
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BBOPLACE-BENCH: BENCHMARKING BLACK-BOX
OPTIMIZATION FOR CHIP PLACEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Chip placement is a crucial step in modern chip design, because it significantly
impacts the subsequent process and the overall quality of the final chip. The ap-
plication of black-box optimization (BBO) for chip placement has a history of
several decades. Nevertheless, early attempts were hampered by immature prob-
lem modeling and inefficient algorithm design, resulting in suboptimal placement
efficiency and quality compared to the more prevalent analytical methods. Recent
advancements in problem modeling and BBO algorithm design have highlighted
the effectiveness and efficiency of BBO, demonstrating its potential to achieve
state-of-the-art results in chip placement. Despite these advancements, the field
lacks a unified benchmark for thoroughly assessing various problem models and
BBO algorithms. To address this gap, we propose BBOPlace-Bench, the first
benchmark designed for evaluating and developing BBO algorithms specifically
for chip placement tasks. BBOPlace-Bench first collects several popular tasks and
standardizing their formats, thereby providing uniform and comprehensive infor-
mation for optimization. Additionally, BBOPlace-Bench includes a wide range of
existing BBO algorithms, including simulated annealing, evolutionary algorithms,
evolution strategy, and Bayesian optimization, and evaluates their performance
across different problem modelings (i.e., permutation, discrete, and mixed search
spaces) using various metrics. Furthermore, BBOPlace-Bench offers a flexible
framework that allows users to easily implement and test their unique algorithms.
BBOPlace-Bench not only provides efficient solutions for chip placement but also
expands the practical application scenarios for various BBO algorithms. The code
for BBOPlace-Bench is available in the supplementary file.

1 INTRODUCTION

In many real-world tasks such as neural architecture search (Zoph & Le, 2017; Wang et al., 2019a;b),
hyper-parameter optimization (Yao et al., 2018; Bischl et al., 2023), and chip design (Mirhoseini
et al., 2020), we often need to solve black-box optimization (BBO) problems, where the objective
function has no analytical form and can only be evaluated by different inputs, regarded as a “black-
box” function. For example, due to the lengthy, complex, and black-box workflow of chip design,
chip placement is a typical BBO problem. Besides, BBO problems are often accompanied by ex-
pensive computational costs of the evaluations, requiring a BBO algorithm to find a good solution
with a small number of objective function evaluations.

Chip placement serves as a crucial process that significantly impacts the power, performance, and
area (PPA) metrics of the final chip (MacMillen et al., 2000; Markov et al., 2012). A modern
chip typically consists of thousands of macros (i.e., individual building blocks such as memory
components) and millions of standard cells (i.e., smaller fundamental elements like logic gates).
The outcome of macro placement (MP) establishes a foundational solution for subsequent processes,
such as global placement (GP) and routing, thereby playing a vital role in the overall design (Tang &
Yao, 2007). For instance, MP affects the placement of standard cells, and suboptimal MP results can
complicate the optimal positioning of these cells, which may ultimately lead to unsatisfactory chip
performance (Vashisht et al., 2020). Furthermore, inappropriate MP can result in macro blockage
within the core area, adversely affecting overall chip performance by inducing issues such as routing
congestion, increased wire length, and timing performance degradation (Pu et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Due to the black-box nature of chip placement, designers often rely on proxy metrics that can re-
flect the final results to guide the optimization process (Caldwell et al., 1999; Spindler & Johannes,
2007; Lu et al., 2015). One important proxy metric is half-perimeter wirelength (HPWL), which
provides an approximation for the routing wirelength and is widely used to measure the placement
quality (Caldwell et al., 1999; Kahng & Reda, 2006; Shahookar & Mazumder, 1991). The appli-
cation of BBO for chip placement with minimizing HPWL has a history of several decades. Nev-
ertheless, early attempts were hampered by immature problem modeling and inefficient algorithm
design, resulting in suboptimal placement efficiency and quality compared to the more prevalent
analytical methods (Mirhoseini et al., 2021). Recent advancements in problem modeling and BBO
algorithm design have highlighted the effectiveness and efficiency of BBO, demonstrating its poten-
tial to achieve state-of-the-art results in chip placement. Despite these advancements, the field lacks
a unified benchmark for thoroughly assessing various problem models and BBO algorithms.

To fill this gap, we propose BBOPlace-Bench, the first benchmark designed for evaluating and
developing BBO algorithms specifically for chip placement tasks. BBOPlace-Bench first collects
several popular tasks and standardizing their formats, thereby providing uniform and comprehen-
sive information for optimization. Additionally, BBOPlace-Bench includes a wide range of exist-
ing BBO algorithms, including simulated annealing (SA) (Murata et al., 1996), evolutionary al-
gorithms (EA) (Bäck, 1996), evolution strategy (ES) (Hansen, 2016), and Bayesian optimization
(BO) (Shahriari et al., 2016), and evaluates their performance across different problem formulations
(i.e., permutation for sequence pair, discrete for grid-guide, and mixed search spaces for hyperpa-
rameter optimization). We offer multiple evaluation methods, such as MP HPWL for general BBO
scenarios and GP HPWL for expensive BBO scenarios. Besides, BBOPlace-Bench offers a flexible
framework that allows users to easily implement and test their unique algorithms.

We conduct experiments on two popular chip datasets, ISPD 2005 (Nam et al., 2005) and ICCAD
2015 (Kim et al., 2015), comparing four algorithms: SA, EA, ES, and BO, based on three problem
formulation approaches within the framework. We consider the results of the problem setup (i.e.,
optimizing MP HPWL and GP HPWL) and discuss the advantages and disadvantages of different
modeling methods and optimization algorithms. We also compare with recently proposed RL-based
methods, demonstrating the competitiveness of the BBO approach for chip placement.

BBOPlace-Bench not only provides efficient approaches for chip placement but also expands the
application scenarios of BBO algorithms. Our contributions are summarized as follows:

• We propose the first benchmark in BBO for chip placement, providing an important, real-
world, and challenging task for BBO algorithms. We process chip file information from
different sources into a uniform structure that is easily manageable by the BBO algorithms,
significantly lowering the threshold for using this problem in the BBO domain.

• We decouple problem formulation, optimization algorithms, and problem evaluation in our
benchmark, making it convenient for researchers in the BBO community to compare their
performance in a clear manner. Furthermore, we provide flexible definitions of problem
dimensions and evaluations of different costs, facilitating the study of advanced BBO re-
search problems such as high-dimensional optimization and expensive optimization.

• We provide extensive empirical studies and also discuss challenges and future directions
for BBO in chip placement.

2 BACKGROUND

2.1 BLACK-BOX OPTIMIZATION

We consider the problem maxx∈X f(x), where f is a black-box function and X is the search
space, which may be discrete, continuous, and mixed. Traditional BBO algorithms are population-
based search algorithms, e.g., evolutionary algorithm (EAs) (Bäck, 1996), evolution strategies
(ES) (Hansen et al., 2015; Hansen, 2016), and particle swarm optimization (PSO) (Kennedy & Eber-
hart, 1995; Gong et al., 2015). As a type of general-purpose heuristic optimization algorithms, EAs
simulate the natural evolution process with reproduction (e.g., mutation and crossover) and natural
selection. They only require the solutions to be evaluated in order to perform the search, while the
problem structure information, e.g., gradient information, can be unavailable, making them suitable

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

for BBO problems. As the mutation operators can often generate any solution in the search space,
i.e., they are global search operators, EAs can converge to the global optimum (Rudolph, 1998; Zhou
et al., 2019).

Bayesian optimization (BO) (Shahriari et al., 2016; Frazier, 2018) is a widely used sample-efficient
method for expensive BBO problems. At each iteration, BO fits a surrogate model, typically Gaus-
sian process (GP) (Rasmussen & Williams, 2006), to approximate the objective function, and max-
imizes an acquisition function to determine the next query point. Under the limited evaluation
budget, traditional BO methods only have a few observations, which are, however, insufficient for
constructing a precise surrogate model, leading to slow convergence. Thus, traditional BO methods
struggle to effectively solve expensive BBO problems, preventing their broader applications. The
basic framework of BO contains two critical components: a surrogate model and an acquisition
function. GP is the most popular surrogate model. Given the sampled data points {(xi, yi)}t−1

i=1 ,
where yi = f(xi) + ϵi and ϵi ∼ N (0, η2) is the observation noise, GP at iteration t seeks to infer
f ∼ GP(µ(·), k(·, ·) + η2I), specified by the mean µ(·) and covariance kernel k(·, ·), where I is
the identity matrix of size D. After that, an acquisition function, e.g., probability of improvement
(PI) (Kushner, 1964), EI (Jones et al., 1998) or UCB (Srinivas et al., 2012), is optimized to determine
the next query point xt, balancing exploration and exploitation.

However, despite BBO’s practical applications in various tasks, most “real-world” scenarios in aca-
demic research are limited, primarily focusing on problems such as hyperparameter optimization of
machine learning algorithms (Pineda-Arango et al., 2021; Bischl et al., 2023), neural architecture
search (Ying et al., 2019), and robotic control (Todorov et al., 2012). This paper aims to formulate
the important and recently popular problem of chip placement within a framework that is conducive
to BBO optimization, thereby expanding the application scope of BBO. The framework we provide
is user-friendly and facilitates the integration of various advanced BBO algorithms.

2.2 CHIP PLACEMENT

The circuit in the placement stage is considered as a graph where vertices model gates. The main
input information is the netlist N = (V,E), where V denotes the information (i.e., height and
width) about all macros designated for placement on the chip, and E is a hyper-graph comprised
of nets ei ∈ E, which encompasses multiple cells (including both macros and standard cells) and
denotes their inter-connectivity in the routing stage. Given a netlist, a fixed canvas layout and a
standard cell library, a placement method is expected to determine the appropriate physical locations
of movable macros such that the total wirelength can be minimized. A chip placement solution
s = {(a1, b1), . . . , (ak, bk)} consists of the positions of all the cells to be placed {mi}ki=1, where k
denotes the total number of cells. One popular objective of chip placement is to minimize the total
HPWL of all the nets while satisfying the cell density constraint, which is formulated as,

min
s

HPWL(s) = min
s

∑
e∈E

HPWLe(s), s.t. D(s) ≤ ϵ, (1)

where D denotes the density, ϵ is a threshold, and HPWLe is the HPWL of net e, which is defined
as: HPWLe(s) = (maxvi∈e xi −minvi∈e xi) + (maxvi∈e yi −minvi∈e yi).

There are three mainstream placement methods, i.e., analytical methods, learning-based methods,
and black-box optimization methods. Analytical methods (Chang et al., 2009) place macros and
standard cells simultaneously, which can be roughly categorized into quadratic placement and non-
linear placement. Quadratic placement (He et al., 2013; Lin et al., 2015) iterates between an uncon-
strained quadratic programming phase to minimize wirelength and a heuristic spreading phase to
remove overlaps. Nonlinear placement (Chen et al., 2008; Lu et al., 2015; Cheng et al., 2018) for-
mulates a nonlinear optimization problem and tries to directly solve it with gradient descent methods.
Generally speaking, nonlinear placement can achieve better solution quality, while quadratic place-
ment is more efficient. Recently, there has been extensive attention on GPU-accelerated non-linear
placement methods. For example, DREAMPlace (Lin et al., 2020; Liao et al., 2023) transforms the
non-linear placement problem in Eq. 1 into a neural network training problem, solves it by classical
gradient descent and leverages GPU, enabling ultra-high parallelism and acceleration and producing
state-of-the-art analytical placement quality.

Learning-based approaches, particularly reinforcement learning, are a popular topic in recent chip
placement discussions. GraphPlace (Mirhoseini et al., 2021) first models chip placement as a RL

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Optimization Algorithm

Fitness

Optimize

Problem

Dataset Processing

Evaluate

Problem Formulation Evaluation

Chip Layout

Design

DEF

PL

Figure 1: Illustration of BBOPlace-Bench

problem, which divides the chip canvas into discrete grids, with each macro assigned discrete coor-
dinates of grids, wherein the agent decides the placement of the current macro at each step. Since
then, many works on RL for chip placement have been proposed (Cheng & Yan, 2021; Cheng et al.,
2022; Lai et al., 2022), and recent state-of-the-art works (Lai et al., 2023; Geng et al., 2024) show
competitive performance compared to traditional analytical placers.

Black-box optimization methods for placement have a long history. However, earlier methods such
as SP (Murata et al., 1996; Oh et al., 2022) have poor scalability due to the inefficient rectangu-
lar packing formulation. Recently, some black-box optimization methods have made significant
progress by changing the search space. AutoDMP (Agnesina et al., 2023) improves DREAMPlace
by using Bayesian optimization to explore the configuration space and shows remarkable perfor-
mance on multiple benchmarks. WireMask-BBO (Shi et al., 2023) is a recently proposed chip
placement method, which adopts a wire-mask-guided greedy genotype-phenotype mapping and can
be equipped with any BBO algorithm, demonstrating the superior performance over packing-based,
reinforcement learning, and analytical methods. In this paper, our proposed BBOPlace-Bench inte-
grate these BBO problem formulation approaches into a unified benchmark for easier comparison
and subsequent development of BBO algorithms for chip placement.

Recently, there have been additional benchmarks for AI in EDA. CircuitNet (Chai et al., 2023; Xun
et al., 2024) focuses on providing multi-modal data for prediction tasks, enhancing the capability for
various prediction tasks through the use of diverse data modalities. ChiPBench (Wang et al., 2024)
emphasizes the entire EDA workflow, supplying complete files for each case and necessary design
kits, thereby offering a comprehensive dataset that supports all stages of design and promotes a
more integrated approach to chip design and evaluation. In contrast, our proposed BBOPlace-Bench
aims to provide a unified and user-friendly benchmark for BBO in chip placement, encouraging the
expansion of BBO applications in this emerging field.

3 BBOPLACE-BENCH

We introduce our BBOPlace-Bench in this section. The overview of our benchmark is shown in Fig-
ure 1. We first introduce how to bridge existing chip placement benchmarks, i.e., ISPD 2005 (Nam
et al., 2005) and ICCAD 2015 (Kim et al., 2015), with BBO in Section 3.1. Then, we introduce the
problem formulation, optimization algorithm, and evaluation in our benchmark in Sections 3.2, 3.3,
and 3.4, respectively.

3.1 BRIDGING CHIP PLACEMENT AND BBO

With the fast development of EDA, datasets for chip design have undergone significant changes in
structure and format. Early datasets, such as the ISPD 2005 (Nam et al., 2005), used a simplified
Bookshelf format, which, however, is not suitable for real-world chip design and manufacturing due

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

to the significant amount of missing important information. In contrast, later datasets such as ICCAD
2015 (Kim et al., 2015) offer LEF/DEF format along with other necessary files, including essential
information for subsequent design stages. However, these newer datasets are much more complex
and contain a large amount of information that is hard to use or even unnecessary for the placement
stage. To address the challenges posed by different dataset formats, we provide interfaces that are
compatible with both Bookshelf and LEF/DEF formats and capable of processing them. Based on
this, we extract the essential information needed for the placement stage, creating a search space
that can be readily optimized with BBO algorithms. The search space in our BBOPlace-Bench can
accommodate various types of search spaces, such as discrete, continuous, and mixed, which facili-
tates the incorporation of multiple problem formulation approaches within our framework. Specific
details will be provided in the following section.

3.2 PROBLEM FORMULATION

This section will introduce three problem formulation approaches of BBO for chip placement, where
the search space sizes of SP and GG are related to the number of macros, while the search space
for HPO is unrelated to it. In our BBOPlace-Benchmark, the number of macros can be specified
arbitrarily and can be used for research on high-dimensional BBO, which is a recent popular topic
in BBO.

Sequence pair (SP) is a traditional combinatorial problem formulation in chip placement (Murata
et al., 1996). For k macros {mi}ki=1 to be placed, an SP is a pair of permutations of length k, from
which the relative relationships of each macro can be extracted. Specifically, for macros vi and mj ,
there are four relative relationships in the two permutations: i > j and i > j, j > i and j > i;
i > j and j > i; j > i and i > j, which represent mi being to the left, right, above, and below mj ,
respectively. We can use longest common subsequence to convert the SP representation to a chip
placement result, which ensures minimal area placement, where no further vertical or horizontal
adjustment of any macro is possible (Murata et al., 1996).

Grid-guide (GG) aims to directly optimize the coordinates of macros. A chip placement solution s
is directly represented by the coordinates of all macros {mi}ki=1, i.e., s = (a1, b1, . . . , ak, bk), where
(ai, bi) denotes the coordinates of the macro mi on the chip canvas. However, if optimizing in this
coordinates search space directly, it is difficult to efficiently find a solution that has a small HPWL
value and satisfies the non-overlapping constraint. To improve the efficiency, (Shi et al., 2023)
propose a wire-mask-guided greedy procedure to transform a solution into a placement result. It first
divide the chip canvas into grids (224× 224 in our experiments) and determine the placement order
of all the macros by some predefined rules, e.g., the area of the macro. Then, it places each macro
sequentially by minimizing the incremental HPWL value based on a wire mask (Lai et al., 2022),
which not only ensures a good quality of the final placement result but also avoids overlapping.

Hyperparameter optimization (HPO) is another problem formulation. The representative ana-
lytical method, DREAMPlace (Lin et al., 2020; Gu et al., 2020; Liao et al., 2023), performs well
on many modern chips and achieves competitive results with advanced commercial EDA tools as
an open-source tool. However, it has many hyperparameters that significantly affect its perfor-
mance (Agnesina et al., 2023). BBO algorithms have been proven to be efficient methods for HPO
and have achieved excellent performance on various tasks. In our HPO’s problem formulation, we
set the search space for chip placement as the hyperparameter space of DREAMPlace, with specific
details shown in the Table 1. The first part consists of the general placement configurations, and the
second part includes the configurations at each DREAMPlace iteration.

3.3 OPTIMIZATION ALGORITHM

We use the following four typical BBO algorithms in our BBOPlace-Bench:

• Simulated annealing (SA) is a classic approach in chip placement (Murata et al., 1996). By
mimicking the cooling process of metals, it effectively explores the search space, balancing
exploration and exploitation to minimize objective function. Its ability to escape local
minima makes it particularly valuable in optimizing complex layouts.

• Evolutionary algorithm (EA) is a population-based search framework (Bäck, 1996). We
implement various operators to handle different types of search spaces. In this paper, we

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Search space of HPO in BBOPlace-Bench.
HPO search space Type Range

GP num bins x discrete [1024, 2048]
GP num bins y discrete [1024, 2048]
GP optimizer discrete [“adam”, “nesterov”]
GP wirelength discrete [“weighted average”, “logsumexp”]

GP learning rate continuous [0.001, 0.01]
GP Llambda density weight iteration continuous [1, 3]

GP Lsub iteration continuous [1, 3]
GP learning rate decay continuous [0.99, 1.0]

stop overflow continuous [0.06, 0.1]
target density continuous [0.8, 1.2]

RePlAce LOWER PCOF continuous [0.9, 0.99]
RePlAce UPPER PCOF continuous [1.02, 1.15]

RePlAce ref hpwl continuous [150000, 550000]
density weight continuous [1e-6, 1e-4]

gamma continuous [1, 4]

treat SA as a specific instance of EA, utilizing a population size of one while employing
the same mutation operator.

• Evolution strategy (ES) is a representative method used in the field of continuous space
BBO. We integrate pycma1, a popular implementation of CMA-ES (Hansen, 2016) in
Python, into our benchmark. It not only provides a basic implementation of CMA-ES
but also includes numerous advanced features suitable for high-dimensional optimization
and many other scenarios.

• Bayesian optimization (BO). BBOPlace-Bench integrates one of the most popular BO
frameworks, BoTorch (Balandat et al., 2020)2. BoTorch leverage GPUs for efficient GP
fitting and inference and it includes with a wide range of advanced BO algorithms.

3.4 EVALUATION

As an important part of the EDA process, chip placement has many evaluation approaches. In our
benchmark, we propose the following three methods.

Macro Placement HPWL Traditionally, the chip placement problem can be divided into two
successive stages (Agnesina et al., 2023): macro placement (MP) and global placement (GP, which
is also known as standard cell placement). MP heavily influences the subsequent placement of
standard cells, and poor MP might make it challenging to place these cells optimally, leading to an
unsatisfactory chip performance. Therefore, MP HPWL is an important metric for evaluating the
quality of chip placement. Additionally, since the number of macros is much smaller compared to
the number of standard cells (hundreds vs millions), MP HPWL is more suitable as an appropriate
metric, especially for SP and GG formulation, which directly optimize the placement coordinates of
macros.

Global Placement HPWL The calculation of GP HPWL is based on both macros and standard
cells, and compared to MP HPWL, it is more closely related to the final chip performance. In
BBOPlace-Bench, after obtaining the positions of the macros through different problem formu-
lations and optimization algorithms, if GP HPWL evaluation is required, we will fix the already
placed macros and place standard cells by DREAMPlace (Lin et al., 2020) to obtain GP HPWL, i.e.,
HPWL involving both macros and standard cells. Compared to MP HPWL, GP HPWL considers
the total wirelength, typically on a scale that is two orders of magnitude larger, providing a better
estimation of the final real performance of the final chip. Additionally, the GP HPWL interface can

1https://github.com/CMA-ES/pycma
2https://github.com/pytorch/botorch

6

https://github.com/CMA-ES/pycma
https://github.com/pytorch/botorch

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

also be called independently, in which case the problem is treated as an expensive BBO problem.
The time overhead for different problem modeling, optimization algorithms, and evaluation methods
is shown in Appendix B.1.

PPA Evaluation The whole chip design process is lengthy and complex, and proxy metrics (e.g.,
MP HPWL and GP HPWL) may not accurately capture the true performance, i.e., power, perfor-
mance, and area (PPA) metrics of the chip. After obtaining the global placement results, we use
commercial tool Cadence Innovus to proceed the subsequent stages and evaluate their PPA met-
rics, including routed wirelength, routed vertical and horizontal congestion overflow, worst nega-
tive slack, total negative slack, and the number of violation points. These metrics are extremely
important measures of chip design and are typically considered to evaluate the quality of a chip
comprehensively.

3.5 BBO USER-FRIENDLY INTERFACES

Our proposed BBOPlace-Bench has easy-to-use interfaces, making it very easy to set up the execu-
tion of both built-in algorithms and user-customized algorithms. A simple example of running BO
with GG formulation on superblue1 is shown in Code Example 1. Additionally, we provide a visu-
alization interface that conveniently displays the placement of components, allowing for an intuitive
assessment of the placement results, as shown in the Appendix B.3.

1 from types import SimpleNamespace
2 from placedb import PlaceDB
3 from placer import REGISTRY as PLACER_REGISTRY
4 from algorithm import REGISTRY as ALGO_REGISTRY
5 args = {
6 "benchmark" : "superblue1", # set chips
7 "placer" : "grid_guide", # choose problem formulation
8 "algorithm" : "bo", # choose optimization algorithm
9 "eval_gp_hpwl" : True, # set problem formulation

10 "max_evals" : 100, # set max number of evaluations
11 }
12 args = SimpleNamespace(**args)
13 # read chip information
14 placedb = PlaceDB(args=args)
15 # initialize placer
16 placer = PLACER_REGISTRY[args.placer.lower()](args=args, placedb=placedb)
17 # initialize bbo algorithm
18 runner = ALGO_REGISTRY[args.algorithm.lower()](args=args, placer=placer)
19 # run it!
20 results = runner.run()

Code Example 1: Run BO with GG formulation on superblue1 of ICCAD 2015.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

We empirically test methods in BBOPlace-Bench on the ISPD 2005 (Nam et al., 2005) and ICCAD
2015 benchmarks (Kim et al., 2015). Their detailed statistics are provided in Table 6 of Appendix A.
For ISPD 2005, we use the number of macros specified in the dataset as our macros. For ICCAD
2015, since it does not specify macros, we define the largest 512 cells by area as macros. We compare
three problem formulation approaches in the benchmark, evaluating multiple algorithms under each
approach. Due to the enormous permutation search space of SP, BO and CMA-ES are difficult to
apply; therefore, we only run SP-SA and SP-EA. Due to the difficulty of handling mixed spaces, we
continuous the search space of HPO in our experiments. We conduct experiments of MP and GP
evaluation on both benchmarks, with MP having 10,000 evaluation instances, while GP HPWL is
set to 200 due to longer evaluation times. For methods that are particularly time-consuming (such
as BO), we reduce the number of evaluations to ensure they could complete within 24 hours. All
experiments are conducted using five seeds. Detailed settings of different methods are provided in
our supplemental files.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000
Evaluations

106

107

H
PW

L

adaptec1

0 2000 4000 6000 8000 10000
Evaluations

107H
PW

L

adaptec2

0 2000 4000 6000 8000 10000
Evaluations

107H
PW

L

adaptec3

0 2000 4000 6000 8000 10000
Evaluations

107

H
PW

L

adaptec4

0 2000 4000 6000 8000 10000
Evaluations

106

H
PW

L

bigblue1

0 2000 4000 6000 8000 10000
Evaluations

107

108

H
PW

L

bigblue3

GraphPlace
MaskPlace

EfficientPlace
SP-SA

SP-EA
GG-SA

GG-EA
GG-ES

GG-BO

Figure 2: MP HPWL vs. number of evaluations of different methods on ISPD 2005.

Table 2: MP HPWL values (×105) obtained by ten compared methods on ISPD 2005. Each result
consists of the mean and standard deviation of five runs. The results of three RL methods are
from Geng et al. (2024). The best and runner-up methods are bolded and underlined, respectively.
The symbols ‘+’, ‘−’ indicate the result is almost equivalent and inferior to the best methods,
respectively, according to the Wilcoxon rank-sum test with significance level 0.05.

Formulation Algorithm adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3 Average Rank

SP SA 76.80±3.41 - 604.18±12.16 - 655.61±20.30 - 699.85±1.72 - 31.73±0.60 - 939.84±32.19 - 13
EA 41.80±3.30 - 442.77±13.71 - 486.91±10.24 - 559.43±6.73 - 20.04±0.59 - 554.93±23.21 - 12

GG

SA 6.32±0.05 - 83.61±5.82 - 64.05±0.73 - 65.53±0.72 - 2.44±0.02 - 67.51±3.41 - 6.67
EA 5.80±0.03 + 61.46±4.47 - 56.13±0.81 - 56.79±0.80 - 2.30±0.03 - 52.40±2.30 - 3.83
ES 6.98±0.48 - 103.66±21.81 - 66.95±2.04 - 68.67±5.35 - 2.43±0.03 - 75.66±15.96 - 7.5
BO 6.38±0.04 - 83.25±3.44 - 63.08±1.16 - 64.34±0.86 - 2.46±0.02 - 65.19±2.01 - 6.33

HPO

SA 7.89±0.12 - 34.30±1.82 - 53.07±0.89 + 43.33±0.23 + 3.45±0.07 - 42.44±1.66 - 4.5
EA 7.55±0.11 - 32.06±0.47 + 52.70±0.89 + 42.77±0.54 + 3.35±0.06 - 40.03±0.72 + 2.83
ES 8.15±0.12 - 33.00±0.31 - 53.57±0.73 + 43.94±1.11 + 3.40±0.04 - 41.69±0.00 + 4.5
BO 9.33±0.76 - 37.41±1.82 - 56.27±1.59 - 47.70±1.22 - 3.69±0.04 - 46.16±3.51 - 6.17

RL
GraphPlace 30.01±2.98 - 351.71±38.20 - 358.18±13.95 - 151.42±9.72 - 10.58±1.29 - 357.48±47.83 - 11
MaskPlace 7.62±0.67 - 75.16±4.97 - 100.24±13.54 - 87.99±3.25 - 3.04±0.06 - 90.04±4.83 - 8.33

EfficientPlace 5.94±0.04 - 46.79±1.60 - 56.35±0.99 - 58.47±1.61 - 2.14±0.01 + 58.38±0.54 - 4.33

4.2 RESULTS ON ISPD 2005

MP HPWL comparisons. The results on MP HPWL are shown in Figure 2 and Table 2. It
can be observed that the early SP modeling has low efficiency and struggles to find satisfactory
solutions, resulting in the worst performance among all algorithms. In the modeling of SP, GG,
and HPO, EA consistently performs the best, demonstrating its superiority in this problem, which
aligns with previous research findings (Shi et al., 2023). It is evident that BO performs relatively
poorly in GG and HPO, possibly due to the large search space (i.e., 1024 dimensions), and BO’s
performance in high-dimensional spaces requires the assistance of additional techniques (Binois
& Wycoff, 2022). Designing specific high-dimensional BO algorithms for chip placement is an
interesting research question. In addition to the methods in BBOPlace-Bench, we also include three
representative reinforcement learning methods as comparison methods, i.e., GraphPlace (Mirhoseini
et al., 2021), MaskPlace (Lai et al., 2022), and EfficientPlace (Geng et al., 2024). These results3

are from Geng et al. (2024). The current state-of-the-art RL method, EfficientPlace, ranks second
among all methods, while HPO-EA achieves the best ranking. This demonstrates the competitive
performance of BBO for chip placement across different technological approaches.

3These RL algorithms used different numbers of evaluations for training, as detailed in the original paper.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: MP HPWL values (×104) obtained by ten compared methods on ICCAD 2015. Each result
consists of the mean and standard deviation of five runs. The best and runner-up methods are bolded
and underlined, respectively. The symbols ‘+’, ‘−’ indicate the result is almost equivalent and
inferior to the best methods, respectively, according to the Wilcoxon rank-sum test with significance
level 0.05.

Formulation Algorithm superblue1 superblue3 superblue4 superblue5 superblue7 superblue10 superblue16 superblue18 Average Rank

SP SA 12.74±0.32 - 30.94±0.36 - 20.81±0.59 - 55.20±1.19 - 24.67±0.31 - 11.09±0.67 - 29.75±0.43 - 6.40±0.22 - 10
EA 5.27±0.28 - 13.34±1.04 - 11.33±0.64 - 31.65±2.44 - 14.15±0.75 - 2.31±0.19 - 14.59±1.26 - 2.66±0.13 - 8.88

GG

SA 0.62±0.01 - 1.70±0.03 - 1.12±0.02 - 4.16±0.07 - 1.81±0.03 - 0.55±0.00 - 1.21±0.04 - 0.53±0.01 - 2.38
EA 0.59±0.00 + 1.55±0.01 + 0.95±0.01 + 3.84±0.03 + 1.72±0.02 + 0.54±0.00 + 0.95±0.01 + 0.49±0.00 + 1
ES 0.66±0.04 - 1.80±0.10 - 1.20±0.09 - 4.78±0.37 - 1.92±0.10 - 0.54±0.00 + 1.23±0.08 - 0.53±0.02 - 3.38
BO 0.63±0.01 - 1.71±0.01 - 1.12±0.02 - 4.13±0.05 - 1.84±0.03 - 0.55±0.00 - 1.23±0.02 - 0.52±0.01 - 2.63

HPO

SA 2.29±0.12 - 4.86±0.17 - 2.38±0.08 - 10.45±0.23 - 3.44±0.09 - 1.88±0.03 - 3.76±0.24 - 1.56±0.15 - 6.88
EA 2.07±0.14 - 4.29±0.19 - 2.35±0.10 - 9.98±0.13 - 3.19±0.03 - 1.59±0.05 - 3.40±0.12 - 1.43±0.09 - 5.13
ES 2.22±0.09 - 4.83±0.24 - 2.32±0.11 - 10.37±0.38 - 3.34±0.07 - 1.69±0.10 - 3.90±0.31 - 1.54±0.15 - 6
BO 2.60±0.07 - 5.93±0.29 - 2.66±0.13 - 11.77±0.24 - 3.93±0.09 - 2.74±0.34 - 4.51±0.49 - 2.01±0.10 - 8.13

Table 4: GP HPWL values (×108) obtained by ten compared methods on ICCAD 2015. Each result
consists of the mean and standard deviation of five runs. The best and runner-up methods are bolded
and underlined, respectively. The symbols ‘+’, ‘−’ indicate the result is almost equivalent and
inferior to the best methods, respectively, according to the Wilcoxon rank-sum test with significance
level 0.05.

Formulation Algorithm superblue1 superblue3 superblue4 superblue5 superblue7 superblue10 superblue16 superblue18 Average Rank

SP SA 86.12±1.92 - 88.37±4.59 - 60.33±2.35 - 109.15±5.22 - 100.24±1.62 - 102.07±2.31 - 67.29±1.17 - 30.29±0.09 - 10
EA 82.03±1.82 - 82.14±4.01 - 56.52±2.81 - 100.47±4.81 - 96.41±1.99 - 98.26±2.60 - 65.61±1.45 - 29.60±0.52 - 8.88

GG

SA 62.39±0.85 - 72.63±0.65 - 44.58±0.66 - 81.21±1.69 - 84.52±0.98 - 94.07±0.61 - 50.39±0.55 - 28.75±0.49 - 6.38
EA 55.35±1.24 - 62.62±1.24 - 40.24±0.65 - 72.15±1.16 - 75.79±1.47 - 88.69±1.35 - 46.71±0.77 - 26.96±0.15 - 5
ES 66.12±2.00 - 73.51±1.10 - 45.58±1.13 - 84.09±0.90 - 85.87±2.03 - 97.19±1.31 - 51.47±0.48 - 30.03±0.37 - 8
BO 61.49±1.09 - 72.65±0.99 - 44.32±0.23 - 81.64±0.90 - 85.94±0.33 - 92.12±1.52 - 50.81±0.19 - 29.06±0.44 - 6.75

HPO

SA 37.51±0.73 + 42.93±0.05 - 28.86±0.28 - 40.54±0.13 - 54.26±0.49 - 69.13±0.27 - 37.10±0.28 + 22.17±0.18 - 2.75
EA 36.91±0.88 + 42.38±0.31 + 28.15±0.24 + 40.03±0.27 + 53.22±0.13 + 68.65±0.16 + 36.85±0.22 + 21.90±0.07 + 1
ES 38.04±0.14 - 42.57±0.39 + 28.25±0.18 + 40.27±0.28 + 54.55±0.75 - 68.79±0.21 + 37.02±0.16 + 22.00±0.06 - 2.25
BO 38.76±0.76 - 43.95±0.42 - 29.12±0.32 - 41.40±0.36 - 55.30±0.38 - 69.85±0.49 - 37.93±0.43 - 22.18±0.15 - 4

GP HPWL comparisons. The results of GP HPWL of ISPD 2005 are provided in Appendix B.2
due to space limitation. Due to its ability to comprehensively consider macros and standard cells in
the layout, the advantages of HPO’s GP HPWL are more pronounced.

4.3 RESULTS ON ICCAD 2015

HPWL comparisons. The results of MP HPWL and GP HPWL on ICCAD 2015 are shown in
Tables 3 and 4, respectively. GG has a significant advantage in the MP HPWL task, while HPO has
a notable advantage in the GP HPWL task. In both tasks, these two problem formulation approaches
outperform SP. In both tasks, whether EA uses the GG or HPO problem formulation, its performance
is better than BO. The convergence curves indicate that this holds true even with the same number of
evaluations. This contradicts the common experience that “BO is better than EA” in many real-world
tasks. This also calls for more targeted techniques for chip placement to leverage the advantages of
BO in effectively utilizing optimization historical experience.

PPA comparisons. Due to the poor solution quality of SP, we only conducted PPA testing on the
solutions modeled by GG and HPO. The PPA evaluation results of HPO modeling are shown in
Table 5. The results of GG are provided in Appendix B.2 due to space limitation. For each method,
we select the best chip from multiple random seeds based on GP HPWL for PPA evaluation. The
chip placement is performed by different methods, and the subsequent stages and PPA evaluation are
performed by Cadence Innovus. rWL (m) is the routed wirelength; rO-H (%) and rO-V (%) represent
the routed horizontal and vertical congestion overflow, respectively; WNS (ns) is the worst negative
slack; TNS (1e5 µs) is the total negative slack; NVP (1e4) is the number of violation points. WNS
and TNS are the larger the better, while the other metrics are the smaller the better. From the table,
it can be seen that there is currently no BBO algorithm that can dominate all algorithms. BBO for
chip placement still has significant space for improvement.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Results of PPA metrics on the ICCAD 2015 benchmarks of HPO formulation. The best and
runner-up methods are bolded and underlined, respectively.

Benchmark Formulation Algorithm rWL rO-H rO-V WNS TNS NVP

superblue1 HPO

SA 102.02 2.99 0.34 - 37.66 -0.37 0.87
EA 180.37 27.89 0.89 -133.00 -1.67 1.19
ES 152.74 11.72 0.72 -123.60 -1.19 1.10
BO 132.92 2.86 0.35 -55.75 -0.66 0.93

superblue3 HPO

SA 182.25 27.11 1.51 -134.07 -1.12 0.98
EA 152.46 12.01 0.81 -163.81 -0.64 0.80
ES 155.93 9.75 0.81 -150.05 -0.73 0.78
BO 119.72 7.09 0.41 -30.07 -0.26 0.70

superblue4 HPO

SA 101.00 6.54 0.34 -75.61 -1.15 0.95
EA 100.30 12.60 0.49 -94.44 -1.14 1.01
ES 77.07 1.94 0.11 -25.70 -0.47 0.75
BO 72.14 1.52 0.13 -24.76 -0.42 0.66

superblue5 HPO

SA 148.84 9.96 0.63 -58.87 -0.59 1.03
EA 115.05 3.35 0.44 -60.99 -0.27 0.75
ES 169.59 14.65 1.00 -84.63 -0.77 1.27
BO 129.24 6.58 0.64 -64.06 -0.50 0.82

superblue7 HPO

SA 125.22 0.98 0.15 -14.64 -0.17 0.86
EA 248.07 8.05 1.05 -138.68 -2.32 2.73
ES 135.24 4.02 0.42 -14.42 -0.22 1.01
BO 132.42 2.98 0.34 -16.12 -0.24 1.10

superblue10 HPO

SA 239.10 1.31 0.31 -152.57 -2.51 1.51
EA 196.58 2.41 0.49 -53.69 -1.55 1.46
ES 194.30 1.84 0.49 -44.10 -1.45 1.41
BO 149.47 0.25 0.05 -22.77 -0.93 1.30

superblue16 HPO

SA 99.54 6.79 0.21 -31.95 -0.56 1.67
EA 103.18 2.58 0.23 -52.40 -0.63 1.70
ES 133.85 20.27 0.56 -99.41 -1.22 2.18
BO 76.52 0.27 0.02 -15.46 -0.30 1.34

superblue18 HPO

SA 71.67 7.13 1.40 -21.60 -0.33 0.84
EA 57.22 1.92 0.48 -17.89 -0.25 0.78
ES 71.44 6.95 1.00 -32.86 -0.27 0.88
BO 73.19 7.73 1.45 -31.34 -0.29 0.76

5 CONCLUSION

In this paper, we propose BBOPlace-Bench, which is the first benchmark in BBO for chip placement.
BBOPlace-Bench offers a flexible framework that allows users to easily implement and test their
BBO algorithms, with the hope of facilitating the application of BBO. One limitation of this paper
is that we used the commercial software Cadence Innovus for PPA evaluation. We plan to integrate
open-source tools (e.g., OpenROAD (Kahng & Spyrou, 2021)) into our benchmark to facilitate
comprehensive performance evaluation for users without a commercial license.

Based on our results, there are many worthwhile directions for future exploration. 1) Multi-
objective optimization (Deb, 2001). In addition to the wire length considered in this paper, chip
design also involves many other objectives, such as congestion and power. 2) High-dimensional
optimization (Binois & Wycoff, 2022). Chip placement is a typical high-dimensional problem, and
it is crucial to propose a targeted high-dimensional BBO algorithm based on placement characteris-
tics. 3) Offline optimization (Trabucco et al., 2022) and transfer optimization (Bai et al., 2023).
The full process of evaluating chips is expensive, but fortunately, there is a wealth of offline data
available from similar chips. How to efficiently utilize this data is an interesting question.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anthony Agnesina, Puranjay Rajvanshi, Tian Yang, Geraldo Pradipta, Austin Jiao, Ben Keller,
Brucek Khailany, and Haoxing Ren. AutoDMP: Automated DREAMPlace-based macro place-
ment. In Proceedings of the 27th International Symposium on Physical Design, pp. 149–157,
Virtual, 2023.

Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms. Oxford University Press, 1996.

Tianyi Bai, Yang Li, Yu Shen, Xinyi Zhang, Wentao Zhang, and Bin Cui. Transfer learning for
Bayesian optimization: A survey. arXiv:2302.05927, 2023.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for efficient Monte-Carlo
Bayesian optimization. In Advances in Neural Information Processing Systems 33 (NeurIPS),
Virtual, 2020.

Mickaël Binois and Nathan Wycoff. A survey on high-dimensional Gaussian process modeling
with application to Bayesian optimization. ACM Transactions on Evolutionary Learning and
Optimization, 2(2):1–26, 2022.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, Difan Deng, and Marius Lin-
dauer. Hyperparameter optimization: Foundations, algorithms, best practices, and open chal-
lenges. WIREs Data. Mining. Knowl. Discov., 13(2), 2023.

Andrew E Caldwell, Andrew B Kahng, Stefanus Mantik, Igor L Markov, and Alexander Zelikovsky.
On wirelength estimations for row-based placement. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 18(9):1265–1278, 1999.

Zhuomin Chai, Yuxiang Zhao, Wei Liu, Yibo Lin, Runsheng Wang, and Ru Huang. Circuitnet:
An open-source dataset for machine learning in vlsi cad applications with improved domain-
specific evaluation metric and learning strategies. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2023. doi: 10.1109/TCAD.2023.3287970.

Yao-Wen Chang, Zhe-Wei Jiang, and Tung-Chieh Chen. Essential issues in analytical placement
algorithms. IPSJ Transactions on System LSI Design Methodology, 2:145–166, 2009.

Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-Wen Chang. Ntu-
place3: An analytical placer for large-scale mixed-size designs with preplaced blocks and density
constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27(7):1228–1240, 2008.

Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. Replace: Advancing
solution quality and routability validation in global placement. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 38(9):1717–1730, 2018.

Ruoyu Cheng and Junchi Yan. On joint learning for solving placement and routing in chip design.
In Advances in Neural Information Processing Systems 34, pp. 16508–16519, Virtual, 2021.

Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-gradient
placement and generative routing neural networks for chip design. In Advances in Neural Infor-
mation Processing Systems 35, New Orleans, LA, 2022.

Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms. Wiley, 2001.

Peter I. Frazier. A tutorial on Bayesian optimization. arXiv:1807.02811, 2018.

Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Mingxuan Yuan, HAO Jianye, Yong-
dong Zhang, and Feng Wu. Reinforcement learning within tree search for fast macro placement.
In Forty-first International Conference on Machine Learning, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yue-Jiao Gong, Jing-Jing Li, Yicong Zhou, Yun Li, Henry Shu-Hung Chung, Yu-Hui Shi, and Jun
Zhang. Genetic learning particle swarm optimization. IEEE transactions on cybernetics, 46(10):
2277–2290, 2015.

Jiaqi Gu, Zixuan Jiang, Yibo Lin, and David Z Pan. Dreamplace 3.0: Multi-electrostatics based
robust vlsi placement with region constraints. In Proceedings of the 39th International Conference
on Computer-Aided Design, pp. 1–9, San Diego, CA, 2020.

Nikolaus Hansen. The CMA evolution strategy: A tutorial. arXiv:1604.00772, 2016.

Nikolaus Hansen, Dirk V. Arnold, and Anne Auger. Evolution strategies. In Springer Handbook of
Computational Intelligence, pp. 871–898. Springer, 2015.

Xu He, Tao Huang, Linfu Xiao, Haitong Tian, and Evangeline F. Y. Young. Ripple: A robust and
effective routability-driven placer. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 32(10):1546–1556, 2013.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

Andrew B Kahng and Sherief Reda. A tale of two nets: Studies of wirelength progression in physical
design. In Proceedings of the 7th International Workshop on System-level Interconnect Prediction,
pp. 17–24, Munich, Germany, 2006.

Andrew B Kahng and Tom Spyrou. The openroad project: Unleashing hardware innovation. In
Proc. GOMAC, 2021.

James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-
international conference on neural networks, volume 4, pp. 1942–1948. ieee, 1995.

Myung-Chul Kim, Jin Hu, Jiajia Li, and Natarajan Viswanathan. ICCAD-2015 CAD contest in
incremental timing-driven placement and benchmark suite. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pp. 921–926, Austin, TX, 2015.

Harold J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of Basic Engineering, 86(1):97–106, 1964.

Yao Lai, Yao Mu, and Ping Luo. Maskplace: Fast chip placement via reinforced visual represen-
tation learning. In Advances in Neural Information Processing Systems 35, New Orleans, LA,
2022.

Yao Lai, Jinxin Liu, Zhentao Tang, Bin Wang, Jianye Hao, and Ping Luo. Chipformer: Transfer-
able chip placement via offline decision transformer. In Proceedings of the 40th International
Conference on Machine Learning, pp. 18346–18364, Honolulu, HA, 2023.

Peiyu Liao, Dawei Guo, Zizheng Guo, Siting Liu, Yibo Lin, and Bei Yu. Dreamplace 4.0: Timing-
driven placement with momentum-based net weighting and lagrangian-based refinement. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(10):3374–3387,
2023.

Tao Lin, Chris C. N. Chu, and Gang Wu. POLAR 3.0: An ultrafast global placement engine. In
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 520–
527, Austin, TX, 2015.

Yibo Lin, Zixuan Jiang, Jiaqi Gu, Wuxi Li, Shounak Dhar, Haoxing Ren, Brucek Khailany, and
David Z Pan. DREAMPlace: Deep learning toolkit-enabled gpu acceleration for modern VLSI
placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 40
(4):748–761, 2020.

Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis Jen-Hsin Huang, Chin-Chi Teng,
and Chung-Kuan Cheng. ePlace: Electrostatics-based placement using fast Fourier transform and
Nesterov’s method. ACM Transactions on Design Automation of Electronic Systems, 20(2):1–34,
2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Done MacMillen, Raul Camposano, Dwight Hill, and Thomas W. Williams. An industrial view
of electronic design automation. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(12):1428–1448, 2000.

Igor L Markov, Jin Hu, and Myung-Chul Kim. Progress and challenges in VLSI placement research.
In Proceedings of the 25th International Conference on Computer-Aided Design, pp. 275–282,
San Jose, CA, 2012.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe W. J. Jiang, Ebrahim M. Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, Azade Nazi, Jiwoo Pak,
Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer, Anand Babu, Quoc V. Le, James
Laudon, Richard Ho, Roger Carpenter, and Jeff Dean. Chip placement with deep reinforcement
learning. arXiv:2004.10746, 2020.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodol-
ogy for fast chip design. Nature, 594(7862):207–212, 2021.

Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani. VLSI module place-
ment based on rectangle-packing by the sequence-pair. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 15(12):1518–1524, 1996.

Gi-Joon Nam, Charles J Alpert, Paul Villarrubia, Bruce Winter, and Mehmet Yildiz. The ISPD2005
placement contest and benchmark suite. In Proceedings of the 9th International Symposium on
Physical Design, pp. 216–220, San Francisco, CA, 2005.

Changyong Oh, Roberto Bondesan, Dana Kianfar, Rehan Ahmed, Rishubh Khurana, Payal Agarwal,
Romain Lepert, Mysore Sriram, and Max Welling. Bayesian optimization for macro placement.
arXiv:2207.08398, 2022.

Sebastian Pineda-Arango, Hadi S. Jomaa, Martin Wistuba, and Josif Grabocka. HPO-B: A large-
scale reproducible benchmark for black-box HPO based on openml. In Advances in Neural Infor-
mation Processing Systems 34 (NeurIPS’21), Virtual, 2021.

Yuan Pu, Tinghuan Chen, Zhuolun He, Chen Bai, Haisheng Zheng, Yibo Lin, and Bei Yu. In-
cremacro: Incremental macro placement refinement. In Proceedings of the 2024 International
Symposium on Physical Design (ISPD), pp. 169–176, 2024.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

Günter Rudolph. Finite Markov chain results in evolutionary computation: A tour d’horizon. Fun-
damenta Informaticae, 35(1-4):67–89, 1998.

Khushro Shahookar and Pinaki Mazumder. VLSI cell placement techniques. ACM Computing
Surveys, 23(2):143–220, 1991.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016.

Yunqi Shi, Ke Xue, Lei Song, and Chao Qian. Macro placement by wire-mask-guided black-box
optimization. In Advances in Neural Information Processing Systems 36, New Orleans, LA, 2023.

Peter Spindler and Frank M Johannes. Fast and accurate routing demand estimation for efficient
routability-driven placement. In Proceedings of the 14th Conference on Design, Automation &
Test in Europe, pp. 1–6, Nice, France, 2007.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Information-
theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Transactions
on Information Theory, 58(5):3250–3265, 2012.

Maolin Tang and Xin Yao. A memetic algorithm for VLSI floorplanning. IEEE Transactions on
Systems, Man, and Cybernetics, 37(1):62–69, 2007.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-Bench: Benchmarks
for data-driven offline model-based optimization. In Proceedings of the 39th International Con-
ference on Machine Learning (ICML), pp. 21658–21676, Baltimore, MD, 2022.

Dhruv Vashisht, Harshit Rampal, Haiguang Liao, Yang Lu, Devika Shanbhag, Elias Fallon, and
Levent Burak Kara. Placement in integrated circuits using cyclic reinforcement learning and
simulated annealing. arXiv:2011.07577, 2020.

Linnan Wang, Saining Xie, Teng Li, Rodrigo Fonseca, and Yuandong Tian. Sample-efficient neural
architecture search by learning action space. arXiv:1906.06832, 2019a.

Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and Rodrigo Fonseca. Alphax: Exploring
neural architectures with deep neural networks and monte carlo tree search. arXiv:1903.11059,
2019b.

Zhihai Wang, Zijie Geng, Zhaojie Tu, Jie Wang, Yuxi Qian, Zhexuan Xu, Ziyan Liu, Siyuan Xu,
Zhentao Tang, Shixiong Kai, et al. Benchmarking end-to-end performance of ai-based chip place-
ment algorithms. arXiv:2407.15026, 2024.

Jiang Xun, Zhuomin Chai, Yuxiang Zhao, Yibo Lin, Runsheng Wang, and Ru Huang. Circuitnet
2.0: An advanced dataset for promoting machine learning innovations in realistic chip design
environment. In The Twelfth International Conference on Learning Representations, 2024.

Quanming Yao, Mengshuo Wang, Hugo Jair Escalante, Isabelle Guyon, Yi-Qi Hu, Yu-Feng Li,
Wei-Wei Tu, Qiang Yang, and Yang Yu. Taking human out of learning applications: A survey on
automated machine learning. arXiv:1810.13306, 2018.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
bench-101: Towards reproducible neural architecture search. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (ICML’19), pp. 7105–7114, Long Beach, CA, 2019.

Zhi-Hua Zhou, Yang Yu, and Chao Qian. Evolutionary Learning: Advances in Theories and Algo-
rithms. Springer, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In Proceed-
ings of the 5th International Conference on Learning Representations (ICLR’17), Toulon, France,
2017.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A CHIPS STATISTICS

The detailed statistics of ISPD 2005 (Nam et al., 2005) and ICCAD 2015 contest benchmarks (Kim
et al., 2015) are listed in Table 6. For ISPD 2005, we use the number of macros specified in the
dataset as our macros. For ICCAD 2015, since it does not specify macros, we define the largest 512
cells by area as macros.

Table 6: Detailed statistics of the chips.
Benchmark # Macros #Cells #Nets #Pins

adaptec1 543 210,904 221,142 944,053
adaptec2 566 254,457 266,009 1,069,482
adaptec3 723 450,927 466,758 1,875,039
adaptec4 1329 494,716 515,951 1,912,420
bigblue1 560 277,604 284,479 1,144,691
bigblue3 1298 1,095,514 1,123,170 3,833,218

superblue1 512 1,209,716 1215710 3,767,494
superblue3 512 1,213,253 1,224,979 3,905,321
superblue4 512 795,645 802,513 2,497,940
superblue5 512 1,086,888 1,100,825 3,246,878
superblue7 512 1,931,639 1,933,945 6,372,094

superblue10 512 1,876,103 1,898,119 5,560,506
superblue16 512 981,559 999,902 3,013,268
superblue18 512 768,068 771,542 2,559,143

B ADDITIONAL ANALYSIS

B.1 RUNTIME ANALYSIS

Due to differences in modeling approaches and optimization algorithms, the runtime varies signif-
icantly across different methods. Here, we present the average runtime for each round of different
methods on adaptec3, as shown in Table 7. The fourth column of the table indicates the time taken
for the algorithm search, while the fifth column shows the time taken for problem evaluation (all in
seconds). It can be observed that the search duration of BO and ES is significantly longer than that
of EA and SA. Additionally, the problem evaluation time for HPO is also longer than that of Grid
and SP, as each run requires DREAMPlace to converge. For example, the GP evaluation time for
GG is eight times that of the MP evaluation, which is due to the time overhead caused by placing
many standards.

B.2 ADDITIONAL RESULTS

In this section, we provide additional experimental results, including the curves and tables for GP
HPWL on ISPD 2005, the curves for MP HPWL and GP HPWL on ICCAD 2015, as well as the
PPA metrics on the ICCAD 2015 benchmarks of the GG formulation.

As shown in Table 8, the formulation of HPO combined with four BBO algorithms achieved better
results than the state-of-the-art RL methods, further demonstrating the potential of BBO for chip
placement. In the experiments of PPA evaluation of the GG formulation, the performance of EA and
ES is generally better than BO. This is because the search space of GG is larger than that of HPO,
and vanilla BO cannot demonstrate its advantages within it, as shown in Table 9.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: Runtime analysis on adaptec3.
Algorithm Evaluation

MP evaluation

SP SA 0.0271 0.8828EA 0.0296

GG

SA 0.0514

5.6596EA 0.1751
ES 1.0171
BO 5.3156

HPO

SA 0.0182

94.5737EA 0.0494
ES 0.3777
BO 1.1098

GP evaluation

SP SA 0.1496 43.8526EA 0.6337

GG

SA 0.7083

42.7037EA 0.6855
ES 1.0578
BO 2.6328

HPO

SA 0.1755

98.6505EA 0.3815
ES 1.4241
BO 1.0724

Table 8: GP HPWL values (×107) obtained by ten compared methods on ISPD 2005. Each result
consists of the mean and standard deviation of five runs. The results of three RL methods are
from Geng et al. (2024). The best and runner-up methods are bolded and underlined, respectively.
The symbols ‘+’, ‘−’ indicate the result is almost equivalent and inferior to the best methods,
respectively, according to the Wilcoxon rank-sum test with significance level 0.05.

Formulation Algorithm adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3 Average Rank

SP SA 11.87±0.28 - 18.29±0.19 - 31.51±0.31 - 33.50±0.32 - 11.54±0.12 - 58.34±0.96 - 12
EA 11.41±0.18 - 17.37±0.26 - 30.00±0.36 - 33.47±0.25 - 11.31±0.11 - 51.98±1.62 - 10.83

GG

SA 8.93±0.09 - 12.08±0.50 - 20.30±0.47 - 21.62±0.26 - 9.42±0.06 - 45.09±0.99 - 7.33
EA 8.49±0.08 - 11.05±0.26 - 18.45±0.23 - 19.80±0.73 - 9.29±0.05 - 40.43±0.57 - 6
ES 9.33±0.36 - 13.39±0.58 - 21.85±1.24 - 23.01±0.35 - 9.70±0.15 - 47.31±2.21 - 9.17
BO 9.01±0.20 - 12.36±0.48 - 20.16±0.27 - 21.44±0.35 - 9.45±0.03 - 45.45±1.31 - 7.67

HPO

SA 6.10±0.06 + 6.95±0.12 + 12.84±0.10 - 12.32±0.09 - 8.10±0.05 + 25.36±0.77 - 2.83
EA 6.05±0.03 + 6.82±0.08 + 12.73±0.11 + 12.12±0.08 + 8.06±0.03 + 24.09±0.19 + 1.17
ES 6.09±0.03 + 6.87±0.14 + 12.63±0.08 + 12.21±0.04 + 8.11±0.03 - 24.72±0.60 + 2
BO 6.30±0.13 - 7.38±0.20 - 13.01±0.10 - 12.54±0.27 - 8.19±0.13 + 25.71±0.48 - 4

RL MaskPlace 10.86±0.18 - 12.98±0.58 - 26.14±0.07 - 26.14±0.07 - 10.64±0.01 - 54.98±1.06 - 10
EfficientPlace 7.20±0.12 - 9.20±0.61 - 16.49±1.07 - 14.70±0.25 - 8.67±0.10 - 28.48±0.96 - 5

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 9: Results of PPA metrics on the ICCAD 2015 benchmarks of GG formulation. The best and
runner-up methods are bolded and underlined, respectively.

Benchmark Formulation Algorithm rWL rO-H rO-V WNS TNS NVP

superblue1 GG

SA 232.36 73.02 18.60 -215.64 -3.80 2.00
EA 200.27 62.09 13.62 -252.24 -2.77 1.65
ES 230.76 79.85 14.95 -195.93 -4.09 2.58
BO 208.06 59.27 15.49 -117.33 -3.47 2.02

superblue3 GG

SA 262.31 84.39 10.62 -335.84 -3.70 1.57
EA 252.81 76.91 11.60 -319.70 -3.41 1.42
ES 287.73 100.20 14.18 -317.70 -4.00 1.88
BO 266.91 87.62 15.18 -210.21 -3.28 1.62

superblue4 GG

SA 164.24 59.78 16.66 -107.02 -2.58 1.88
EA 160.86 65.42 12.21 -130.37 -2.57 1.54
ES 158.55 18.31 1.73 -120.85 -2.72 1.85
BO 160.68 60.89 19.26 -109.85 -2.93 2.02

superblue5 GG

SA 345.06 30.07 4.23 -299.39 -4.06 2.15
EA 314.06 23.76 4.59 -203.24 -2.65 1.67
ES 341.08 61.36 26.29 -160.25 -3.09 1.77
BO 349.53 78.17 26.78 -203.06 -4.11 1.83

superblue7 GG

SA 287.55 15.90 3.56 -155.82 -3.55 4.44
EA 278.62 16.07 2.47 -122.20 -3.11 3.89
ES 293.16 16.62 3.68 -154.61 -4.24 4.77
BO 293.97 21.70 3.95 -122.84 -4.46 4.58

superblue10 GG

SA 391.36 10.60 2.57 -254.81 -10.20 2.01
EA 407.56 18.43 2.81 -261.34 -10.90 2.19
ES 427.12 24.54 4.73 -262.63 -11.40 2.09
BO 409.09 65.79 25.29 -267.00 -11.00 2.27

superblue16 GG

SA 172.28 76.31 9.91 -119.06 -3.03 2.91
EA 164.63 62.06 11.62 -60.48 -2.79 2.90
ES 163.74 65.02 17.92 -83.78 -3.38 2.74
BO 184.66 87.94 11.95 -69.18 -3.36 2.91

superblue18 GG

SA 93.70 10.98 1.64 -51.74 -1.23 1.42
EA 89.28 9.18 0.81 -40.34 -0.66 1.43
ES 62.05 0.28 0.06 -52.66 -0.56 1.16
BO 96.70 14.93 1.09 -70.01 -0.79 1.43

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 50 100 150 200
Evaluation

0.6

0.8

1.0

H
PW

L

1e8 adaptec1

0 50 100 150 200
Evaluation

0.8

1.0

1.2

H
PW

L

1e8 adaptec2

0 50 100 150 200
Evaluation

1.5

2.0

2.5

H
PW

L

1e8 adaptec3

0 50 100 150 200
Evaluation

1.5

2.0

2.5

H
PW

L

1e8 adaptec4

0 50 100 150 200
Evaluation

0.8

0.9

1.0

H
PW

L

1e8 bigblue1

0 50 100 150 200
Evaluation

3

4

5

H
PW

L

1e8 bigblue3

MaskPlace EfficientPlace HPO-SA HPO-EA HPO-ES

Figure 3: GP HPWL vs. number of evaluations of different methods on ISPD 2005.

0 2000 4000 6000 8000 10000
Evaluations

105

106

H
PW

L

superblue1

0 2000 4000 6000 8000 10000
Evaluations

106

H
PW

L

superblue3

0 2000 4000 6000 8000 10000
Evaluations

105

106

H
PW

L
superblue4

0 2000 4000 6000 8000 10000
Evaluations

106

H
PW

L

superblue5

0 2000 4000 6000 8000 10000
Evaluations

106

H
PW

L

superblue7

0 2000 4000 6000 8000 10000
Evaluations

105

106

H
PW

L

superblue10

0 2000 4000 6000 8000 10000
Evaluations

105

106

H
PW

L

superblue16

0 2000 4000 6000 8000 10000
Evaluations

105

106

H
PW

L

superblue18

SP-SA SP-EA GG-SA GG-EA GG-ES GG-BO

Figure 4: MP HPWL vs. number of evaluations of different methods on ICCAD 2015.

B.3 VISUALIZATION ANALYSIS

In this section, we present the visualization results of different methods on ICCAD 2015. Our
proposed BBOPlace-Bench provides a convenient visualization interface that helps users unfamiliar
with the chip placement to understand the output results of their BBO algorithms.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 50 100 150 200
Evaluations

3.6

3.8

4.0

4.2

4.4

4.6

H
PW

L
1e8 superblue1

0 50 100 150 200
Evaluations

4.2

4.4

4.6

4.8

5.0

5.2

H
PW

L

1e8 superblue3

0 50 100 150 200
Evaluations

2.8

2.9

3.0

3.1

3.2

3.3

H
PW

L

1e8 superblue4

0 50 100 150 200
Evaluations

4.0

4.1

4.2

4.3

4.4

H
PW

L

1e8 superblue5

0 50 100 150 200
Evaluations

5.4

5.6

5.8

H
PW

L

1e8 superblue7

0 50 100 150 200
Evaluations

7.0

7.2

7.4

H
PW

L

1e8 superblue10

0 50 100 150 200
Evaluations

3.7

3.8

3.9

4.0

4.1

H
PW

L

1e8 superblue16

0 50 100 150 200
Evaluations

2.20

2.25

2.30

2.35

2.40

H
PW

L

1e8 superblue18

HPO-SA HPO-EA HPO-ES HPO-BO

Figure 5: GP HPWL vs. number of evaluations of different methods on ICCAD 2015.

(a) GG-SA (b) GG-EA (c) GG-ES (d) GG-BO

(e) HPO-SA (f) HPO-EA (g) HPO-ES (h) HPO-BO

Figure 6: Visualization of superblue1.

(a) GG-SA (b) GG-EA (c) GG-ES (d) GG-BO

(e) HPO-SA (f) HPO-EA (g) HPO-ES (h) HPO-BO

Figure 7: Visualization of superblue3.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) GG-SA (b) GG-EA (c) GG-ES (d) GG-BO

(e) HPO-SA (f) HPO-EA (g) HPO-ES (h) HPO-BO

Figure 8: Visualization of superblue4.

(a) GG-SA (b) GG-EA (c) GG-ES (d) GG-BO

(e) HPO-SA (f) HPO-EA (g) HPO-ES (h) HPO-BO

Figure 9: Visualization of superblue5.

(a) GG-SA (b) GG-EA (c) GG-ES (d) GG-BO

(e) HPO-SA (f) HPO-EA (g) HPO-ES (h) HPO-BO

Figure 10: Visualization of superblue7.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) GG-SA (b) GG-EA (c) GG-ES (d) GG-BO

(e) HPO-SA (f) HPO-EA (g) HPO-ES (h) HPO-BO

Figure 11: Visualization of superblue10.

(a) GG-SA (b) GG-EA (c) GG-ES (d) GG-BO

(e) HPO-SA (f) HPO-EA (g) HPO-ES (h) HPO-BO

Figure 12: Visualization of superblue16.

(a) GG-SA (b) GG-EA (c) GG-ES (d) GG-BO

(e) HPO-SA (f) HPO-EA (g) HPO-ES (h) HPO-BO

Figure 13: Visualization of superblue18.

21

	Introduction
	Background
	Black-box Optimization
	Chip Placement

	BBOPlace-Bench
	Bridging Chip Placement and BBO
	Problem Formulation
	Optimization Algorithm
	Evaluation
	BBO User-Friendly Interfaces

	Experiment
	Experimental Settings
	Results on ISPD 2005
	Results on ICCAD 2015

	Conclusion
	Chips statistics
	Additional analysis
	Runtime analysis
	Additional results
	Visualization analysis

