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Graph Aggregation Beyond Homophily Assumption
a more meaningful way to model networks

Abstract
Data aggregation onHomophily/Heterophily networks have caused

lots of discussions. Existing solutions are all based on Homophily

assumption that Heterophily edges are considered as noisy data and

need to be eliminated. In this paper, we first conduct a case study

to show data aggregation can not be affected by network types,

but aggregation strategies. Graph Weighted Aggregation (GWA)

method is proposed to perform aggregation with three attributes:

(1) node features, (2) network topology and (3) label information.

We also propose to use Riemannian manifold to model topological

networks with Ricci Curvature as the force of influence between

adjacent nodes. The three attributes together can formulate a strat-

egy to aggregate neighboring nodes through message passing on

Graph Neural Network (GNN). This methodology defines a more

meaningful way to aggregate neighboring nodes with no regard to

Homophily assumption. GWA algorithm outperforms the state-of-

the-art algorithms on benchmark datasets.

CCS Concepts
• Computing methodologies→ Neural networks.

Keywords
Graph Neural Networks, Homophily Assumption, Node Aggrega-

tion, Ricci Curvature
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1 Introduction
In datasets where both node-level features and inter-sample asso-

ciations (i.e., network/graph structures) are present, it is essential

to understand how feature values contribute to classification and

how topological relationships influence sample behavior. Feature

sets typically inform categorization or label prediction, while graph

topology reflects how a sample influences — or is influenced by —

its neighbors. In classification tasks, incorporating problem-specific

structural and feature-based patterns into the model can enhance

predictive accuracy and interpretability. This gives rise to a key

modeling challenge: how to systematically integrate both feature-

driven and structure-driven information into a unified learning

framework.
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In many real-world datasets, similarities among samples give

rise to graph structures, where edges are formed based on shared

characteristics. However, such structural connections often emerge

frommultiple overlapping features, and it is rarely evident which of

these features contribute primarily to edge formation versus those

that inform classification. Most existing models do not explicitly

disentangle these roles, treating all features as equally relevant to

both connectivity and categorization. This ambiguity complicates

the modeling process and can lead to suboptimal performance when

structure and label information are not well aligned.

In graph-based models, particularly GNNs, the representation

of each node is influenced not only by its own features but also

by the features of its neighbors. This results in feature smoothing

or aggregation, where a node’s feature vector is updated based

on a weighted combination of its neighbors’ features. Intuitively,

this reflects the principle that a node’s identity is shaped by its

local context — a notion often summarized as being defined by

one’s neighborhood. Formally, this process can be represented as

a weighted average, where the contribution of each neighboring

node is modulated by an associated influence or attention weight.

The adage “birds of a feather flock together” succinctly captures

the principle of homophily, which posits that nodes in many real-

world networks tend to connect to others with similar attributes

or labels [16]. While homophily is a foundational assumption in

numerous graph-based models, it often oversimplifies complex

network structures. In reality, connectedness and categorization

represent distinct phenomena: nodes from different categories can

and frequently do establish connections. Such networks, where

edges link nodes of differing labels, are referred to as heterophily

networks, highlighting the limitations of homophily-based assump-

tions.

Existing approaches to this challenge primarily focus on aggre-

gating information across varying levels of homophily. These levels

encompass structural features such as 1-hop, 2-hop, up to n-hop

connections, node-similaritymetrics like KNearest Neighbor (KNN)

links, and domain-specific connections, including same-category

edges. However, these methods typically rely on the homophily

assumption and attempt to reshape the graph structure to approxi-

mate homophilous networks, often by diminishing the influence of

heterophilous and random connections.

The challenge can also be reframed as uncertainty regarding

how positive and negative labels are defined within the feature

space; in many applications, the precise feature-label relationships

remain unknown. Existing methods often assume that all features

contribute solely to categorization and not to network connectivity.

Moreover, they presuppose that both feature sets and topological

properties align consistently with the labels and support catego-

rization. Consequently, these approaches seek to diminish or elimi-

nate edges connecting nodes with differing labels. However, such

assumptions overlook critical complexities and may undermine

modeling effectiveness.

1
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Our approach begins by selecting multiple feature sets, including

node attributes, topological properties, and label information. We

model node features and network topology independently, then

adjust neighbor influences by incorporating both their topological

characteristics and label information. This aggregation strategy

addresses the limitations of homophily-based methods by remov-

ing the homophily assumption and explicitly accommodating the

coexistence of homophily, heterophily, and random connections

within networks.

Our key contributions are summarized as follows:

• We conduct a case study simulating the graph aggregation

process, demonstrating that aggregation functions can exert

a greater influence on node representation than the underly-

ing network types.

• We introduce a dual-model approach to address graph ag-

gregation: one model leverages Ricci curvature to capture

topological structure, while the other employs Graph Neu-

ral Networks to represent node features. These models are

integrated via weighted aggregation implemented through

message passing in the GNN framework.

• We propose a modification to the Forman-Ricci curvature

formula to achieve stability, transforming the existing sec-

tional local Forman-Ricci curvature into a stabilized global

version. We prove that this modified curvature holds when

the network reaches a minimum energy state.

• Through extensive experiments on eight benchmark datasets,

we demonstrate that our method outperforms current state-

of- the-art approaches.

2 Related Work
Existing approaches to address the homophily and heterophily is-

sues in graph learning can be broadly categorized into three groups:

node selection, weighted aggregation, and label propagation.

2.1 Node Selection
SparseGAD [8] categorizes neighboring nodes into three groups:

homophilic, heterophilic, and irrelevant, utilizing only homophilic

neighbors for aggregation. This method was evaluated on three

datasets, achieving accuracies of 65.82% on YelpChi, 89.17% on

Amazon, and 5.98% on Reddit. H2GCN [31] proposes improvements

at multiple levels to address heterophily, including 1-hop, 2-hop,

and combined intermediate representation settings. The method

assumes that higher homophily ratios correlate with improved

performance. Similarly, ASP [6] constructs three views—original,

attribute, and global structure—and integrates them to mitigate

heterophily challenges.

2.2 Weighted Aggregation
Personalized Propagation of Neural Predictions (PPNP) and its effi-

cient variant APPNP [9] leverage the connection between Graph

Convolutional Networks (GCN) and PageRank to develop an en-

hanced propagation mechanism resembling a random walk. Evalu-

ations on CiteSeer yielded accuracies of 75.83% (PPNP) and 75.73%

(APPNP); on Cora, 85.29% and 85.09% respectively; and on PubMed,

APPNP achieved 79.73% while PPNP was inapplicable. General-

ized PageRank (GPR) [7] optimizes node features using learned

PageRank weights, reporting accuracies of 79.51% on Cora, 67.63%

on CiteSeer, 85.00% on PubMed, 67.48% on Chameleon, 49.93% on

Squirrel, 92.92% on Texas, and 91.36% on Cornell.

2.3 Label Propagation
Label Propagation (LPA) and Graph Convolutional Networks (GCN)

share a conceptual similarity in propagating labels and features,

respectively, via smoothing operations [29]. In LPA, a node’s label

is updated as a weighted average of its neighbors’ labels, while

in GCN, node representations are updated through a weighted

average of neighboring node features. This method demonstrated

competitive performance with accuracies of 88.5% on Cora, 78.7%

on CiteSeer, 87.8% on PubMed, 94.8% on Coauthor-CS, and 96.9%

on Coauthor-Phy.

2.4 Curvature-enhanced Network Analysis
Ricci curvature has been discretized for application to networks.

Ollivier-Ricci curvature [17], grounded in Riemannian geometry,

characterizes diffusion and stochastic properties but is computa-

tionally intensive for large-scale networks. Forman-Ricci curvature

[8], based on topological considerations, offers computational ef-

ficiency and relates to the classical Laplace operator, serving as

an abstract analog to the Bochner-Weitzenböck formula from dif-

ferential geometry. Additionally, Menger-Ricci and Haantjes-Ricci

curvatures [25], defined via spherical triangulation of networks,

share the topological foundation of Forman-Ricci curvature and are

likewise computationally tractable for practical use.

3 Motivating Observations
This case study is to test the impact of the topological aggregation

on different networks, such as Homophily, Heterophily and Random

networks.

Figure 1: Visualization of Sample sets in Gaussian Distribu-
tion with Two-Class Centers at [0, 1] and [1, 0]

Figure 2: Classification Performance on Three Sample Sets

We design a two-step process to present the effect of different

interactions between topological properties and feature sets.

2
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(a) Visualization of 4000 Vertices After 1-Hop Aggregation

(b) Visualization of 400 Vertices After 1-Hop Aggregation

Figure 3: Visualization of Three Types of Networks after Ag-
gregating Neighbors

Figure 4: Visualization of Classification Performance onDif-
ferent Types of Networks with Different Aggregation Meth-
ods

• Step 1: we generate two-class sample sets around the centers

(0, 1) and (1, 0), respectively, with Gaussian distribution N(0,

0.2), N(0, 0.5), and N(0, 0.7), as shown in Figure 1, and evaluate

data quality with both Linear Regression (LR) and Multi-

Layer Propagation (MLP) algorithms, as shown in Figure

2.

• Step 2: we generate three different networks, such as Ho-

mophily networks (which only connect samples within the

same classes), Heterophily networks (which only connect

samples in different classes), Random networks (which ran-

domly connect samples, no matter which class they belong

to). In Figure 3, we aggregate neighboring samples in differ-

ent networks through addition and visualize the results. In

Figure 4, we aggregate neighboring samples through both

addition and weighted addition by using node attributes,

topology information and label information, and evaluate

the data quality through node classification.

In Figure 2, when the standard deviation increases from 0.2 to 0.7,

data points in the two classes become more overlapped. Meanwhile,

the classification performance of both Linear Regression (LR) and

Multi-Layer Propagation (MLP) decreases, because, the overlapping

makes it more and more difficult to classify the two classes.

In Figure 3, when the aggregation through addition is conducted

on the three different types of networks, the values of the vertices

are changed in the same way that the values are converged to the

line rotating 45° from x axis in Quadrant I. When the number of

samples increases from 400 to 4000, the values are converged faster.

Based on the visualization, the aggregation strategy of data addition

can not differentiate the characteristics of the two classes.

In Figure 4, LR and MLP use the same aggregation function and

performs almost the same, but GWA uses a different aggregation

function which considers the combine effect of node information,

topological information and the label information. GWA performs

better than LR andMLP on different network types on all the sample

sets. The accuracy of LR and MLP decreases from 90% to 50%, when

3
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(a) Riemannian Surfaces of Different Genera [4]

(b) Geometric Interpretation of Ricci Tensor [26]

Figure 5: Ricci Curvature on Riemannian Manifold

standard deviation increases from 0.2 to 0.7; the accuracy of GWA

is between 80% to 90% on all the datasets.

Based on this observation in Figure 3 and Figure 4, we can draw

the conclusion that, for different network types, the effect of data

aggregation is related to the aggregation strategy. Aggregation

function formulates the interactions between neighboring nodes

through node information, topological information and label infor-

mation. It determines the contribute of individual features to node

classification.

4 Graph Weighted Aggregation (GWA)
A manifold defines a space that may be curved and have a compli-

cated topology, but in local regions looks just like Euclidian space

Rn [5]. Every patch of the manifold must have the dimensionality n

of the Euclidean space. If all the signs in the metric of the manifold

are positive, the space is called Riemannian Manifold; if there is a

single minus sign, it is called pseudo-Riemannian Manifold [5].

The Riemannian tensor has four indices [5]. At times, it is useful

to express a tensor as a sum of various pieces that are individually

easier to handle and may have direct physical interpretations. Ricci

tensor is formed by taking the contraction of the Riemann tensor.

For the curvature tensor formed from an arbitrary connection,

there are a number of independent contractions to take. The Ricci

tensor associated with the Christoffel connection is automatically

symmetric as a consequence of the symmetries of the Riemann

tensor. The trace of the Ricci tensor is the Ricci scalar (or curvature

scalar).

As shown in Figure 5, a point p in a manifold M (shown in Figure

5(a)) can be denoted as the vectors at p in the Tangent Space which

is merely an abstract vector space associated with each point p in a

Table 1: Descriptions of Symbols

Symbol Description

F (v) Forman-Ricci curvature for node v

we Weight associated with edge e

evi The edge containing vi
λv The eigenvalue of node v

manifold M. Tangent space is the set of all vectors at a single point

in spacetime. It is merely an abstract vector space associated with

each point p in a manifold M. After mapping Riemannian manifold

to Tangent Space, we can use Ricci tensor to compute the value of

the Ricci curvature. Ricci tensor encodes all the essential properties

of a Riemannian metric [5], as shown in Figure 5(b).

To apply Riemannian geometry to networks, there are several

discrete notions of Ricci curvature, such as Ollivier-Ricci curvature

[17] [18] [19] [20] Forman-Ricci curvature [8], Menger-Ricci cur-

vature [25], Haanjes- Ricci curvature [25], etc. Most of the notions

are sectional local discretization of Ricci curvature, each capture

different geometric properties and has different drawbacks because

of the lacking of the smoothness in network structure [25]. In other

words, in the network context, it is impossible to find the best cur-

vature because each notion can only code a subset of properties

for a certain task in a specific type of networks. In this work, we

choose Forman-Ricci curvature as the foundation.

Another challenge is the higher-order interactions in network

dynamics. Different networks [3] [1] [2] encodes the dynamics and

the evolutions through the interactions between cells in different

settings, which can be represented through graph properties such

as degree centrality, clustering coefficient, eigenvector centrality,

etc. The driving force of the interaction between vertices is Ricci

curvature which is flowing, merging and distributing through net-

work paths to all directions. However, for computation purpose,

we need to capture the stable state of the energy in the networks

for a particular moment so that we can systematically model the

properties of the networks for that moment.

Eigenvector centrality can be used tomeasure the influence of the

nodes in networks [11]. In adjacencymatrix, themore connections a

node has, the larger the eigenvalue. Different from degree centrality,

eigenvector centrality is computed through several iterations. With

the computation progresses, nodes with more connections start

gaining more importance until the values are stabilized when the

graphs or networks reach the lowest energy.

4.1 Modification of Forman-Ricci Curvature
Notations:We list the descriptions of the symbols in Table 1.

Forman-Ricci curvature in the 1-dimensional case, such as graphs

or networks, can be represented in the following formula [24]:

F (a) = wa (
wv1

wa
+
wv2

wa
−

∑
ev

1
∼a,ev

2
∼a
(

wv1

√
wawev

1

+
wv2

√
wawev

2

)) (1)

in which a is the edge under consideration, v1 and v2 are two
vertices, ev1

and ev2
are the set of edges containing v1 and v2,

respectively, after excluding the edge e.wa is the weight associated

4
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with edge a, we is the weight associated with edge e, and wv is

the weight associated with vertex v, such aswv1
is the weight for

vertex v1 andwv2
is the weight for vertex v2.

Forwa = we = wv = 1, F (a) = 4 −
∑
v∼a deд(v).

Theorem 1 (Edge Curvature). When graphs or networks become
stabilized and reach the lowest energy, the following formula holds.

F (a) = wa (λv1
+ λv2

) (2)

in which wa is the edge weight, v1 and v2 are the two ends of the
edge, and λv1

and λv2
are the eigenvalues of v1 and v2, respectively,

when the graphs or networks are converged.

Proof. For wv = λv , in which e ∈ E(G) and v ∈ V (G), λv is

the weight associated with vertex v when graphs/networks are

stabilized - the eigenvalue of node v, we have

F (a) = wa ∗ (λv1
+ λv2

) − wa ∗
∑
ev

1
∼a,ev

2
∼a (

λv
1√

wa∗wev
1

+

λv
2√

wa∗wev
2

)

= wa∗(λv1
−
∑
ev

1
∼a (

λv
1√

wa∗wev
1

)+wa∗(λv2
−
∑
ev

2
∼a

λv
2√

wa∗wev
2

)

Let дa (v) = wa ∗ (λNa (v) −
∑
eNa (v )∼a (

λNa (v )√wa∗weNa (v )

)). It rep-

resents the total forces v can receive from Neighboring vertices

through edge a, Na (v1) = v2 and Na (v2) = v1, then we have

F (a) = дa (v1) + дa (v2)

For дa (v) = wa ∗ (λNa (v) −
∑
eNa (v )∼a

(
λNa (v )√we ∗weNa (v )

)),∑
eNa (v )∼a (

λNa (v )√we ∗weNa (v )

) = 0. Because, when wv = λv , adja-

cency matrix is stabilized so that energy propagation is not under

consideration, the forces passing from higher-order vertices can be

ignored.

We have дa (v) = wa ∗ λNa (v), and then, F (a) = wa ∗ λNa (v2) +

wa ∗ λNa (v1) = wa (λv1
+ λv2

)

We can conclude F (a) = wa (λv1
+ λv2

) holds, when graphs or

networks reach the lowest energy. □

Theorem 2 (Node Curvature). When graphs or networks be-
come stabilized and reach the lowest energy, the following formula
holds.

F (vi ) =
∑

vj∼N (vi )

wvivj ∗ λvj (3)

in whichwvivj is the edge weight,vi andvj are the two ends of the
edge, and λvi and λvj are the eigenvalues of vi and vj , respectively.

Proof. F (vi ) =
∑
vj∼N (vi ) F (vj ). Based on Theorem 4.1, we

have F (vi ) =
∑
evi

F (evi ) −wevi ∗ λvi =
∑
vj∼N (vi )wvivj ∗ λvj

Especially, whenwvivj = 1, F (vi ) =
∑
vj∼N (vi ) λvj □

4.2 Message Passing
The classic GNN through message passing is the fundamental archi-

tecture to aggregate node information through network topology.

GWA algorithm improves GNN by introducing the momentum of

the network that the initial information in the network is consid-

ered as local information and the global information of the network

can be obtained by aggregating neighboring information, until the

network reaches the minimum energy.

Table 2: Data Description

Dataset Nodes Edges Features Classes

Cora 2708 5429 1433 7

PubMed 19717 44338 500 3

CiteSeer 3327 4732 3703 6

Cornell 183 298 1703 5

Wisconsin 251 515 1703 5

Texas 183 325 1703 5

Chameleon 2277 36101 2325 5

Squirrel 5201 217073 2089 5

During model training, the network continuously aggregates

neighboring information and gradually becomes stable, until the

network information is converged. As shown in Formula 4, M is

the weighted adjacency matrix which is generated through mes-

sage passing, W is the trainable weight matrix.Mp
is obtained by

propagating information from nodes that are p-hop away in the

network. C indicates the label information which is the class of

the node, E indicates eigenvalues of the nodes, A is the adjacency

matrix and X is the node information. Note that p is not allowed to

be 0. However, when p is 0, GWA is turned into a one-layer MLP.

Z = Mp ∗ X ∗W (4)

M = C ∗ E ∗A (5)

When the network becomes stable, one-time aggregation through

the topology structure can not make any changes. Because of this,

during prediction, as shown in Formula 6, we disregard the struc-

tural information and only use node information as the input.

Z = X ∗W (6)

5 Experiments
5.1 Experimental Setup
Datasets.We evaluated the performance of our methodology by

using eight real world datasets (as shown in Table 2) in which Cora

[15], CiteSeer [10] and PubMed [27] data are citation networks,

Chameleon and Squirrel data [23] are Wikipedia networks, and

Cornell, Wisconsin and Texas data
1
are webpage networks.

Baselines.We compared our methodology with ten baselines:

GCN [14], GAT [28], GraphSAGE [12], JK-Net [30], SSP [22], Geom-

GCN [21], GCN-LPA [29], U-GCN [13].

Parameter Settings. For all the methods, we use Cross Entropy

loss function, Adam optimizer with learning rate 0.01 and weight

decay 5e-4, and dropout rate 0.5. We used the same splits for train-

ing, testing and validation sets. We reported 10 times’ averages in

Table 2.

5.2 Node Classification
We evaluated the model performance with accuracy and compared

the performance of our methodology with other node classification

algorithms, as shown in Table 3. On all the 8 benchmark datasets,

1
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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GWA outperformed other algorithms. On Cora, GWA improved the

state-of-the-art accuracy by 18.48%. On PubMed, GWA improve the

state-of-the-art accuracy by 4.49%. On Citeseer, GWA improved the

state-of-the-art accuracy by 34.50%. On Cornell, GWA improved

the state-of-the-art accuracy by 37.84%. On Chameleon, GWA im-

proved the state-of-the-art accuracy by 69.59%. On Squirrel, GWA

improved the state-of-the-art accuracy by 116.98%. On Wisconsin,

GWA improved the state-of-the-art accuracy by 37.95%. On Texas,

GWA improved the state-of-the-art accuracy by 37.14%. We also

reported how much the accuracy was improved in comparison with

the state-of-the-art performance, as shown in Table 4.

Because MLP does not utilize the network topology to model the

data, MLP as the benchmark solution for node classification, was

also compared in the improvement of accuracy to the state-of-the-

art performance. MLP on the 8 benchmark datasets underperformed

the state-of-the-art solutions. On Cora, MLP underperformed the

state-of-the-art algorithm by 2.46 %. On PubMed, MLP underper-

formed the state-of-the-art algorithm by 3.19 %. On Citeseer, MLP

underperformed the state-of-the-art algorithm by 8.56 %. On Cor-

nell, MLP underperformed the state-of-the-art algorithm by 5.56 %.

On Chameleon, MLP underperformed the state-of-the-art algorithm

by 23.52 %. On Squirrel, MLP underperformed the state-of-the-art

algorithm by 14.39 %. OnWisconsin, MLP underperformed the state-

of-the-art algorithm by 8.14 %. On Texas, MLP underperformed the

state-of-the-art algorithm by 8.13 %. In average, MLP underper-

formed the state-of-the-art algorithm by 9.23 %. This difference was

caused by the utilization of the topology structure in data modeling.

6 Limitation
This model can be applied to the networks on which node features

can be influenced by the context, such as text, relationships, etc.

When there is information exchange through the information chan-

nels, certain node features can be updated through the information

exchange. Some node features can not be aggregated, such as date

of birth, etc.

7 Conclusion
We proposed a weighted aggregation algorithm - GWA. We ex-

tended Forman-Ricci curvature theory and use graph properties

to compute Forman-Ricci curvature in social networks. We tested

GWA on synthetic data and eight real-world data sets to prove that

node information, the label information and network topology can

be used to define an aggregation strategy for social networks. In

comparison with the state-of-the-art homophily-heterophily solu-

tions, GWA outperforms the state-of-the-art solutions on the eight

benchmark data sets.
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Table 3: Model Accuracy (Percentage) on 8 Datasets (The best performance is bolded in red and the second one in black)

Methods Cora PubMed Citeseer Cornell Chameleon Squirrel Wisconsin Texas

GCN 82.93 83.29 73.12 46.51 52.32 33.10 47.73 52.71

GAT 83.13 84.42 72.04 48.06 51.38 32.27 46.59 49.61

SSP 81.08 79.50 71.13 55.04 21.87 19.72 49.37 55.04

JK-Net 81.27 86.15 71.74 52.71 53.95 33.51 48.30 51.94

Graph-Sage 82.20 83.03 71.41 53.49 42.29 26.89 56.82 53.49

Geom-GCN 74.27 83.49 73.79 54.26 38.66 32.22 53.41 64.34

GCN-LPA 82.33 85.83 72.29 49.61 52.69 33.48 50.57 48.84

U-GCN 84.00 85.22 74.08 69.77 54.07 34.39 69.89 71.72
MLP 63.33 83.08 67.74 65.89 41.35 29.44 64.20 65.89

GWA 99.52 89.70 99.64 96.17 91.70 74.62 96.41 98.36

Table 4: Improvement of Benchmark and GWAModels in Comparison with the State-of-the-art Accuracy (Percentage)

Methods Cora PubMed Citeseer Cornell Chameleon Squirrel Wisconsin Texas

MLP -2.07 -2.75 -6.34 -3.88 -12.72 -4.95 -5.69 -5.83

GWA 15.52 3.87 25.56 26.40 37.63 40.23 26.52 26.64
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