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Abstract

Accurate classification of citation intents in a
scientific article provides deeper contextual un-
derstanding of and better quantifies the con-
tributions of cited articles. This improves sci-
entific literature platform capabilities such as
search relevance, ranking and more. To our
knowledge, we present the most comprehensive
survey of Transformer-based language models
performance on the citation intent classification
task using SciCite dataset. Here, we make three
recommendations. Firstly, we propose to report
model performance as a distribution in con-
trast to a single averaged performance value.
This arises from our observation that model
performance is sensitive to the random seed
choice resulting in wide performance variations
from multiple finetuning runs. Secondly, this
provides practical insights for model selection,
showing the model’s best possible performance.
Thus, we propose that practitioners perform
multiple finetuning runs before selecting the
best performing model. Thirdly, we propose a
simple data augmentation to improve the distri-
bution of model performance overall. Moving
forward, we suggest exploring improvements
to the finetuning and model selection process
as promising future directions.

1 Introduction

Citations are a core part of scientific literature, pro-
viding an avenue to acknowledge the various con-
tributions of various scientific articles. Citations
are provided with specific intents, such as to pro-
vide background information, to present the use of
methods or compare results from other works.
Citation intent classification is the task of identi-
fying the intent of a specific citation. By quantify-
ing the distribution of intents of various citations
received by a particular paper, we can generate a
better understanding of the nature of contributions
provided by a paper beyond the citation count. For
example, we can infer if a particular paper pro-
vides a useful method or result. This is useful in

many applications, such as identifying and ranking
scientific articles according to the nature of their
contributions.

In our paper, we will survey and evaluate the
effectiveness of various state-of-the-art language
models on the task of citation intent classification.
In addition, we propose a data augmentation ap-
proach that improves the performance across all
the surveyed models. Lastly, we discuss the im-
plications of the results we obtained through our
experiments and provide some possible directions
for future work.

1.1 Dataset

There are various datasets of scientific literature
that contain citation information. Some, such as
S20RC (Lo et al., 2020), are large but do not
provide annotations for the citation intents, while
smaller datasets such as ACL-ARC (Bird et al.,
2008) and SciCite (Cohan et al., 2019) do provide
annotations for citation intents. SciCite is an order
of magnitude larger than ACL-ARC, containing 6
times the number of citations gathered from about
35 times more scientific articles from the Computer
Science and Medical domains.

In this work, we focus on the citation intent clas-
sification with SciCite as the benchmark dataset.
More specifically, the task is to correctly classify ci-
tation intents into one of three classes: Background,
Method, and Result Comparison.

1.2 Models

In recent years, Transformer-based large language
models have been the dominant approach for
achieving state of the art results on NLP tasks. One
reason for the effectiveness of these models is the
ability to learn good language representations by
pre-training on a large corpus before undergoing
fine-tuning on a task-specific dataset.

In our paper, we will survey the effectiveness of
a total of nine Transformer-based language models



on the SciCite benchmark dataset. The nine models
are as follows:

1. BERT (Devlin et al., 2018) (Bidirectional En-
coder Representations from Transformers) is
a Transformer model that uses a bidirectional
self-attention mechanism and pretrained on
a large text corpus. It achieves high perfor-
mance on many NLP tasks via transfer learn-
ing.

2. RoBERTa (Liu et al., 2019) is based on BERT,
with an improved training regime using 10
times more data.

3. DSP-RoBERTa (Gururangan et al., 2020) is
part of a family of RoBERTa models with
further pretraining to adapt them for various
target domains.

4. Biomed-RoBERTa (Lewis et al., 2020) is a
RoBERTa model that is pre-trained on the
full texts of about 2.7 million scientific papers
from the Semantic Scholar corpus, improving
the performance of the model on tasks in the
biomedical domain.

5. SciBERT (Beltagy et al., 2019) is a BERT
model pretrained on scientific text from
1.14M papers in order to handle language pro-
cessing tasks in scientific field.

6. PubMedBERT (Gu et al., 2020) is pretrained
using abstracts from PubMed and full text arti-
cles from PubMedCentral, achieving state-of-
the-art results on various tasks in the biomedi-
cal domain.

7. XLNet (Yang et al., 2019) is a Transformer-
based auto-regressive language model that re-
tains the ability to learn bidirectional contexts.

8. DeBERTa (He et al., 2020) is a Transformer
model with distangled attention mechanism
and enhanced mask decoder replacing the fi-
nal Softmax layer.

9. ALBERT (A Lite BERT) (Lan et al., 2020) is
a variant of BERT that utilizes parameter shar-
ing and embedding factorization to reduce the
number of parameters compared to an equiva-
lently sized BERT model, although at slightly
lower performance.

We used the implementations and pretrained
weights of these models through the Hugging Face
Transformers library (HuggingFace, 2019). The
precise implementations and checkpoints used are
listed in the Appendix. Of these nine models, the
some are of particular interest due to possible rele-
vance in the corpus used for pretraining, in particu-
lar SciBERT, DSP-RoBERTa, and PubMedBERT,
which is pretrained on scientific literature. We also
test some variations of a subset of the models to
investigate the impact of model size and vocabu-
lary casing differences between some variants of
the models.

2 Related Work

Previous work on the Sci-Cite dataset was pre-
sented in (Cohan et al., 2019), where a BiLSTM
model with Attention and ELMo embeddings,
along with structural scaffolds, was used to achieve
a macro F1-score of 84.0. Following up, (Beltagy
et al., 2019) presented fine-tuned BERT and SciB-
ERT models that achieved with F1-score of 84.85
and 85.49 respectively.

3 Methods

3.1 Training Settings

To be consistent with the SciBERT paper (Belt-
agy et al., 2019) which first performed evaluation
of BERT-base and SciBERT on SciCite dataset,
we chose the batch size of 32 and fine-tuned all
nine models separately with a learning rate of 1le-5.
We run each training multiple times and report the
mean performance.

3.2 Data Augmentation

We postulate that there is often a correlation be-
tween the intent of a citation and the section in
which the citation is located. For example, the
section "Related Work", a citation is likely to be
used for describing the background and positioning,
while citation in the "Results" section is likely cited
with the intent of result comparison. By adding
in the parent section of the citation as additional
context, we hypothesize that we can improve the
context available to the model to be used for classi-
fication. We term this data augmentation by adding
in a section hint. The section hint takes the form of
a sentence, which contains only section title, being
added to the start of the original text. Some prepro-
cessing is performed on the raw text of the section



headers available in the SciCite dataset to normal-
ize various formatting quirks of the raw data, such
as inconsistent capitalization schemes, inclusion of
section numbers etc.

Example of augmentation (marked in red):

Discussion. More examples of contra-
dictory results have been observed in
bovines; some reports (Zakhartchenko
et al., 2001; Bhuiyan et al., 2004) indi-
cated a significant decrease in blastocyst.

We test this simple form of augmentation as an
added experiment during our survey to see if it
impacts the various models differently.

4 Results

Our experiment results are reported in Table 1 be-
low with macro F1-score on both original data and
augmented data.

Model RawData | Aug.Data A
BERT-base 84.80 84.82 +0.02
RoBERTa-base 84.01 84.59 +0.58
DSP-RoBERTa 84.90 85.61 +0.71
Biomed-RoBERTa 86.32 86.63 +0.31
SciBERT 86.74 87.08 +0.34
PubMedBERT 85.55 86.14 | +0.59
XLnet-base 84.59 85.49 | +0.90
DeBERTa-base 84.75 8590 | +1.15
ALBERT-base 84.03 84.45 | +0.42

We find that the 3 best performing models (SciB-
ERT, Biomed-RoBERTa and PubMedBERT) are
the ones pretrained on biomedical text, which is the
text most relevant to the SciCite dataset. Hence, we
have a clear indication on the benefit of pretraining
on a relevant corpus.

DeBERTa shows the greatest improvement as a
result of the augmented data, while also being, in
theory, the most powerful model among those sur-
veyed, however lacking in relevant pretraining. We
hypothesize that DeBERTa pretrained on biomed-
ical text would possibly be the best performing
model.

SciBERT has the best F1-score for both the raw
and augmented data. In fact, our result shows an
improvement over the previous reported work, even
without the augmented data. This is related to our
next observation: In our experiments, we often ob-
serve a large variance in model performance, across
all models due to different random seeds used in
training. We postulate that this could be due to

large variations in model performance due to dif-
ferent random seeds, and perform further analysis
in Section 5.

We can also see that the data augmentation is
effective across all the models surveyed.

S Analysis and Discussion

In our experiments, we observe large variations in
model performance due to different random seeds.
Thus, we recorded the performance of our model
across 9 training runs per model, and plotted them
in a box-and-whisker plot (Figure 1) to visualize
the variances in performance.

We observe that the original reported F1 score
for SciBERT (85.49) falls well within the statisti-
cal inter-quartile range for our 9 SciBERT training
runs, although our recorded mean and median val-
ues are both higher. This means that the original
reported score is not unexpected given a different
random seed, and in our training runs with more
random seeds, we have trained models which on
average perform better than what was previously
recorded.

In addition, the absolute best performing model
(F1-score of 88.5) recorded far exceeds the best
average score as reported in Table 1. In fact, the
best performing model is Biomed-RoBERTa with a
particular random seed, and not SciBERT, although
it has the best score on average.

From the visualization in Figure 1, we can also
see that the data augmentation is effective in at least
one of the two following ways for every model
we tested, resulting in an improved distribution of
performance across multiple training runs:

1. To improve the absolute best performance of
the model

2. To reduce the variance in performance ob-
served during the model training

We also performed additional analysis on several
variations of the model to determine if they have
an impact on the task performance.

1. Cased vs Uncased Models We studied the
difference between cased and uncased ver-
sions of BERT-base, BERT-large and SciB-
ERT, finding no clear correlation between the
type of casing used and the performance of
the model. The performance of the cased and
uncased models are visualized in Figure 2 in
Appendix B.
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Figure 1: Spread of results.

2. Base vs Large Models We studied the differ-
ence between base ( 100M) and large ( 300M)
variants of BERT, RoBERTa, DeBERTa, XL-
Net and the corresponding variants of AL-
BERT. We observe a clear relationship be-
tween a larger model and improved perfor-
mance on the SciCite task. This also indicates
to us that a larger model pretrained on biomed-
ical tasks would likely perform better than the
currently available models. The performance
of the cased and uncased models are visual-
ized in Figure 3 in Appendix B.

6 Recommendations for Practitioners

In this paper, we have arrived at results that al-
low us to propose the following recommendations
for practitioners to achieve better practical perfor-
mance on the citation intent classification task:

1. Train models multiple times with different ran-
dom seeds in order to find the best performing
model

2. Utilize data augmentation, such as the simple
strategy we demonstrated, as it shows mea-
surable improvements across all the models
surveyed

3. Report the performance score of models as a
distribution, rather than a singular score, in
order to provide a better overview of the av-
erage and best possible score that can result
from a particular model

7 Conclusion and Future Work

In future work, we hope to improve the practical
performance on the citation intent classification
task. We have outlined a few directions below:

1. Explore more methods and different permuta-

tions of data augmentation techniques to add
more context into the model input.

Introduce methods to perform training with
random seeds found using search algorithms
that allow us to train better performing mod-
els.

Create a better pretrained model. Based on
our observations, a DeBERTa-large model pre-
trained on biomedical texts would be a prime
candidate for the best performing model when
applied to the citation intent classification
task.

Perform our experiments on other citation in-
tent classification datasets, such as ACL-ARC,
to study the transferability of our proposed
methods.

In this short paper, we have presented a pre-

liminary data augmentation technique that demon-
strates adding more context improves the perfor-
mance of a model on the citation intent classifica-
tion task. Our method improve the performance
across all the models that we surveyed.
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A Model Implementations Used

We used the PyTorch implementations of the fol-
lowing models from the HuggingFace Transform-
ers library, as well as the following model check-
points from the HuggingFace model hub:

1. BERT bert-base-cased and bert-base-uncased
2. RoBERTa roberta-base and roberta-large

3. DSP-RoBERTa
dsp_roberta_base_dapt_cs_tapt_citation_intent

4. Biomed-RoBERTa
allenai/biomed_roberta_base

5. SciBERT allenai/scibert_scivocab_cased and
allenai/scibert_scivocab_uncased

6. PubMedBERT
BiomedNLP-PubMedBERT-base

7. XLNet xInet-base-cased and xInet-large-
cased

8. DeBERTa
microsoft/deberta-base and microsoft/deberta-
large

9. ALBERT albert-base-v2 and albert-large-v2

The training was performed on a single V100
32GB GPU with automatic mixed precision en-
abled.
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