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Abstract

Link prediction systems (e.g. recommender systems) typically use graph topology as one of
their main sources of information. However, automorphic symmetries in graphs limit how
informative topology is for link prediction. We calculate hard upper bounds on how well
graph topology alone enables link prediction for a wide variety of real-world graphs. We
find that in the sparsest of these graphs the upper bounds are surprisingly low, thereby
demonstrating that prediction systems on sparse graph data are inherently limited and
require information in addition to the graph topology.

1 Introduction

Graph-based link prediction systems are widely used to recommend a wide variety of products and services.
Whenever a shopping website predicts what you will buy next based on what you and others like you have
previously bought, that’s link prediction. Whenever a social media network suggests that you might know
someone, that’s link prediction. Link prediction is the well-studied task of predicting connections between
entities amidst a network (aka “graph”) of entity-entity connections.

Usually, these recommendations are based on a combination of node features and the topology (i.e. the
link-structure) of the graph-data. One might assume that the node features or the topology contain suffi-
cient information for an ideal link prediction system using that information to perfectly select the missing
connections. However, we show this to be false for graph topology; whenever a graph possesses symmetries
(i.e. automorphisms) in its topology, then the graph’s topology does not contain enough information to
guarantee correct selection of the missing edges. This raises two foundational questions in machine learning
on graphs:

1. What are the inherent limits on a graph structure’s predictability?

2. Do contemporary systems approach these performance limits?

The goal of the present work is to help answer these questions. To do so, we investigate how much information
a graph’s topology alone can provide to a link prediction algorithm; that forms one kind of inherent limit on
a structure’s predictibility. In particular, we calculate hard upper limits on how well an algorithm using only
topology information can score in standard link prediction metrics (AUC and AUPR). Our upper bounds
hold for any and all link prediction algorithms and thus are bounds on the informativeness of the topology
data itself. Given these limits, we and others can begin to answer question 2 by comparing contemporary
link prediction systems’ scores to these upper bounds.

To calculate an upper bound that will hold regardless of the link prediction algorithm used, we calculate
an upper limit on the performance of an idealized algorithm presented with as much information about the
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Figure 1: Toy example graph with three held-out edges for what we call the known-topology link prediction
task. The link predictor knows that it must pick edges (a, b), (a, e), and (e, f), but does not know for certain
which nodes in the anonymized graph correspond to b, c, e, or f . In this case, there exist eight equally
plausible edge sets that would turn the anonymized graph into a graph isomorphic to the original. However,
only one of these eight is “correct” from the perspective of standard link prediction evaluation. Note that
each of these eight candidate edge sets correspond to a different interpretation of the node labels in the
anonymized graph.

solution as possible. Specifically, we imagine showing the algorithm the graph and the solution set of missing
edges; then we imagine removing or scrambling the nodes’ labels and asking the algorithm to predict the
solution on the re-labeled graph. We call the process of removing or randomly permuting the nodes’ labels
“anonymizing” the graph.

For example, consider the following scenario illustrated in Fig. 1: Imagine you are shown both a link
prediction task and the answer to the same task (i.e. the links one must predict); in Fig. 1, the solution
edges are (a, b), (a, e), and (e, f). Now imagine further that you are asked to perform link prediction on
an anonymized version of the same problem, then asked to predict which edges are missing. You know, for
instance, that you must select edge (e, f), but you do not know for certain which node is e nor which node
is f .

The anonymized graph is, by itself, effectively identical to the data that an algorithm would be given for
the regular link prediction task. We call the task of doing link prediction on the anonymized graph after
having seen the un-anonymized solution the known-topology link prediction task. As we hinted above, and as
Figure 1 shows, symmetries in the graph can render several possible edge-predictions structurally identical
and therefore equally valid. It is from these symmetries that performance is limited even on the known-
topology task.

Of course, in practice, most systems will perform much worse at the standard link prediction task than an
ideal algorithm could perform at the known-topology task. Any link prediction algorithm will have some
inherent, implicit modeling assumptions about the graph. For example, a simple model like triadic closure
assumes that the likelihood of an edge is proportionate to the number of triangles the edge would be involved
in (Bianconi et al. (2014); Klimek & Thurner (2013); Jin et al. (2001); Davidsen et al. (2002)). Expressed
in a Bayesian fashion, we can think of a link prediction algorithm as conditionalizing on evidence, where
the data the algorithm sees is its evidence and the algorithm’s inherent assumptions form its prior. One
could think about an algorithm performing the known-topology link prediction task as an algorithm doing
standard link prediction with a perfect prior (i.e. 100% confidence on the correct graph). We focus on the
known-topology link prediction task because it enables us to establish limits that exists in the data itself,
without making any assumptions about the link prediction algorithm.

After discussing some related work in Section 2 and defining our formalisms in Section 3, we discuss some
formal properties of link predictors as well as quantitative link prediction evaluation metrics (ROC and
AUPR) in Section 4. Section 5 provides a formula for taking any specific link prediction task (i.e. any
(graph, missing edge set) pair) and calculating the max possible scores a link predictor could achieve on the
known-topology version of the task, thereby establishing an upper bound on performance for the standard
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version of the task. We leave the proof that our formula gives the maximum score in the Appendix. In
Section 6 we introduce our experiments, which consist of calculating link prediction score limits for various
real-world graphs; this includes both our main known-topology task limit and various lower limits that
appear on the known-topology task when the link prediction algorithm only uses a subset of its available
information (a k-hop neighborhood) to predict whether a link will appear. Section 7 shows our results.
We find that on sparse graphs commonly used for link prediction, the limits are surprisingly low. Then in
Section 7.2 we observe how a famous graph neural network’s reported results are above the performance
limits and discuss how this is likely due to a common mistake in correctly measuring AUPR. Lastly, we
discuss ways to generalize our analysis in Section 8.

2 Related Work

2.1 Link Prediction

The link prediction task is widely studied, almost to the point of being ubiquitous for graph research. It
was introduced by Liben-Nowell & Kleinberg (2003). Given a graph, the task is to predict which edges (i.e.
links) might be missing, either because the data is incomplete or because more edges will appear in the
future.

Early models for link prediction tended to rely on certain assumptions, such as that of “triadic closure,” the
assumption that if A connects to B and B connects to C, then A is also likely to connect to C (Jin et al.
(2001); Davidsen et al. (2002); Klimek & Thurner (2013); Bianconi et al. (2014); Adamic & Adar (2003)).

Then, following the historical trend of machine learning in general, link prediction models grew in complexity
both in their features and in their classifiers (Al Hasan et al. (2006); Martínez et al. (2016)) until neural
networks eventually began to outperform other methods (Zhou et al. (2020); Wu et al. (2020)).

2.2 Predictability Limits

To our knowledge, this is the first work to quantify a maximal performance score that link predictors can
obtain on a given task. Other work in predictibility has focused on measures of predictibility distinct from
evaluation scores. For instance, Abeliuk et. al. study how the predictability of time-series data degrades as
the amount of data available decreases; they quantify predictability in terms of permutation entropy and
signal self-correlation, as well as actual prediction performance of specific models (Abeliuk et al. (2020)).
Permutation entropy has also been found to be useful to measure predictability in ecology and physics, and
self(auto)-correlation in finance (Abeliuk et al. (2020); Bandt & Pompe (2002); Garland et al. (2014); Lim
et al. (2013)).

Scholars have also analyzed predictability limits in other domains. For instance, some have used notions of
entropy to measure predictability limits on human travel (Lu et al. (2013); Song et al. (2010)) and disease
outbreaks (Scarpino & Petri (2019)). Predictability is related to system complexity and chaos (Boffetta
et al. (2002)). For instance, minute uncertainties on initial conditions can greatly limit one’s ability to make
accurate weather forecasts (Zhang et al. (2019)).

Others have done excellent work on the related but distinct case that the ground truth (i.e. correct output)
itself is uncertain or inherently fuzzy. For instance, in these sorts of settings one might need an alternate way
of scoring a classifier, such as Survey Equivalence (Resnick et al. (2021)). Rather than fuzzy ground-truth,
the present work focuses on cases where the correct output is clearly known during evaluation, but where
limits in predictibility come from symmetries within the input data.
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3 Formalisms

3.1 Graphs

We represent a graph G as G = (V , E) where V is the set of vertices (i.e. nodes) and E is the set of edges.
The edges are pairs of vertices. If the graph’s connections are considered to have a direction, we say that
E ⊆ V × V and that the graph’s non-edges are (V × V ) \ E. If the connections do not have a direction,
then the edges are unordered pairs: E ⊆ {{a, b} | (a, b) ∈ V × V }. However, for simplicity, it is standard to
always write (a, b) rather than {a, b} even when talking about undirected graphs. An edge of the form (a, a)
is called a self-loop.

3.2 Isomorphisms

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), we say that they are isomorphic if there exists a
way to align the two graphs’ vertices so that the structures overlap perfectly. Formally, G1 and G2 are
isomorphic (expressed as G1 ∼= G2) if there exists a bijection between the vertices f : V1 → V2 such that
(a, b) ∈ E1 ↔ (f(a), f(b)) ∈ E2. In this case the function f is called an isomorphism. In this paper, whenever
we refer to two graphs as being equivalent or identical we mean that they are isomorphic.

If f is an isomorphism between two graphs G1 and G2 we will sometimes denote this as G1 ∼=f G2.

3.3 Automorphism Orbits

Within the context of a single graph, the automorphism orbit of an object (i.e. a vertex or an edge) captures
its equivalence with other objects in the graph. Two objects are in the same orbit if and only if the data in
no way distinguishes between the two objects.

An automorphism of a graph is an isomorphism of the graph with itself. That is, an automorphism of a
graph G = (V , E) is a bijective function f : V → V such that:

(a, b) ∈ E ↔ (f(a), f(b)) ∈ E

The set of all automorphisms of a graph G form the automorphism group of the graph and is denoted Aut(G).

The automorphism orbits of a graph typically refer to collections of equivalent vertices; however, they can also
refer to collections of equivalent edges. The orbit of a vertex a in graph G is the set AOG(a) = {f(a) | f ∈
Aut(G)}. Similarly, the orbit of an edge e = (a, b) in graph G is the set AOG(e) = {(f(a), f(b)) | f ∈ Aut(G)}.
Note that a ∈ AOG(a) and e ∈ AOG(e) due to the trivial automorphism f(x) = x.

We can even consider the orbits of non-existent edges (i.e. non-edges). Let (a, b) /∈ E be an edge which is
not in G. We can still define the orbit of (a, b) to be {(f(a), f(b)) | f ∈ Aut(G)}. These orbits are collections
of edges not in G which are equivalent to each other given G.

3.4 Induced Subgraphs

Given graph G = (V , E) and a subset of the graph’s vertices S ⊆ V , we can define G’s induced subgraph
on S to be a graph with S as its nodeset and the edges in G that connect nodes in S. Formally: G(S) =
(S, {(a, b) | (a, b) ∈ E ∧ a ∈ S ∧ b ∈ S}).

3.5 K-hop Walks

Given two vertices x, y ∈ V , a k-hop walk from x to y is a sequence ⟨w0, w1, w2, ..., wk−1, wk⟩ where x = w0,
y = wk, and (xi−1, xi) ∈ E for all i from 1 to k. For convenience, we define a “zero-hop” walk to be a
single-node “sequence” ⟨w0⟩, representing a “no-steps-taken” journey from x to itself.
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3.6 K-hop Neighborhoods

In practice, most link prediction algorithms do not use the entire graph when predicting the probability of
edge membership. Rather, they tend to use local context. We formalize one intuitive notion of local context
here that will be used throughout the paper.

Given a node or an edge, we can consider the nodes surrounding the entity to be the collection of nodes you
could reach by beginning at the node (or the edge’s endpoints), and taking up to k steps (aka “hops”) across
edges for some value k. We can express this formally as follows:

Given a node x ∈ V , we define its k-hop neighborhood nodes Nk(x) to be the set of all nodes within k or
fewer steps of x. Formally, Nk(x) = {y | There exists an l-hop walk from x to y where l ≤ k}.

When we consider an edge or a non-edge (a, b), we define its k-hop neighborhood nodes to be the union of
the two endpoints’ k-hop neighborhood node sets: Nk((a, b)) = Nk(a) ∪Nk(b).

Finally we can define the k-hop neighborhood subgraph (or simply “k-hop neighborhood”) for an edge or
non-edge e = (a, b). It is the induced subgraph on e’s k-hop neighborhood nodes: Gk(e) = G(Nk(e)).

3.7 Anonymized Graphs

Given a graph G = (V , E), an anonymized version of G is another graph H isomorphic to G with
no particular relation between G’s node labeling and H’s node labeling. More specifically, to get an
anonymized copy of G, you can select a random permuation π : V → V ; your anonymized graph is then
H = (V , {(π(a), π(b)) | (a, b) ∈ E}).

3.8 Canonical Forms

A canonical form of a graph G is a representation of G that is produced in a way invariant to the node
ordering of G. The idea of a canonical form is used by practical graph isomorphism algorithms such as
Nauty and Traces (McKay & Piperno (2014)); they work by first converting two graphs G1 and G2 to
canonical forms C1 and C2 respectively, then perform a trivial check to see if C1 and C2 are identical.

In other words, canonical forms are defined in terms of the algorithm that creates them. An algorithm A
produces canonical forms for graphs if, for all pairs of graphs G and H, A(G) = A(H) if and only if G is
isomorphic to H. The canonical form of G with respect to A is A(G).

4 Link Predictors and Their Evaluation

4.1 Link Predictors

A link predictor is essentially a binary classifier for non-edges. It produces a verdict indicating whether the
(non-)edge is or should be a member of the graph or not.

Let G = (V , E) be a graph and Ē be the set of non-edges in G; that is, Ē = {(a, b) | a, b ∈ V ∧ (a, b) /∈ E}.
A hard link predictor (i.e. hard binary classifier) for G and Ē is a function ℓ : Ē → {Positive, Negative}
that gives a non-edge a label (Positive/Negative). A soft link predictor (i.e. soft binary classifier) for G and
Ē is a function ℓ : Ē → R that gives a non-edge a score. The higher the score, the more likely the non-edge
is considered to be one of the Positives; the lower the score, the more likely the non-edge is considered to be
a Negative. The function may be the result of training a model on a collection of correct edges/non-edges
via manual parameter tuning, statistical analysis, or any number of other methods.

In practice, soft classifier scores are often turned into hard labels by picking a threshold value t and giving
all entities with a score ≥ t the Positive label and all others the Negative label.
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4.1.1 Our Assumptions

For convenience in our subsequent analysis, we make an assumption about how link predictors operate.
However, we also explain why a performance bound for this kind of link predictor is ultimately a bound on
all link predictors.

Our key assumption is that whenever a link predictor uses graph topology information I to give an edge e
a score, it would have given edge e the exact same score if any of the graph nodes in I had been labeled
differently. In other words, the predictor’s output is permutation-invariant on its input.

At first glance, this might sound like a big assumption, but there are only two ways that an algorithm which
is not permutation-invariant can get a better score than an algorithm that is permutation-invariant:

• Case 1: The input graph’s node ordering was based on some property of the solution graph.

• Case 2: The input ordering had no significance, but the algorithm gets lucky arbitrarily due to the
input (and would have performed worse given a different arbitrary node input ordering).

Concerning Case 1: Nobody should want algorithms that make use of the kind of data in Case 1, because that
data is not available in real-world link prediction settings (e.g. a sales website cannot use a node ordering
based on what products you will buy).

Concerning Case 2: The possibility that an algorithm could get lucky is not a meaningful counter-example
to a performance limit1.

Consequently, our performance bound is effectively a bound for all link prediction algorithms - not just
permutation-invariant ones.

For those who find these concepts interesting, we note that the notion of permutation invariance has been
explored in the graph neural network (GNN) literature. For example, see the seminal work of Haggai Maron,
who studies what permutation-invariant architectures enable networks to do (Maron et al. (2019b;a; 2018)).
Much of the GNN research is focused on limits that different architectures impose or what architectures
enable – for example, that simple message passing has a power equivalent to the 1-dimensional Weisfeiler
Lehman algorithm (Morris et al. (2019)) – whereas our work in this paper asks what limits are in the data
itself regardless of which architecture is used.

4.1.2 Edge Equivalence

Our assumption from Section 4.1.1 could be rephrased as, “If a link predictor is given the exact same
information about two different non-edges (same up to isomorphism), then it gives those two edges the same
score.” Using this assumption, we can partition edges into cells based on whether or not a link predictor is
given the same information about the edges – same information ↔ same cell.

When a link predictor ℓ for a graph G uses the context of the entire graph to give an edge a score, then two
edges are guaranteed to get the same score if G’s topology in no way distinguishes between the two. Formally,
this means that two edges are guaranteed to get the same score if they are in the same automorphism orbit:
e1 ∈ AOG(e2)→ ℓ(e1) = ℓ(e2)

Often, link predictors use a local context surrounding an edge to give it a score rather than using the entire
graph as context. If we assume that a link predictor uses at most the k-hop neighborhood surrounding an
edge to give the edge its score, then we get that when two edges have equivalent k-hop neighborhoods and

1Technically, there is one counter-example to this claim which might be of interest to the theoretically-minded reader. Due
to non-linearities in how link prediction scores are calculated, an algorithm that coordinates its predictions across edges might
manage to increase the expected value of its link prediction score even though in some cases it will still perform worse than
a permutation-invariant algorithm. For example, in Figure 1 an optimal algorithm meeting our assumptions would give edges
(v, u), (v, r), (v, t), and (v, q) in the anonymized graph each a 1

2 probability score of being an edge. A non-permutation-invariant
algorithm could give edges (v, t) and (v, q) each a probability score of 1 and edges (v, u), (v, r) a score of zero; this kind of
prediction would do better half the time (i.e. on half the anonymizations) and worse half the time, but might have a higher
expected performance score overall. We consider this sort of case to be exotic enough that it is not relevant to our analysis.
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when those edges have the same role within the k-hop neighborhoods, then the edges get the same score.
Formally, this can be expressed as: (∃f . Gk(e1) ∼=f Gk(e2) ∧ f(e1) = e2)→ ℓ(e1) = ℓ(e2)

Note that by definition e1 ∈ AOG(e2) implies (∃f . Gk(e1) ∼=f Gk(e2) ∧ f(e1) = e2) for any k. In other words,
if two edges are equivalent in the context of the entire graph, then they are guaranteed to be equivalent
when considered in context of their k-hop neighborhoods.

4.2 Performance Scores for Link Predictors

In practice, almost all link prediction classifiers are soft classifiers. There are a number of nuances to how
these classifiers are scored that are worth highlighting here.

Remember that a soft classifier can be converted into a hard (i.e. binary) classifier by predicting “yes” when
the soft classifier’s output is above a certain threshold and “no” otherwise. Researchers tend to evaluate
the soft predictors across a range of different thresholds. Each (soft predictor, threshold) pair represents
a possible hard link predictor. Thus performance of a soft predictor can be considered to be the goodness
of the collection of hard predictors it offers. This can be measured in terms of different criterion. One
common criterion is the relationship between a predictor’s True Positive Rate (TPR) and False Positive
Rate (FPR), which generates the widely used ROC curve; the ROC score is the area under the ROC curve.
Another common criterion is the relationship between the predictor’s Precision and Recall, which leads to
the Precision-Recall curve and its corresponding metric of Area Under the Precision-Recall curve (AUPR).
For an in-depth analysis exploring the relationship between ROC curves and Precision-Recall curves, we
recommend the paper by Davis & Goadrich (2006).

When converting a set of (TPR, FPR) or (Precision, Recall) points into a curve, an interpolation between
points represents a way of combining the two hard classifiers (the two points) into a new hard classifier.
This can be done by picking a value α ∈ [0, 1] and tossing an α-weighted coin every time an entity is scored
to decide which of the two hard classifiers to use for the entity. This is implicitly how we as well as Davis
and Goadrich perform interpolation. It turns out that the popular trapezoidal interpolation is incorrect
for Precision-Recall space, because hard classifiers cannot be combined to get precision-recall pairs that
interpolate linearly (Davis & Goadrich (2006)).

Sometimes, rather than calculate the AUPR curve exactly, it can be approximated with a measure called
Average Precision (AP). Rather than doing a complex interpolation between two precision-recall points,
Average Precision simply uses the precision of the rightmost point (the point with the higher recall).

5 Optimal Prediction Performance

Here we offer the actual formulae for calculating the optimal ROC and AUPR scores a soft classifier can
obtain.

Recall from Section 4.1.1 that there will be some edges which are topologically identical to each other and
thus which will each get the same score from a link predictor. This fact forms a limit on the ability of the link
predictor to separate positive edges from negative edges. As we discussed in Section 4.1.2, given whatever
topological information an algorithm uses, we can partition the edges into cells, where each cell is one of the
sets of edges that must all be given the same score as each other by the algorithm; when the algorithm uses
the entire graph as data to help it score an edge, then the relevant partition is formed by grouping the edges
according to their automorphism orbits.

Given a graph G = (V , E) and its non-edges Ē, as well as some link-prediction algorithm, we can consider
the relevant partitioning of Ē into k cells C1, C2, ..., Ck. A cell might contain only positive edges (i.e. only
edges the link predictor should give a high score to), only negative edges, or a mixture. It’s from mixed cells
that performance limits arise: since all elements in a mixed cell get the same score, they cannot all have
correct scores. For a cell Ci, we denote the number of positives in the cell as pi, the number of negatives in
the cell as ni, and the the total number of elements in the cell as ti = pi + ni = |Ci|.
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For a given partitioning C1 through Ck, we prove in the Appendix that the optimal ROC and AUPR scores
a soft classifier can obtain equals the ROC/AUPR scores obtained from a classifier ℓ : Ē → R which satisfies
the following property:

∀1 ≤ i, j ≤ k. ∀e ∈ Ci, e′ ∈ Cj .
(

ℓ(e) ≥ ℓ(e′)
)
↔

(
pi

ti
≥ pj

tj

)
(1)

Note that within a cell Ci, the probability that an element is a positive is just pi

ti
. Thus a classifier that scores

non-edges with the probability they’re positives will get an optimal score – optimal given the topological
information that the algorithm uses to distinguish non-edges.

This property of optimal classifiers permits us to easily compute the maximal ROC/AUPR scores that any
algorithm could have obtained on a given dataset and task. All we need to do is find the partitioning of
non-edges into cells that are topoligically equivalent given the data the link predictor makes use of. Then
we order those cells according to their density of positives (i.e. according to pi

ti
). Given that ordering,

we use the standard ROC and AUPR formulae to calculate what scores would be obtained by an optimal
classifier. We provide code both for proper AUPR calculation and for optimal ROC/AUPR scores at https:
//github.com/SteveWillowby/Link_Prediction_Limits.

For the formulae below, assume that the cells C1 through Ck are ordered such that i ≤ j → pi

ti
≥ pj

tj
.

To give the ROC and AUPR formulae in terms of this partitioning, we need just a bit more notation. Define
cumulative sums P0 = 0 and Pi =

∑i
j=1 pj for 1 ≤ i ≤ k. Similarly, define cumulative sums T0 = 0 and

Ti =
∑i

j=1 tj for 1 ≤ i ≤ k. And again, N0 = 0 and Ni =
∑i

j=1 ni for 1 ≤ i ≤ k. Define T = Tk, P = Pk,
and N = Nk. Note that |Ē| = T = N + P (total number of non-edges = total number of things classified =
negatives + positives). We now get the following formula for ROC:

Max ROC =
k∑

i=1

pi

P
· Ni + Ni−1

2N
(2)

The formula for AUPR is messier due to the need for proper interpolation between precision-recall points
discussed above in Section 4.2, but it is still easy to calculate:

Max AUPR =
k∑

i=1

pi

P
· pi

ti
·
(

1 +
(

Pi−1

pi
− Ti−1

ti

)
· ln

(
Ti

Ti−1

))
(3)

Note that there are no division-by-zero issues with this formula due to the following facts: When pi = 0, the
entire expression becomes zero. Further ti always > 0. Lastly, when Ti−1 = 0, then Pi−1 = 0, and because
limx→0+ x ln 1

x = limx→0+ x (ln(1)− ln(x)) = 0, we do not get a division by zero issue with Ti−1.

Equipped with these formulae, we can now begin to calculate the maximum possible performance scores on
actual prediction tasks.

As we mentioned above, Average Precision (AP) is sometimes used to approximate AUPR. However, the nice
result we prove for ROC and AUPR concerning the edge partioning order does not hold for AP. Fortunately,
our upper bound on AUPR is also an upper bound on AP, so we can still upper-bound the AP scores that
one might obtain. We provide a short proof of this in the Appendix.

6 Methodology

Our main experiment is to calculate how maximum link prediction scores vary with the amount of information
given to an idealized algorithm. We run this test on a wide variety of real-world graphs. The procedure runs
as follows:
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Graph Dir Weighted |V | |E| # SL AD CC Diam ASP
Species 1 Brain [1] D U 65 1139 0 35.0 .575 4 1.83

Highschool Friendships [2] D W 70 366 0 10.5 .362 12 3.90
Foodweb [2] D U 183 2476 18 27.1 .173 6 1.84

Jazz Collaboration [2] U U 198 5484 0 55.4 .617 6 2.22
Faculty Hiring (C.S.) D W 206 2929 124 28.4 .214 7 2.88
Congress Mentions [2] D W 219 586 2 5.35 .160 12 4.48
Medical Innovation [2] D U 241 1098 0 9.11 .210 9 3.26

C-Elegans Metabolic [2] U U 453 2025 0 8.94 .646 7 2.66
USA Top 500 Airports (2002) [3] D U 500 5960 0 23.8 .617 7 2.99

Eucore Emails [4] D U 1005 24929 642 49.6 .366 7 2.65
Roget Concepts [3] D U 1010 5074 1 10.0 .108 14 4.89

CCSB-YI1 [5] U U 1278 1641 168 2.57 .045 14 5.36
MySQL Fn. Calls [6] D U 1501 4212 13 5.61 .078 18 5.36

USA Airports (2010) [3] D U 1574 28236 0 35.9 .489 9 3.20
Collins Yeast [3] U U 1622 9070 0 11.2 .555 15 5.53
Cora Citation [1] D U 2708 5429 0 4.01 .131 15 4.53

Citeseer Citation [1] D U 3264 4536 0 2.78 .072 10 2.64
Roman Roads (1999) [3] D U 3353 8870 0 5.29 .025 57 25.3

USA Powergrid [3] U U 4941 6594 0 2.67 .080 46 19.0

Table 1: Graphs used for tests – The edge count does not include self-loops, which are listed separately –
Key: Dir = (Un)Directed, Weighted = (Un)Weighted, # SL = # Self-loops, AD = Average Degree, CC =
Average Clustering Coefficient, Diam = Diameter, ASP = Average of all Shortest Path Lengths –
Sources: [1]: Rossi & Ahmed (2015), [2]: Kunegis (2013), [3]: Clauset et al. (2016), [4]: Leskovec & Krevl
(2014), [5]: Yu et al. (2008), [6]: Myers (2003)

1. Begin with a graph G = (V , E) and an edge removal probability p (we set p← 0.1).

2. Define the set of negatives N as all edges not in G.

3. Remove each edge in G with probability p (independently) and add the removed edges to the set of
positives P . Call the resulting graph H ← (V , E \ P ).

4. Get a (hashed) canonical representation for each non-edge’s automorphism orbit in H.

5. Use the collected information to calculate the maximum scores via equations 2 and 3.

6. Assign k ← 1.

7. Get a (hashed) canonical representation of the k-hop neighborhood for each non-edge in H where
the non-edge’s endpoints are given a distinct color from the rest of the nodes.

8. Use the collected information to calculate the maximum scores when using at most k hops of infor-
mation about a non-edge.

9. If the performance limit just obtained from step 8 is equal to (or within 0.005 of) the performance
limit obtained from step 5, then stop. Otherwise, assign k ← k + 1 and go to step 7.

We perform the above procedure multiple times for each graph. Each iteration corresponds to different,
random possible sets of missing edges; each set of missing edges can be slightly different in terms of the limit
on its predictability. We get the mean value and 95% confidence interval for each distinct value of k.

We tested the link prediction limits on a wide variety of real-world graphs. They are listed in Table 1.
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7 Results

7.1 Sparsity Tends to Lower the Upper-Bound

We found that on most graphs, the upper bounds were near 100%, even when using 1-hop neighborhoods;
we suspect that this is because when degrees are high enough there is still a large number of possible 1-hop
neighborhoods such that the hypothetical optimal algorithm can take advantage of the slightest difference
between neighborhoods. However, we found that on the sparsest graphs the results told a different and very
interesting story.

We show the results for the four sparsest graphs: the Cora and Citeseer citation (sub)graphs, the CCSB-YI1
Protein-Protein Interaction graph, and a US Powergrid network. The results are in Figure 2. In particular,
we focus on the AUPR values, because even though link prediction papers often report ROC scores, link
predictors can easily get large ROC scores due to the class imbalance (the sheer number of non-edges) (Yang
et al. (2015)).

In summary, our results give good evidence that when data becomes sparse enough, graph toplogy alone is
severely limited in its ability to indicate a difference between genuine and fake missing edges.

7.2 Negative Sampling Methodologies Produce Artificially High Scores

We were curious to see how these fundamental limits compared to reports of link prediction performance. As
a small case study, we considered the seminal Graph Convolutional Neural Network Auto-Encoder (GCNAE),
a widely used and referenced model that can perform topology-only link prediction (Kipf & Welling (2016)).
This will help us discern how well link predictors are making use of the topology information available
to them. Though this model is a little bit “old” in the fast-paced world of graph neural networks, its
performance is still within just a few percentage points of modern GNN performance (Chen et al. (2020);
Fey et al. (2021)). In the original GCNAE paper, the authors tested their model on undirected versions of
the Cora and Citeseer citation networks. They reported ROC scores and AP scores.

We found that the AP scores they reported for the Citeseer network were well above our upper bound,
indicating that there was a difference in the calculated AP. To understand this, we looked at the GCNAE
code and found that in its tests the number of negative edges was downsampled to one negative test edge
per positive test edge. This sort of downsampling is common when performing link prediction evaluation
with AP or AUPR; however downsampling tends to boost the AP and AUPR scores significantly relative to
what they would have been if the full set of negatives was used in testing (Yang et al. (2015)). The GCNAE
paper itself does not specify that downsampling occurred.

By contrast, the paper’s reported ROC scores are well below our upper bound on ROC. This makes sense
as the ROC score is not affected by downsampling (Yang et al. (2015)). If we downsample the number
of negative edges to one negative edge per positive edge when calculating the AP limits, we get that the
GCNAE’s AP performance is also well below the upper bound. We show the numeric results in Table 2.

The point of this case study is twofold. Firstly, a metric (e.g. AP) may have different meanings depending
on how it is used, and our methodology may be able to help retroactively determine which approach was
used if the original paper does not specify.

Secondly, and perhaps of greater interest, state of the art link prediction systems using the topology of a
network do not reach the topology-based upper limit on performance. We take this to suggest either that
state of the art link prediction systems have room for improvement in their use of graph topology or that
what structurally differentiates the k-hop neighborhoods of true edges from the k-hop neighborhoods of false
edges in our tests is basically noise that an algorithm should not pay attention to if it wishes to generalize
well. After all, if for example the 1-hop neighborhoods of two different non-edges both have 20 edges per
neighborhood and differ in only one place, should we expect a link prediction algorithm to always treat that
difference as significant? We propose some future work in Section 8.1 for exploring how the upper limit on
performance changes when the resolution of the data is a bit blurrier, thereby reducing this noise.
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Figure 2: Hard upper bounds on link prediction performance as it varies with the amount of information
given to a link prediction algorithm. The horizontal line shows the limit when using the entire graph (k =∞).
Ten percent of the graph’s edges were randomly selected as test edges. The multiple points at a single value
of k are from different sets of randomly chosen test edges; left-right jitter is employed to aid in visualization.
Error bars are 95% confidence intervals.
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Graph GCNAE
ROC

ROC Upper-
Bound

GCNAE AP AP Upper-
Bound

AP Upper-Bound
(1:1 Downsampling)

Cora 0.843 ± 2e-4 0.99992 ± 3e-5 0.881 ± 1e-4 0.903 ± 0.020 0.99999 ± 9e-6
Citeseer 0.787 ± 2e-4 0.9981 ± 3e-4 0.841 ± 1e-4 0.686 ± 0.019 0.9989 ± 5e-4

Table 2: Comparison to the GCNAE’s Reported Results – The ± symbol indicates the 95% confidence
interval. We conclude that the GCNAE paper is likely downsampling negative test edges in the process of
calculating AP. More importantly, once downsampling is factored in, there is a notable gap between the
hypothetical ideal performance and state of the art topology-based performance. We discuss this more in
Sec. 7.2. Note: These results are for undirected versions of the graphs, whereas the results in Fig. 2 are for
the directed versions (GCNAE only does link prediction on undirected graphs). Also, note that the version
of Citeseer that the GCNAE paper used has some extra nodes with no links, whereas the version we used
for Fig. 2 does not.

7.2.1 Confirming our Assumption

To verify that the discrepency between score and upper bound is indeed due to downsampling negative edges,
we ran the GCNAE code and obtained link prediction scores when using all possible negative edges. The
results confirmed our hypothesis: When using the full set of negative test edges, the average ROC scores we
obtained for Citeseer and Cora (∼77% and ∼84% respectively) were similar to the paper’s reported results,
but the average AP scores were much lower (just ∼1.2% and ∼1.4% respectively). These extremely low
scores do not mean that GCNAE is performing poorly, for true AP is a much harsher and informative link
prediction metric than ROC, and other GNN models get similar scores on similar datasets (Yang et al.
(2015); Hibshman et al. (2021)).

8 Discussion

8.1 Applications, Extensions, and Limitations

In addition to the fact that our methodology gives insights about topology-based link prediction, we believe
the kind of analysis we offer in this paper can be extended and expanded. We observed how maximum
possible performance on a particular binary classification task (i.e. link prediction) varies with the amount
of information available to the classifier. At a certain resolution, inputs to the algorithm look identical. In
our analysis, the differing resolutions were the differing k for the k-hop neighborhood subgraphs. However,
these resolutions could hypothetically be any reasonable representation of the data.

If these kinds of equivalence partitions can be created at widely varying resolutions for a classification tasks,
then researchers will begin to be able to say things like “our algorithm works as well on the full data as an
optimal algorithm would work on data of resolution X.”

The key ingredient for our analysis was that at a given resolution we were able to partition the objects
being classified (the non-edges) into cells of equivalent objects; this let us calculate how well a hypothetical
optimal algorithm would perform on those cells. We were able to get this kind of partitioning because our
equality relation on two test objects was isomorphic equivalence of the objects’ k-hop neighborhoods and
thus the relation was transitive. Yet we expect that even in cases where a transitive equality relation is not
immediately available, one could create such a relation by using a distance measure to cluster test inputs
and then defining equality as being in the same cluster. The more fine-grained the clusters, the higher the
resolution of data given to the hypothetical optimal algorithm.

The main limit we are aware of for this kind of analysis is that at high data resolution, noise can easily
dominate the analysis. That is to say, at high resolution, random noise tends to render each entity to be
classified unique, and thus the hypothetical, optimal algorithm with a perfect prior will be able to correctly
distinguish any two entities and get a perfect score.

For example, consider link prediction on pure noise: That is, consider the process of randomly generating
a graph where each edge is present independently with some probability p and then randomly hiding some
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fraction of the edges to create a link prediction task. Such a random graph will likely have no global
symmetry (Erdős et al. (1960)), so at high data resolution (e.g. k = 3) every non-edge will be unique and
thus the hypothetical, optimal algorithm with a perfect prior will obtain a perfect score, even though a
real-world algorithm that does not mystically foreknow the answer can do no better than considering each
edge to be equally likely, because that is in fact how the graph was constructed.

Fortunately for our kind of analysis, real-world algorithms are usually designed to ignore noise in the first
place, so a data resolution that successfully filters out noise can simultaneously be relevant and provide a
non-trivial upper bound on optimal performance.

8.2 Conclusion

We presented a methodology for calculating hard limits on how well a link prediction algorithm could perform
when using structural information only. This helps analyze how much information graph structure does or
does not provide for link prediction. We found that very sparse graphs give rise to significant inherent
difficulties and therefore contain strong caps on optimal performance.

We also observed that a state of the art topology-based link prediction method performs well below the
upper bound in some cases, which we believe either means that the link prediction algorithms have serious
room for improvement or that our test sometimes picks up on “noise” that indeed differentiates edges from
non-edges but which an algorithm should not be expected to pick up on because that noise would not behave
in any consistent or infer-able manner. These observations prompted our discussion on further avenues of
discovery and extensions of our methodology; we expect that an analysis similar to ours which finds a way to
obtain performance upper bounds at varying degrees of blurring the noise would provide further insights.
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A Appendix - Proofs

A.1 Maximum ROC

Let k be the number of distinct inputs to the classifier (i.e. the number of cells of isomorphically-equivalent
non-edge types in the partition of non-edges).

Further, let s be a classifier that achieves an optimal ROC score for these cells. Because ROC is calculated
with respect to the different (true positive rate, false positive rate) pairs obtainable by using different score
thresholds to convert a soft classifier into various hard classifiers, then without loss of generality s assigns a
distinct score to each cell; if s did not, then we could just consider the cells given the same scores as being
the same cell with a larger total size and larger number of positives.

As in Section 5, let t1, t2, ..., tk be the total sizes of the cells, where the cells are ordered by the score s gives
to them (t1 is the total size of the cell with the highest score). Likewise, let p1, p2, ..., pk be the number of
positives in the respective cells. For notational convenience, we define t0 = p0 = 0.

Let Ti =
∑i

j=0 tj , Pi =
∑i

j=0, and Ni = Ti − Pi. Also define T = Tk, P = Pk, and N = Nk.
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Assume for sake of contradiction that there exists an i ∈ [k − 1] such that pi

ti
< pi+1

ti+1
. Now imagine an

alternate classifier s∗ that gives the exact same scores as s except that it reverses the scores for the i’th and
(i + 1)’th cells.

Then we get a new set of variables t∗
1, t∗

2, ..., t∗
k and p∗

1, p∗
2, ..., p∗

k as well as corresponding T ∗
j , P ∗

j , and N∗
j

where the values correspond to the cells as ordered by classifier s∗. Due to the definition of s∗, tj = t∗
j and

pj = p∗
j for all j except j ∈ {i, i + 1}, in which case ti = t∗

i+1, ti+1 = t∗
i , pi = p∗

i+1, and pi+1 = p∗
i . Once

again, for notational simplicity we pad the beginning of these lists with t∗
0 = p∗

0 = 0.

This gives us a total of k + 1 (true positive rate, false positive rate) pairs (i.e. (TPR, FPR) pairs). The false
positive rate is the x axis of the curve and the true positive rate is the y axis.

True Positive Rate j for s (i.e. TPRj) = Pj

P
for j ∈ {0, 1, ..., k}

False Positive Rate j for s (i.e. FPRj) = Nj

N
for j ∈ {0, 1, ..., k}

Likewise for s∗ we have:

True Positive Rate j for s∗ (i.e. TPR∗
j ) =

P ∗
j

P
for j ∈ {0, 1, ..., k}

False Positive Rate j for s∗ (i.e. FPR∗
j ) =

N∗
j

N
for j ∈ {0, 1, ..., k}

The ROC curve then interpolates linearly between these points. Note that by definition TPR0 = TPR∗
0 =

FPR0 = FPR∗
0 = 0 and TPRk = TPR∗

k = FPRk = FPR∗
k = 1.

We can consider the interpolation between the j’th (TPR, FPR) point and the (j + 1)’th (TPR, FPR) point
as corresponding to a variable α ∈ [0, 1] where:

TPRj,α = Pj + αpj+1

P

FPRj,α = Nj + α(tj+1 − pj+1)
N

This leads to the following:

d
dα

TPRj,α = pj+1

P

and separately:

α = N · FPRj,α −Nj

tj+1 − pj+1

d
dFPRj,α

α = N

tj+1 − pj+1

Using the chain rule gives us:

d
dFPRj,α

TPRj,α = dα

dFPRj,α
· dTPRj,α

dα
= N

P
· pj+1

tj+1 − pj+1
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For s∗’s curve this becomes:

d
dFPR∗

j,α
TPR∗

j,α = N

P
·

p∗
j+1

t∗
j+1 − p∗

j+1

Now, because tj and t∗
j only differ at j = i and j = i + 1, and the same holds for pj , etc., and because the

values at i and i + 1 are the reverse of each other, then we can conclude that the (i− 1)’th TPR-FPR point
is the same for both s and s∗ as well as the (i + 1)’th point. The only difference is at the i’th point. To see
that the (i + 1)’th point is the same, note that Pi+1 = Pi−1 + pi + pi+1 = P ∗

i−1 + p∗
i+1 + p∗

i = P ∗
i+1.

Further, because pi

ti
<

p∗
i

t∗
i

we obtain that pi

ti−pi
<

p∗
i

t∗
i

−p∗
i

which in turn means that:

d
dFPRi−1,α

TPRi−1,α <
d

dFPR∗
i−1,α

TPR∗
i−1,α

In other words, the slope leading from the (i − 1)’th point to the i’th point is greater in s∗’s ROC curve
than in s’s. Furthermore, d

dFPRi−1,α
TPRi−1,α = d

dFPR∗
i,α

TPR∗
i,α, and d

dFPRi,α
TPRi,α = d

dFPR∗
i−1,α

TPR∗
i−1,α,

meaning that s∗’s curve goes up more sharply first, and s’s curve catches up with the exact same slope later.
Since both curves up to and including their (i − 1)’th point are identical, and since they are also identical
at the (i + 1)’th point and thereafter, this means that s∗’s curve has a larger area underneath it.

Ergo, we obtain a contradiction, for s∗ obtains a higher ROC score than s. Thus the assumption must have
been false. This means that s orders the cells such that pj

tj
>

pj+1
tj+1

for all j ∈ [k − 1]. In other words, s

completely sorts the cells as we intended to show. □

A.2 Maximum AUPR

Davis and Goadrich have shown that if one ROC curve dominates another, then the corresponding (properly
interpolated) precision-recall curves yield the same dominance (Davis & Goadrich (2006)). Thus the AUPR
result follows directly from our ROC result above.

A.3 Maximum AP vs. Maximum AUPR

The nice ordering property we prove for ROC and AUPR does not hold for AP. For example, consider the
following three cells with number of (positives, negatives) total: ⟨(10, 0), (2, 2), (9, 7)⟩. Ordering these in
decreasing Positives

Positives+Negatives yields an AP of approximately 0.856 whereas ordering them in the order listed
yields an AP of approximately 0.858.

Fortunately, we can still calculate a hard upper limit on AP scores by simply using the upper limit on the
AUPR score. Remember our ordering rule for an optimal curve: Order by Positives

Positives+Negatives in a descending
order. Remember also that via the ROC and AUPR proofs, we showed that given any AUPR curve obtained
by some ordering of the cells where some pair of cells disobeyed our ordering rule, you could get an AUPR
curve that dominates it by swapping the ordering of the incorrect pair. Now, observe that any curve
which does not follow the ordering rule can be converted into the curve that does by a succession of swaps
where the swaps are of adjacent, incorrectly ordered cells; this corresponds to the naive “bubble sort”
algorithm (Astrachan (2003)). During this process of swaps, each new curve dominates the former. Given
that the last curve is the one corresponding to our ordering, it follows that our optimal curve not only has
a larger area underneath it than any other curve, but it also dominates any other curve. Last but not least,
note that if you follow the optimal AUPR curve from right to left (i.e. from recall of 1 to recall of 0) that
the curve never decreases in precision.

Now let us turn our attention to AP curves. Recall that an AP curve is obtained in a very similar manner
to an AUPR curve. In both cases you first get a collection of precision-recall points given the ordering
the classifier gives to the cells (we call these precision-recall points the “base points”); the only difference
between AP and AUPR is in how the two kinds of curves interpolate between adjacent base points. AP
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curves interpolate between any two precision-recall points by using the precision from the point with the
higher recall.

We can observe two things: First, given our observations about the optimal AUPR curve, regardless of the
ordering of the cells used to get the base points, all the base points of the AP curve are either on or are
strictly dominated by the points in the optimal AUPR curve. Second, as you move from right to left along
the interpolated AP points, the precision value remains constant until you hit a new base point. By contrast,
as we discusse above the optimal AUPR curve’s precision value is either constant or increasing as you move
from right to left. Thus any AP curve is always dominated by the ideal AUPR curve. □
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