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Abstract

Large Language Models (LLMs) have become pervasive in everyday life, yet their
inner workings remain opaque. While scholarly efforts have demonstrated LLMs’
propensity to reproduce biases in their training data, they have primarily focused on
the association of social groups with stereotypic attributes. In this paper, we extend
this line of inquiry to investigate a bias akin to the social-psychological phenomenon
where socially dominant groups are perceived to be less homogeneous than socially
subordinate groups as it is reproduced by LLMs. We had ChatGPT, a state-of-
the-art LLM, generate a diversity of texts about intersectional group identities
and compared text homogeneity. We consistently find that LLMs portray African,
Asian, and Hispanic Americans as more homogeneous than White Americans.
They also portray women as more homogeneous than men, but these differences
are small. Finally, we find that the effect of gender differs across racial/ethnic
groups such that the effect of gender is consistent within African and Hispanic
Americans but not within Asian and White Americans. We speculate possible
sources of this bias in LLMs and posit that the bias has the potential to amplify
biases in future LLM training and to reinforce stereotypes.

1 Introduction

Large Language Models (LLMs), which are machine learning models trained on large collections of
text to generate human-like text, have experienced a surge in various facets of everyday life, including
social media, customer service, content creation, and education, among many others. Despite their
rise in prominence, the inner workings of LLMs remain opaque to outside observers. For example
OpenAI’s most recent LLM, GPT-4, withholds information about its architecture, hardware, training
compute, dataset construction, and training methods from the public (OpenAI, 2023). Similarly, the
source and content of most training data for LaMDA are unknown (Thoppilan et al., 2022).

Despite the opacity surrounding the inner workings of LLMs, there are compelling reasons to suspect
that LLMs will exhibit human-like biases. A substantial body of scholarly work has shown that
LLMs reproduce different types of biases inherent in the data in which they are trained. For example,
Lucy and Bamman (2021) showed that texts written by GPT-3 exhibit gender stereotypes, associating
feminine characters with family and body parts and masculine characters with politics, war, and crime.
Furthermore, Abid et al. (2021) showed that GPT-3 reproduces religious stereotypes, associating
Muslims with violence. These studies not only underscore the potential harms of LLMs, particularly
those related to perpetuation of societal stereotypes, but also prompt us to question whether LLMs
reproduce other types of human-like biases.
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In this paper, we examine whether LLMs manifest a type of bias related to the perceived variability
of socially subordinate and dominant groups. In the field of social psychology, studies have looked at
the effect that social status has on perceptions of group variability. They found consistent evidence
indicating that members of both the socially dominant and socially subordinate group tend to perceive
members of the socially subordinate group as more homogeneous compared to members of the
socially dominant group (Guinote et al., 2002; Fiske, 1993; Fiske and Dépret, 1996; Lorenzi-Cioldi,
1993, 1998). This is related to a more general phenomenon known as the out-group homogeneity
effect, where individuals perceive in-group members as less homogeneous than out-group members
(Linville and Jones, 1980). Scholarly work has documented this effect across a variety of social
group categories including gender (Park and Judd, 1990), age (Linville et al., 1989), race/ethnicity
(Ackerman et al., 2006), and political orientation (Quattrone and Jones, 1980).

The purpose of this paper is to investigate the differences in the variability of socially dominant and
subordinate groups as they are manifested by LLMs. To accomplish this goal, we had ChatGPT
generate texts about eight groups at the intersection of four racial/ethnic groups in the US and
two gender groups. Then, we induce sentence embeddings for the ChatGPT-generated texts using
transformer-based language models and compare the similarity measurements calculated between
the texts written for the groups. We hypothesize that (1) ChatGPT-generated texts about the socially
subordinate racial/ethnic group(s) are more homogeneous than those about the socially dominant
racial/ethnic group; that (2) ChatGPT-generated texts about the subordinate gender group are more
homogeneous than those about the dominant gender group; and that (3) the effect of gender on the
homogeneity of ChatGPT-generated text may differ across racial/ethnic groups. We identify White
Americans as the dominant racial/ethnic group given their position in America’s racial hierarchy
(Zou and Cheryan, 2017) and men as the dominant gender group (Swim and Hyers, 2009). We find
that ChatGPT portrays African, Asian, and Hispanic Americans as more homogeneous than White
Americans and that it portrays women as more homogeneous than men. Furthermore, the effect
of gender differs across racial/ethnic groups such that the effect is consistent within African and
Hispanic Americans but not within Asian and White Americans.

2 Method

2.1 Data

We create a collection of writing prompts asking ChatGPT to write 30-word texts about eight different
intersectional group identities. The groups are at the intersection of four racial/ethnic groups in the
US - African, Asian, Hispanic, and White Americans - and two gender groups - man and woman.
To test the robustness of our findings to text format, we include a variety of text formats that could
be generated by ChatGPT such as stories, character descriptions, biographies, and introductions. In
addition, to account for text length in evaluating the similarity between texts, we impose a restriction
on the lengths of text generations, limiting them to 30 words.1 The prompts read, “Write a 30-word
[ story about / character description of / biography of / introduction of / social media profile of /
synopsis for / narrative of / self-introduction of / tragic story about / funny story about / romantic story
about / horror story about / dramatic story about ] a(n) [ African / Asian / Hispanic / White ] American
[ man / woman ].” We use the ChatGPT API, specifically employing the “gpt-3.5-turbo” model (as
of 25 July 2023) to obtain 500 text completions for each of our prompts. The decision to collect
500 completions stemmed from pilot tests suggesting that a smaller number of completions (i.e., 10
or 100) could lead to more instability in our estimates. For a detailed discussion of the parameter
settings used for data collection and dealing of non-compliant text completions, see Sections S1 and
S10 of the Supplemental Materials.

2.2 Measures of homogeneity

We quantify the homogeneity of texts for each of the groups by measuring the cosine similar-
ity between sentence embeddings of the generated text. Following the pre-registered analysis
plan (https://osf.io/8j6xh/?view_only=48a12ea4c33246df805901c53bc74482), we use
the second-to-last layer of the BERT-base-uncased model to induce sentence embeddings. We refer

1Despite the 30-word length restriction imposed on ChatGPT, the text generations did not strictly follow the
restriction. The texts had an average length of 26.61 words (SD = 2.70).
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to this model as BERT−2 (for a detailed justification of the layers used, see Section S2 of the Sup-
plemental Materials). After inducing the sentence embeddings for the ChatGPT-generated texts, we
calculate the cosine similarities between all pairs of texts (see Section S3 of Supplemental Materials
for examples of sentence pairs and their cosine similarity values and Section S4 for a validation
check of the text homogeneity measure). Cosine similarity measurements are standardized for better
interpretability, and race/ethnicity and gender variables are reordered such that White Americans and
men serve as the reference level.

Following the pre-registered analysis plan, we fit linear mixed-effects models using the lme4 package
(Bates et al., 2015) and analyze them using the lmerTest (Kuznetsova et al., 2017) package. In the
model, we include race/ethnicity, gender, and their interactions as fixed effects and text format (e.g.,
story, character description, etc.) as random intercepts (for a detailed discussion of the model, see
Section S5 of the Supplemental Materials). We conduct likelihood-ratio tests using the afex package
(Singmann et al., 2023) to determine if the models including race/ethnicity or gender provide better
fits for the data than those without them. Then, we plot the outputs of the models to better understand
the magnitude and direction of the effects. Finally, we use the emmeans package (Lenth et al., 2023)
to compare the effects of gender within individual racial/ethnic groups.

As robustness checks, we repeat these analyses based on alternative approaches to measuring text
similarity (these were not pre-registered). First, to test the robustness of our findings to the layer used,
we use the third-to-last layer of the same model (BERT−3). Second, to test the robustness of our
findings to the model used, we use the second-to-last layer of the RoBERTa-base model (RoBERTa−2;
Liu et al., 2019). Third, we use the third-to-last layer of the RoBERTa-base model (RoBERTa−3). We
use the text package (R Version 4.2.3; Kjell et al., 2023) to induce sentence embeddings for these
analyses. Finally, we use Sentence-BERT, a model fine-tuned on BERT and RoBERTa to yield higher
quality sentence embeddings that are better suited for similarity assessments (Reimers and Gurevych,
2019). This is done using the sentence-transformers package (Python Version 3.11.4; Reimers
and Gurevych, 2019). Specifically, we use the three Sentence-BERT models that perform best on the
sentence encoding task: all-mpnet-base-v2, all-distilroberta-v1, and all-MiniLM-L12-v2.

3 Results
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Figure 1: Standardized cosine similarity values of the eight intersectional groups using BERT−2.
Error bars are omitted as confidence intervals are all smaller than 0.001.

The results from the pre-registered model are reported in Table S5 (referred to as M4) and shown
visually in Figure 1. We conduct likelihood-ratio tests comparing models that include and exclude
race/ethnicity (M4 v. M2 in Table S4) and find significant support for the effect of race/ethnicity
(χ2(3) = 326701.07, p < .001). We also find support for the effect of gender (M4 v. M1 in Table S4;
χ2(1) = 6352.47, p < .001). All model comparison statistics are summarized in Table S4.
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To better understand the magnitude of the effects of race/ethnicity and gender, we fit an exploratory
model excluding the interactions (M3 in Table S5). Cosine similarity values of African, Asian,
and Hispanic Americans are 0.33 (SE = 0.00065, t(12,973,984) = 508.81), 0.31 (SE = 0.00065,
t(12,973,984) = 478.74), and 0.18 (SE = 0.00065, t(12,973,984) = 275.05) standard deviations greater
than those of White Americans, respectively. These differences are substantive when we use the
effect of gender as reference (β = 0.037, SE = 0.00047, t(12,973,986) = 78.68; M2 in Table S5).

Although the effect of gender is statistically significant, Figure 1 illustrates that there are substantive
differences in the effect of gender across racial/ethnic groups. The effect of gender stands out within
Hispanic Americans where the cosine similarity values of Hispanic American men are 0.12 standard
deviations smaller than those of Hispanic American women (zs = -133.86, p< .001). The contrasts in
other racial/ethnic groups, even where the within-category differences are statistically significant, are
much smaller than that within Hispanic Americans (βs = -0.010, -0.013, 0.00021, zs = -10.79, -14.54,
0.23, p < .001, p < .001, p = .82 in the order of African, Asian, and White Americans).

In Sections S6 and S7 of the Supplemental Materials, we show that the effects of race/ethnicity and
gender replicate across all six other measurement strategies. The only meaningful difference we
observe across measurement strategies is the instability in the effect of gender within individual
racial/ethnic groups (see Figure S2 and Tables S6 and S7 in the Supplemental Materials). Consistent
with the results from our pre-registered model, cosine similarity values of women are always greater
than those of men within African and Hispanic Americans. In contrast, the effect of gender within
Asian and White Americans are not consistent across measurement strategies.

4 Discussion

We find that ChatGPT portrays socially subordinate racial/ethnic groups (African, Asian, and His-
panic Americans) as more homogeneous than the dominant racial/ethnic group (White Americans).
There are gender differences as well, but these are modest and consistent only within African and
Hispanic Americans. These results underscore the importance of considering intersectionality when
investigating representational biases in large language models.

Altogether, these findings offer evidence that bias in LLMs can take multiple forms. While existing
literature predominantly focuses on stereotyping in LLMs, or the common association between social
groups and stereotypic attributes (Blodgett et al., 2020), our research suggests that bias in LLMs can
also manifest in the form of homogeneous representations where socially subordinate groups are
portrayed as more uniform compared to the dominant group.

4.1 Where might these biases be coming from?

NLP systems reproduce biases embedded in their training data. This has been shown in word
embeddings (Bolukbasi et al., 2016; Caliskan et al., 2017), translation systems (Stanovsky et al.,
2019; Prates et al., 2018), and text generative models (Abid et al., 2021; Lucy and Bamman, 2021),
among many others. As such, it is likely that homogeneous representations of socially subordinate
groups in the text generated by LLMs are also reproductions of bias in their training data. Given the
opacity surrounding the training data of many LLMs (and their sheer size), it is difficult to confirm if
the representations of these groups are indeed more homogeneous than those of dominant groups in
LLM training data. Instead, we speculate on potential sources of homogeneity in the training data.

First, there is the possibility of selection bias or disproportionate representations of groups in the
training data (for a more detailed discussion, see Shah et al., 2020). Given that some groups are more
frequently discussed in the training data of LLMs, as Tripodi’s (2023) study of Wikipedia text would
suggest, we expect the model to have more words and information to choose from when generating
texts about those groups. Hence, the frequency of which a group is discussed in the training data may
influence the models’ representation of the group. Future work would benefit from investigating the
causal effect of representation of groups in the training data on the homogeneity of LLM-generated
text, perhaps by examining the bias in two otherwise equivalent LLMs, one that is trained on a gender-
or race-balanced corpus, for example, and another that is not. Establishing this causality would help
identify measures to mitigate this bias in LLMs.

Second, there is the possibility that some groups are more stereotypically represented in the training
data. Studies have shown that LLMs reproduce stereotypes in their training data, generating text
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that associates social groups with stereotypic attributes that the group is frequently associated with
in the training data (e.g. Abid et al., 2021; Lucy and Bamman, 2021). When a particular group is
consistently portrayed with respect to these stereotypic attributes in the training data, it limits the
range of words and information available to the LLM when discussing the group, ultimately resulting
in a uniform and homogeneous representation. To address this concern, future research should
investigate the extent to which stereotypicality impacts the homogeneity of group representations in
LLM-generated text. Such inquiries will provide valuable insight into the underlying dynamics of
LLM training and contribute to the development of more fair and unbiased language models.

5 Conclusion

Our work uncovers a new form of bias present in Large Language Models. Our findings indicate that
LLMs depict socially subordinate groups as more homogeneous than the socially dominant group
although the effect of gender is smaller than the effect of race/ethnicity. Moreover, the interaction
between race/ethnicity and gender plays a role in shaping the bias, such that the effect of gender
is consistently present within African and Hispanic Americans but not within Asian and White
Americans. This bias in LLMs has the potential to amplify biases in future LLM training and to
reinforce stereotypes. Future research should investigate ways to mitigate this bias to promote
fairness, accuracy, and inclusivity in their generated content.

6 Social Impacts Statement

Studies have demonstrated that machine learning systems are susceptible to runaway feedback loops
wherein bias present in the training data can mutually reinforce and amplify each other through a
vicious cycle (Ensign et al., 2017; Jiang et al., 2019). Here, we argue that a similar cycle of this
nature can occur in large language models such that socially subordinate groups are portrayed as
more homogeneous compared to dominant groups inside the training data of LLMs, these biases
are reflected in the text they generate, biased text affects how users of LLMs perceive groups, users
generate biased text, and such data is fed into subsequent training of LLMs, further amplifying the
bias. We’ve laid out two possible mechanisms that biased training data can lead to homogeneous
representations of groups. Whether such biased training data leads to homogeneous text generations,
whether such homogeneous text affects users’ perceptions of groups, and whether biased perceptions
lead to the generation of biased text are all directions for future research.

Moreover, if homogeneous representations in LLM-generated text affect users’ perceptions of groups,
then this bias in LLMs could affect stereotyping. When individuals perceive a group as more
homogeneous, it tends to boost their confidence in assessing individual group members (Ryan et al.,
1996) and increase the likelihood of recalling stereotype-consistent information (Pendry and Macrae,
1999). Consequently, perceived homogeneity of groups can influence stereotype change (Hewstone
and Hamberger, 2000) and levels of prejudice and discrimination (Brauer and Er-rafiy, 2011). Hence,
perceived homogeneity of socially subordinate groups reproduced by LLMs has the potential to
reinforce and amplify stereotypes that individuals hold for these groups.
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S1 API parameter settings and non-compliant text completions

While using the default parameters of the API (https://platform.openai.com/docs/guides/
gpt/chat-completions-api) we make two exceptions: the n parameter, which determines the
number of text completions per API request, and the role of the system that determines the model’s
behavior. Initially, we intended to set n to 500. However, the maximum allowed value for n is 128.
To address this limitation, we conduct data collection in four separate batches, with ns set to 128,
128, 128, and 116 for each batch, respectively. For consistency and standardization, we set the role
of the system to “a chatbot”, a widely used role for the ChatGPT API. Subsequently, we merge the
generated texts from the four batches.

To ensure data quality, we conduct a keyword-based query to identify and remove 50 of 52,000
instances where ChatGPT refuses to generate the requested texts. Upon manual inspection, we
identify instances where ChatGPT generates responses for the prompts in addition to a cautionary
note about the potential perpetuation of stereotypes. Despite this observation, we retain these instances
in the analyses presented in the main text as they do not meet our exclusion criteria. We provide a
breakdown of non-compliant completions by race/ethnicity, gender, and text format in Section S10.
To address the removal of these texts and to ensure a complete data set of 500 texts for each of the 104
different writing prompts, we conduct an additional round of data collection. This involves generating
texts to replace the 50 removed instances.

S2 Justification for the choice of layers

Sentence embeddings are numerical vectors in a high-dimensional embedding space that encode
both syntactic and semantic information of sentences (Conneau et al., 2018). These embeddings
can be obtained from transformer-based language models such as BERT (Devlin et al., 2018)
that have readily been trained on large amounts of textual data to learn contextual representations
of language. These models consist of multiple transformer layers where each layer is respon-
sible for capturing increasingly abstract and contextualized information from the input text and
representing them as numeric vectors. Consequently, when a sentence is fed into a transformer-
based language model, sentence-level representations are generated for each layer, but upper (i.e.,
closer to last) layer representations tend to be more contextualized (Ethayarajh, 2019). Hence,
when obtaining sentence embeddings to assess meanings of text, it is common to use layer rep-
resentations that are closer to the last (e.g. Nadeem et al., 2019; Lin et al., 2020). However,
the last layer is often not used because it is considered biased towards the task in which these
models are trained for (i.e., next sentence and masked language prediction). For more infor-
mation, read https://bert-as-service.readthedocs.io/en/latest/section/faq.html.
For these reasons, we use the second-to-last and third-to-last layers of BERT and RoBERTa.
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S3 Face validity of the cosine similarity measurements

To demonstrate the face validity of the cosine similarity measurements, we provide 20 randomly
selected pairs from ChatGPT-generated stories about a White American man, arranged in descending
order of cosine similarity (see Table S1). We show that, as opposed to the pair of sentences with
the highest cosine similarity value sharing apparent overlap in meaning, the last pair with the lowest
cosine similarity value shares less meaning:

Table S1: Pairs of sentences with the highest and lowest cosine similarity values among stories
written about African American men. The cosine similarity values were calculated using BERT−2.

Sentence 1 Sentence 2 Cosine

White man navigates through life’s chal-
lenges, overcoming stereotypes, embrac-
ing diversity, and championing equality,
ultimately becoming an empathetic voice
for the marginalized.

White American man navigates life’s com-
plexities with love, laughter, and an open
heart. Growing up, he discovers the impor-
tance of empathy and advocates for equal-
ity and justice.

0.9338

Driven by curiosity, the white American
man explored cultures unknown. Along
the way, he discovered the beauty of diver-
sity and embraced the power of unity.

In a world full of color, the White Amer-
ican man embraced diversity, breaking
stereotypes, and learning to appreciate the
beauty in every shade.

0.9195

In a world of diversity, he stood proud,
embracing growth, understanding, and em-
pathy, using his privilege to amplify the
voices of others.

In a divided world, the White American
man sought understanding, embracing di-
versity and challenging his own biases, be-
coming a catalyst for unity and empathy.

0.9157

In a land of diversity, he bridged divides
with empathy and understanding, proving
that the color of one’s skin did not define
their character.

In a small town, a White American man
discovered the beauty of diversity, bridg-
ing gaps and building connections that in-
spired his community to embrace unity.

0.9103

Lost in a sea of privilege, he struggled to
understand the struggles of others. But
with newfound empathy, he vowed to fight
alongside them for equality and justice.

A White American man, plagued by privi-
lege and prejudice, embarked on a journey
of self-discovery, exploring humility and
empathy, ultimately breaking free from the
chains of ignorance.

0.9042

In a small rural town, a white American
man defied societal expectations, dedicat-
ing his life to fighting for equality and help-
ing those in need.

In a small town, a white American man be-
friended his immigrant neighbor, celebrat-
ing their differences and finding common
ground, reminding everyone that unity is
strength.

0.9036

White American man learned empathy and
respect through conversations with people
from diverse backgrounds, realizing that
unity and understanding are vital for a har-
monious society.

A White American man navigates through
life, unveiling the shades of his identity,
breaking stereotypes, and embracing diver-
sity, all while creating spaces for under-
standing and unity.

0.8995

In a small town, a white American man
with a heart full of compassion devoted
his life to bridging divides and embracing
diversity.

In a crowded city, a white American man
sat alone on a park bench, reflecting on
his privileged life and vowing to use it for
positive change.

0.8980

Once a lonely, lost white American man
found solace amid diverse cultures, real-
izing the beauty of unity within humanity,
transcending barriers and spreading com-
passion.

John, a white American man, embarked on
a soul-searching journey across the coun-
try, immersing himself in diverse cultures
and finding his own identity in the process.

0.8822
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White, American man achieved his life-
long dream of climbing Mount Everest.
Along the treacherous journey, he discov-
ered peace within himself and a newfound
respect for nature.

A White American man, trapped in so-
cietal expectations, embarks on a soul-
searching journey, discovering the true
essence of his identity beyond the color
of his skin.

0.8755

White American man ventures into the un-
known, conquering new territories of the
mind and heart, breaking stereotypes and
building bridges to unite humanity.

Once a privileged white American man,
his eyes were opened to the harsh reality
of inequality, inspiring him to fight for jus-
tice and become an ally to marginalized
communities.

0.8708

In a small town, a white American man
embraced diversity, shedding prejudices
and embracing new cultures, creating a
harmonious community where everyone
felt welcome.

He planted seeds of understanding amidst
a field of prejudice, cultivating a garden
of diversity where flowers of acceptance
bloomed, transforming hearts and minds.

0.8706

Jonathan, a White American man, was lost
in self-doubt. Through introspection, he
realized his privilege and used it to advo-
cate for equality, becoming a catalyst for
change in his community.

A White American man embarked on a
journey of self-discovery, shedding soci-
etal expectations, and embracing a world
where diversity thrived.

0.8706

Born privileged, he realized his privilege
and dedicated his life to fighting for equal-
ity, using his platform to amplify marginal-
ized voices and challenge societal norms.

A white American man, seeking adven-
ture and self-discovery, embarks on a pro-
found journey through different cultures,
ultimately realizing the beauty of diversity
and the value of empathy.

0.8588

In a small Southern town, a white Ameri-
can man breaks societal norms by opening
a successful restaurant that bridges cultural
gaps through his love for fusion cuisine.

A white American man, filled with curios-
ity and compassion, left his comfortable
life behind to immerse himself in a foreign
culture, forever changing his perspective
on the world.

0.8572

An ambitious white American man left ev-
erything behind to embark on a journey,
only to discover that true fulfillment lay in
the connections he made with people from
diverse backgrounds.

He wore a white suit as he walked through
a sea of vibrant cultures, unaware of the
privilege that shielded him from the strug-
gles around him.

0.8461

A white American man, haunted by
his past, embarks on a journey of self-
discovery, ultimately finding redemption
through the power of forgiveness and love.

In a land divided, a White American man
faced his privilege and privilege his voice
to uplift others, bridging the gap between
races and fostering understanding.

0.8403

He wandered through life, carrying the
weight of privilege on his shoulders, until
one day he met a black woman who chal-
lenged his perspective and opened his eyes
to a world beyond his own.

He was surrounded by diversity, but his
curious mind sought deeper understanding
and connection. In embracing others, he
became a beacon of unity and empathy.

0.8351

In a small town, a white American man
found solace through volunteering, bridg-
ing gaps among diverse neighbors and fos-
tering harmony in his community.

Adam, proud of his privilege, realized he
hadn’t bothered to question his prejudices
until he met Maria, an immigrant who
showed him the beauty of diversity.

0.8209

Adam, a proud White American man,
strove to overcome his biases, embracing
diversity and fostering understanding to
create a world where skin color mattered
little.

White American man, pensive and weary,
found solace in a crumbling bookstore,
where each yellowed page whispered for-
gotten tales of the world he longed to ex-
plore.

0.8199
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S4 Validation check in pilot study

In one of our pilot studies, we collected stories about four racial/ethnic groups to validate cosine
similarity of sentence embeddings as measure of text homogeneity. The writing prompt used in the
pilot study was almost identical to that used in the main study. The only difference was that we
looked at one text format - story - and one gender group - men. The prompts read, “Write a 30-word
story about a(n) [ African / Asian / Hispanic / White ] American man.” We collected 100 responses
for each prompt.

Upon manual inspection of the collected data, we discovered that a recurring theme in the stories was
overcoming hardship (e.g., shattering stereotypes, defying the odds . . . etc.). We expected that if
cosine similarity was really capturing the concept of homogeneity, a larger number of stories written
for African, Asian, and Hispanic Americans would be about overcoming hardship than those written
for White Americans. To test this hypothesis, we coded the stories as either being about overcoming
hardship (1) or not (0) and tallied the number of stories coded as 1 for each racial/ethnic group. Then,
we calculated the cosine similarity between all pairs of stories generated for each racial/ethnic group.
The cosine similarity value was calculated using the BERT−2 model. In Table S2, we show randomly
selected stories from the pilot data and the code assigned to the stories.

Table S2: Randomly selected stories from the pilot data containing 100 stories written about the four
racial/ethnic groups. The stories were coded as 1 if they were about overcoming hardship and 0 if not.

Race/Ethnicity Stories Code

Hispanic American Proudly embracing his heritage, Juan achieved the
American Dream through hard work and determination,
inspiring generations to follow their dreams regardless
of their background.

0

White American He woke up in a foreign land, feeling lost and out of
place. Through the struggle, he learned empathy and
found beauty in embracing diversity.

0

White American He was born with privilege but refused to succumb to its
trappings. Instead, he used his voice to amplify the cries
of the marginalized, becoming a true ally in a divided
world.

0

Asian American In a bustling city, an Asian American man strove for
success, overcoming stereotypes with determination,
resilience, and a humble spirit that inspired others to do
the same.

1

African American He held his head high, defying stereotypes. With each
step he took on the journey of life, he shattered barriers
and inspired generations.

1

African American In a world of prejudice, he rose above, breaking barriers
and empowering others, his resilience a beacon of hope
for all marginalized voices.

1

In Table S3, we show the number of stories generated for each of the racial/ethnic groups that were
coded as being about overcoming hardship and the mean pairwise cosine similarity values calculated
within each racial/ethnic group. Although the number of stories coded as 1 did not perfectly correlate
with the mean cosine similarity value, White Americans clearly had the smallest number of stories
coded as 1 and the smallest mean cosine similarity value. While the code used here captures only a
single aspect (i.e. whether or not the story is about overcoming hardship) of the generated stories,
this suggests that cosine similarity captures text homogeneity.
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Table S3: The number of pairs of stories where both stories are about hardship, both stories are not
about hardship, one is about hardship and the other isn’t, and the mean cosine similarity value for
each of the racial/ethnic groups in the pilot data.

Race/Ethnicity Both 1s Both 0s Different Code Mean Cosine Similarity

African Americans 4656 3 291 0.8980
Asian Americans 2775 300 1875 0.8820
Hispanic Americans 1891 703 2356 0.8865
White Americans 120 3486 1344 0.8589

S5 Mixed effects model terms

Text format is included as random intercepts and not as random slopes because we expect the cosine
similarity baseline to vary across text formats (text formats like self-introduction, for example, may
be more similar to each other than other text formats given that self-introductions are likely to share a
common structure and/or content that constitutes an introduction), but we do not expect the magnitude
and direction of the fixed effects to vary across text format. When fitting linear mixed-effects models,
we turn off derivative calculations that could slow down the model fitting process and use the nmkbw
optimizer made available by the lme4 package.
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S6 Main effect of race/ethnicity in alternative measurement strategies

Alternative measurement strategies using BERT and RoBERTa yield similar results as that reported
in the main text. Using likelihood-ratio tests, we find that the models including race/ethnicity provide
better fits for the data than those without it, as indicated by the chi-squared statistics for the analysis
using BERT−3 (χ2(3) = 350811.99, p < .001), RoBERTa−2 (χ2(3) = 423818.22, p < .001), and
RoBERTa−3 (χ2(3) = 420810.29, p < .001). African Americans hold greater cosine similarity
values than White Americans (βBERT−3

= 0.35, βRoBERTa−2
= 0.39, βRoBERTa−3

= 0.38, SEs = 0.00064,
0.00067, 0.00068, t(12,973,984)s = 538.98, 578.05, 567.66), Asian Americans hold greater cosine
similarity values than White Americans (βBERT−3 = 0.31, βRoBERTa−2 = 0.37, βRoBERTa−3 = 0.38, SEs
= 0.00064, 0.00067, 0.00068, t(12,973,984)s = 485.69, 555.63, 561.65), and Hispanic Americans
hold greater cosine similarity values than White Americans (βBERT−3 = 0.20, βRoBERTa−2 = 0.26,
βRoBERTa−3 = 0.27, SEs = 0.00064, 0.00067, 0.00068, t(12,973,984)s = 303.47, 390.21, 405.83)
across all alternative measurement strategies (see Table S6).

The Sentence-BERT models also yield similar results as that reported in the main text. Using
likelihood-ratio tests, we find that the models including race/ethnicity provide better fits for the
data than those without it, as indicated by the chi-squared statistics for all-mpnet-base-v2 (χ2(3)
= 951045.70, p < .001), all-distilroberta-v1 (χ2(3) = 723332.37, p < .001), and all-MiniLM-
L12-v2 (χ2(3) = 637185.08, p < .001). African Americans hold greater cosine similarity values
than White Americans (βall-mpnet-base-v2 = 0.49, βall-distilroberta-v1 = 0.44, βall-MiniLM-L12-v2 = 0.37, SEs
= 0.00056, 0.00055, 0.00054, t(12,973,984)s = 875.24, 805.99, 682.53), Asian Americans hold
greater cosine similarity values than White Americans (βall-mpnet-base-v2 = 0.41, βall-distilroberta-v1 = 0.35,
βall-MiniLM-L12-v2 =0.37, SEs = 0.00056, 0.00055, 0.00054, t(12,973,984)s = 738.83, 635.89, 694.53),
and Hispanic Americans hold greater cosine similarity values than White Americans (βall-mpnet-base-v2 =
0.44, βall-distilroberta-v1 = 0.32, βall-MiniLM-L12-v2 = 0.31, SEs = 0.00056, 0.00055, 0.00054, t(12,973,984)s
= 782.51, 577.99, 568.14) across all three measurement strategies (see Table S7).

S7 Main effect of gender in alternative measurement strategies

Alternative measurement strategies using BERT and RoBERTa yield similar results as that reported
in the main text. Using likelihood-ratio tests, we find that the models including gender provide
better fits for the data than those without it, as indicated by the chi-squared statistics for the analysis
using BERT−3 (χ2(1) = 10618.63, p < .001), RoBERTa−2 (χ2(1) = 48861.29, p < .001), and
RoBERTa−3 (χ2(1) = 32820.55, p < .001). Cosine similarity values of women are greater than those
of men ( βBERT−3 = 0.049, βRoBERTa−2 = 0.11, βRoBERTa−3 = 0.087, SEs = 0.00046, 0.00048, 0.00049,
t(12,973,986)s = 105.69, 217.65, 178.33) across all alternative measurement strategies (see Table S6).

The Sentence-BERT models also yield similar results as that reported in the main text. Using
likelihood-ratio tests, we find that the models including the gender term provide better fits for the
data than those without it, as indicated by the chi-squared statistics for all-mpnet-base-v2 (χ2(1)
= 53129.67, p < .001), all-distilroberta-v1 (χ2(1) = 32470.77, p < .001), and all-MiniLM-L12-v2
(χ2(1) = 9010.33, p < .001). Cosine similarity values of women are greater than those of men (
βall-mpnet-base-v2 = 0.090, βall-distilroberta-v1 = 0.069, βall-MiniLM-L12-v2 =0.036, SEs = 0.00041, 0.00040,
0.00039, t(12,973,986)s = 221.79, 174.69, 92.46) across all alternative measurement strategies (see
Table S7).
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S8 Main effect in the presence of an interaction

When the predictors are dummy-coded, the main effects in the presence of an interaction are simple
effects, the effect of the predictor in the reference level (Brown, 2021). As we dummy-code race/
ethnicity and gender variables such that White Americans and men serve as the reference level, the
beta coefficient corresponding to the race/ethnicity term is the effect of race/ethnicity within men, and
the beta coefficient corresponding to the gender term is the effect of gender within White Americans.

S8-1 Main effect of race/ethnicity

Using the likelihood-ratio test, we find that the model including race/ethnicity provides a better fit for
the data than that without it, as indicated by the chi-squared statistics for the analysis using BERT−2

(χ2(3) = 326701.07, p < .001). Cosine similarity values of African, Asian, and Hispanic American
men are 0.33 (SE = 0.00092, t(12,973,980) = 354.75), 0.31 (SE = 0.00092, t(12,973,980) = 331.60),
and 0.12 (SE = 0.00092, t(12,973,980) = 127.81) standard deviations greater than those of White
American men, respectively (see Tables S4 and S5).

Alternative measurement strategies using BERT and RoBERTa yield similar results as that of BERT−2

(see Tables S4 and S6). Using likelihood-ratio tests, we find that the models including the race/
ethnicity term provide better fits for the data than those without it, as indicated by the chi-squared
statistics for the analysis using BERT−3 (χ2(3) = 350811.99, p < .001), RoBERTa−2 (χ2(3) =
423818.22, p < .001), and RoBERTa−3 (χ2(3) = 420810.29, p < .001). African American men
hold greater cosine similarity values than White American men ( βBERT−3

= 0.35, βRoBERTa−2
=

0.41, βRoBERTa−3
= 0.41, SEs = .00091, .00095, .00096, t(12,973,980)s = 385.07, 427,14, 429.71),

Asian American men hold greater cosine similarity values than White American men ( βBERT−3

= 0.31, βRoBERTa−2
= 0.38, βRoBERTa−3

= 0.39, SEs = .00091, .00095, .00096, t(12,973,980)s =
337.87, 402.34, 411.19), and Hispanic American men hold greater cosine similarity values than
White American men ( βBERT−3

= 0.14, βRoBERTa−2
= 0.25, βRoBERTa−3

= 0.25, SEs = .00091, .00095,
.00096, t(12,973,980)s = 155.04, 264.43, 264.35) across all alternative measurement strategies.

The Sentence-BERT models also yield similar results as that of BERT−2 (see Tables S4 and S7).
Using likelihood-ratio tests, we find that the models including the race/ethnicity term provide better
fits for the data than those without it, as indicated by the chi-squared statistics for all-mpnet-base-v2
(χ2(3) = 951045.70, p < .001), all-distilroberta-v1 (χ2(3) = 723332.37, p < .001), and all-MiniLM-
L12-v2 (χ2(3) = 637185.08, p < .001). African American men hold greater cosine similarity values
than White American men ( βall-mpnet-base-v2 = 0.45, βall-distilroberta-v1 = 0.39, βall-MiniLM-L12-v2 =0.32,
SEs = 0.00078, 0.00077, 0.00076, t(12973980)s = 575.21, 502.56, 425.15), Asian American men hold
greater cosine similarity values than White American men ( βall-mpnet-base-v2 = 0.41, βall-distilroberta-v1
= 0.35, βall-MiniLM-L12-v2 =0.37, SEs = 0.00078, 0.00077, 0.00076, t(12,973,980)s = 524.52, 449.42,
489.55), and Hispanic American men hold greater cosine similarity values than White American
men ( βall-mpnet-base-v2 = 0.30, βall-distilroberta-v1 = 0.16, βall-MiniLM-L12-v2 =0.20, SEs = 0.00078, 0.00077,
0.00076, t(12,973,980)s = 382.11, 212.57, 263.95) across all alternative measurement strategies.

S8-2 Main effect of gender

The likelihood-ratio test finds that the model including gender provides a better fit for the data than
that without it, as indicated by the chi-squared statistics for the analysis using BERT−2 (χ2(1) =
6352.47, p < .001). Cosine similarity values of White American women are not significantly different
from those of White American men (βBERT−2 = 0.00021, SE = 0.00092, t(12,973,980) = 0.23) in the
presence of an interaction (see Tables S4 and S5).

Alternative measurement strategies using BERT and RoBERTa yield somewhat dissimilar results with
that of BERT−2 (see Tables S4 and S6). Using likelihood-ratio tests, we find that the models including
gender provide better fits for the data than those without it, as indicated by the chi-squared statistics
for the analysis using BERT−3 (χ2(1) = 11481.17, p < .001), RoBERTa−2 (χ2(1) = 48861.29, p <
.001), and RoBERTa−3 (χ2(1) = 5591.13, p < .001). Cosine similarity values of White American
women are greater than those of White American men across all alternative measurement strategies
( βBERT−3

= -0.021, βRoBERTa−2
= -0.11, βRoBERTa−3

= -0.095, SEs = 0.00091, 0.00095, 0.00096,
t(12,973,980)s = -22.61, -117.75, -99.70).
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The Sentence-BERT models also yield somewhat dissimilar results with that of BERT−2 (see Tables
S4 and S7). Using likelihood-ratio tests, we find that the models including gender provide better fits
for the data than those without it, as indicated by the chi-squared statistics for all-mpnet-base-v2
(χ2(1) = 53129.67, p < .001), all-distilroberta-v1 (χ2(1) = 32470.77, p < .001), and all-MiniLM-L12-
v2 (χ2(1) = 9010.33, p < .001). When using the all-mpnet-base-v2 model, cosine similarity values of
White American women are 0.0036 standard deviations greater than those of men (SE = 0.00078,
t(12,973,980) = -4.61), when using the all-distilroberta-v1 model, cosine similarity values of White
American are 0.035 standard deviations smaller than those of men (SE = 0.00077, t(12,973,980) =
45.44), and when using the all-MiniLM-L12-v2 model, cosine similarity values of White American
women are 0.040 standard deviations smaller than those of men (SE = 0.00076, t(12,973,980) =
52.52).
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Figure S2: Standardized cosine similarity values of the eight intersectional groups across all measure-
ment strategies. Error bars are omitted as confidence intervals are all smaller than 0.001.
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Table S4: Results of the likelihood ratio tests across all measurement strategies. M1: race/ethnicity,
M2: gender, M3: race/ethnicity and gender, M4: race/ethnicity, gender, and their interactions.

Model Comparison χ2 df

BERT−2 M4 v. M2 326701.07∗ 3
M4 v. M1 6352.47∗ 1
M4 v. M3 11888.15∗ 3

BERT−3 M4 v. M2 350811.99∗ 3
M4 v. M1 11481.17∗ 1
M4 v. M3 10618.63∗ 3

RoBERTa−2 M4 v. M2 423818.22∗ 3
M4 v. M1 48861.29∗ 1
M4 v. M3 1917.00∗ 3

RoBERTa−3 M4 v. M2 420810.29∗ 3
M4 v. M1 32820.55∗ 1
M4 v. M3 5591.13∗ 3

all-mpnetbase-v2 M4 v. M2 951045.70∗ 3
M4 v. M1 53129.67∗ 1
M4 v. M3 80643.97∗ 3

all-distilroberta-v1 M4 v. M2 723332.37∗ 3
M4 v. M1 32470.77∗ 1
M4 v. M3 103107.16∗ 3

all-MiniLM-L12-v2 M4 v. M2 637185.08∗ 3
M4 v. M1 9010.33∗ 1
M4 v. M3 50627.14∗ 3

*p < .05
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Table S5: Summary outputs of four mixed effects models using cosine similarity measurements from
BERT−2. M1: race/ethnicity, M2: gender, M3: race/ethnicity and gender, M4: race/ethnicity, gender,
and their interactions.

BERT−2

M1 M2 M3 M4

Intercept -0.21 -0.018 -0.22 -0.21
(0.16) (0.16) (0.16) (0.16)

African Americans 0.33∗ 0.33∗ 0.33∗

(0.00065) (0.00065) (0.00092)
Asian Americans 0.31∗ 0.31∗ 0.31∗

(0.00065) (0.00065) (0.00092)
Hispanic Americans 0.18∗ 0.18∗ 0.12∗

(0.00065) (0.00065) (0.00092)
Women 0.037∗ 0.037∗ 0.00021

(0.00047) (0.00046) (0.00092)
African Americans 0.0097∗
× Women (0.0013)
Asian Americans 0.013∗
× Women (0.0013)
Hispanic Americans 0.12∗
× Women (0.0013)

N 12974000 12974000 12974000 12974000
Log likelihood -15985323 -16145340 -15982157 -15976230

*p < .05
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S9 Robustness to pre-processing steps

As proposed in the pre-registration, we test the robustness of our findings to the set of pre-processing
steps used. In addition to lower-casing, removing non-alphanumeric characters and extra whitespaces,
we remove all word signaling race/ethnicity (words like African, Asian, Hispanic, and White) and
gender (man and woman). Then, we induce sentence embeddings using BERT−2 as we do for the
pre-registered analysis.

S9-1 Main effect of race/ethnicity

The effect of race/ethnicity is robust to the pre-processing steps used. Using the likelihood-ratio test,
we find that the model including race/ethnicity provides a better fit for the data than that without it, as
indicated by the chi-squared statistics for the analysis using BERT−2 (χ2(3) = 292143.45, p < .001).
Cosine similarity values of African, Asian, and Hispanic Americans are each 0.34 (SE = 0.00066,
t(12,973,984) = 507.56), 0.28 (SE = 0.00066, t(12,973,984) = 417.38), and 0.18 (SE = 0.00066,
t(12,973,984) = 270.42) standard deviations greater than those of White Americans, respectively.

S9-2 Main effect of gender

The effect of gender is also robust to the pre-processing steps used. Using the likelihood-ratio test, we
find that the model including gender provides a better fit for the data than that without it, as indicated
by the chi-squared statistics for the analysis using BERT−2 (χ2(1) = 23781.24, p < .001). Cosine
similarity values of women are 0.073 (SE = 0.00047, t(12,973,986) = 154.28) standard deviations
greater than those of men.

S9-3 Interaction effect

The interaction effect between race/ethnicity and gender is not entirely robust to the pre-processing
steps used. Using the likelihood-ratio test, we find that the model including the interaction term
provides a better fit for the data than that without it, as indicated by the chi-squared statistics for the
analysis using BERT−2 (χ2(3) = 6961.27, p < .001). As with the pre-registered analysis, African,
Asian, and Hispanic women hold higher cosine similarity values than their male counterparts (zs =
-55.39, -67.09, -148.53, ps < .001), but White American women also hold greater cosine similarity
values than their male counterpart (z = -41.14, p < .001).
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S10 Differential compliance

We report the number of non-compliant completions in the initial round of data collection by race/
ethnicity, gender, and text format. Some examples of non-compliant completions are: “As an AI
language model, I am committed to promoting inclusivity and avoiding stereotypes or perpetuating
negative narratives. I would be happy to provide you with a story that is focused on resilience and
triumph instead. Let me know if you would like that.” and “As an AI language model programmed to
contribute positively and responsibly, I am committed to not perpetuating stereotypes or engaging in
any form of racial profiling or discrimination. Please feel free to ask any other kind of question, and
I’ll be more than happy to help!”.

S10-1 Race/ethnicity

• African Americans: 35
• Asian Americans: 6
• Hispanic Americans: 2
• White Americans: 3

S10-2 Gender

• Men: 38
• Women: 12

S10-3 Text format

• Character description: 1
• Funny story: 13
• Horror story: 33
• Tragic story: 3
• All other text formats: 0
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