
SPoRt - Safe Policy Ratio:
Certified Training and Deployment of Task Policies in Model-Free RL

Jacques Cloete1 , Nikolaus Vertovec2 and Alessandro Abate2
1Oxford Robotics Institute, University of Oxford

2Department of Computer Science, University of Oxford
jacques@robots.ox.ac.uk, {nikolaus.vertovec, alessandro.abate}@cs.ox.ac.uk

Abstract

To apply reinforcement learning to safety-critical
applications, we ought to provide safety guaran-
tees during both policy training and deployment. In
this work, we present theoretical results that place a
bound on the probability of violating a safety prop-
erty for a new task-specific policy in a model-free,
episodic setting. This bound, based on a maxi-
mum policy ratio computed with respect to a ‘safe’
base policy, can also be applied to temporally-
extended properties (beyond safety) and to robust
control problems. To utilize these results, we intro-
duce SPoRt, which provides a data-driven method
for computing this bound for the base policy us-
ing the scenario approach, and includes Projected
PPO, a new projection-based approach for train-
ing the task-specific policy while maintaining a
user-specified bound on property violation. SPoRt
thus enables users to trade off safety guarantees
against task-specific performance. Complement-
ing our theoretical results, we present experimental
results demonstrating this trade-off and comparing
the theoretical bound to posterior bounds derived
from empirical violation rates.

1 Introduction
Reinforcement Learning (RL) is an area of machine learning
where an agent is trained to interact with its environment to
maximize some (cumulative) reward [Sutton and Barto, 2014;
Mason and Grijalva, 2019]. There has been great interest in
applying RL to real-world control problems in fields such
as robotics [Kober and Peters, 2014; Hwangbo et al., 2019;
Singh et al., 2022], traffic management [Chu et al., 2020;
Vertovec and Margellos, 2023; Lee et al., 2023] and au-
tonomous driving [Isele et al., 2018; Ma et al., 2021; Li et al.,
2022], to name just a few. Many of these domains typically
fall into the realm of “safety-critical” applications, whereby
we need to guarantee safety specifications, such as obstacle
avoidance. Satisfying safety constraints becomes particularly
challenging when we have little to no knowledge of our envi-
ronment. This problem has been studied in a substantial body
of literature, known as model-free safe RL.

Traditional policy gradient algorithms for model-free RL,
such as Trust Region Policy Optimization (TRPO) [Schulman
et al., 2015] and Proximal Policy Optimization (PPO) [Schul-
man et al., 2017], allow the agent to explore any behavior
during training, including behaviors that would be consid-
ered unsafe; this is unacceptable for safety-critical applica-
tions. To encode safety into training, a popular formulation
is the Constrained Markov Decision Process (CMDP) [Alt-
man, 2021], which includes safety constraints and is typically
solved using primal-dual methods [Achiam et al., 2017] and
modifying the trust region to exclude unsafe policy updates
[Milosevic et al., 2024]. However, the CMDP formulation is
limited in its ability to model safety constraints; CMDPs con-
strain the expected discounted cost return, but for many prac-
tical applications we require an explicit bound on the proba-
bility that a sampled trajectory violates a safety constraint.

Alternative approaches based on control theory ensure
safety by preventing the agent from taking actions that would
eventually lead to safety violations; this is achieved using,
e.g., Lyapunov and barrier functions [Chow et al., 2018],
shielding [Alshiekh et al., 2018; Konighofer et al., 2023] or
safety filters [Hsu et al., 2024]. However, these approaches
require a model of the environment to predict future safety,
and thus are generally limited to model-based setups. Mean-
while, formal methods-based approaches, such as [Hasanbeig
et al., 2023], encode safety by leveraging Linear Temporal
Logic (LTL) [Pnueli, 1977] as a formal reward-shaping struc-
ture. Unlike CMDPs, whereby the original objective is sepa-
rate from the constraint, LTL formula satisfaction is encoded
into the expected return itself, and under certain conditions
the trained policy is guaranteed to maximize the probability
of LTL formula satisfaction; however, no guarantees can be
obtained during training.

Since we presume no knowledge of the environment, as in
standard model-free RL, we will rely on finite-sample learn-
ing to evaluate the agent’s ability to remain safe using prob-
ably approximately correct (PAC) guarantees. Finite-sample
complexity bounds provide the number of samples needed to,
with a given confidence, learn some target function with a
certain accuracy [Vidyasagar, 2003]. Tools from statistical
learning theory based on Vapnik Chervonenkis (VC) theory
have successfully been able to provide finite sample bounds
for learning in unknown environments [Vidyasagar, 2003;
Tempo et al., 2005], with recent work providing finite sam-

ple bounds even under changing target assumptions [Vertovec
et al., 2024]. Yet VC-theoretic techniques require the com-
putation of the VC dimension, which is a difficult task for
generic optimization problems. Under a convexity assump-
tion, the so-called scenario approach offers a-priori proba-
bilistic feasibility guarantees without resorting to VC the-
ory [Calafiore and Campi, 2006; Campi and Garatti, 2008;
Campi and Garatti, 2018].

The scenario approach traditionally relies on independent
and identically distributed (i.i.d.) samples to establish its
sample-complexity bounds. This creates a limitation in RL
contexts, where the sampling distribution changes as poli-
cies are updated. As a result, safety guarantees established
for one policy cannot be directly transferred when the policy
changes. In this work, we overcome this limitation by ex-
tending the PAC guarantees to accommodate policy changes.
Specifically, we derive a constraint on how much policies can
shift while maintaining safety guarantees, and present SPoRt,
an approach for adapting an existing safe policy to improve
task-specific performance while maintaining a bound on the
probability of safety violation, known prior to deploying or
even training the adapted policy; this bound can be tuned by
the user to trade off safety and task-specific performance.

Our technical contributions underpinning SPoRt are as fol-
lows:

1. A data-driven method for obtaining a bound on the prob-
ability that a property (e.g. safety), in general expressed
as an LTL formula, is violated for trajectories drawn us-
ing a given ‘safe’ base policy (Section 3).

2. Novel theoretical results that provide, for an episodic,
model-free RL setup, a prior bound on the probability of
property violation for a new task-specific policy, based
on a ‘maximum policy ratio’ computed with respect to
the ‘safe’ base policy (cf. previous point) (Section 4).

3. A projection-based method for constraining the task-
specific policy to ensure that this prior bound holds (Sec-
tion 5).

4. Projected PPO, an algorithm for training a new, task-
specific policy, while maintaining a user-specified prior
bound on property violation, thus trading off safety guar-
antees for task-specific performance (Section 6).

We also test SPoRt on a time-bounded reach-avoid property
and present experimental results demonstrating the safety-
performance trade-off, as well as comparison of the theoreti-
cal prior bound to posterior bounds based on empirical viola-
tion rates (Section 7 and 8).

All appendices and code1 can be found in the supplemen-
tary material, which contains all proofs.

2 Models, Tasks and Properties
We consider a model-free episodic RL setup where an agent
interacts with an unknown environment modeled as a Markov
Decision Process (MDP) [Sutton and Barto, 2014], specified
by the tuple ⟨S,A, p, µ, rtask⟩, with a continuous state space
S and continuous action space A. p(s′|a, s) : S × A →

1Link to code: https://github.com/JacquesCloete/sport.

∆(S) and µ(s) ∈ ∆(S) are the (unknown) state-transition
and initial state distributions, respectively. We will consider
learning a stochastic policy π(a|s) : S → ∆(A) in a model-
free setup. We use τp,πst,T

= (st, st+1, . . . , st+T)
p,π to denote

a realization of a trajectory of the closed-loop system with
state transition distribution p, starting at state st and evolving
for T time steps, using policy π. rtask(s, a) : S × A →
R is the task-specific reward, which encourages higher task-
specific performance (for example, max speed or min time).

2.1 Safety as a Temporally-Extended Property
We define safety in terms of satisfaction of a general tempo-
ral property φ. We denote that a trajectory τ satisfies property
φ (and is therefore safe) by τ |= φ, while τ ̸|= φ indicates
that τ violates φ (and is therefore unsafe). SPoRt addresses
problems where the objective is to ensure that τp,πs0∼µ,T |= φ
with high probability, while maximizing the task-specific re-
ward rtask. To evaluate the satisfaction of φ we introduce a
robustness metric ϱφ, which encodes property violation as a
real-valued signal that is non-negative only when τ |= φ.
Definition 1. A robustness metric ϱφ is a function ϱφ(τ) :
Sn → [−a, b], n ∈ Z+, a, b ∈ R+ such that ϱφ(τ) ≥ 0 only
for trajectories τ ∈ Sn that satisfy property φ (i.e. τ |= φ).

Any safety property φ can be expressed as a Linear Tempo-
ral Logic (LTL) formula [Pnueli, 1977], which ensures the ex-
istence of such a metric (see Appendix A.1). Notably, SPoRt
extends beyond safety properties to encompass any property
φ expressible as an LTL formula - the case study deals with
‘reach-avoid’ as we shall see. Accordingly, our theoretical
results generalize to product MDPs in RL problems under
general LTL specifications [Hasanbeig et al., 2023]. While
Appendix A.2 provides detailed discussions on these exten-
sions to general LTL formulae and hybrid-state models, for
the remainder of the paper (and with no loss in generality) we
focus exclusively on safety properties φ within continuous-
state MDPs, as defined in Section 2.

3 Data-Driven Property Satisfaction
SPoRt provides a method for adapting an existing safe policy
(πbase) so as to maximize some task-specific reward (rtask),
without violating a given property φ.

As a first step, let us evaluate the property satisfaction of
given traces for a general policy π. Given an initial state
distribution, state transition distribution and stochastic policy
(µ, p, π), the value of the robustness metric for an associated
trajectory, i.e., ϱφ(τp,πs0∼µ,T) will be a random variable drawn
from some distribution ∆p,π

µ and the probability of satisfying
the property φ will be encoded by

P{ϱφ(τp,πs0∼µ,T) ∈ ∆p,π
µ : ϱφ(τp,πs0∼µ,T) ≥ 0}.

SPoRt first bounds the probability of property violation under
an existing ‘safe’ base policy πbase, i.e, P{ϱφ(τp,πbase

s0∼µ,T) ∈
∆p,πbase

µ : ϱφ(τp,πbase

s0∼µ,T) < 0} ≤ ϵbase using the scenario
approach [Campi and Garatti, 2018]; we roll out N scenario
trajectories (τp,πbase

s0∼µ,T)i using πbase and record them in buffer
Dp,πbase

µ = {(τp,πbase

s0∼µ,T)i}Ni=1. We use Theorem 1 to obtain an
upper bound ϵbase on the probability of violating φ:

https://github.com/JacquesCloete/sport

Theorem 1. If ϱφ((τp,πs0∼µ,T)i) ≥ 0 for all N scenarios
(τp,πs0∼µ,T)i in Dp,π

µ = {(τp,πs0∼µ,T)i}Ni=1, then with confidence

1−β, where β = (1− ϵ)
N , the probability of drawing a new

scenario τp,πs0∼µ,T such that ϱφ(τp,πs0∼µ,T) < 0 is at most ϵ.
If not all scenarios in Dp,πbase

µ satisfy φ, we can leverage
results from [Campi and Garatti, 2010] to identify a suitable
ϵbase ‘under k-constraint removal’, as follows:
Corollary 1. Assume k scenarios (τp,πs0∼µ,T)i in buffer Dp,π

µ

= {(τp,πs0∼µ,T)i}Ni=1 are such that ϱφ((τp,πs0∼µ,T)i) < 0, then

with confidence 1− β, where β =
∑k

i=0

(
N
i

)
ϵik(1− ϵk)

N−i,
the probability of drawing a new scenario τp,πs0∼µ,T such that
ϱφ(τp,πs0∼µ,T) < 0 is at most ϵk.

In both cases, we first collect N scenarios, then choose our
confidence 1− β, and then compute the bound ϵbase.

4 Property Violation under Modified MDPs
Once ϵbase is obtained, SPoRt safely trains a task-specific pol-
icy πtask so as to maximize the (cumulative) reward rtask.
For SPoRt to ensure safe training of πtask, we must up-
per bound the probability of property violation under πtask,
i.e., P{ϱφ(τp,πtask

s0∼µ,T) ∈ ∆p,πtask
µ : ϱφ(τp,πtask

s0∼µ,T) < 0},
by the probability of property violation under πbase, i.e.,
P{ϱφ(τp,πbase

s0∼µ,T) ∈ ∆p,πbase
µ : ϱφ(τp,πbase

s0∼µ,T) < 0}, which is
upper bounded by ϵbase. To do so, we first construct this
bound for general (µ1, p1, π1) and (µ2, p2, π2), and then set
(µ1, p1, π1) = (µ, p, πbase) and (µ2, p2, π2) = (µ, p, πtask).

Let S0, . . . ,ST ⊆ S be a sequence of arbitrary subsets
of the state space for each time step in the episode. We
begin by characterizing the probability that a sampled tra-
jectory τp,πs0∼µ,T = (s0 ∼ µ, s1, . . . , sT)

p,π is such that
s0 ∈ S0, . . . , sT ∈ ST as a forward recursion, based on work
in [Soudjani and Abate, 2013; Soudjani and Abate, 2015].
Let 1St

(s) : S → {0, 1} be the indicator function for s ∈ St,
and define functions Wµ,p,π

t (s) : S → R+, characterized as

Wµ,p,π
t+1 (s′) = 1St+1

(s′)

∫
S
P p,π(s′|s)Wµ,p,π

t (s)ds

and Wµ,p,π
0 (s′) = 1S0

(s′)µ(s′),

where P p,π(s′|s) =
∫
A
p(s′|a, s)π(a|s)da.

It holds that P{τp,πs0∼µ,T : s0 ∈ S0, . . . , sT ∈ ST } =∫
S Wµ,p,π

T (s)ds. We then use Theorem 2 to bound the prob-
ability that trajectory τp2,π2

s0∼µ2,T
remains within S0, . . . ,ST

throughout the episode in terms of the probability that tra-
jectory τp1,π1

s0∼µ1,T
remains within the same S0, . . . ,ST :

Theorem 2. Suppose that, for a set of coefficients αt ∈ R+,
we could constrain µ2, p2 and π2 so as to enforce the follow-
ing bounds for all t = 1, . . . , T :∫

S
P p2,π2(s′|s)Wµ1,p1,π1

t−1 (s)ds

≤αt

∫
S
P p1,π1(s′|s)Wµ1,p1,π1

t−1 (s)ds (1)

and µ2(s
′) ≤ α0µ1(s

′), ∀s′ ∈ S.

It thus holds that

P{τp2,π2

s0∼µ2,T
: s0 ∈ S0, . . . , sT ∈ ST }

≤P{τp1,π1

s0∼µ1,T
: s0 ∈ S0, . . . , sT ∈ ST }

T∏
t=0

αt.

We want to make this bound as tight as possible, which is
done by minimizing αt subject to Equation (1) for all s′ ∈ S
and t = 1, . . . , T . Solving this problem is non-trivial due
to p1 and p2 being unknown in a model-free setup. To this
end, we introduce Theorem 3 to obtain a feasible solution by
constraining p2 and π2 in terms of p1 and π1:
Theorem 3. Suppose the following constraint holds:

p2(s
′|a, s)π2(a|s) ≤ αtp1(s

′|a, s)π1(a|s) ∀a ∈ A, s ∈ S.
Thus Equation (1) holds for all s′ ∈ S.

Assuming stationarity, under this constraint the bound is
minimized when αt = α for all t = 1, . . . , T . Note also that
under this constraint, we find that α ≥ 1.

It is important to observe that, while correct, this bound
can be very conservative for applications with large episode
length T ; a discussion on this conservativeness can be found
in Appendix C.1. Alternative bounds from literature suffer
from similar blowup [Soudjani and Abate, 2012; Soudjani
and Abate, 2015].

Using the results from Theorem 2 and 3, we can now derive
Theorem 4 to obtain a bound on the probability of property
violation for (µ2, p2, π2) in terms of (µ1, p1, π1):
Theorem 4. Suppose that

P{ϱφ(τp1,π1

s0∼µ1,T
) ∈ ∆p1,π1

µ1
: ϱφ(τp1,π1

s0∼µ1,T
) < 0} ≤ ϵ1

and for all t = 1, . . . , T ,

p2(s
′|a, s)π2(a|s) ≤ αtp1(s

′|a, s)π1(a|s)
and µ2(s

′) ≤ α0µ1(s
′), ∀a ∈ A, s ∈ S.

It thus holds that

P{ϱφ(τp2,π2

s0∼µ2,T
) ∈ ∆p2,π2

µ2
: ϱφ(τp2,π2

s0∼µ2,T
) < 0} ≤ ϵ1

T∏
t=0

αt.

The proof for Theorem 4 considers all sequences
S0, . . . ,ST that correspond to property violation events, and
sums over their probabilities under (µ2, p2, π2).

Now let (µ1, p1, π1) = (µ, p, πbase) and (µ2, p2, π2) =
(µ, p, πtask); we see that constraining the policy ratio
πtask(a|s)
πbase(a|s) ≤ α for all a ∈ A, s ∈ S is sufficient to ensure
that the bound holds. The total multiplicative increase on the
upper bound for property violation going from πbase to πtask

is thus αT , with the bound being ϵtask = ϵbaseα
T .

This is a significant result, since we can now provide a
prior bound on the probability of property violation for any
πtask, based entirely on the probability of property violation
for πbase and the maximum policy ratio between πtask and
πbase across all states and actions, with no required knowl-
edge of µ, p or the constraints under which property φ holds,
so long as initial state distribution and state transition distri-
bution remain the same. Furthermore, by adjusting the value

of α we can directly trade off safety guarantees for deviation
from the base policy, which can be leveraged to achieve a
boost in task-specific performance.

However, note the exponential relationship between T and
ϵtask; this means that, for even small increases of α from 1,
our prior bound will always eventually explode to the point of
becoming trivially 1 if T is made sufficiently large. Thus, if
the prior bound is to be used, SPoRt is best suited to control
problems with a low maximum episode length T . In practice,
however, there are ways to overcome or otherwise mitigate
this limitation, as we will see later in Section 7.

Note that Theorem 4 also provides a bound when µ2 and p2
differ from µ1 and p1. Thus, our theoretical results can also
be applied to robust control settings for perturbed systems;
see Appendix C.2 for further discussion.

5 Constraint Satisfaction for a Task Policy
For Theorem 4 to hold, we must maintain the hard constraint
πtask(a|s)
πbase(a|s) ≤ α for all a ∈ A, s ∈ S . Given a πtask, we can
achieve this by projecting πtask onto the feasible set of policy
distributions Πα,πbase

at each time step:

πproj(a|s) = projΠα,πbase
(s)(πtask(a|s)),

where Πα,πbase
(s) =

{
π : α ≥ π(a|s)

πbase(a|s)
∀a ∈ A

}
.

While πtask represents the unconstrained (and potentially un-
safe) task-specific policy network that we train or are pro-
vided, the projection πproj is a policy that we can safely roll
out, including during training. Note that α defines the level
sets of Πα,πbase

, which is always non-empty for α ≥ 1 (since
πbase itself is a valid πtask). Let us now look at how to sim-
plify the computation of this projection step – we will hence-
forth assume diagonal Gaussian policies:
Assumption 1. Both πbase and πtask are diagonal Gaussian
policies: π(a|s) = N (a;µ,Σ), where Σ = diag

(
σ2
)
, and

where the policy means µ(s) and standard deviations σ(s)
are functions of MDP state and evaluated at each time step
using (for example) a policy neural network.

At each time step, we can obtain πproj using Theorem 5:
Theorem 5. Assuming diagonal Gaussian policies and us-
ing KL divergence as the distance metric for projection, the
means and standard deviations of projected policy πproj can
be computed from πbase and πtask by solving the following
convex optimization problem at each time step:

min
µproj,σproj

J(µproj,σproj)

subject to

n∏
i=1

σbase,i

σproj,i
e

1
2

(µproj,i−µbase,i)
2

σ2
base,i

−σ2
proj,i

 ≤ α,

0 < σproj,i < σbase,i ∀i = 1, . . . , n

where J(µproj,σproj)

=

n∑
i=1

(
−2 ln (σproj,i) +

σ2
proj,i

σ2
task,i

+
(µproj,i − µtask,i)

2

σ2
task,i

)
.

It is interesting to note that the standard deviations of πproj

must all be strictly lower than those of πbase, in other words
we require πproj to be less exploratory than πbase. This is in-
tuitive considering that we aim to maintain safety by remain-
ing ‘close’ to πbase. We also note that making πbase more ex-
ploratory (with a larger standard deviation) generally results
in a larger Πα,πbase

, allowing for greater policy change and
thus task-specific performance boost by πproj; see Appendix
C.3 for details.

We implement and solve this problem using CVXPY [Di-
amond and Boyd, 2016; Agrawal et al., 2018]; on a standard
desktop PC the compute time remains in the order of millisec-
onds for even high-dimensional action spaces, making this
method feasible for many RL applications. See Appendix D
for implementation details.

6 Training for Tasks, Under a Bound on
Property Violation

Above, we have shown how to obtain πproj from πbase and
πtask. We have implicitly assumed that we already have πbase

and a corresponding bound on probability of property viola-
tion ϵbase. There are many practical applications where we
would also have access to πtask: as an example from robotics,
we may have trained πtask in simulation, where safety is non-
critical, but now want to safely deploy this policy on the real
robot, for which a tried-and-tested πbase is known.

However, other applications may require that we train
πtask to maximize cumulative rtask while maintaining a prior
bound on safety during training, for example if a suitable sim-
ulator to train good policies for the real environment is not
available. In this case, we would first choose an acceptable
α ≥ 1 by rearranging ϵtask = ϵbaseα

T ≤ ϵmax, where ϵmax is
a maximum acceptable probability of property violation, and
we then learn πtask (initialized as πbase) while only ever de-
ploying πproj during training so as to ensure the bound holds.

Note that there is a distinction between what we train,
πtask, and what we actually deploy, πproj, during training.
To overcome this, SPoRt uses Projected PPO, outlined in Al-
gorithm 1, to train πtask for tasks with continuous state-action
spaces. The algorithm is inspired by clipped PPO [Schulman
et al., 2017] but clips the surrogate advantage based on the
policy ratio between the new πtask and previous πproj, rather
than the previous πtask; we store the (log-)probabilities of
πproj at each time step during data collection to avoid need-
ing to recompute πproj during gradient updates. The advan-
tage estimates are also computed using samples collected by
deploying πproj rather than πtask.

The clipping sets the gradient to zero beyond the maxi-
mum/minimum allowed policy ratio of πtask to πproj, pre-
venting πtask from drifting away beyond clipping ratio ξ of
πproj, in this way, we maintain an acceptable amount of mis-
match between πtask and πproj and stop πtask from drifting
away from the feasible set of allowed policy distributions.

We also warm-start the value function network for rtask
before training πtask, since an accurate value function is im-
portant for effective fine-tuning. This is done by training the
value function using clipped PPO until convergence while
keeping the policy network weights fixed as those of πbase.

Algorithm 1 Projected PPO
Input: θbase, α, T

1: Obtain initial critic parameters ϕ0 by warm-starting the
critic using PPO (episode length T) with πbase

2: Initial task-specific policy parameters θ0 ← θbase
3: for k = 0, 1, 2, . . . do
4: Collect trajectories Dk = {(τT)i} by running pro-

jected policy πproj,θk = projΠα,πbase
(πtask,θk) in the

environment. Store πproj,θk(·|st) ∀st ∈ τT , τT ∈ Dk

5: Compute rewards-to-go R̂t

6: Compute advantage estimates Ât using Vϕk

7: Update task-specific policy:

θk+1 = argmax
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min
{

πtask,θ(at|st)
πproj,θk(at|st)

Aπproj,θk (st,at), g
(
ξ, Aπproj,θk (st,at)

)}
where g (ξ, A) =

{
(1 + ξ)A if A ≥ 0

(1− ξ)A if A < 0

8: Fit value function:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕ(st)− R̂t

)2
9: end for

7 SPoRt in Action: Case Studies
We apply SPoRt to a reach-avoid property, wherein the agent
must reach a goal within a time limit while avoiding collision
with a hazard up until the goal is reached. Such an objec-
tive is standard within the control and verification literature,
and indeed can be used to model many real-world problems.
For completeness, we provide the LTL formula and robust-
ness metric for the time-bounded reach-avoid property in Ap-
pendix E.1, with a reminder that SPoRt can be used over gen-
eral LTL specifications.

We implemented the environment in Safety Gymnasium [Ji
et al., 2023] using a point agent and with the goal and hazard
being green and red circular regions, respectively (cf. Figure
1 and 2). This setup was chosen since it allows for easy inter-
pretability of results while remaining a reasonable abstraction
of a real robotic navigation task using a skid-steering mobile
robot with a LiDAR sensor; a description of the MDP obser-
vation and action spaces can be found in Appendix E.2. The
episode is reset if the agent enters the hazard or goal sets, or
if the maximum episode length is exceeded. To mitigate the
exponential relationship between maximum episode length T
and bound ϵtask, we reduced the control frequency ten-fold
from the default (up to 100 simulation steps per environment
step), in-keeping with the observation in Section 4 that SPoRt
is best suited to control problems with low T .
πbase was trained so as to achieve a high probability of

satisfying the property (reach-avoid), while remaining fairly
exploratory. This was achieved by training πbase using Soft

Actor-Critic (SAC) [Haarnoja et al., 2018] with a sparse re-
ward scheme (corresponding to property satisfaction across
an entire episode). Alternative synthesis schemes are possi-
ble. Further details on training πbase can be found in Ap-
pendix E.3. Once trained, around N = 10000 scenarios were
collected to determine ϵbase with high confidence (β = 1e−7,
see [Campi and Garatti, 2018]) using Corollary 1. Note that
while training πbase the maximum episode length was set to
T = 100 yet by the end of training the average episode length
was much lower, at around T = 14. Thus, to keep the value
of ϵtask = ϵbaseα

T as low as possible, the maximum episode
length was reduced to T = 21 after training πbase (with ϵbase
computed using scenarios of this length). Further discussions
(including how SPoRt can be modified to do this automati-
cally) can be found in Appendix E.4.

For our case studies we trained πtask to reach the goal as
quickly as possible: accordingly, rtask was the standard dense
reward for reaching a goal used by Safety Gymnasium. No-
tice that the set task (and corresponding reward) clearly leads
to a potential violation of the property (reach-avoid) of inter-
est. We consider two separate cases, as follows:

Case 1: Pre-Trained Task Policy. πtask is trained sepa-
rately without any consideration for property violation. As a
result, under πtask the agent quickly drives directly towards
the goal with no hazard avoidance. This represents appli-
cations where πtask has been pre-trained in an environment
where safety is not critical (for example in a robotics simula-
tor) and we want to safely test it on the real environment (see
Section 5).

Case 2: Task Policy Trained Using Projected PPO. This
represents applications where we have πbase and ϵbase (as
from above) and now want to fine-tune our policy to be faster
(thus obtaining πtask), while maintaining an acceptable given
bound on property violation (see Section 6).

Note that we use the same πbase for both cases.

8 SPoRt Report: Results and Discussion

Both cases were tested for 1000 episodes at different values
of α (such that πproj = projΠα,πbase

(πtask)), ranging from
α = 1 (i.e. πproj = πbase) to the point where the empirical
violation rate exceeded a threshold. For Case 2, πtask was
trained until convergence at each value of α, prior to testing.
Further details on training πtask for both cases can be found
in Appendix E.3. Action seeding for each episode was con-
trolled across different values of α and across the different
cases, so all results depend on α and the training of πtask.
From our results we seek to answer the following questions
(Qs):

1. Does increasing α trade off safety for performance?
2. How does performance compare between Case 1 and 2?
3. How conservative is the prior bound ϵtask = ϵbaseα

T ?

Figure 1 presents sample distributions of episode trajecto-
ries for both cases over different values of α. In both cases,
we see that as α increases, the trajectories bend more tightly

(a)

(b)

Figure 1: Sample distributions of episode trajectories from the reach-avoid experiment using πproj for different values of α. (1a) Case 1
(pre-trained πtask). (1b) Case 2 (πtask trained using Projected PPO). Action seeding for each episode was controlled across different values
of α and across the different cases, so all results depend on α and the training of πtask.

around the hazard, suggesting a reduction in action variance,2
as well as an action mean that takes the agent closer to the
hazard. In fact, in Case 1 for α = 100, the agent’s mean
trajectory crosses the hazard. Thus increasing α is shown to
trade off safety for performance, answering Q1.

However, we can also appreciate the difference between
Case 1 and Case 2: while Case 1 produces an action mean
that drives the agent through the hazard for α = 100, Case
2 instead produces a more reduced action variance, while re-
taining an action mean that keeps the agent outside the haz-
ard, as expected. Thus, to answer Q2, we see that Case 2
allows us to provide better performance, whilst retaining a
‘better behaved’ (and indeed ‘safe’) πproj compared to Case
1; accordingly, we argue that since training πtask using Pro-
jected PPO deploys πproj during training, πtask learns to opti-
mize performance of πproj compared to naı̈vely training πtask

a priori with no consideration of how πproj will perform.
Figure 2 presents a more detailed view of the agent behav-

ior over an example episode for Case 2, for α = 5 (represent-
ing a compromise between safety and performance). Look-
ing at mean turning velocity over the episode, we see that
while both πbase and πtask drive the agent clockwise around
the hazard, πtask induces sharper turning, taking the agent
closer to the hazard and drawing a tighter, shorter curve while
maintaining the same or faster forward drive force. How-
ever, this sharper turning is constrained such that πproj al-
ways lies within the α = 5 level set (see Section 5). Note at
πtask applies a reduced forward drive force at the very start
of the episode compared to πbase, which makes sense given
the agent is initially pointing away from the goal, so πtask

2Recall we work with diagonal Gaussian policies, hence the con-
sideration of action mean and variance.

reduces episode length by first pointing the agent closer to
the agent before driving forward. Appendix E.5 provides a
similar analysis for Case 1.

Figure 3a presents violation probabilities over different
values of α for both cases. The most striking observation is
the conservativeness of prior bound ϵtask, which grows expo-
nentially from ϵbase = 0.009 at α = 1 to ϵtask = 1 at around
α = 1.25 (beyond which point the bound is no longer useful),
yet the posterior bounds on property violation (obtained by
applying Corollary 1 to the N = 1000 test samples) remain
at around 0.025 over this range. We do also see exponential
growth in the posterior bound for Case 1, but this happens
over a completely different scale (α = 1 to 100 rather than 1
to 1.25). The posterior bound for Case 2 remains at 0.025 for
even α = 100, suggesting much safer behavior compared to
Case 1 for the same α.

Figure 3b presents the mean and standard deviation episode
length for successful trajectories over different values of α
for both cases. For both we see a similar reduction in mean
and standard deviation as α increases until around α = 10, at
which point the mean plateaus (to around 12.0 at α = 100, for
14.3% total reduction) but standard deviation shrinks for Case
2 while the mean continues to decrease for Case 1 (to around
11.3 at α = 100, for 19.3% total reduction)); this comes at
the cost of substantially increased violation rate for Case 1,
shown by Figure 3a. Another important observation is that
while we know from Figure 3a that ϵtask is very conservative,
we do see a measurable (2.1%) reduction in mean episode
length for both cases from 14.0 at α = 1 (ϵtask = 0.009)
to around 13.7 at α = 1.12 (ϵtask = 0.1, a fairly sensible
(if high) value). Appendix E.5 provides the same figures but
zoomed in to the scale across which ϵtask ≤ 1.

Figure 2: Snapshots across an example episode of the reach-avoid experiment using πproj for Case 2 (πtask trained using Projected PPO) and
α = 5; the bottom plots present the action means at the corresponding time step, with the black contour depicting the α = 5 level set. Note
that positive mean turning velocity represents anticlockwise rotation. The halo above the agent is a visualization of its LiDAR observations
for the hazard and goal. See Appendix E.5 for Case 1 (pre-trained πtask).

(a) (b)

Figure 3: Results from the reach-avoid experiment for both Case 1 (pre-trained πtask) and 2 (πtask trained using Projected PPO). (3a)
Violation probabilities over different values of α. (3b) Mean and standard deviation episode length for successful trajectories for different
values of α. Action seeding for each episode was controlled across different values of α and across the different cases, so all results depend
on α and the training of πtask. The same figures but zoomed in to the scale across which ϵtask ≤ 1 can be found in Appendix E.5.

These observations further confirm our earlier answers to
Q1 and Q2, whilst now we also have an answer for Q3: the
prior bound can be very conservative, though it is possible to
see measurable improvement in performance while the bound
remains fairly sensible.

9 Limits to Sporting SPoRt
The most obvious limitation of SPoRt is the conservativeness
of the prior bound ϵtask = ϵbaseα

T , which prevents signif-
icant policy changes if the bound is to be used to guarantee
safety. This conservativeness also results in the limitation of
needing T to be as low as possible, making SPoRt unsuit-
able for applications where T is high (though we have seen
ways to mitigate this limitation). Another limitations include
the reliance on collecting many scenarios to obtain a useful
bound ϵbase, which may not be practical for some applica-
tions, as well as the requirement of stochastic policies (and,
ideally, a fairly exploratory πbase to achieve noticeable pol-
icy change). Despite these theoretical limits, we have dis-

played the usefulness of the end-to-end architecture of SPoRt
in meaningful simulation studies, which are promising for up-
coming real-world implementations of SPoRt.

10 Conclusions
We have presented novel theoretical results that provide a
prior bound on the probability of (safety) property violation
for a task-specific policy in a model-free, episodic RL setup,
based on a new ‘maximum policy ratio’ established vis-a-vis
a given ‘safe’ base policy. Based on these bounds, we have
presented an end-to-end architecture, SPoRt, which combines
a data-driven approach for obtaining such a bound for the
base policy with a projection-based approach for training the
task-specific policy while maintaining a user-specified prior
bound on (safety) property violation, thus trading off safety
guarantees and task-specific performance. In view of promis-
ing experimental simulation results, future work will focus on
reducing the conservativeness of the prior bound, to improve
its utility in practical real-world applications.

Acknowledgments
This work was supported by the EPSRC Centre for Doctoral
Training in Autonomous Intelligent Machines and Systems
[EP/S024050/1].

References
[Achiam et al., 2017] Joshua Achiam, David Held, Aviv

Tamar, and Pieter Abbeel. Constrained policy optimiza-
tion. In Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 22–31. PMLR, 06–11
Aug 2017.

[Agrawal et al., 2018] Akshay Agrawal, Robin Verschueren,
Steven Diamond, and Stephen Boyd. A rewriting system
for convex optimization problems. Journal of Control and
Decision, 5(1):42–60, 2018.

[Alshiekh et al., 2018] Mohammed Alshiekh, Roderick
Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. Safe reinforcement learning
via shielding. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1), April 2018.

[Altman, 2021] Eitan Altman. Constrained Markov Deci-
sion Processes: Stochastic Modeling. Routledge, Boca
Raton, 1 edition, December 2021.

[Calafiore and Campi, 2006] G.C. Calafiore and M.C.
Campi. The scenario approach to robust control design.
IEEE Transactions on Automatic Control, 51(5):742–753,
May 2006.

[Campi and Garatti, 2008] M. C. Campi and S. Garatti.
The exact feasibility of randomized solutions of uncer-
tain convex programs. SIAM Journal on Optimization,
19(3):1211–1230, 2008.

[Campi and Garatti, 2010] M. C. Campi and S. Garatti. A
sampling-and-discarding approach to chance-constrained
optimization: Feasibility and optimality. Journal of Opti-
mization Theory and Applications, 148(2):257–280, Octo-
ber 2010.

[Campi and Garatti, 2018] Marco C Campi and Simone
Garatti. Introduction to the Scenario Approach. Society
for Industrial and Applied Mathematics, Philadelphia, PA,
November 2018.

[Chow et al., 2018] Yinlam Chow, Ofir Nachum, Edgar
Duenez-Guzman, and Mohammad Ghavamzadeh. A
Lyapunov-based Approach to Safe Reinforcement Learn-
ing. In Advances in Neural Information Processing Sys-
tems, volume 31. Curran Associates, Inc., 2018.

[Chu et al., 2020] Tianshu Chu, Jie Wang, Lara Codeca, and
Zhaojian Li. Multi-Agent Deep Reinforcement Learning
for Large-Scale Traffic Signal Control. IEEE Transactions
on Intelligent Transportation Systems, 21(3):1086–1095,
March 2020.

[Diamond and Boyd, 2016] Steven Diamond and Stephen
Boyd. CVXPY: A Python-embedded modeling language
for convex optimization. Journal of Machine Learning Re-
search, 17(83):1–5, 2016.

[Haarnoja et al., 2018] Tuomas Haarnoja, Aurick Zhou,
Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research,
pages 1856–1865. PMLR, 2018.

[Hasanbeig et al., 2023] Hosein Hasanbeig, Daniel Kroen-
ing, and Alessandro Abate. Certified reinforcement
learning with logic guidance. Artificial Intelligence,
322:103949, September 2023.

[Hsu et al., 2024] Kai-Chieh Hsu, Haimin Hu, and Jaime F.
Fisac. The safety filter: A unified view of safety-critical
control in autonomous systems. Annual Review of Con-
trol, Robotics, and Autonomous Systems, 7(1):47–72, July
2024.

[Hwangbo et al., 2019] Jemin Hwangbo, Joonho Lee,
Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis,
Vladlen Koltun, and Marco Hutter. Learning agile and
dynamic motor skills for legged robots. Science Robotics,
4(26):eaau5872, January 2019.

[Isele et al., 2018] David Isele, Alireza Nakhaei, and Kikuo
Fujimura. Safe Reinforcement Learning on Autonomous
Vehicles. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1–6, Madrid,
October 2018. IEEE.

[Ji et al., 2023] Jiaming Ji, Borong Zhang, Jiayi Zhou, Xue-
hai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yi-
fan Zhong, Josef Dai, and Yaodong Yang. Safety gymna-
sium: A unified safe reinforcement learning benchmark.
In Thirty-seventh Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track, 2023.

[Kober and Peters, 2014] Jens Kober and Jan Peters. Rein-
forcement Learning in Robotics: A Survey, volume 97
of Springer Tracts in Advanced Robotics, page 9–67.
Springer International Publishing, Cham, 2014.

[Konighofer et al., 2023] Bettina Konighofer, Julian Rudolf,
Alexander Palmisano, Martin Tappler, and Roderick
Bloem. Online shielding for reinforcement learn-
ing. Innovations in Systems and Software Engineering,
19(4):379–394, December 2023.

[Lee et al., 2023] Hyosun Lee, Yohee Han, and Youngchan
Kim. Reinforcement learning for traffic signal control: In-
corporating a virtual mesoscopic model for depicting over-
saturated traffic conditions. Engineering Applications of
Artificial Intelligence, 126:107005, November 2023.

[Li et al., 2022] Guofa Li, Yifan Yang, Shen Li, Xingda Qu,
Nengchao Lyu, and Shengbo Eben Li. Decision making
of autonomous vehicles in lane change scenarios: Deep
reinforcement learning approaches with risk awareness.
Transportation Research Part C: Emerging Technologies,
134:103452, January 2022.

[Ma et al., 2021] Xiaobai Ma, Jiachen Li, Mykel J. Kochen-
derfer, David Isele, and Kikuo Fujimura. Reinforce-
ment Learning for Autonomous Driving with Latent State

Inference and Spatial-Temporal Relationships. In 2021
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 6064–6071, Xi’an, China, May 2021.
IEEE.

[Mason and Grijalva, 2019] Karl Mason and Santiago Gri-
jalva. A review of reinforcement learning for autonomous
building energy management. Computers & Electrical En-
gineering, 78:300–312, 2019.

[Milosevic et al., 2024] Nikola Milosevic, Johannes Müller,
and Nico Scherf. Embedding Safety into RL: A New Take
on Trust Region Methods. arXiv, November 2024.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In 18th Annual Symposium on Foundations of Computer
Science (sfcs 1977), page 46–57, Providence, RI, USA,
September 1977. IEEE.

[Schulman et al., 2015] John Schulman, Sergey Levine,
Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages
1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv, 2017.

[Singh et al., 2022] Bharat Singh, Rajesh Kumar, and
Vinay Pratap Singh. Reinforcement learning in robotic ap-
plications: a comprehensive survey. Artificial Intelligence
Review, 55(2):945–990, February 2022.

[Soudjani and Abate, 2012] S. Esmaeil Zadeh Soudjani and
A. Abate. Higher order approximations for verification
of stochastic hybrid systems. In Proceedings of ATVA12,
LNCS 7561, pages 416–434. Springer Verlag, 2012.

[Soudjani and Abate, 2013] Sadegh Esmaeil Zadeh Soudjani
and Alessandro Abate. Adaptive and sequential gridding
procedures for the abstraction and verification of stochas-
tic processes. SIAM Journal on Applied Dynamical Sys-
tems, 12(2):921–956, January 2013.

[Soudjani and Abate, 2015] Sadegh Esmaeil Zadeh Soudjani
and Alessandro Abate. Quantitative approximation of the
probability distribution of a markov process by formal ab-
stractions. Logical Methods in Computer Science, Volume
11, Issue 3:1584, September 2015.

[Sutton and Barto, 2014] Richard S. Sutton and Andrew
Barto. Reinforcement learning: an introduction. Adap-
tive computation and machine learning. The MIT Press,
Cambridge, Massachusetts, nachdruck edition, 2014.

[Tempo et al., 2005] R Tempo, Giuseppe Calafiore, and Fab-
rizio Dabbene. Randomized algorithms for analysis and
control of uncertain systems. Communications and con-
trol engineering series. Springer, London, 2005.

[Vertovec and Margellos, 2023] Nikolaus Vertovec and
Kostas Margellos. State Aggregation for Distributed
Value Iteration in Dynamic Programming. IEEE Control
Systems Letters, 7:2269–2274, 2023.

[Vertovec et al., 2024] Nikolaus Vertovec, Kostas Margellos,
and Maria Prandini. Finite sample learning of moving tar-
gets. arXiv, August 2024.

[Vidyasagar, 2003] M. Vidyasagar. Learning and Generali-
sation. Springer London, 2003.

	Introduction
	Models, Tasks and Properties
	Safety as a Temporally-Extended Property

	Data-Driven Property Satisfaction
	Property Violation under Modified MDPs
	Constraint Satisfaction for a Task Policy
	Training for Tasks, Under a Bound on Property Violation
	SPoRt in Action: Case Studies
	SPoRt Report: Results and Discussion
	Limits to Sporting SPoRt
	Conclusions

