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Abstract

Chronic Obstructive Pulmonary Disorder (COPD) is an irreversible and progressive
disease which is highly heritable. Clinically, COPD is defined using the summary
measures derived from a spirometry test but these are not always adequate. Here
we show that using the high-dimensional raw spirogram can provide a richer signal
compared to just using the summary measures. We design a transformer-based deep
learning technique to process the raw spirogram values along with demographic
information and predict clinically-relevant endpoints related to COPD. Our method
is able to perform better than prior works while being more computationally
efficient. Using the weights learned by the model, we make the framework more
interpretable by identifying parts of the spirogram that are important for the model
predictions. Pairing up with a board-certified pulmonologist, we also provide
clinical insights into the different aspects of the spirogram and show that the
explanations obtained from the model align with underlying medical knowledge.

1 Introduction

Chronic Obstructive Pulmonary Disorder (COPD) is a progressive lung condition characterized by
persistent airflow limitation that impairs breathing and is typically caused by long-term exposure to
harmful substances like cigarette smoke [8, 17]. It is the third leading cause of death worldwide, with
a global prevalance of 3.91% (>250 million) [26]. Therefore, timely and accurate diagnosis of COPD
is crucial to reducing patients’ health risks.

Traditionally, the diagnosis of COPD is confirmed using a spirometry test, which measures the
flow and volume of air that can be inhaled and exhaled. There are a couple of important summary
measures derived from the spirogram: (i) FEV1, or the forced Expiratory Volume in 1 second, which
is the volume of air a person can forcefully exhale in the first second of exhalation (ii) FVC, or the
forced vital capacity, which is the total amount of air a person can forcefully exhale (iii) PEF, or
the peak expiratory flow, which is the maximum flow of air a person can forcefully exhale. A post-
bronchodilatory ratio of FEV1 to FVC less that 0.7 is considered to be diagnostic of COPD in patients
with appropriate symptoms and exposures [28, 12]. However, there can be some challenges associated
with using such pulmonary function test markers for COPD diagnosis. First, while they identify
diagnosed COPD cases, they do not effectively detect patients at an earlier stage or those at risk of
developing COPD. Second, the FEV1/FVC ratio is the current gold standard for COPD detection,
but it might not always be accurate since there is a lot of heterogeneity involved [2, 19]. Third,
there can be a number of individuals with the pathological hallmarks of COPD who nonetheless fall
above the arbitrary threshold, particularly patients with PRISM (preserved ratio impaired spirometry)
[11]. Fourth, the FEV1/FVC ratio is subject to effort dependence and there can be variability in
measurement across different efforts for the same patient.
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Recently, some studies have explored the use of deep learning methodologies to determine whether
raw spirogram values can provide a stronger prognostic signal for predicting clinically relevant
COPD-related outcomes compared to traditional summary measures [20, 5]. In this work, we show
that a transformer-based architectural change in one of the prior methods, DeepSpiro [20], performs
better across most of the endpoints that we tested while being ∼4.5 times more computationally
efficient. By using the attention weights of the transformer, we are able to identify parts of the
spirometry curve which are important for the different prediction tasks. Leveraging the expertise of a
board-certified pulmonologist, we also provide clinical insights into the model predictions and find
that the important parts of the curve are confirmed by medical knowledge.

2 Methods

2.1 Dataset and Label Generation

We use the UK Biobank dataset for this study [3], which is a large scale biomedical database with
health information from around 500K participants. Specifically, we use the spirometry information
from UKB field 3066, which includes the expiratory volumes in milliliters recorded every 10
milliseconds. Although the same participant may have multiple visits, we consider the Time-Volume
measurements only from their first visit. After multiple preprocessing steps (details in Appendix A.2),
we convert the Volume-Time curves to Flow-Volume curves which are the input to our model. The
demographic features we use are age, sex, smoking status, and height (collected on the spirometry
test date) since they are recognized as being predictive of COPD by our pulmonologist collaborator.

We test three clinical relevant COPD-related endpoints as part of this study: COPD risk, exacerbation,
and mortality. COPD risk refers to the likelihood of developing COPD after the spirometry test
date. Hospitalization is used as a proxy for exacerbation and mortality indicates a COPD-related
death of the patient after the initial visit. To extract these labels from the UK Biobank dataset, we
use procedure similar to the one described in [5]. Specifically, we derive binary COPD labels from
the medical records available about the patients, including the primary-care reports, the hospital
inpatient records, and the self-report records. Appendix A.3 provides more details. This study has
been conducted using the UK Biobank Resource under Application Number 44257.

2.2 Time-Series Transformer

Here we describe the modeling procedure that we use for the preprocessed dataset obtained from
UK Biobank (Figure 1). Given a patient’s smoothened Flow-Volume curve X ∈ RT with T steps,
their demographic information fd, and the correponding target label y, we first patchify the input
curve into N patches, each of length P : X ∈ RT → {p1, p2, . . . , pN}, pi ∈ RP , N = T

P . Each
patch pi, which is standardized across all patients, is then passed through a linear projection layer,
transforming it into an embedding space Zi ∈ Rdembed , where dembed is the embedding dimension:

Zi = Wpi + b, W ∈ Rdembed×P , b ∈ Rdembed

Next, following the BERT-style training paradigm [6], we prepend a learnable classification token,
CLS ∈ R1×dembed to the sequence of patch embeddings and then add positional encodings, PEi ∈
Rdembed , to all the tokens:

Z ′ = [CLS + PE0;Z1 + PE1;Z2 + PE2; . . . ;ZN + PEN ], Z ′ ∈ R(N+1)×dembed

This augmented sequence is then fed into a Transformer encoder layer [29], which captures the
temporal dependencies within the data, producing the output embeddings H .

H = Transformer(Z ′,M), H ∈ R(N+1)×dembed ,M ∈ R(N+1)

Here, M represents a mask indicating which of the input patches are padding tokens. Following
that, we extract the encoder embedding corresponding to the CLS token from H and pass it through
a Multi-Layer perceptron to get the initial assessment: finitial = MLP (H[0]). We then perform a
feature fusion step in which the CLS token embedding is concatenated with demographic information.
Finally, the fused features are processed using a CatBoost classifier to predict the target probability:
ŷ = CatBoost(finitial ⊕ fd). CatBoost [25] is a gradient boosted decision tree framework that can
handle categorical features. Details about the training and model selection are in Appendix A.4.
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There are multiple baselines that we compare against: (i) FEV1/FVC ratio, which is the summary
metric traditionally used as a measure of COPD risk (ii) DeepSpiro [20], which is the prior method
based on a Bi-LSTM and a temporal attention layer along with feature fusion (iii) MLP (demo-
graphic), which is a MLP classifier with two hidden layers trained on the demographic features age,
sex, smoking status, height (iv) MLP (summary stats), which is a MLP classifier with two hidden
layres trained on the summary statstics derived from the spirometry curve, including FEV1, FVC,
and the blow ratio FEV1/FVC.

First

Gaussian Smoothening  + Patchification

Derivative

Combine

Figure 1: The overall framework that we use. We start with the raw Volume-Time curve and convert
it to a Flow-Volume curve. This curve is then smoothened using a Gaussian filter and patchified
before passing as an input to the time-series transformer.

3 Results

The evaluation metric we use is the area under the receiver operating characteristic curve (ROC-
AUC). This metric is suitable for our tasks since it handles any imbalance that may be present in the
dataset. Figure 1 shows the performance of the time-series transformer compared against the baselines
along with the standard deviations across five trials. We observe that the time-series transformer
outperforms the baselines across all three endpoints. The improvement compared to the strongest
baseline, DeepSpiro, is marginal but the time-series transformer allows for greater parallelism during
training, as the operations can be batched efficiently. As a result, it is more computationally efficient,
with each epoch taking ∼40 seconds, compared to ∼180 seconds per epoch for training DeepSpiro.
Results for another evaluation metric, the Brier score, are provided in Appendix A.5.

COPD risk Mortality Exacerbation
FEV1 /FVC Ratio 0.759 ± 0.001 0.863 ± 0.0204 0.805± 0.0075
MLP (Summary Stats) 0.779± 0.006 0.909 ± 0.0188 0.822± 0.0114
MLP (Demographic) 0.743± 0.005 0.817± 0.0133 0.801± 0.0076
DeepSpiro 0.817± 0.002 0.923± 0.0106 0.844± 0.0047
Time-Series Transformer (Ours) 0.828± 0.004 0.929 ± 0.0147 0.851 ± 0.0027

Table 1: Performance of the time-series transformer compared to the other baselines in terms of
the area under the ROC curves (ROC-AUC score) across all endpoints. The uncertainty estimates
indicate the standard deviation across five independent trials.

To understand the importance of each patch to the model predictions, we consider the mean attention
weights of the CLS token across all the encoder layers with each of the other patch tokens after
normalizing them using a softmax function. We then overlay these attention scores on top of the
original Flow-Volume curves to visualize the importance of each patch. To better understand the
model predictions for different patient cohorts, we stratify the patients based on the severity of COPD
using the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria. We consider two
cohorts: (i) GOLD Stage 1 and 2; Mild to Moderate COPD (FEV1 % predicted >= 50) and (ii) GOLD
Stage 3 and 4; Moderate to Severe COPD (FEV1% predicted < 50). For each cohort, the attention
scores are averaged across all patients. We also annotate the curve with some important markers,
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like the PEF and the FEF25/50/75 which represents Forced expiratory flow % exhaled (Figure 2).
The black boxes represent the part of the curve that is the most important for that specific prediction
task (due to space constraints, results for the mortality endpoint are deferred to Appendix A.6). For
predicting COPD risk, different segments of the spirometry curve hold varying levels of importance
depending on the GOLD stage. For GOLD stages 1 and 2, the initial segment of the curve, between
the PEF and FEF25, is particularly significant, whereas for GOLD stages 3 and 4, the latter portion
of the curve, between FEF50 and FEF75, becomes more relevant. When predicting exacerbation, the
early segment (PEF to FEF25) is crucial for GOLD stages 1 and 2, while the middle segment (FEF25
to FEF50) is more pertinent for stages 3 and 4.

a. COPD Risk b. Exacerbation

Figure 2: Overlaying the attention weights from the transformer encoder onto the Flow-Volume curve
to visualize the importance of each patch for the COPD Risk and Exacerbation prediction tasks. The
black rectangle in each curve represents the most important patch.

4 Clinical Insights

After identifying the significance of various curve segments for model predictions, we consulted
a board-certified pulmonologist to gain clinical insights into the results. The initial portion of the
flow-volume curve reflects airflow from the larger airways (e.g., main bronchi), while the tail end of
the curve corresponds to airflow from the smaller airways (e.g., alveoli, bronchioles). Key features
of the curve that are characteristic of COPD include: (i) a steep initial decline in flow at high lung
volumes (following the PEF), (ii) a scooped or concave shape indicative of airflow limitation, (iii)
significant displacement in the middle portion of the curve, and (iv) a flattening toward the end
(between FEF50 and FEF75), indicative of reduced expiratory flow rate at low lung volumes, which
may indicate respiratory disorders. Our findings reveal that the model prioritizes segments occurring
after the PEF, with none of the pre-PEF segments identified as significant, suggesting the model is
correctly focusing on curve aspects that are clinically relevant for COPD diagnosis. While further
evaluation of the model’s explanations is necessary, the current observations align with established
clinical knowledge of COPD-related outcomes.

5 Conclusion

In this study, we investigate the advantages of using raw spirometry curves over traditional summary
measures for predicting COPD-related outcomes, employing a transformer-based deep learning frame-
work. Our model outperforms previous methods while demonstrating greater computational efficiency.
By leveraging the attention weights of the transformer encoder, we incorporate interpretability into
the framework, enabling us to identify critical regions of the curve that influence model predictions.
The identified regions correspond with clinical insights provided by a board-certified pulmonologist,
highlighting the model’s alignment with established medical understanding. This work establishes a
foundation for a more comprehensive exploration of therapeutic biomarkers for COPD.

4



References
[1] Timothy J Barreiro and Irene Perillo. An approach to interpreting spirometry. American family

physician, 69(5):1107–1115, 2004.

[2] Surya P Bhatt, Arie Nakhmani, Spyridon Fortis, Matthew J Strand, Edwin K Silverman, Frank C
Sciurba, and Sandeep Bodduluri. Fev1/fvc severity stages for chronic obstructive pulmonary
disease. American journal of respiratory and critical care medicine, 208(6):676–684, 2023.

[3] UK Biobank. About uk biobank, 2014.

[4] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[5] Justin Cosentino, Babak Behsaz, Babak Alipanahi, Zachary R McCaw, Davin Hill, Tae-Hwi
Schwantes-An, Dongbing Lai, Andrew Carroll, Brian D Hobbs, Michael H Cho, et al. Inference
of chronic obstructive pulmonary disease with deep learning on raw spirograms identifies new
genetic loci and improves risk models. Nature Genetics, 55(5):787–795, 2023.

[6] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[7] Miguel Angel Fernandez-Granero, Daniel Sanchez-Morillo, Miguel Angel Lopez-Gordo, and
Antonio Leon. A machine learning approach to prediction of exacerbations of chronic ob-
structive pulmonary disease. In Artificial Computation in Biology and Medicine: International
Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2015,
Elche, Spain, June 1-5, 2015, Proceedings, Part I 6, pages 305–311. Springer, 2015.

[8] Michael C Ferrera, Wassim W Labaki, and MeiLan K Han. Advances in chronic obstructive
pulmonary disease. Annual review of medicine, 72(1):119–134, 2021.

[9] Nina S Godtfredsen, Tai H Lam, Trevor T Hansel, ME Leon, N Gray, C Dresler, DM Burns,
E Prescott, and J Vestbo. Copd-related morbidity and mortality after smoking cessation: status
of the evidence. European Respiratory Journal, 32(4):844–853, 2008.

[10] Kyle A Hasenstab, Nancy Yuan, Tara Retson, Douglas J Conrad, Seth Kligerman, David A
Lynch, Albert Hsiao, and COPDGene Investigators. Automated ct staging of chronic obstructive
pulmonary disease severity for predicting disease progression and mortality with a deep learning
convolutional neural network. Radiology: Cardiothoracic Imaging, 3(2):e200477, 2021.

[11] Daniel H Higbee, Raquel Granell, George Davey Smith, and James W Dodd. Prevalence, risk
factors, and clinical implications of preserved ratio impaired spirometry: a uk biobank cohort
analysis. The Lancet Respiratory Medicine, 10(2):149–157, 2022.

[12] Firdaus AA Mohamed Hoesein, Pieter Zanen, and Jan-Willem J Lammers. Lower limit of
normal or fev1/fvc< 0.70 in diagnosing copd: an evidence-based review. Respiratory medicine,
105(6):907–915, 2011.

[13] Ali Hussain, Ikromjanov Kobiljon Komil Ugli, Beom Su Kim, Minji Kim, Harin Ryu, Satyabrata
Aich, and Hee-Cheol Kim. Detection of different stages of copd patients using machine learning
techniques. In 2021 23rd International Conference on Advanced Communication Technology
(ICACT), pages 368–372. IEEE, 2021.

[14] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

[15] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[16] Kate Ann Levin, David Anderson, and Emilia Crighton. Prevalence of copd by age, sex, socioe-
conomic position and smoking status; a cross-sectional study. Health Education, 120(5/6):275–
288, 2020.

5



[17] William MacNee. Pathology, pathogenesis, and pathophysiology. Bmj, 332(7551):1202–1204,
2006.

[18] Hannaneh Mahdavi, Saeideh Rahbarpour, Seyed Mohsen Hosseini-Golgoo, and Hamidreza
Jamaati. A single gas sensor assisted by machine learning algorithms for breath-based detection
of copd: A pilot study. Sensors and Actuators A: Physical, 376:115650, 2024.

[19] Astri Medbø and Hasse Melbye. Lung function testing in the elderly—can we still use fev1/fvc<
70% as a criterion of copd? Respiratory medicine, 101(6):1097–1105, 2007.

[20] Shuhao Mei, Yuxi Zhou, Jiahao Xu, Yuxuan Wan, Shan Cao, Qinghao Zhao, Shijia Geng,
Junqing Xie, and Shenda Hong. Deep learning for detecting and early predicting chronic
obstructive pulmonary disease from spirogram time series: A uk biobank study. arXiv preprint
arXiv:2405.03239, 2024.

[21] Martin R Miller, JATS Hankinson, Vito Brusasco, F Burgos, R Casaburi, A Coates, R Crapo, Pvd
Enright, CPM Van Der Grinten, P Gustafsson, et al. Standardisation of spirometry. European
respiratory journal, 26(2):319–338, 2005.

[22] Shigeo Muro, Masato Ishida, Yoshiharu Horie, Wataru Takeuchi, Shunki Nakagawa, Hideyuki
Ban, Tohru Nakagawa, Tetsuhisa Kitamura, et al. Machine learning methods for the diagnosis
of chronic obstructive pulmonary disease in healthy subjects: retrospective observational cohort
study. JMIR medical informatics, 9(7):e24796, 2021.

[23] Anne O Nielsen, Peter Lange, Ole Hilberg, Ingeborg Farver-Vestergaard, Rikke Ibsen, and
Anders Løkke. Copd and smoking status–it does matter: characteristics and prognosis of copd
according to smoking status. Chronic Obstructive Pulmonary Diseases: Journal of the COPD
Foundation, 11(1):56, 2024.

[24] Tamara Alonso Perez, Elena García Castillo, Julio Ancochea, María Teresa Pastor Sanz, Pere
Almagro, Pablo Martínez-Camblor, Marc Miravitlles, Mónica Rodríguez-Carballeira, Annie
Navarro, Bernd Lamprecht, et al. Sex differences between women and men with copd: a new
analysis of the 3cia study. Respiratory medicine, 171:106105, 2020.

[25] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and
Andrey Gulin. Catboost: unbiased boosting with categorical features. Advances in neural
information processing systems, 31, 2018.

[26] SA Quaderi and JR Hurst. The unmet global burden of copd. Global health, epidemiology and
genomics, 3:e4, 2018.

[27] Dimitris Spathis and Panayiotis Vlamos. Diagnosing asthma and chronic obstructive pulmonary
disease with machine learning. Health informatics journal, 25(3):811–827, 2019.

[28] Kjell Torén, Linus Schiöler, Anne Lindberg, Anders Andersson, Annelie F Behndig, Göran
Bergström, Anders Blomberg, Kenneth Caidahl, Jan E Engvall, Maria J Eriksson, et al. The
ratio fev1/fvc and its association to respiratory symptoms—a swedish general population study.
Clinical physiology and functional imaging, 41(2):181–191, 2021.

[29] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[30] Konstantin Willer, Alexander A Fingerle, Wolfgang Noichl, Fabio De Marco, Manuela Frank,
Theresa Urban, Rafael Schick, Alex Gustschin, Bernhard Gleich, Julia Herzen, et al. X-
ray dark-field chest imaging for detection and quantification of emphysema in patients with
chronic obstructive pulmonary disease: a diagnostic accuracy study. The Lancet Digital Health,
3(11):e733–e744, 2021.

6



A Appendix

A.1 Related Work

Since COPD is a high-prevalence disease with multiple modeling challenges, there has been prior
research done on detecting COPD using deep learning techniques on different types of data modalities.
One study employed a recursive feature elimination technique evaluated with several classification
models to distinguish early-stage COPD patients from those in advanced stages using clinical
and demographic information [13]. Another one conducted an empirical pulmonolgy study of
a representative sample of 132 patients for the prediction of COPD and asthma using a random
forest classifier [27]. The study utilized 22 different features about the patients, ranging from
demographic and medical information to special lung summary measurements obtained from a
spirometer. One method aimed at predicting the risk factors for COPD diagnosis using machine
learning techniques like gradient boosted decision trees and logisitic regression models [22]. The
dataset consisted of the annual medical check-up of Hitachi employees during a 20 year period.
One other method demonstrated the potential of using a single commercial metal oxide gas sensor,
TGS-2602STMS, to capture comprehensive breath information for COPD detection by modeling it
using a Support Vector Machine (SVM) classifier [18]. There is a prior work that trained, validated
and compared three different type of networks: a radial basis function (RBF), a k-means classifier,
and a probabilistic neural network (PNN) to predict exacerbations of COPD from daily responses to
a health questionnaire spanning 6 months [7]. Focusing on imaging modalities, one study developed
a method to detect and quantify emphysema in COPD patients using x-ray dark-field images, CT
images, and pulmonary function test measurements [30]. Another imaging study developed a deep
learning method to stage COPD severity by quantifying emphysema and air-trapping in CT images
using a co-registration and lung segmentation algorithm [10]. However, none of these prior methods
focused on utilizing the raw spirometry blow values for COPD prediction.

There have been prior works that have tried modeling the raw spirogram using deep learning
techniques. One method used a CNN-based ResNet-1D model to predict COPD liability scores
without requiring specific domain knowledge [5]. We use the same dataset and labeling procedures
used in this study. However, this work does not perform any explainability analysis to understand
the reasoning processes of the trained classifier. Another method, called DeepSpiro, built on the
ResNet-1D model by introducing several modifications like Bi-LSTM for modeling the long range
dependencies, a temporal attention layer for providing interpretability, and incorporating demographic
information [20]. This is the main method that we build on and compare against.

A.2 Data Preprocessing

From the initial Volume-Time measurements, we employ a number of preprocessing steps to curate
the input to our model. To ensure that the blows are accurately measured, we consult UKB field
3061 which indicates the acceptability of each blow result. If the value in this field is either 0 or
32, the blow is considered to be valid. To control the quality of the measurements, we look at the
FEV1, FVC, and PEF values derived from the Time-Volume curve and drop any blow which is in the
extreme tail of all observed values (top or bottom 0.5%). After completing these preprocessing steps,
we get 356,848 patients with valid spirograms.

To process the Time-Volume curve, we first convert the measurements from milliliters to liters
and apply a 1D-Gaussian smoothing with a standard deviation of 1 to enhance the stability of the
curves. Following this, based on respiratory physiology and prior works [21, 1, 20, 5], we convert
the Volume-Time to Flow-Time curves by taking the first derivative with respect to time using finite
differences. Specificially, if V (t) represents the Volume measurements at time t and ∆t represents
the time interval, the flow F (t) = V (t+δt)−V (t)

δt . The flow data is then linearly interpolated to
ensure consistency between the Flow-Time and Volume-Time curves. The resulting volume-time and
flow-time curves are then combined to generate a one-dimensional flow-volume curve which is the
input to our model (Figure 1). To ensure that all the curves are of the same length, we right-pad the
shorter curves by zero upto the length of the longest curve in the dataset. We also extract demographic
information like age, sex, smoking status, and height, which are all collected at the same time as the
date of spirometry and have been shown previously to be predictive of COPD. The prevalence of
COPD has been shown to be higher in older people and females [16, 24]. Smoking status is a known
confounder for COPD [9, 23] so we adjust for it by including it as a feature in our model. Patients
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with different heights will have different lung capacities which can affect the COPD status so it is
also included as a demographic features. During modeling, age and height are represented as integers
while smoking status and sex are represented as binary variables.

A.3 Details of Label Generation

To obtain the labels for training, we use the medical records of the patients present in the UK Biobank
dataset, specifically the self report records, the hospital inpatient records, and the primary care records.
The self report records (UKB field 20002) contain non-cancerous illness codes which are placed in
a coding tree, either by the participant or a trained nurse. Presence of codes 1112, 1113, or 1472
indicates a positive COPD-status. For the hospital inpatient records (fields 41270 and 41271) we
consider the presence of COPD-related ICD-9 and ICD-10 codes. COPD status from GP clinical
records (field 42040) is obtained after the read v2 and read v3 codes are mapped to the corresponding
ICD-10 codes using the TRUD mappings (data codings 1835 and 1834). The exacerbation label
only includes cases with COPD as primary cause of hospitalization after the spirometry test date.
COPD-related Mortality information is obtained from UKB field 40000.

Following the filtering codes used in [5], the ICD-10 codes considered as being related to COPD
include: J43 (Emphysema), J440 (Chronic obstructive pulmonary disease with acute lower respiratory
infection), J441 (Chronic obstructive pulmonary disease with (acute) exacerbation), J449 (Chronic
obstructive pulmonary disease, unspecified). The ICD-9 codes considered include: 492 (Emphysema),
496 (Chronic Airway Obstruction). For the mortality endpoint, ICD-10 code J41 (Chronic Bronchitis)
is also considered.

A.4 Model Selection and Training Details

For the disease classifier after the feature fusion step, we decided to use the CatBoost framework
because of its ability to handle categorical features natively. Other boosting algorithms like XGBoost
[4] and LightGBM [14] require manually encoding of categorical features (e.g. one-hot encoding).
CatBoost is able to encode categorical features without causing data leakage, resulting in reduced
overfitting. Also, CatBoost has been shown to be robust to hyperparameter tuning [25].

For training, after doing a hyperparamater sweep, we use a patch length P = 30 and an embedding
dimension dembed = 200 with 2 transformer encoder layers, each with 2 multiattention heads. For
the CatBoost classifier, we use the default parameter values provided as part of the library. The
standard cross-entropy loss is used to train the model for 30 epochs with the Adam optimizer [15]
and a learning rate of 10−5, using a train/test/val split of 80/10/10. During the feature fusion step, we
tested with using both the normalized and the raw values for the demographic features to concatenate
with the transformer’s output embedding and got similar performance in both scenarios.

A.5 Additional Evaluation Metrics

In addition to the ROC-AUC scores, we also use the Brier score as an evaluation metric. The Brier
score is a metric used to assess the accuracy of probabilistic predictions. It measures the mean
squared difference between predicted probabilities and the actual outcomes (typically binary, where 0
or 1 represents the observed result). A lower Brier score indicates that the model is better calibrated
and has more accurate predictions, with a score of 0 representing perfect predictions.

Brier Score =
1

N

N∑
i=1

(p̂i − yi)
2

where p̂i is the predicted probability and yi is the target label for the i-th instance. We observe that
our method is able to outperform the the other baselines across all endpoints except for the mortality,
but the brier score is still close to zero, indicating that the model is confident in its predictions
(Supplementary Table 1).
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COPD risk Mortality Exacerbation
FEV1 /FVC Ratio 0.0776 ± 0.0001 0.065 ± 0.0000 0.0724± 0.0001
MLP (Summary Stats) 0.0335± 0.0000 0.0012 ± 0.0000 0.0209± 0.0000
MLP (Demographic) 0.0317± 0.0001 0.0011± 0.0000 0.0203 ± 0.0002
DeepSpiro 0.0281± 0.0002 0.0061± 0.0001 0.0202± 0.0001
Time-Series Transformer (Ours) 0.0280± 0.0002 0.0045 ± 0.0001 0.0199 ± 0.0000

Supplementary Table 1: Performance of the time-series transformer compared to the other baselines
in terms of the brier score across all endpoints. The uncertainty estimates indicate the standard
deviations across five independent trials.

A.6 Results for Mortality endpoint

Here we present the interpretability results for the mortality endpoint. In the attention maps for
predicting mortality, the middle portion of the curve (FEF25 to FEF50) is key for GOLD stages
1 and 2, whereas the final portion (FEF50 to FEF75) holds greater importance for stages 3 and 4
(Supplementary Figure 1). This still aligns with the underlying medical knowledge as observed for
the COPD risk and exacerbation endpoints.

Supplementary Figure 1: Overlaying the attention weights from the transformer encoder onto the
Flow-Volume curve for the Mortality endpoint. The black rectangle in each curve represents the most
important patch.
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