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ABSTRACT

Deep learning approaches have revolutionized artificial intelligence, but model
opacity and fragility remain significant challenges. The reason for these chal-
lenges, we believe, is a knowledge gap at the heart of the field — the lack of
well-calibrated metrics quantifying the similarity of the internal representations of
models obtained using different architectures, training strategies, different check-
points, or under different random initializations. While several metrics have been
proposed, they are poorly calibrated and susceptible to manipulations and con-
founding factors, as well as being computationally intensive when probed with a
large and diverse set of test samples. We report here an integration of chain nor-
malization of weights and centered kernel alignment that, by focusing on weight
similarity instead of activation similarity, overcomes most of the limitations of
existing metrics. Our approach is sample-agnostic, symmetric in weight space,
computationally efficient, and well-calibrated.

1 INTRODUCTION

In the last few decades, deep learning has revolutionized the study and development of artificial
intelligence (AI). The revolution has been driven by the almost dizzying introduction of novel model
architectures: fully connected perceptrons, deep convolutional neural networks (Krizhevsky et al.,
2012), transformers (Dosovitskiy et al., 2020), diffusion models (Ho et al., 2020) and, most recently,
large language models. These approaches have all achieved remarkable success, pushing the state of
the art across numerous fields, including computer vision, natural language processing, and speech
recognition.

In contrast to prior approaches in computer science, where developing parsimonious models using
limited resources was the goal, the path pursued in AI has been one in which increased performance
has been achieved at the cost of gigantic models using vast amounts of resources. For example, a
modern large language model can easily contain billions of parameters and requires massive com-
putational and data resources to train, resources that are only available to the largest organizations.

On par with resource requirements is the fact that increasing model complexity comes at the cost
of model opacity. The exact nature of what a perceptron model learns still remains elusive (Calude
et al., 2023), but the lack of understanding grows exponentially larger as more complex architectures
are considered (Rudin, 2019).

This lack of interpretability of model predictions is made all the more worrisome because many
neural network architectures are known to be vulnerable to adversarial attacks (Goodfellow et al.,
2014), exhibit generalization gaps, and are prone to shortcut learning (DeGrave et al., 2021; Geirhos
et al., 2020). All these concerns dramatically limit the ability to deploy deep learning models to
high-stakes settings, such as healthcare systems (T. Dhar et al., 2023).

In view of these concerns, it is not surprising that multiple lines of research are dedicated to improv-
ing the interpretability, generalizability, and robustness of deep learning models. One fruitful ap-
proach has been the development of attribution methods Simonyan et al. (2013); Sundararajan et al.
(2017); Selvaraju et al. (2019) that aim to identify the specific features driving model predictions.
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However, recent studies have revealed a lack of consensus and, at times, inaccurate attributions,
raising concerns about the fidelity of these methods (Saporta et al.; Rudin, 2019).

Another fruitful approach is the investigation of how specific training manipulations can address
known concerns — model stitching (Bansal et al., 2021), component ablation experiments (Shah
et al.), data augmentation such as adversarial training (Goodfellow et al., 2014), early stopping (Pang
et al., 2020), and batch normalization (Ioffe & Szegedy, 2015) have all been used in an attempt to
increase model robustness. Despite their widespread utilization, these techniques still rely on “trial
and error,” “common practices,” and “rules of thumb,” rather than systematized knowledge.

It is our contention that the limitations of all the approaches discussed above are due to a gap at
the heart of the field — the lack of a trustworthy, well-calibrated measure of model similarity. To
address the limitations of current approaches, we need to quantify whether different neural networks
learn in a similar or distinct manner at various stages of internal processing (Klabunde et al.) or
whether there are universal or idiosyncratic mechanisms underlying reported high performance.

Li et al. (2015) introduced the concept of convergent learning, which asks whether different neural
networks — separately trained with varying random initializations, different architectures, disjoint
data samples, or optimization algorithms — ultimately learn the same underlying representations.
Various research groups have proposed representational similarity metrics aiming to quantify the
(dis)similarity between activation values computed by different layers or models for a given set of
inputs. The most widely studied representational similarity metrics are canonical correlation analy-
sis (CCA) (Morcos et al.), Procrustes (Gower & Dijksterhuis, 2004), and centered kernel alignment
(CKA) (Kornblith et al., 2019).

Despite the valuable insights provided by research on representational similarity in interpreting deep
neural networks, there remains a lack of consensus on interpreting the outputs of different represen-
tational similarity metrics (Ding et al., 2021; Cui et al., 2024). For example, Davari et al. (2023)
characterized in detail the sensitivity of CKA to data transformations that do not lead to functional
changes for neural networks, demonstrating that CKA can be easily manipulated. The dependence of
CKA on specific input manipulations is to be expected, given the nature of representation activation
values calculated based on a subset of probing inputs (Fig. 1, Fig. 5).

Here, we propose a new approach. We start from the observation that learned knowledge in a neural
network is captured in the values of the weights acquired during training. Despite their fundamental
importance, there is surprisingly little research on the weight similarity of neural networks. Wang
et al. (2022) made the first attempt to explore weight similarity by proposing a chained normalization
operator that ensures invariance of weight similarity to permutation of neurons, i.e., the shuffling of
neurons within the same layer. Inspired by their work, as well as the foundations of CKA, we pro-
pose a novel weight similarity metric that applies CKA to a kernel of chained, normalized weights.
Our approach — which we denote weights CKA (wCKA) — shifts the focus from activation-based
comparisons to weight-based comparisons. This is an important shift because weights capture the
learned parameters of a model, independent of specific inputs and invariant to input perturbations.
This idea offers more stable and generalizable insights about model similarity and the ability to deal
with input-dependent and spurious similarities.

Our main contributions can be summarized as follows:

• We propose a novel metric quantifying the similarity of neural networks in terms of learned
parameters — model weights. The proposed metric is invariant to permutation and inter-
twiner (Godfrey et al., 2022) transformations, independent of probing input, and computa-
tionally efficient (Fig. 1c).

• We benchmark wCKA against three existing representational similarity metrics — Pro-
crustes, CKA, and dCKA — with random initialized neural networks and similar neural
networks obtained from successive training epochs. In contrast to other metrics, wCKA
demonstrates robust differentiation power in the calibration task towards the number of
probing samples and out-of-distribution corruptions,

• We validate the reliability of wCKA similarity estimates through the analysis of their cor-
relation with functional similarity, quantified by the fraction of agreed predictions on a
variety of test samples, including out-of-distribution corruptions and adversarial attacks.
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2 METHODS

2.1 REPRESENTATION SIMILARITY

Representational similarity metrics measure the similarity between representations, i.e., activation
values of different layers or models in response to a given set of inputs. Let X1 ∈ Rn×d1 and
X2 ∈ Rn×d2 denote the activation matrices of two different layers or models, where n is the number
of input samples, e.g. images, and d1 and d2 are the dimensionalities of the activations, i.e. number
of neurons at correspondent layers. Each row of X1 or X2 corresponds to the activation pattern of
the layer for a specific input example, and each column corresponds to the activation values of n
input samples for a single neuron.

2.1.1 PROCRUSTES

Procrustes measure the similarity between two representation matrices by minimizing the Frobenius
norm of the difference between the two matrices. The Procrustes distance is defined as:

dProcrustes(X1,X2) = ∥X1∥2F + ∥X2∥2F − 2∥X⊤
1 X2∥∗

where ∥ · ∥F denotes the Frobenius norm (Szabo, 2015), and ∥ · ∥∗ denotes the nuclear
norm (Manngård et al., 2017).

2.1.2 CKA

Kornblith et al. (2019) proposed centered kernel alignment (CKA) as a way to link the represen-
tational similarity of two models to the inner product of features. They argued that CKA exhibits
desired invariance properties: invariant to orthogonal transformation and isotopic scaling. CKA is
defined as:

C(K1,K2) =
S(K1,K2)√

S(K1,K1) · S(K2,K2)
(1)

where K1 and K2 are kernel matrices of X1 and X2, respectively:

Kij
1 = k1(x1i,x1j) and Kij

2 = k2(x2i,x2j),

where k1 and k2 are kernel functions, and x1i and x2i are rows (i.e., activation vector of a specific
input sample) of X1 and X2, respectively, and S(K1,K2) is the Hilbert-Schmidt Independence
Criterion (Gretton et al., 2005) between K1 and K2, computed as:

S(K1,K2) =
1

(n− 1)2
tr(K1HK2H) (2)

where H = In − 1
n1n1

⊤
n is the centering matrix.

Most researchers using CKA use a linear kernel. In this case, CKA reduces to:

Clinear(X1,X2) =
∥X⊤

2 X1∥2F
∥X⊤

1 X1∥F · ∥X⊤
2 X2∥F

(3)

where ∥ · ∥F again denotes the Frobenius norm.

Nguyen et al. (2020) utilized minibatch CKA, which approximates the original CKA by averaging
results from batches instead of the entire data population, thereby reducing memory cost, to reveal
different internal representations learned by wide vs. deep neural networks. Further, Godfrey et al.
(2022) proposed variants of Procrustes and CKA that are invariant to model symmetry groups —
intertwiner groups — for neural networks with ReLu activation function.

2.1.3 DECONFOUNDED CKA

Cui et al. (2022) proposed de-confounded CKA (dCKA) to regress out the spurious similarity in
CKA due to similar data structure in the probing samples. The dCKA is defined as:

Cd(K1,K2) = C(K̃d1, K̃d2)

3
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where K̃d1, K̃d2 are positive semidefinite approximations of deconfounded kernel matrices
Kd1,Kd2, respectively, by removing negative eigenvalues, where

Kd1 = K1 − α̂1K0

Kd2 = K2 − α̂2K0

where α̂1 and α̂2 are regression coefficient minimizing the Frobenius norm of Kd1 and Kd2, and
K0 represents similarity of input data structure K0 = l(X,X) and l represents the same kernel
function as in CKA. Assuming linear and additive confounding effect, α̂1 and α̂2 can be computed
as:

α̂1 =
(
vec(K0)

⊤ vec(K0)
)−1

vec(K0)
⊤ vec(K1)

α̂2 =
(
vec(K0)

⊤ vec(K0)
)−1

vec(K0)
⊤ vec(K2)

where vec(K) represents the vectorization of matrix K.

2.2 WEIGHTS CENTERED KERNEL ALIGNMENT (WCKA)

Instead of comparing activations, our proposed wCKA operates on the weight matrices of neural
networks. It builds on Wang et al. (2022), which proposed a weight normalization operator that is
invariant to re-parameterization, such as the shuffling of neurons within the same layer. Wang et al.
(2022) weight normalization operator ϕ is defined as:

ϕ(W1,W2, . . . ,Wl) = W1W2 . . .WℓW
⊤
ℓ . . .W⊤

2 W⊤
1 (4)

where W1,W2, . . . ,Wℓ are the weight matrices of a neural network with ℓ layers.

Now, let W (i)
1 ∈ Rdi−1

1 ×dl
1 and W

(i)
2 ∈ Rdi−1

2 ×dl
2 represent the weight matrices of two neural

networks for layer i, where di−1
1 and di−1

2 are the number of neurons in the previous layers, and dl1
and dl2 are the number of neurons in the current layers, respectively, and define the kernels

K1 = ϕ(W
(1)
1 ,W

(2)
1 , . . . ,W

(l)
1 ) and K2 = ϕ(W

(1)
2 ,W

(2)
2 , . . . ,W

(l)
2 ) .

Plugging these kernels into Eq. (1) yields

Cw(W1,W2) =
∥W⊤

2 W1∥2F
∥W⊤

1 W1∥F · ∥W⊤
2 W2∥F

(5)

where
W1 = W

(1)
1 W

(2)
1 . . .W

(l)
1 and W2 = W

(1)
2 W

(2)
2 . . .W

(l)
2

2.3 INVARIANCE TO PERMUTATION AND INTERTWINER TRANSFORMATIONS

Wang et al. (2022) proved invariance of the chain normalization operator to permutation, and CKA
is also known to be invariant to orthogonal transformation (Kornblith et al., 2019). These properties
ensure the invariance of wCKA to permutation.

Godfrey et al. (2022) introduced the concept of intertwiner groups, which are groups of transforma-
tions that modify the model weights while preserving the underlying function of the neural network.
Let W := {W (i) | i = 1, . . . , k} be the collection of all weights of a k-layer fully connected neural
network. According to Proposition 3.4 in Godfrey et al. (2022), weights W and W′ are functionally
equivalent under the following transformation:

W′ = (W (1)A1, ϕ(A
−1
1 )W (2)A2, . . . , ϕ(A

−1
k−1)W

(k))

where Ai ∈ Gσi
, the intertwiner group defined for the activation function σi:

Gσi
:= {A ∈ GLni

(R) | ∃B ∈ GLni
(R) such that σi ◦A = B ◦ σi}

where GLni(R) represents the general linear group of invertible matrices in Rni×ni , and ϕ is defined
as:

ϕσ(A) = σ(A)σ(In)
−1

4
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where In is the identity matrix of size n. Please note that our notation for weight matrices Wi

differs from that in Godfrey et al. (2022), as our rows and columns are transposed. Specifically, we
use σ(xWi), whereas they use σ(WT

i x+ b) as the layer function.

Godfrey et al. (2022) show that ϕσ(A) = A for four types of activation functions: σ(x) = x

(identity), σ(x) = ex

1+ex (sigmoid), σ(x) = ReLU(x), and σ(x) = LeakyReLU(x). We show here
that wCKA is invariant to the intertwiner transformation described above for these four types of
activation functions:

W′
1 = W

(1)
1 A1 ϕ(A

−1
1 )W

(2)
1 A2 . . . ϕ(A

−1
k−1)W

(k)
1

Since ϕσ(A
−1
i ) = A−1

i , we have:

W′
1 = W

(1)
1 A1 A

−1
1 W

(2)
1 A2 . . . A

−1
k−1W

(k)
1

terms ϕσ(A
−1
i )Ai = I , thus can be canceled out, therefore:

W′
1 = W

(1)
1 W

(2)
1 . . .W

(k)
1 = W1

Similarly,
W′

2 = W
(1)
2 W

(2)
2 . . .W

(k)
2 = W2

Thus,
Cw(W

′
1,W

′
2) = Cw(W1,W2)

This proves the invariance of wCKA under the intertwiner group transformation for neural networks
with identity, sigmoid, ReLU, or LeakyReLU activation functions.

2.4 FUNCTIONAL SIMILARITY

In addition to internal representations and weights, neural networks may be dissimilar in their func-
tionality as well. The intrinsic connection between representational and functional dissimilarity is
well recognized (Klabunde et al.) and serves as a fundamental rationale for benchmarking represen-
tational similarity metrics in Ding et al. (2021).

To facilitate a standard and systematic evaluation of representational similarity metrics, Ding et al.
(2021) introduced a benchmarking framework that emphasizes the intrinsic connection between
representational and functional similarity. Essentially, the idea is that if two neural network models
exhibit different performances on certain tasks, they must learn different internal representations.
Therefore, similarity metrics can be evaluated by the rank correlation between metric distance and
functional performance.

To further benchmark wCKA against other similarity metrics, we adopt and extend this benchmark-
ing framework. Instead of quantifying the functional distance of two models by their accuracy gap,
we use the fraction of agreed predictions between two models across clean test samples, out-of-
distribution corruptions, and adversarially attacked samples:

S(O,O′) =
1

N

N∑
i=1

1

{
argmax

j
Oi,j = argmax

j
O′

i,j

}
.

where O is a vector of model predictions, and i and j are indices capturing the evaluated samples
and class labels, respectively.

2.5 STATISTICAL TESTING

We measure the correlation between wCKA and functional similarity using both Pearson’s linear
correlation coefficient r and Spearman’s rank correlation ρ. We then Fisher transform the correlation
coefficient to an approximate z-score:

z = atanh(r)

with standard error 1√
n−3

, where n is the sample size. We perform statistical testing and p-value
calculation on z-scores and back transform to r to obtain confidence intervals.

5
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(a)

(b)

(c)

Figure 1: Calibration of neural network model similarity metrics and computational efficiency.
(a) Model similarity for different model similarity metrics for neural networks (NN) with randomly
selected weights (dark blue) and weights of a single model at consecutive training epochs (orange).
We use enhanced box plots to capture the distribution of observed similarity of activations across
3,417 test images for Procustes, CKA, and dCKA. One would expect similarity to be close to zero
for random NN models and close to 1 for very similar models. Instead, we observe overlapping
distributions of similarity values for two of the three models. For comparison, we show that the
calibration of wCKS is nearly perfect. (b) Impact of a number of probing images on the activation
similarity values of the three metrics for random NN. It is visually apparent that calibration improves
dramatically as the number of test images increases from 10 to 1,000, but then it saturates. Note
that we do not plot data for wCKA as it does not use probing images to estimate similarity. (c)
Computational time for different metrics across varying numbers of probing samples. Enhanced box
plots illustrate the distribution of computational time taken for computing each of the four metrics
on fully connected NNs with four hidden layers of thirty-two neurons in each layer, based on 100
runs. The computational time of Procrustes, CKA, and dCKA scale up with an increasing number
of probing samples, while that of wCKA remains consistently low.
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3 RESULTS

3.1 WCKA METRIC HAS SUPERIOR CALIBRATION TO CURRENT METRICS

We first characterize the calibration characteristics of the four metrics considered here: Procrustes,
CKA, dCKA, and wCKA metrics. Specifically, we create ensembles of neural network models
for which we expect similarity to be close to zero or close to 1. Starting from fully connected
neural networks with four hidden layers, each with 32 neurons, which we train handwritten digits
of zero, one, and two from the MNIST dataset. We store model checkpoints from adjacent epochs
after 95 epochs of training when the performance of models has already converged. We set 100
randomly initialized pre-trained networks as the ensemble of random neural networks with expected
zero similarity. We set 100 models from adjacent training epochs after convergence as the ensemble
of similar neural networks with an expected similarity of 1. We compute activation similarity for
Procrustes, CKA, and dCKA on the 3,147 test images — the entire test set — probing samples
randomly selected from clean or 15 out-of-distribution corruptions. We compute wCKA directly on
chain-normalized weight matrices.

As was pointed out by Davari et al. (2023); Cui et al. (2022), the Procrustes and CKA display
spurious similarities for random neural networks, indicating significant estimation bias (Fig. 1a).
Even dCKA, which yields unbiased similarity values, displays a large estimation uncertainty with
some values of activation similarity greater than 0.3. as high as 0.5 when it should be zero as some
values smaller than 0.8 when it should be close to 1. In contrast, wCKA consistently yields values
close to zero for random neural networks and close to one for similar neural networks (Fig. 1a).

However, calibration is not the only concern with Procrustes, CKA, and dCKA. All three approaches
quantify activation similarity. That is, they must be probed with test images. Figure 1b shows that
estimates of similarity for Procrustes and CKA converge slowly with a number of probing images
to their biased estimates. Similarly, dCKA displays slow converging estimation uncertainty.

3.2 WCKA MODEL SIMILARITY MORE ACCURATELY CAPTURES THE FUNCTIONAL
SIMILARITY OF FULLY CONNECTED NEURAL NETWORKS

Next, we systematically evaluate the ability of these different measures of model similarity to cap-
ture the functional similarity of the model. Figure 2 illustrates our multifactorial benchmarking
pipeline. We compare model similarity and functional similarity for models with different archi-

Figure 2: Schematic illustration of our multifactorial benchmarking experimental pipeline.
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tectures, initialized using different random seeds, trained to different epochs, and using different
training strategies. We consider five model architectures: fully connected neural networks with one
hidden layer of eight neurons in each layer; fully connected neural networks with one hidden layer
of thirty-two neurons in each layer; fully connected neural networks with four hidden layers of eight
neurons each layer; fully connected neural networks with four hidden layers of thirty-two neurons
each layer; and fully connected neural networks with ten hidden layer of thirty-two neurons each
layer. We consider three different training strategies: standard training and two adversarial training
approaches (FGSM (Goodfellow et al., 2014) and PGD (Madry et al., 2019)).

We capture the performance of a given model similarity by correlating the value for two models with
the functional similarity, that is, the fraction of test images with identical predicted classification
(Fig. 3). We probe the functional similarity of two neural networks predictions not only on clean
test images but also on fifteen types of image corruption (MNIST-C dataset Mu & Gilmer (2019))
and five types of adversarial attack (FGSM (Goodfellow et al., 2014), Fast FGSM (Wong et al.,
2020), Gaussian noise, PGD (Madry et al., 2019), and TRADES (Zhang et al., 2019)).

We calculate both Pearson’s linear correlation coefficient r as well as Spearman’s rank correlation
ρ and apply Fisher’s transformation to estimate confidence intervals and statistical significance.
Figure 3 demonstrates that all metrics perform similarly well for recognizing that two different
checkpoints (epochs) of the same model are quite similar. However, for all other conditions, wCKA
displays stronger Pearson’s linear correlation — indicating better calibration — as well as higher

Figure 3: Benchmarking of similarity metrics on trained-from-scratch, fully connected neural
networks. (Top) We calculate the correlation between activation or weight model similarity and
functional similarity for two models differing in one of 4 possible ways. The difference in the
data shown is the training epoch. (Middle) Pearson’s r and (Bottom) Spearman’s ρ estimated for
pairs of models differing in the four ways denoted at the top of the column for the four metrics
considered. Error bars show the 95% confidence intervals for the estimate of the mean. Horizontal
lines connect correlation coefficient estimates being compared. We use “n.s.” to indicate a lack of
statistical significance of the difference and “***” to indicate statistical significance at the p < 0.001
level.
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Figure 4: Benchmarking of similarity metrics on fine-tuned, convolutional neural networks.
(Top) We calculate the correlation between activation or weight model similarity and functional
similarity for two models differing in one of 4 possible ways. The difference in the data shown is
the training epoch. (Middle) Pearson’s r and (Bottom) Spearman’s ρ estimated for pairs of models
differing in the four ways denoted at the top of the column for the four metrics considered. Error bars
show the 95% confidence intervals for the estimate of the mean. Horizontal lines connect correlation
coefficient estimates being compared. We use “n.s.” to indicate a lack of statistical significance of
the difference and “***” to indicate statistical significance at the p < 0.001 level.

Spearman’s rank correlation between metric value and functional similarity. Even for models trained
using different strategies, wCKA is able to identify some degree of similarity between the models,
something the other metrics fail to do.

3.3 WCKA MODEL SIMILARITY MORE ACCURATELY CAPTURES THE FUNCTIONAL
SIMILARITY OF FINE-TUNED, CONVOLUTIONAL NEURAL NETWORKS

For the last decade, transfer learning has become immensely popular Rasmy et al.. The reason is that
fine-tuning pre-trained deep learning models for new domain-specific tasks is a promising way to
overcome resource limitations. In transfer learning, one typically fine-tunes a layer of perceptrons,
i.e., fully connected neural networks. However, transfer learning, if anything, exacerbates the issue
of lack of interpretability. Thus, it is also needed, in this context, to develop trustworthy methods
for quantifying model similarity.

To test the applicability of wCKA to transfer learning, we train a simple convolutional neural net-
work with two convolutional layers, with 64 and 32 kernels of size 5x5, respectively, and one fully
connected hidden layer of 1,024 neurons, on the full dataset of MNIST containing ten classes of
handwritten images. This illustrative network achieves its highest validation performance on the
24th epoch. We then freeze the convolutional layers and fine-tune the weights of specific fully
connected hidden layers on a simpler task: classifying handwritten digits for zero, one, and two.

Following again the pipeline described in Fig. 2, we vary four characteristics of the trained mod-
els. We consider three distinct architectures for the fully connected layers: one hidden layer of 32
neurons, one hidden layer of 1024 neurons, and ten hidden layers of 32 neurons each. We fine-tune
the training of the fully connected layer using either standard or PGD adversarial training. We con-
sider different random initializations and different checkpoints. This procedure, though conducted
on very simple model architectures and tasks, nonetheless closely resembles the typical transfer
learning procedure (Ferreira et al.).

Figure. 4 shows the results of our benchmarking. It is noteworthy that the estimated similarities cal-
culated by all metrics are not as negatively affected when comparing models trained using different
training strategies. This is particularly striking for Procrustes, CKA, and dCKA, which, when con-
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sidering full training, performed so poorly. The explanation is likely the fact that the convolutional
layers are frozen, which imposes a higher degree of similarity even under adversarial training. It is
nonetheless visually apparent that wCKA estimates model similarities that also consistently display
higher correlation with functional similarity than prior metrics. As wCKA is agnostic to frozen
original networks, it can be readily integrated with any type of large model and shed light on the
fine-tuning process of fully connected layers — highlighting its robustness.

4 DISCUSSION

We addressed in this study a major knowledge gap at the heart of deep learning — the lack of a
trustworthy, well-calibrated measure of model similarity. This gap has so far prevented the type of
progress that one would hope for with regard to understanding how neural network models can be so
opaque and fragile. Here, we present a well-calibrated metric that can capture model similarity under
a number of critical perturbations: model architecture, training strategy, checkpoints, or random
initialization. Our benchmarking experiments demonstrate that wCKA displays superior calibration
characteristics: matching setpoints and linearity of relationship to functional similarity.

Our approach — to the best of our knowledge — pioneers the integration of chain normalization
of weight matrices with centered kernel alignment, a widely used similarity metric for estimating
similarity between the internal representations of two neural network models. wCKA offers several
advantages over competing metrics: it measures directly on the learned parameters (weights) of the
model, reflects weight space symmetries, is independent of probing samples, and is computationally
efficient.

In order to provide a first exploration of the degree to which is applicable outside of fully connected
neural networks, we investigated its performance in a simplified implementation of transfer learn-
ing. We believe that the consistently high performance of wCKA when estimating the similarity of
fine-tuned convolutional neural networks highlights its potential. As wCKA is agnostic to feature
extraction layers, it can be incorporated into evaluating the fine-tuning process of dense layers with
more sophisticated feature extractor architectures, such as Autoencoders Landi et al..

We are not yet presenting here a formulation of wCKA that is able to estimate the similarity of
fully-tunable architecture, including convolutional layers, layers with residual connections, or batch
normalization layers. Nonetheless, we believe that our study already presents compelling evidence
for the potential impact of wCKA in helping researchers better characterize and understand what
a deep learning model has learned and how that learning changes under different perturbations.
For example, our approach could be used to guide the pruning and compressing of models, for
building truly diverse ensembles of models, or for ensuring model similarity to a trusted model. We
believe that further exploration of how to measure weight similarity for more complex structures is
an important future direction that will bear significant fruit.
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A APPENDIX

Figure 5: Dependency of representational metrics on types of probing samples. Enhanced box
plots show distributions of similarity values of different metrics for random NNs probed by different
types of sample corruptions. For Procrustes and CKA, some out-of-distribution corruptions, such as
“fog”, introduce more spurious similarity than others, such as “impose noise”. Similarly, for dCKA,
though the mean similarity value centers around zero, some out-of-distribution corruptions, such as
“fog”, introduce more variance than others, such as “impose noise”.
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