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Graph Aggregation Beyond Homophily Assumption

a more meaningful way to model networks

Abstract

Data aggregation on Homophily/Heterophily networks have caused
lots of discussions. Existing solutions are all based on Homophily
assumption that Heterophily edges are considered as noisy data and
need to be eliminated. In this paper, we first conduct a case study
to show data aggregation can not be affected by network types,
but aggregation strategies. Graph Weighted Aggregation (GWA)
method is proposed to perform aggregation with three attributes:
(1) node features, (2) network topology and (3) label information.
We also propose to use Riemannian manifold to model topological
networks with Ricci Curvature as the force of influence between
adjacent nodes. The three attributes together can formulate a strat-
egy to aggregate neighboring nodes through message passing on
Graph Neural Network (GNN). This methodology defines a more
meaningful way to aggregate neighboring nodes with no regard to
Homophily assumption. GWA algorithm outperforms the state-of-
the-art algorithms on benchmark datasets.
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1 Introduction

In datasets where both node-level features and inter-sample asso-
ciations (i.e., network/graph structures) are present, it is essential
to understand how feature values contribute to classification and
how topological relationships influence sample behavior. Feature
sets typically inform categorization or label prediction, while graph
topology reflects how a sample influences — or is influenced by —
its neighbors. In classification tasks, incorporating problem-specific
structural and feature-based patterns into the model can enhance
predictive accuracy and interpretability. This gives rise to a key
modeling challenge: how to systematically integrate both feature-
driven and structure-driven information into a unified learning
framework.
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In many real-world datasets, similarities among samples give
rise to graph structures, where edges are formed based on shared
characteristics. However, such structural connections often emerge
from multiple overlapping features, and it is rarely evident which of
these features contribute primarily to edge formation versus those
that inform classification. Most existing models do not explicitly
disentangle these roles, treating all features as equally relevant to
both connectivity and categorization. This ambiguity complicates
the modeling process and can lead to suboptimal performance when
structure and label information are not well aligned.

In graph-based models, particularly GNNs, the representation
of each node is influenced not only by its own features but also
by the features of its neighbors. This results in feature smoothing
or aggregation, where a node’s feature vector is updated based
on a weighted combination of its neighbors’ features. Intuitively,
this reflects the principle that a node’s identity is shaped by its
local context — a notion often summarized as being defined by
one’s neighborhood. Formally, this process can be represented as
a weighted average, where the contribution of each neighboring
node is modulated by an associated influence or attention weight.

The adage “birds of a feather flock together” succinctly captures
the principle of homophily, which posits that nodes in many real-
world networks tend to connect to others with similar attributes
or labels [16]. While homophily is a foundational assumption in
numerous graph-based models, it often oversimplifies complex
network structures. In reality, connectedness and categorization
represent distinct phenomena: nodes from different categories can
and frequently do establish connections. Such networks, where
edges link nodes of differing labels, are referred to as heterophily
networks, highlighting the limitations of homophily-based assump-
tions.

Existing approaches to this challenge primarily focus on aggre-
gating information across varying levels of homophily. These levels
encompass structural features such as 1-hop, 2-hop, up to n-hop
connections, node-similarity metrics like K Nearest Neighbor (KNN)
links, and domain-specific connections, including same-category
edges. However, these methods typically rely on the homophily
assumption and attempt to reshape the graph structure to approxi-
mate homophilous networks, often by diminishing the influence of
heterophilous and random connections.

The challenge can also be reframed as uncertainty regarding
how positive and negative labels are defined within the feature
space; in many applications, the precise feature-label relationships
remain unknown. Existing methods often assume that all features
contribute solely to categorization and not to network connectivity.
Moreover, they presuppose that both feature sets and topological
properties align consistently with the labels and support catego-
rization. Consequently, these approaches seek to diminish or elimi-
nate edges connecting nodes with differing labels. However, such
assumptions overlook critical complexities and may undermine
modeling effectiveness.
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Our approach begins by selecting multiple feature sets, including
node attributes, topological properties, and label information. We
model node features and network topology independently, then
adjust neighbor influences by incorporating both their topological
characteristics and label information. This aggregation strategy
addresses the limitations of homophily-based methods by remov-
ing the homophily assumption and explicitly accommodating the
coexistence of homophily, heterophily, and random connections
within networks.

Our key contributions are summarized as follows:

e We conduct a case study simulating the graph aggregation
process, demonstrating that aggregation functions can exert
a greater influence on node representation than the underly-
ing network types.

e We introduce a dual-model approach to address graph ag-
gregation: one model leverages Ricci curvature to capture
topological structure, while the other employs Graph Neu-
ral Networks to represent node features. These models are
integrated via weighted aggregation implemented through
message passing in the GNN framework.

e We propose a modification to the Forman-Ricci curvature
formula to achieve stability, transforming the existing sec-
tional local Forman-Ricci curvature into a stabilized global
version. We prove that this modified curvature holds when
the network reaches a minimum energy state.

o Through extensive experiments on eight benchmark datasets,
we demonstrate that our method outperforms current state-
of- the-art approaches.

2 Related Work

Existing approaches to address the homophily and heterophily is-
sues in graph learning can be broadly categorized into three groups:
node selection, weighted aggregation, and label propagation.

2.1 Node Selection

SparseGAD [8] categorizes neighboring nodes into three groups:
homophilic, heterophilic, and irrelevant, utilizing only homophilic
neighbors for aggregation. This method was evaluated on three
datasets, achieving accuracies of 65.82% on YelpChi, 89.17% on
Amazon, and 5.98% on Reddit. H2GCN [31] proposes improvements
at multiple levels to address heterophily, including 1-hop, 2-hop,
and combined intermediate representation settings. The method
assumes that higher homophily ratios correlate with improved
performance. Similarly, ASP [6] constructs three views—original,
attribute, and global structure—and integrates them to mitigate
heterophily challenges.

2.2 Weighted Aggregation

Personalized Propagation of Neural Predictions (PPNP) and its effi-
cient variant APPNP [9] leverage the connection between Graph
Convolutional Networks (GCN) and PageRank to develop an en-
hanced propagation mechanism resembling a random walk. Evalu-
ations on CiteSeer yielded accuracies of 75.83% (PPNP) and 75.73%
(APPNP); on Cora, 85.29% and 85.09% respectively; and on PubMed,
APPNP achieved 79.73% while PPNP was inapplicable. General-
ized PageRank (GPR) [7] optimizes node features using learned

PageRank weights, reporting accuracies of 79.51% on Cora, 67.63%
on CiteSeer, 85.00% on PubMed, 67.48% on Chameleon, 49.93% on
Squirrel, 92.92% on Texas, and 91.36% on Cornell.

2.3 Label Propagation

Label Propagation (LPA) and Graph Convolutional Networks (GCN)
share a conceptual similarity in propagating labels and features,
respectively, via smoothing operations [29]. In LPA, a node’s label
is updated as a weighted average of its neighbors’ labels, while
in GCN, node representations are updated through a weighted
average of neighboring node features. This method demonstrated
competitive performance with accuracies of 88.5% on Cora, 78.7%
on CiteSeer, 87.8% on PubMed, 94.8% on Coauthor-CS, and 96.9%
on Coauthor-Phy.

2.4 Curvature-enhanced Network Analysis

Ricci curvature has been discretized for application to networks.
Ollivier-Ricci curvature [17], grounded in Riemannian geometry,
characterizes diffusion and stochastic properties but is computa-
tionally intensive for large-scale networks. Forman-Ricci curvature
[8], based on topological considerations, offers computational ef-
ficiency and relates to the classical Laplace operator, serving as
an abstract analog to the Bochner-Weitzenb6ck formula from dif-
ferential geometry. Additionally, Menger-Ricci and Haantjes-Ricci
curvatures [25], defined via spherical triangulation of networks,
share the topological foundation of Forman-Ricci curvature and are
likewise computationally tractable for practical use.

3 Motivating Observations

This case study is to test the impact of the topological aggregation
on different networks, such as Homophily, Heterophily and Random
networks.

N(0,02) N, 0.5) N0, 0.7)

Figure 1: Visualization of Sample sets in Gaussian Distribu-
tion with Two-Class Centers at [0, 1] and [1, 0]

Ni0, 02) i N, 0.5) . N0, 0.7)
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Figure 2: Classification Performance on Three Sample Sets

We design a two-step process to present the effect of different
interactions between topological properties and feature sets.
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(b) Visualization of 400 Vertices After 1-Hop Aggregation

Figure 3: Visualization of Three Types of Networks after Ag-

gregating Neighbors
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Figure 4: Visualization of Classification Performance on Dif-
ferent Types of Networks with Different Aggregation Meth-
ods

e Step 1: we generate two-class sample sets around the centers
(0, 1) and (1, 0), respectively, with Gaussian distribution N(0,
0.2),N(0, 0.5), and N(0, 0.7), as shown in Figure 1, and evaluate
data quality with both Linear Regression (LR) and Multi-
Layer Propagation (MLP) algorithms, as shown in Figure
2.

e Step 2: we generate three different networks, such as Ho-
mophily networks (which only connect samples within the
same classes), Heterophily networks (which only connect
samples in different classes), Random networks (which ran-
domly connect samples, no matter which class they belong
to). In Figure 3, we aggregate neighboring samples in differ-
ent networks through addition and visualize the results. In
Figure 4, we aggregate neighboring samples through both
addition and weighted addition by using node attributes,
topology information and label information, and evaluate
the data quality through node classification.

In Figure 2, when the standard deviation increases from 0.2 to 0.7,
data points in the two classes become more overlapped. Meanwhile,
the classification performance of both Linear Regression (LR) and
Multi-Layer Propagation (MLP) decreases, because, the overlapping
makes it more and more difficult to classify the two classes.

In Figure 3, when the aggregation through addition is conducted
on the three different types of networks, the values of the vertices
are changed in the same way that the values are converged to the
line rotating 45° from x axis in Quadrant I. When the number of
samples increases from 400 to 4000, the values are converged faster.
Based on the visualization, the aggregation strategy of data addition
can not differentiate the characteristics of the two classes.

In Figure 4, LR and MLP use the same aggregation function and
performs almost the same, but GWA uses a different aggregation
function which considers the combine effect of node information,
topological information and the label information. GWA performs
better than LR and MLP on different network types on all the sample
sets. The accuracy of LR and MLP decreases from 90% to 50%, when
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(a) Riemannian Surfaces of Different Genera [4]

P

(b) Geometric Interpretation of Ricci Tensor [26]

Figure 5: Ricci Curvature on Riemannian Manifold

standard deviation increases from 0.2 to 0.7; the accuracy of GWA
is between 80% to 90% on all the datasets.

Based on this observation in Figure 3 and Figure 4, we can draw
the conclusion that, for different network types, the effect of data
aggregation is related to the aggregation strategy. Aggregation
function formulates the interactions between neighboring nodes
through node information, topological information and label infor-
mation. It determines the contribute of individual features to node
classification.

4 Graph Weighted Aggregation (GWA)

A manifold defines a space that may be curved and have a compli-
cated topology, but in local regions looks just like Euclidian space
R™ [5]. Every patch of the manifold must have the dimensionality n
of the Euclidean space. If all the signs in the metric of the manifold
are positive, the space is called Riemannian Manifold; if there is a
single minus sign, it is called pseudo-Riemannian Manifold [5].

The Riemannian tensor has four indices [5]. At times, it is useful
to express a tensor as a sum of various pieces that are individually
easier to handle and may have direct physical interpretations. Ricci
tensor is formed by taking the contraction of the Riemann tensor.
For the curvature tensor formed from an arbitrary connection,
there are a number of independent contractions to take. The Ricci
tensor associated with the Christoffel connection is automatically
symmetric as a consequence of the symmetries of the Riemann
tensor. The trace of the Ricci tensor is the Ricci scalar (or curvature
scalar).

As shown in Figure 5, a point p in a manifold M (shown in Figure
5(a)) can be denoted as the vectors at p in the Tangent Space which
is merely an abstract vector space associated with each point p in a

Table 1: Descriptions of Symbols

Symbol Description

F(v)  Forman-Ricci curvature for node v
We Weight associated with edge e
ey, The edge containing v;

Ao The eigenvalue of node v

manifold M. Tangent space is the set of all vectors at a single point
in spacetime. It is merely an abstract vector space associated with
each point p in a manifold M. After mapping Riemannian manifold
to Tangent Space, we can use Ricci tensor to compute the value of
the Ricci curvature. Ricci tensor encodes all the essential properties
of a Riemannian metric [5], as shown in Figure 5(b).

To apply Riemannian geometry to networks, there are several
discrete notions of Ricci curvature, such as Ollivier-Ricci curvature
[17] [18] [19] [20] Forman-Ricci curvature [8], Menger-Ricci cur-
vature [25], Haanjes- Ricci curvature [25], etc. Most of the notions
are sectional local discretization of Ricci curvature, each capture
different geometric properties and has different drawbacks because
of the lacking of the smoothness in network structure [25]. In other
words, in the network context, it is impossible to find the best cur-
vature because each notion can only code a subset of properties
for a certain task in a specific type of networks. In this work, we
choose Forman-Ricci curvature as the foundation.

Another challenge is the higher-order interactions in network
dynamics. Different networks [3] [1] [2] encodes the dynamics and
the evolutions through the interactions between cells in different
settings, which can be represented through graph properties such
as degree centrality, clustering coefficient, eigenvector centrality,
etc. The driving force of the interaction between vertices is Ricci
curvature which is flowing, merging and distributing through net-
work paths to all directions. However, for computation purpose,
we need to capture the stable state of the energy in the networks
for a particular moment so that we can systematically model the
properties of the networks for that moment.

Eigenvector centrality can be used to measure the influence of the
nodes in networks [11]. In adjacency matrix, the more connections a
node has, the larger the eigenvalue. Different from degree centrality,
eigenvector centrality is computed through several iterations. With
the computation progresses, nodes with more connections start
gaining more importance until the values are stabilized when the
graphs or networks reach the lowest energy.

4.1 Modification of Forman-Ricci Curvature

Notations: We list the descriptions of the symbols in Table 1.
Forman-Ricci curvature in the 1-dimensional case, such as graphs
or networks, can be represented in the following formula [24]:

F@) =wa(t2+ 22— ) () (1)

Wa W WaW,
@ ey ~a,eq~a VWaWe,,  \[WaWe,,

in which a is the edge under consideration, v; and v are two
vertices, ey, and ey, are the set of edges containing vy and vy,
respectively, after excluding the edge e. w, is the weight associated
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with edge a, we is the weight associated with edge e, and wy, is
the weight associated with vertex v, such as wy, is the weight for
vertex v and wy, is the weight for vertex vy.

For wg = we = wy = 1,F(a) =4 — 3,4 deg(v).

THEOREM 1 (EDGE CURVATURE). When graphs or networks become
stabilized and reach the lowest energy, the following formula holds.

F(a) = wa(Ao, + Ao,) @

in which wg is the edge weight, v1 and vy are the two ends of the
edge, and Ay, and A, are the eigenvalues of v1 and vy, respectively,
when the graphs or networks are converged.

ProoF. For wy, = Ay, in which e € E(G) and v € V(G), 4, is
the weight associated with vertex v when graphs/networks are
stabilized - the eigenvalue of node v, we have

2
F(a) = wq = (Ay; + Ayy) — wq * Zev1~a,evz~a(\/wa++ev +
1
Ao,

VWa*Weq,, )
A‘u Av
= Wa*()vul_Zevl~a(W_)+Wa*(/lvg_2502~a \/W*—fvz)
(21 a e

ANg(v)

Let ga(v) = wa * (AN, (0) = ZeNa(v>~a(—m)). It rep-
resents the total forces v can receive from Neighboring vertices
through edge a, Ny(v1) = v2 and Ng(v2) = o1, then we have
F(a) = ga(v1) + ga(v2)

ANa(v) ))

For gq(v) = wq * (ANu(v) - ZeNu(v%a(\/WN()

ANg()

ZENH(U)NQ(\/WW

cency matrix is stabilized so that energy propagation is not under
consideration, the forces passing from higher-order vertices can be
ignored.

We have g4(v) = wq * AN, (v), and then, F(a) = wq * AN, (0,) +
Wa * AN, (0y) = Wa(Ao, + 4o,)

We can conclude F(a) = wu(Ay, + Ay,) holds, when graphs or
networks reach the lowest energy. O

) = 0. Because, when w, = A, adja-

THEOREM 2 (NoDE CURVATURE). When graphs or networks be-
come stabilized and reach the lowest energy, the following formula
holds.

F(v;) = Z Wo,v; * )'vj ®3)

vj~N(v;)
in whichwy, v, is the edge weight, v; and vj are the two ends of the
edge, and Ay, and )y, are the eigenvalues of v; and vj, respectively.

Proor. F(v;) = Zvj~N(v,~) F(vj). Based on Theorem 4.1, we
have F(v;) = Zevi F(ey,) - We,,; * Ay, = Zvij(vi) Wo,ov; * /10]-
Especially, when wo,o; = 1, F(vi) = 24 ~N(v;) Av; o

4.2 Message Passing

The classic GNN through message passing is the fundamental archi-
tecture to aggregate node information through network topology.
GWA algorithm improves GNN by introducing the momentum of
the network that the initial information in the network is consid-
ered as local information and the global information of the network
can be obtained by aggregating neighboring information, until the
network reaches the minimum energy.

Conference’17, July 2017, Washington, DC, USA

Table 2: Data Description

Dataset Nodes Edges Features Classes
Cora 2708 5429 1433 7
PubMed 19717 44338 500 3
CiteSeer 3327 4732 3703 6
Cornell 183 298 1703 5
Wisconsin 251 515 1703 5
Texas 183 325 1703 5
Chameleon 2277 36101 2325 5
Squirrel 5201 217073 2089 5

During model training, the network continuously aggregates
neighboring information and gradually becomes stable, until the
network information is converged. As shown in Formula 4, M is
the weighted adjacency matrix which is generated through mes-
sage passing, W is the trainable weight matrix. M? is obtained by
propagating information from nodes that are p-hop away in the
network. C indicates the label information which is the class of
the node, E indicates eigenvalues of the nodes, A is the adjacency
matrix and X is the node information. Note that p is not allowed to
be 0. However, when p is 0, GWA is turned into a one-layer MLP.

Z=MP+X+W (4)

M=C*ExA (5)

When the network becomes stable, one-time aggregation through

the topology structure can not make any changes. Because of this,

during prediction, as shown in Formula 6, we disregard the struc-
tural information and only use node information as the input.

Z=X*W (6)

5 Experiments

5.1 Experimental Setup

Datasets. We evaluated the performance of our methodology by
using eight real world datasets (as shown in Table 2) in which Cora
[15], CiteSeer [10] and PubMed [27] data are citation networks,
Chameleon and Squirrel data [23] are Wikipedia networks, and
Cornell, Wisconsin and Texas data ! are webpage networks.

Baselines. We compared our methodology with ten baselines:
GCN [14], GAT [28], GraphSAGE [12], JK-Net [30], SSP [22], Geom-
GCN [21], GCN-LPA [29], U-GCN [13].

Parameter Settings. For all the methods, we use Cross Entropy
loss function, Adam optimizer with learning rate 0.01 and weight
decay 5e-4, and dropout rate 0.5. We used the same splits for train-
ing, testing and validation sets. We reported 10 times’ averages in
Table 2.

5.2 Node Classification

We evaluated the model performance with accuracy and compared
the performance of our methodology with other node classification
algorithms, as shown in Table 3. On all the 8 benchmark datasets,

https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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GWA outperformed other algorithms. On Cora, GWA improved the
state-of-the-art accuracy by 18.48%. On PubMed, GWA improve the
state-of-the-art accuracy by 4.49%. On Citeseer, GWA improved the
state-of-the-art accuracy by 34.50%. On Cornell, GWA improved
the state-of-the-art accuracy by 37.84%. On Chameleon, GWA im-
proved the state-of-the-art accuracy by 69.59%. On Squirrel, GWA
improved the state-of-the-art accuracy by 116.98%. On Wisconsin,
GWA improved the state-of-the-art accuracy by 37.95%. On Texas,
GWA improved the state-of-the-art accuracy by 37.14%. We also
reported how much the accuracy was improved in comparison with
the state-of-the-art performance, as shown in Table 4.

Because MLP does not utilize the network topology to model the
data, MLP as the benchmark solution for node classification, was
also compared in the improvement of accuracy to the state-of-the-
art performance. MLP on the 8 benchmark datasets underperformed
the state-of-the-art solutions. On Cora, MLP underperformed the
state-of-the-art algorithm by 2.46 %. On PubMed, MLP underper-
formed the state-of-the-art algorithm by 3.19 %. On Citeseer, MLP
underperformed the state-of-the-art algorithm by 8.56 %. On Cor-
nell, MLP underperformed the state-of-the-art algorithm by 5.56 %.
On Chameleon, MLP underperformed the state-of-the-art algorithm
by 23.52 %. On Squirrel, MLP underperformed the state-of-the-art
algorithm by 14.39 %. On Wisconsin, MLP underperformed the state-
of-the-art algorithm by 8.14 %. On Texas, MLP underperformed the
state-of-the-art algorithm by 8.13 %. In average, MLP underper-
formed the state-of-the-art algorithm by 9.23 %. This difference was
caused by the utilization of the topology structure in data modeling.

6 Limitation

This model can be applied to the networks on which node features
can be influenced by the context, such as text, relationships, etc.
When there is information exchange through the information chan-
nels, certain node features can be updated through the information
exchange. Some node features can not be aggregated, such as date
of birth, etc.

7 Conclusion

We proposed a weighted aggregation algorithm - GWA. We ex-
tended Forman-Ricci curvature theory and use graph properties
to compute Forman-Ricci curvature in social networks. We tested
GWA on synthetic data and eight real-world data sets to prove that
node information, the label information and network topology can
be used to define an aggregation strategy for social networks. In
comparison with the state-of-the-art homophily-heterophily solu-
tions, GWA outperforms the state-of-the-art solutions on the eight
benchmark data sets.
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697 Table 3: Model Accuracy (Percentage) on 8 Datasets (The best performance is bolded in red and the second one in black) 755
698 756
099 Methods Cora PubMed Citeseer Cornell Chameleon Squirrel Wisconsin Texas 757
:ZT GCN 82.93 83.29 73.12 46.51 52.32 33.10 47.73  52.71 :z
0 GAT 83.13 84.42 72.04 48.06 51.38 32.27 46.59 49.61 760
03 SSP 81.08 79.50 71.13 55.04 21.87 19.72 49.37  55.04 61
04 JK-Net 81.27 86.15 71.74 52.71 53.95 33.51 48.30 51.94 6
705 Graph-Sage 82.20 83.03 71.41 53.49 42.29 26.89 56.82  53.49 63
06 Geom-GCN  74.27 83.49 73.79 54.26 38.66 32.22 5341 64.34 -
07 GCN-LPA 82.33 85.83 72.29 49.61 52.69 33.48 50.57 48.84 765
708 U-GCN 84.00 85.22 74.08 69.77 54.07 34.39 69.89 71.72 266
00 MLP 63.33 83.08 67.74 65.89 41.35 29.44 64.20  65.89 67
10 GWA 99.52 89.70 99.64 96.17 91.70 74.62 96.41 98.36 768
711 769

Table 4: Improvement of Benchmark and GWA Models in Comparison with the State-of-the-art Accuracy (Percentage)

712 770

713 771
714 Methods Cora PubMed Citeseer Cornell Chameleon Squirrel Wisconsin Texas 772
e MLP  -2.07 -2.75 634 -3.88 -12.72 -4.95 -5.69  -5.83 e
e GWA  15.52 3.87 2556 26.40 37.63  40.23 2652 26.64 e
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