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Abstract
Accurate classification of citation intents in a001
scientific article provides deeper contextual un-002
derstanding of and better quantifies the con-003
tributions of cited articles. This improves sci-004
entific literature platform capabilities such as005
search relevance, ranking and more. To our006
knowledge, we present the most comprehensive007
survey of Transformer-based language models008
performance on the citation intent classification009
task using SciCite dataset. Here, we make three010
recommendations. Firstly, we propose to report011
model performance as a distribution in con-012
trast to a single averaged performance value.013
This arises from our observation that model014
performance is sensitive to the random seed015
choice resulting in wide performance variations016
from multiple finetuning runs. Secondly, this017
provides practical insights for model selection,018
showing the model’s best possible performance.019
Thus, we propose that practitioners perform020
multiple finetuning runs before selecting the021
best performing model. Thirdly, we propose a022
simple data augmentation to improve the distri-023
bution of model performance overall. Moving024
forward, we suggest exploring improvements025
to the finetuning and model selection process026
as promising future directions.027

1 Introduction028

Citations are a core part of scientific literature, pro-029

viding an avenue to acknowledge the various con-030

tributions of various scientific articles. Citations031

are provided with specific intents, such as to pro-032

vide background information, to present the use of033

methods or compare results from other works.034

Citation intent classification is the task of identi-035

fying the intent of a specific citation. By quantify-036

ing the distribution of intents of various citations037

received by a particular paper, we can generate a038

better understanding of the nature of contributions039

provided by a paper beyond the citation count. For040

example, we can infer if a particular paper pro-041

vides a useful method or result. This is useful in042

many applications, such as identifying and ranking 043

scientific articles according to the nature of their 044

contributions. 045

In our paper, we will survey and evaluate the 046

effectiveness of various state-of-the-art language 047

models on the task of citation intent classification. 048

In addition, we propose a data augmentation ap- 049

proach that improves the performance across all 050

the surveyed models. Lastly, we discuss the im- 051

plications of the results we obtained through our 052

experiments and provide some possible directions 053

for future work. 054

1.1 Dataset 055

There are various datasets of scientific literature 056

that contain citation information. Some, such as 057

S2ORC (Lo et al., 2020), are large but do not 058

provide annotations for the citation intents, while 059

smaller datasets such as ACL-ARC (Bird et al., 060

2008) and SciCite (Cohan et al., 2019) do provide 061

annotations for citation intents. SciCite is an order 062

of magnitude larger than ACL-ARC, containing 6 063

times the number of citations gathered from about 064

35 times more scientific articles from the Computer 065

Science and Medical domains. 066

In this work, we focus on the citation intent clas- 067

sification with SciCite as the benchmark dataset. 068

More specifically, the task is to correctly classify ci- 069

tation intents into one of three classes: Background, 070

Method, and Result Comparison. 071

1.2 Models 072

In recent years, Transformer-based large language 073

models have been the dominant approach for 074

achieving state of the art results on NLP tasks. One 075

reason for the effectiveness of these models is the 076

ability to learn good language representations by 077

pre-training on a large corpus before undergoing 078

fine-tuning on a task-specific dataset. 079

In our paper, we will survey the effectiveness of 080

a total of nine Transformer-based language models 081
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on the SciCite benchmark dataset. The nine models082

are as follows:083

1. BERT (Devlin et al., 2018) (Bidirectional En-084

coder Representations from Transformers) is085

a Transformer model that uses a bidirectional086

self-attention mechanism and pretrained on087

a large text corpus. It achieves high perfor-088

mance on many NLP tasks via transfer learn-089

ing.090

2. RoBERTa (Liu et al., 2019) is based on BERT,091

with an improved training regime using 10092

times more data.093

3. DSP-RoBERTa (Gururangan et al., 2020) is094

part of a family of RoBERTa models with095

further pretraining to adapt them for various096

target domains.097

4. Biomed-RoBERTa (Lewis et al., 2020) is a098

RoBERTa model that is pre-trained on the099

full texts of about 2.7 million scientific papers100

from the Semantic Scholar corpus, improving101

the performance of the model on tasks in the102

biomedical domain.103

5. SciBERT (Beltagy et al., 2019) is a BERT104

model pretrained on scientific text from105

1.14M papers in order to handle language pro-106

cessing tasks in scientific field.107

6. PubMedBERT (Gu et al., 2020) is pretrained108

using abstracts from PubMed and full text arti-109

cles from PubMedCentral, achieving state-of-110

the-art results on various tasks in the biomedi-111

cal domain.112

7. XLNet (Yang et al., 2019) is a Transformer-113

based auto-regressive language model that re-114

tains the ability to learn bidirectional contexts.115

8. DeBERTa (He et al., 2020) is a Transformer116

model with distangled attention mechanism117

and enhanced mask decoder replacing the fi-118

nal Softmax layer.119

9. ALBERT (A Lite BERT) (Lan et al., 2020) is120

a variant of BERT that utilizes parameter shar-121

ing and embedding factorization to reduce the122

number of parameters compared to an equiva-123

lently sized BERT model, although at slightly124

lower performance.125

We used the implementations and pretrained 126

weights of these models through the Hugging Face 127

Transformers library (HuggingFace, 2019). The 128

precise implementations and checkpoints used are 129

listed in the Appendix. Of these nine models, the 130

some are of particular interest due to possible rele- 131

vance in the corpus used for pretraining, in particu- 132

lar SciBERT, DSP-RoBERTa, and PubMedBERT, 133

which is pretrained on scientific literature. We also 134

test some variations of a subset of the models to 135

investigate the impact of model size and vocabu- 136

lary casing differences between some variants of 137

the models. 138

2 Related Work 139

Previous work on the Sci-Cite dataset was pre- 140

sented in (Cohan et al., 2019), where a BiLSTM 141

model with Attention and ELMo embeddings, 142

along with structural scaffolds, was used to achieve 143

a macro F1-score of 84.0. Following up, (Beltagy 144

et al., 2019) presented fine-tuned BERT and SciB- 145

ERT models that achieved with F1-score of 84.85 146

and 85.49 respectively. 147

3 Methods 148

3.1 Training Settings 149

To be consistent with the SciBERT paper (Belt- 150

agy et al., 2019) which first performed evaluation 151

of BERT-base and SciBERT on SciCite dataset, 152

we chose the batch size of 32 and fine-tuned all 153

nine models separately with a learning rate of 1e-5. 154

We run each training multiple times and report the 155

mean performance. 156

3.2 Data Augmentation 157

We postulate that there is often a correlation be- 158

tween the intent of a citation and the section in 159

which the citation is located. For example, the 160

section "Related Work", a citation is likely to be 161

used for describing the background and positioning, 162

while citation in the "Results" section is likely cited 163

with the intent of result comparison. By adding 164

in the parent section of the citation as additional 165

context, we hypothesize that we can improve the 166

context available to the model to be used for classi- 167

fication. We term this data augmentation by adding 168

in a section hint. The section hint takes the form of 169

a sentence, which contains only section title, being 170

added to the start of the original text. Some prepro- 171

cessing is performed on the raw text of the section 172
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headers available in the SciCite dataset to normal-173

ize various formatting quirks of the raw data, such174

as inconsistent capitalization schemes, inclusion of175

section numbers etc.176

Example of augmentation (marked in red):177

Discussion. More examples of contra-178

dictory results have been observed in179

bovines; some reports (Zakhartchenko180

et al., 2001; Bhuiyan et al., 2004) indi-181

cated a significant decrease in blastocyst.182

We test this simple form of augmentation as an183

added experiment during our survey to see if it184

impacts the various models differently.185

4 Results186

Our experiment results are reported in Table 1 be-187

low with macro F1-score on both original data and188

augmented data.189

Model RawData Aug.Data ∆

BERT-base 84.80 84.82 +0.02
RoBERTa-base 84.01 84.59 +0.58
DSP-RoBERTa 84.90 85.61 +0.71

Biomed-RoBERTa 86.32 86.63 +0.31
SciBERT 86.74 87.08 +0.34

PubMedBERT 85.55 86.14 +0.59
XLnet-base 84.59 85.49 +0.90

DeBERTa-base 84.75 85.90 +1.15
ALBERT-base 84.03 84.45 +0.42

190

We find that the 3 best performing models (SciB-191

ERT, Biomed-RoBERTa and PubMedBERT) are192

the ones pretrained on biomedical text, which is the193

text most relevant to the SciCite dataset. Hence, we194

have a clear indication on the benefit of pretraining195

on a relevant corpus.196

DeBERTa shows the greatest improvement as a197

result of the augmented data, while also being, in198

theory, the most powerful model among those sur-199

veyed, however lacking in relevant pretraining. We200

hypothesize that DeBERTa pretrained on biomed-201

ical text would possibly be the best performing202

model.203

SciBERT has the best F1-score for both the raw204

and augmented data. In fact, our result shows an205

improvement over the previous reported work, even206

without the augmented data. This is related to our207

next observation: In our experiments, we often ob-208

serve a large variance in model performance, across209

all models due to different random seeds used in210

training. We postulate that this could be due to211

large variations in model performance due to dif- 212

ferent random seeds, and perform further analysis 213

in Section 5. 214

We can also see that the data augmentation is 215

effective across all the models surveyed. 216

5 Analysis and Discussion 217

In our experiments, we observe large variations in 218

model performance due to different random seeds. 219

Thus, we recorded the performance of our model 220

across 9 training runs per model, and plotted them 221

in a box-and-whisker plot (Figure 1) to visualize 222

the variances in performance. 223

We observe that the original reported F1 score 224

for SciBERT (85.49) falls well within the statisti- 225

cal inter-quartile range for our 9 SciBERT training 226

runs, although our recorded mean and median val- 227

ues are both higher. This means that the original 228

reported score is not unexpected given a different 229

random seed, and in our training runs with more 230

random seeds, we have trained models which on 231

average perform better than what was previously 232

recorded. 233

In addition, the absolute best performing model 234

(F1-score of 88.5) recorded far exceeds the best 235

average score as reported in Table 1. In fact, the 236

best performing model is Biomed-RoBERTa with a 237

particular random seed, and not SciBERT, although 238

it has the best score on average. 239

From the visualization in Figure 1, we can also 240

see that the data augmentation is effective in at least 241

one of the two following ways for every model 242

we tested, resulting in an improved distribution of 243

performance across multiple training runs: 244

1. To improve the absolute best performance of 245

the model 246

2. To reduce the variance in performance ob- 247

served during the model training 248

We also performed additional analysis on several 249

variations of the model to determine if they have 250

an impact on the task performance. 251

1. Cased vs Uncased Models We studied the 252

difference between cased and uncased ver- 253

sions of BERT-base, BERT-large and SciB- 254

ERT, finding no clear correlation between the 255

type of casing used and the performance of 256

the model. The performance of the cased and 257

uncased models are visualized in Figure 2 in 258

Appendix B. 259
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Figure 1: Spread of results.

2. Base vs Large Models We studied the differ-260

ence between base ( 100M) and large ( 300M)261

variants of BERT, RoBERTa, DeBERTa, XL-262

Net and the corresponding variants of AL-263

BERT. We observe a clear relationship be-264

tween a larger model and improved perfor-265

mance on the SciCite task. This also indicates266

to us that a larger model pretrained on biomed-267

ical tasks would likely perform better than the268

currently available models. The performance269

of the cased and uncased models are visual-270

ized in Figure 3 in Appendix B.271

6 Recommendations for Practitioners272

In this paper, we have arrived at results that al-273

low us to propose the following recommendations274

for practitioners to achieve better practical perfor-275

mance on the citation intent classification task:276

1. Train models multiple times with different ran-277

dom seeds in order to find the best performing278

model279

2. Utilize data augmentation, such as the simple280

strategy we demonstrated, as it shows mea-281

surable improvements across all the models282

surveyed283

3. Report the performance score of models as a284

distribution, rather than a singular score, in285

order to provide a better overview of the av-286

erage and best possible score that can result287

from a particular model288

7 Conclusion and Future Work 289

In future work, we hope to improve the practical 290

performance on the citation intent classification 291

task. We have outlined a few directions below: 292

1. Explore more methods and different permuta- 293

tions of data augmentation techniques to add 294

more context into the model input. 295

2. Introduce methods to perform training with 296

random seeds found using search algorithms 297

that allow us to train better performing mod- 298

els. 299

3. Create a better pretrained model. Based on 300

our observations, a DeBERTa-large model pre- 301

trained on biomedical texts would be a prime 302

candidate for the best performing model when 303

applied to the citation intent classification 304

task. 305

4. Perform our experiments on other citation in- 306

tent classification datasets, such as ACL-ARC, 307

to study the transferability of our proposed 308

methods. 309

In this short paper, we have presented a pre- 310

liminary data augmentation technique that demon- 311

strates adding more context improves the perfor- 312

mance of a model on the citation intent classifica- 313

tion task. Our method improve the performance 314

across all the models that we surveyed. 315
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A Model Implementations Used 382

We used the PyTorch implementations of the fol- 383

lowing models from the HuggingFace Transform- 384

ers library, as well as the following model check- 385

points from the HuggingFace model hub: 386

1. BERT bert-base-cased and bert-base-uncased 387

2. RoBERTa roberta-base and roberta-large 388

3. DSP-RoBERTa 389

dsp_roberta_base_dapt_cs_tapt_citation_intent 390

4. Biomed-RoBERTa 391

allenai/biomed_roberta_base 392

5. SciBERT allenai/scibert_scivocab_cased and 393

allenai/scibert_scivocab_uncased 394

6. PubMedBERT 395

BiomedNLP-PubMedBERT-base 396

7. XLNet xlnet-base-cased and xlnet-large- 397

cased 398

8. DeBERTa 399

microsoft/deberta-base and microsoft/deberta- 400

large 401

9. ALBERT albert-base-v2 and albert-large-v2 402

The training was performed on a single V100 403

32GB GPU with automatic mixed precision en- 404

abled. 405
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B Additional diagrams406

Figure 2: Spread of results.

Figure 3: Spread of results.
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