP), Tensor Parallelism(TP).
We stack GPT-2 blocks until DP can handle them (number of blocks: 42), using OpenWebText (max
sequence length: 1024) for comparison on two NVIDIA RTX 3090 GPUs connected via PCIe.

To address challenges of training the large-scale models, employing multiple distributed GPUs along
with parallel training methods [66, 15, 4, 67, 68, 16, 69, 70] has become a common practice. These
methods encompass a range of parallelism paradigms, including Data Parallelism (DP), Pipeline
Parallelism (PP), and Tensor Parallelism (TP). DP duplicates the entire model across multiple
distributed GPUs. Each GPU then trains the duplicated model with different data batches and
synchronizes the trained gradients for unified updates [15, 69, 71]. While DP is effective for smaller
models, it results in significant memory and communication overhead for larger models as each GPU
needs to retain the model duplicates and synchronize the large amount of parameters.

PP and TP have been proposed to address the scalability issue. PP [72, 16] partitions layers of a
model across the GPUs. A batch is split into smaller microbatches, and training of different layers
is pipelined with the microbatches across the GPUs. However, to ensure consistent weight updates
for a particular batch (without being affected by the weight updates from the other batches), GPUs
need to synchronize the weight updates of microbatches for every batch. This introduces pipeline
bubbles where some GPUs (which process former microbatches of a batch) need to wait for the
weight updates from the other GPUs (which process latter microbatches of the batch) delaying the
entire training process [72]. TP [4], on the other hand, distributes matrix multiplications within each
transformer layer (i.e., MHA and MLP) across the GPUs. Each GPU handles a portion of the matrix
multiplications in parallel, without having model duplicates or pipeline bubbles, making it highly
effective for large-scale models.

Although TP is receiving much attention recently for its scalability benefit to further enhance memory
efficiency and latency with large-scale models [5, 6, 55], its further efficiency is still limited by the
communication overhead. Fig. 10 illustrates the train time and memory usage comparison between
DP, PP and TP. While TP shows the fastest training time among three methods as it does not require
communication of full parameters and pipeline bubbles, frequent communication between GPUs is
still required to process synchronized and complete intermediate activations and gradients from MHA
and MLP. As a result, a large portion of the training time is devoted to these communications (37.9%
of the training time), resulting in a notable decrease in training efficiency.

To further enhance the potential of TP for fast large model training, we propose FAL, which eliminates
intra-block data communication by harnessing the output of the MHA in the first (i.e., bottom-most)
transformer block for the MLP’s inputs, instead of using the output of the MHA in the same block.

C Additional Motivation Analyses

C.1 Motivation Analyses in Different Scale

Fig. 11 shows the CKA similarity scores for MHA outputs, MLP inputs (Residual + MHA), and MLP
outputs across adjacent blocks (conducted on GPT-2 774M and 1.5B). As shown in Fig. 11, even in
the case of larger models, the MLP input remains highly similar despite significantly changing MHA
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Figure 11: CKA-based similarity analysis of GPT-2 774M and 1.5B. across successive Transformer
blocks. The x-axis shows the block index, and the y-axis shows the similarity (CKA) between
consecutive MHA output, Residual + MHA output (i.e., the MLP input), and the MLP input

output. This demonstrates that, regardless of the model size, MLP may not require the most recent
MHA output (i.e., the output of the MHA within the same block).

Figure 12: Connection ablation results measured by perplexity with GPT-2 774M and 1.5B. “Original”
denotes the unaltered model. "All MHA" removes every MHA layer. “All Connect” removes every
direct MHA-MLP connection.

Fig. 12 illustrates two scenarios: removing all MHAs (All MHA) versus removing all MHA-MLP
connections (All Connect), measured by perplexity on GPT-2 774M and 1.5B. As expected, removing
All MHA severely degrades model quality. In contrast, removing All Connect recovers a significant
portion of the lost performance compared to removing the entire MHAs, and this recovery becomes
even more pronounced with larger models (though still not fully reaching the original performance).
This suggests that bypassing MHA is a better option for larger models.

Figure 13: Normalized gradient magnitude of the MHA outputs across Transformer blocks in GPT-2
774M and 1.5B for different datasets. the x-axis represents the block index.

Fig. 13 shows the gradient magnitude of each MHA output on larger scale (774M and 1.5B). As
shown in Fig. 13, even in the case of larger models, first MHA output consistently exhibits the highest
gradient magnitude. This confirms our finding that perturbations in the earliest attention result have a
disproportionately large impact on final predictions, regardless of model size.

Fig. 14 shows the perplexity after omitting the MHA from individual transformer blocks with 774M
and 1.5 scale GPT-2. As shown in Fig. 14, removing the first attention causes a far larger perplexity
increase than removing later layers, verifying the crucial role of the first attention in language
modeling. These findings align with the well-known psychological phenomenon of the primacy
effect [26], commonly summarized as “first impressions matter.” The primacy effect of the first
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Figure 14: Layer ablation results measured by perplexity with GPT-2 774M and 1.5B. the x-axis
indicates the index of the transformer block from which the MHA is omitted.

attention is not limited to a specific model architecture — previous works also identified the prominent
impact of the first attention layer across various attention mechanisms and tasks [27, 28, 29].

C.2 Motivation Analyses with Different Task & Model Architecture

Beyond scaling analyses, we further validate our motivation across different tasks and model archi-
tectures, including ViT-B (86.6M), LLaMA2-7B, CodeLLaMA-34B, and LLaMA3.2-11B-Vision.

C.2.1 ViT

Figure 15: (a) CKA-based similarity analysis of ViT. across successive Transformer blocks. The
x-axis shows the block index, and the y-axis shows the similarity (CKA) between consecutive MHA
output, Residual + MHA output (i.e., the MLP input), and the MLP input (b) Connection ablation
results measured by accuracy. “Original” denotes the unaltered model. "All MHA" removes every
MHA layer. “All Connect” removes every direct MHA-MLP connection.

Fig. 15 (a) shows the CKA similarity scores for MHA outputs, MLP inputs (Residual + MHA), and
MLP outputs across adjacent blocks (conducted on ViT-B). As shown in the Figure, even in the case
of vision task, the MLP input remains highly similar despite the MHA output changing significantly.
This confirms our findings that MLP may not always require the most recent MHA output (i.e., the
output of the MHA within the same block), regardless of the domain.

Fig. 15 (b) illustrates two scenarios: removing all MHAs (All MHA) versus removing all MHA-MLP
connections (All Connect), measured by accuracy on ViT-B. As expected, removing All MHA severely
degrades model quality. In contrast, removing All Connect recovers a large portion of the lost
performance compared to removing the entire MHAs, however this recovery becomes smaller with
smaller vision models. This suggests that simply bypassing MHA on small-scale vision models may
harm their accuracy.

Fig. 16 (a) shows the normalized gradient magnitude of each MHA output in the encoder-based
ViT-B [73]. Although the effect is less pronounced than in language models, the first MHA output
still consistently exhibits the highest gradient magnitude.

Fig. 16 (b) shows the accuracy after omitting the MHA from individual transformer blocks with ViT-B.
As shown in the Figure, removing the first attention causes a far larger accuracy drop than removing
later layers (except the last), verifying the crucial role of the first attention in language modeling. The
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Figure 16: (a) Normalized gradient magnitude of the MHA outputs across Transformer blocks with
ViT for different datasets. The x-axis represents the block index. (b) Layer ablation results measured
by accuracy with ViT. The x-axis indicates the index of the transformer block from which the MHA
is omitted.

importance of the final attention likely stems from the fact that ViT uses a domain-specific classifier
based on the output of the final Transformer block [73].

C.2.2 LLaMA

To further validate the generality of our findings across modalities and scales, we extend our motiva-
tional analyses to larger models: LLaMA2-7B (language), CodeLLaMA-34B (code generation), and
LLaMA3.2-11B-Vision (multilingual vision-language). We use WikiText for LLaMA2-7B, The Stack
dataset [74] for CodeLLaMA-34B, and the COCO captioning dataset for LLaMA3.2-11B-Vision.

Table 3: Similarity Analysis Results (Metric: CKA Similarity ± std)
Activation LLaMA2-7B CodeLLaMA-34B LLaMA3.2-11B-Vision
Attn Out 0.60 ±0.14 0.66 ±0.13 0.84 ±0.10
MLP In 0.98 ±0.03 0.99 ±0.03 0.98 ±0.02
MLP Out 0.70 ±0.23 0.80 ±0.18 0.80 ±0.20

Table 3 reports the similarity analysis results, measured by CKA similarity (mean ± std). Across all
three models, we observe that the MLP inputs remain highly similar to each other (LLaMA2-7B:
0.98, CodeLLaMA-34B: 0.99, LLaMA3.2-11B-Vision: 0.98), whereas the attention/MLP outputs
vary more significantly (0.60–0.84). This analysis shows that the residual path already accumulates
sufficient attention signals, making the MLP input less sensitive to the most recent MHA output.
The same trend holds even for larger-scale (7B–34B) and multimodal (vision–language) models,
extending our earlier motivation analyses 3.1 and supporting the validity of reconfiguring MHA–MLP
connections in FAL.

Table 4: Layer Ablation vs. Connection Ablation (Metric: Validation Perplexity)
Setting LLaMA2-7B CodeLLaMA-34B LLaMA3.2-11B-Vision
Original 7.39 1.80 25.12
Remove Layer 5339.99 1484.52 3995.84
Remove Connection 892.12 37.06 504.72

Table 4 reports validation perplexity under two ablations: (1) removing the entire MHA layer, and (2)
removing only the direct MHA–MLP connection. Across all three models, removing entire layers
leads to catastrophic degradation (e.g., PPL >1000), while removing only the connections recovers a
substantial portion of performance. Although the connection–removed models still fall short of the
original baseline, they consistently perform far better than the layer–removed ones, and the recovery
effect becomes more pronounced at larger scales. These results show that reconfiguring MHA–MLP
connections causes far smaller degradation than removing entire layers, yet still falls short of fully
matching the original performance. A stable alternative signal is needed, which is exactly what FAL
provides by reusing the impactful first attention.
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Table 5: Gradient Analysis (Metric: Gradient L1 Norm)
Block LLaMA2-7B CodeLLaMA-34B
1st 505.99 321.65
2-End avg ±std 85.90 ±102.00 46.24 ±60.39
Ratio (1st/avg) 5.9× 7.0×

Table 5 reports the gradient analysis of MHA outputs in LLaMA2-7B and CodeLLaMA-34B. The
first attention block shows a much larger gradient magnitude (505.99 and 321.65) compared to the
average of later blocks (85.90 and 46.24, respectively). On average, the first block gradients are
5.9× and 7.0× larger than subsequent ones. These results highlight that the first attention exerts a
disproportionately strong influence on final predictions. Thus, reusing this impactful signal in FAL
remains well-justified across larger models and diverse tasks.

Table 6: Layer Ablation per Block (Metric: Validation Perplexity)
Block LLaMA2-7B CodeLLaMA-34B LLaMA3.2-11B-Vision
Original 7.39 1.80 25.12
1st 34.37 4.56 40.94
2-End avg ±std 4.37 ±1.37 1.81 ±0.01 24.75 ±1.25
Ratio (1st/avg) 7.9× 2.5× 1.7×

Table 6 reports the effect of ablating individual attention layers in LLaMA2-7B, CodeLLaMA-34B,
and LLaMA3.2-11B-Vision. Removing the first attention block causes a far larger degradation in
validation perplexity (e.g., 34.37 vs. 7.39 for LLaMA2-7B, 4.56 vs. 1.80 for CodeLLaMA-34B, and
40.94 vs. 25.12 for LLaMA3.2-11B-Vision) compared to ablating later layers, whose impact remains
relatively small. The impact of removing the first attention is consistently larger than that of later
layers, up to 7.9× in LLaMA2-7B. These results show that the first attention is disproportionately
important across scales and modalities. Its removal uniquely destabilizes the model, whereas later
attentions contribute far less. This further supports that reusing the first attention in FAL remains
well-justified across larger and more diverse models.

D Additional Evaluation Results and Analyses

D.1 Ablation study

We conduct two ablations to verify the effectiveness of reusing the first attention output in FAL and
FAL+. Table 7 shows the validation perplexity and training time.

Table 7: Comparison of validation perplexity and training time using Openwebtext dataset (GPT-2
774M)

Model Perplexity Training time
GPT-2 774M (Baseline) 17.75 13.2 days
FAL 17.55 8.6 days
FAL+ 17.24 13.2 days
Ablation1 21.34 13.2 days
Ablation2 17.98 8.6 days

Ablation1 (leveraging latest attention). Simple addition of normalized outputs within a block
degrades the quality, calling for the necessity of the first attention signal. We apply the same LN +
LN structure from FAL using the latest attention output instead of the first attention.

Xi +MHAi(LN(Xi)) +MLPi(LN(Xi) + LN(MHAi(LN(Xi)))) (3)
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This leads to a significantly higher perplexity (21.34) compared to the baseline (17.75), suggesting
that the latest attention output does not provide a stable or beneficial signal for MLP inputs under this
reconfiguration.

Ablation2 (removing connection without first). Retaining only the first MHA-MLP connection is
not sufficient to retain the first attention signal. We remove all MHA-MLP connections except for the
first one.{

X1 +MHA1(LN(X1)) +MLP1

(
LN(X1) +MHA1(LN(X1)))

)
, if i = 1,

Xi +MHAi(LN(Xi)) +MLPi

(
LN(Xi)

)
, otherwise.

(4)

Although perplexity (17.98) remains comparable to the baseline, it still degrades model quality
compared to FAL. This implies that merely connecting the first attention once is not sufficient to
maintain the overall performance.

Comparison to FAL and FAL+. FAL reuses the first MHA output in each block. This reuse, aided
by an additional LN to balance the first and residual signals, improves perplexity (17.55) and reduces
training time (8.6 days). FAL+ augments the original connections with the first attention, achieving
an even lower perplexity (17.24) but at a training time similar to GPT-2. These results confirm that
properly integrating the first attention output is crucial for both efficiency and model quality.

GPT-2.
Xi +MHAi(LN(Xi)) +MLPi(LN(Xi +MHAi(LN(Xi)))) (5)

FAL.
Xi +MHAi(LN(Xi)) +MLPi(LN(Xi) + LN(MHA1(LN(X1)))) (6)

FAL+.

Xi+1 =


X1 +MHA1(LN(X1))

+MLP1

(
LN(X1) +MHA1(LN(X1))

)
, if i = 1,

Xi +MHAi(LN(Xi))

+MLPi

(
LN(Xi +MHAi(LN(Xi))) + LN(MHA1(LN(X1)))

)
, otherwise.

(7)

Figure 17: Loss comparison using
other MHA’s output

Ablation with Other Layers. To further verify the benefit
of reusing the impactful first attention, we compare FAL+
with variants that reuse the output of other MHA layers (2nd,
3rd, and so on). We adopt FAL+ in a 48-block configuration
(see Fig. 9) and train for 500k steps under the same one-cycle
schedule with a batch-size ramp-up to 8,192, ingesting 1.02B
tokens regardless of hardware speed.

Fig. 17 shows the MLM loss comparison of FAL+, which
reuses the first attention, against variants that reuse later-layer
attentions. As shown in Fig. 17, reusing later-layer attentions
consistently underperforms compared to the first attention.
This implies that reusing weaker or less dominant signals
is not as effective as leveraging the impactful first attention,
confirming that the first attention provides a uniquely stable
and beneficial feature for reconfiguration.

D.2 How FAL Mitigates Information Dilution in Deep Transformers

In a standard Pre-LN Transformer, each block processes only its immediate predecessor’s output,
analogous to unrolling an RNN over depth. As depth grows, early-layer signals must traverse many
transformations and risk dilution or loss—much like long RNN sequences forget initial states. FAL
breaks pure sequential dependence by feeding the first-layer attention output directly into every later
block, akin to self-attention’s ability to attend globally. Concretely, we normalize the first MHA
output once and then add it to each block’s input: MLPinputi = LN(Xi)+LN(MHA1(LN(X1)))
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Figure 18: Relative LN scaling parameters connected to the first MHA output, normalized to average
LN scaling across layers.

Residual connections alone cannot prevent the first signal from fading: activation variance ac-
cumulates layer by layer [9], eventually washing out early-layer information — much like how
self-attention’s O(n2) interactions dilute key dependencies over very long sequences [75]. FAL
sidesteps this pitfall by reusing normalized first-attention tensor at each block, reinforcing the most
salient initial context without extra overhead — echoing cognitive insights that rethinking a first
impression can lead to better decisions in deep reasoning [30].

Figure 18 shows the average LN scaling parameters (γ) for the terms connected to the first MHA
output, normalized by the average LN scaling across layers. Across depth, both FAL and FAL+
consistently assign non-negligible weights (roughly equivalent to a 0.58:1–1:1 ratio compared to the
current block input), indicating that later blocks actively and adaptively incorporate the first-attention
signal after training. This dynamic weighting suggests that FAL can alleviate information dilution by
adaptively reinforcing the initial signal across depth.

D.3 Inference Acceleration of FAL

Figure 19: Normalized Multi-GPU Inference Time of GPT-2 and FAL.

TP is often used to accelerate the inference execution, as it can accelerate per-request latency unlike
other two parallelism methods (i.e., Data Parallelism and Pipelined Parallelism) [7, 76]. In order
to evaluate the inference acceleration that can be further achieved by FAL in TP, we measure the
forward step time without gradient calculation which is aligned with the Time To First Token (TTFT)
in the inference execution.
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Fig. 19 shows the normalized forward step time of GPT-2 and FAL on a multi-GPU server with
NVLink (System 4), across model sizes ranging from 774M to 8.3B and sequence lengths of 1024
and 2048. As shown in the figure, tensor parallelism (TP) reduces per-request inference time by
utilizing multiple GPUs. With 8 GPUs, TP achieves an average speedup of 56.5% for a sequence
length of 1024 (up to 67.6%), and 62.8% for a sequence length of 2048 (up to 70.5%). However, as
the number of GPUs increases, the degree of acceleration is limited by the communication overhead
between GPUs. In such cases, FAL improves inference performance over GPT-2 by (1) significantly
reducing inter-GPU communication and (2) increasing intra-GPU parallelism. Across configurations
from 1 to 8 GPUs, FAL reduces inference time by 11.1% on average (up to 31.6%).

E Evaluation of Generalizability to Transformer Variants

E.1 Loss comparison using variants of Multi Head Attention

Figure 20: Loss comparison across different attention mechanisms: Grouped Query Attention (GQA),
and MoE-based Attention (MoE-Attention).

FAL and FAL+ can be applied to various Pre-LN based transformer variants, such as LLaMa (with
Grouped Query Attention (GQA)), and Switch Transformer (with Mixture of Experts (MoE)) to
improve the efficiency and model quality. To evaluate the generalizability of FAL and FAL+ to
these variants, we measure token ingestion efficiency before and after applying FAL and FAL+ to
GQA-based [77] and MoE-based attention models [58]. We adopt FAL and FAL+ in a 48-block
configuration (see Fig. 9). To ensure consistent scheduling across hardware setups, we train for
500,000 steps using a step-based one-cycle learning rate scheduler. The batch size is ramped up to
a maximum of 8,192 by step 300,000, resulting in a total of 1.02B tokens ingested regardless of
hardware speed.

Fig. 20 (a) shows the comparison of FAL and FAL+ when applied to GQA. Each attention layer uses
GQA with two groups. This setup differs from standard Multi Head Attention (MHA) primarily in
the key/value projections, and becomes equivalent to MHA when the number of groups equals the
number of heads. The results closely resemble those observed with standard MHA. The loss gap
between the proposed architectures and the baseline remains consistent, demonstrating that the gains
from FAL and FAL+ extend robustly to this efficient attention variant.

Fig. 20 (b) shows the comparison of FAL and FAL+ when applied to MoE-based Attention. We
follow the configuration of MoE-based Attention introduced in the Switch Transformer, which was
found to be unstable and thus not included in the final architecture. Each expert in the MoE attention
has its own query projection and tied key/value projections. One of two experts is activated per
attention layer. Unlike the instability observed when using Switch layers in attention, FAL and FAL+
do not suffer from gradient instability. The loss gap between the proposed architectures and the
baseline remains consistent, demonstrating that the gains from FAL and FAL+ extend robustly to
sparsely activated MoE attention mechanisms.
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Table 8: Comparison of validation accuracy using ImageNet dataset (ViT-B 86.6M)
Dataset ViT (Baseline) FAL FAL+
ImageNet 79.06% 78.76% 79.20%

E.2 Accuracy comparison using other kinds of Task

We also evaluate FAL and FAL+ on the Vision Transformer (ViT-B 86.6M) architecture using the
ImageNet dataset. As shown in Table 8, FAL slightly reduces accuracy compared to the baseline
(79.06% vs. 78.76%), whereas FAL+ achieves a higher accuracy (79.20%). This result indicates that
reusing the first attention output can also benefit vision tasks, particularly when combined with the
original attention connections as in FAL+.
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