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ABSTRACT

Path planning is an essential part for agents to navigate in complex environments
efficiently. Recent advances in conventional methods and learning-based methods
have improved adaptability in complex settings. However, balancing computa-
tional efficiency, optimality, and safety in different environments remains a critical
open problem. In this paper, we propose a novel Q-Learning framework named
OCPDQN based on the optimal control method with application to path planning
problems. Furthermore, we improve OCPDQN by combining with Gauss-Newton
and propose another new framework named GN-OCPDQN to avoid the extensive
computation of the Hessian matrix. Compared to traditional deep Q-networks,
which rely on the gradient descent method to update network parameters, the
proposed methods present a faster convergence rate and higher robustness. The
experimental results demonstrate that both OCPDQN and GN-OCPDQN frame-
works show better learning performance than existing deep reinforcement learning
methods in the path planning task.

1 INTRODUCTION

Path planning involves the computation of optimal and feasible paths from a start point to a goal
under specific objectives and constraints (Karur et al., 2021). It plays a critical role in various appli-
cations such as robotics, autonomous transportation, and military operations, significantly reducing
movement time and energy consumption through efficient route design.

Numerous classical approaches have been developed for path planning in both academic and indus-
trial contexts. The A* algorithm (Li et al., 2022b) employs a heuristic search strategy to efficiently
prune the search space while guaranteeing path optimality. Genetic algorithms (Alhijawi & Awa-
jan, 2024) mimic mechanisms of natural selection and biological evolution to refine path solutions
iteratively. Particle swarm optimization (Shami et al., 2022), inspired by collective swarm behav-
ior, enables particles to collaboratively explore the solution space and share information to identify
optimal paths.

Classical methods perform well in static environments but struggle in unknown, complex, and high-
dimensional scenarios (Zhu et al., 2022). DRL (deep reinforcement learning), with its capabilities
of autonomous learning, environmental adaptability, and long-term planning, overcomes the con-
straints of traditional algorithms and has emerged as a pivotal direction in the field of path planning
(Zhang et al., 2022).

Deep reinforcement learning (DRL) integrates deep learning’s perception with reinforcement learn-
ing’s decision-making (Matsuo et al., 2022), enabling autonomous learning, environmental adapta-
tion, and long-term planning for modern path planning (Qin et al., 2023). However, DRL still faces
challenges during model optimization. Gradient descent, despite its widespread adoption, is notably
susceptible to local optima and highly sensitive to the choice of learning rate. These limitations
often necessitate a large number of iterations during network training, thereby impairing the overall
convergence capability of the model (Zhang et al., 2024).

This paper introduces OCPDQN, a novel Q-learning framework for path planning that incorporates a
super-linearly convergent optimization method. We innovatively integrate deep Q-networks (DQN)
with techniques from optimal control problems (OCP) (Zhang et al., 2024), significantly enhancing
the efficiency of policy learning and optimization. To eliminate the need for Hessian matrix com-
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putations inherent in OCP, we further propose GN-OCPDQN, which leverages Gauss-Newton ap-
proximations, drastically accelerating computation—particularly in high-dimensional settings. Ex-
perimental evaluations show that OCPDQN achieves 47% faster convergence than DQN and 40%
faster than PPO, while GN-OCPDQN delivers 41% and 33% improvements, respectively. These
frameworks offer effective new solutions to complex path planning challenges.

We make the following contributions:

• Two novel frameworks, OCPDQN and GN-OCPDQN, are proposed to solve the path plan-
ning problem.

• We leverage the OCP method to significantly reduce the number of iterations during the
training of the DQN network.

• The super-linear convergence rate of both frameworks is proven.

2 RELATED WORK

2.1 CONVENTIONAL METHODS FOR PATH PLANNING

Classical algorithms have demonstrated strong performance in deterministic global path plan-
ning. Genetic algorithms (Alhijawi & Awajan, 2024) simulate natural evolution through selection,
crossover, and mutation operations. The Rapidly-exploring Random Tree (RRT) algorithm (Yu et al.,
2024) grows tree-like structures from start points, with subsequent variants including Heuristic RRT
(Hu et al., 2025) and Informed RRT* (Wu et al., 2024). Methods such as Elastic Bands (Amundsen
et al., 2024), Artificial Potential Fields (APF) (Xie et al., 2022), and Vector Field Histogram (VFH)
(Mohammed et al., 2024) are typically employed as local planners due to their rapid response to
new information. Despite their historical success, traditional path planning algorithms become less
effective as environmental complexity increases.

2.2 DRL IN PATH PLANNING

Compared with traditional path planning methods, DRL can adapt to complex environments. Li et al.
(2022a) integrated DQN with Dueling DQN to address the end path planning problem of end-to-end
intelligent driving vehicles. To guide the unmanned surface vehicle to the target area, Xiaofei et al.
(2022) applied the Double-DQN algorithm to the global static path planning problem of amphibious
unmanned vehicles. Gu et al. (2023) proposed the DM-DQN algorithm to improve the performance
of DQN, and used it to train an agent in complex environments. There is extensive research on
training autonomous vehicles using DQN, and almost all of them have achieved remarkable results.

Despite the remarkable performance of DQN and the improved DQN in addressing the path planning
problems, the number of iterations required in the existing achievements is still large, which is
insufficient to solve some practical path planning problems.

3 PROBLEM FORMULATION AND PRELIMINARIES

In this section, we formally describe the path planning problem in symbolic form first, and then
present the definitions of the DQN network architecture. Finally, we elaborate on the OCP method.

3.1 PROBLEM DESCRIPTION OF PATH PLANNING

Path planning involves finding a feasible path from start S to goal G in environment E with obsta-
cles O, while optimizing criteria like minimal distance or time. Formally, let the environment be
represented as E , the start and target positions be S and G respectively, and the set of obstacles be
O. The planning algorithm seeks a path P = {p0, p1, ..., pn} such that p0 = S, pn = G, and pi /∈ O
for all i. The solution must also satisfy any additional kinematic or dynamic constraints imposed by
the agent.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3.2 THE ARCHITECTURE OF DQN

3.2.1 MDP MODEL

We formulate the path planning problem using a finite Markov Decision Process (MDP) over discrete
time steps t = 1, 2, . . . , T . The MDP is characterized by the tuple (S,A,R, f, γ), representing the
state space, action space, immediate reward, state transition model, and discount factor, respectively.
The definitions of these elements for our algorithm are provided below.

• State Space: The state space S consists of all possible states that the agent may oc-
cupy in the environment, which includes the position and obstacle distribution on a two-
dimensional grid, and the actual coordinates of the agent. The size of the state space vector
dimension is 2*11*11, that is, 242 dimensions.

• Action Space: In our algorithm, this contains eight parts: up, down, left, right, and the four
diagonal directions.

• State Transition: The transition from state st to the next state st+1 is defined as st+1 =
F(st, ct, at). When the agent takes action at, its state will be updated from st to st+1.

• Reward Function: Our reward function is designed to reflect potential events encountered
by the agent during navigation. Specifically, the agent receives a reward of +20 for reach-
ing the goal and a penalty of−20 for colliding with an obstacle. To promote the acquisition
of short and smooth paths, we assign a penalty of−1 for movements along the four cardinal
directions (forward, backward, left, right) and −1.5 for diagonal motions.

• Discount Factor: The discount factor is set to 0.99.

3.2.2 LOSS FUNCTION

In DQN, Q-function is defined as Q(s, a; θ), and the iterative form of the DQN update formula is
given by Q(st, at) = Q(st, at) + α [rt + γmaxa′ Q(st+1, a

′)−Q(st, at)]. When dealing with
non-linear systems, the Q-function is typically modeled in a parameterized form. Therefore, it is
necessary to rewrite the actor network in this form as follows,

πt(xk) = πt(xk; θ
t
a) = θta ψ(xk), (1)

where π(xk; θta) represents the outputs of the actor networks, xk denotes the current state of the
agent at the k-th iteration, θta denotes the parameters of the network weight matrix for the actor
networks, and ψ(·) represents the vectors of activation functions.

The objective of DQN is to minimize the TD error between the current Q-value and the target
Q-value L(θa) = E(s, a, r, s′) ∼ D

[
(Qθa(s, a)− y)2

]
, where the target Q-value y is defined as

y = r + γ · maxa′ Qθc(s
′, a′). In the traditional DQN algorithm, the Adam optimizer is used to

perform gradient descent on θ θa ← θa − α · ∇θaL(θa). The optimal parameter θ∗a is defined as the
value of θa that minimizes the loss function θ∗a = argminθa L(θa).

3.2.3 NEURAL NETWORK

We train the agent using the OCPDQN and GN-OCPDQN frameworks. The network input consists
of the obstacle distribution on a 2D grid and the agent’s coordinates, while the output produces
scores for eight possible actions.

The model’s weight matrices are randomly initialized and optimized via gradient descent. At each
step, the agent processes state st through two convolutional and pooling layers, reshapes the hidden
output to a 1D vector, and passes it through two fully connected layers to obtain action scores. The
agent selects action at with the highest score, updates its position, observes reward rt, and transitions
to new state st+1.

3.3 OCP METHOD

The OCP method represents a recent advancement in optimization techniques (Zhang et al., 2024).
By reformulating the original optimization problem as an optimal control problem, the OCP method
structures the iterative update process to minimize losses in future time steps.
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Figure 1: Efficient agent training framework with OCPDQN/GN-OCPDQN algorithm

Consider a twice differentiable function f(x) : Rn 7→ R1. The objective of this nonlinear optimiza-
tion problem is to find the minimizer of f(x). We rewrite the optimization problem as follows.

min
u

N∑
i=0

[
f(xi) +

1

2
uTi Rui

]
+ f(xN+1), (2)

subject to xi+1 = xi + ui, (3)

where xi ∈ Rn and ui ∈ Rn are the state and control of system (1), respectively, integer N > 0 is
the control terminal time, and positive definite matrix R is the control weight matrix. The speed of
convergence in the OCP method is influenced by the control matrix R. As the value of R becomes
larger, the convergence rate slows down.

Based on the reference (Zhang et al., 2024), we can get the iterative formula as follows:

xi+1 = xi − zi(xi), (4)

zi(xi) = (R+ f ′′(xi))
−1

[f ′(xi) +Rzi−1(xi)] , (5)

z0(xi) = (R+ f ′′(xi))
−1
f ′(xi), (6)

where zi(xi) is the step size for updating the parameter xi at each iteration. We can find the minima
of f(x) by this OCP method.

4 METHODOLOGY

To handle the issue of path planning problems, we propose a novel framework named OCPDQN.
In addition, to avoid the expensive cost of computing the Hessian matrix, we further propose an
algorithm named GN-OCPDQN.

4.1 OCPDQN METHOD

4.1.1 UPDATING FORMULAS

Based on the OCPDQN method we propose, the iterative update formulas for the network parame-
ters can be expressed as follows:

θa(i+1) = θa(i) − gi(θa(i)), (7)

gi(θa(i)) =
(
R+∇2L(θa(i))

)−1 ×
[
∇L(θa(i)) +Rgi−1(θa(i))

]
, (8)

g0(θa(i)) =
(
R+∇2L(θa(i))

)−1∇L(θa(i)), (9)

where θa(i) denotes the value of the network parameter θa at the i-th update iteration, and gi(θa(i))
represents the step size for updating the parameter θa(i) in this iteration.
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4.1.2 ALGORITHM PROCESS

In this part, we present the pseudo-code representation of the OCPDQN. At each step, the agent
selects an action via ϵ-greedy policy, executes it, and stores the experience (s, a, s′, r, done) in
the replay buffer D. If |D| < B, the update is skipped; otherwise, a batch is sampled, loss L is
computed, and parameter update δ is obtained using Eq. (7-9). The target network updates every T
episodes.

Algorithm 1: OCPDQN Algorithm
Input: Environment, batch size B, target update interval T
Output: Optimized policy network

1 Initialize environment, policy network π, target network πtar, replay buffer D;
2 for ep← 1 to N do
3 Reset environment, obtain initial state s0;
4 done← False, cum reward← 0, step← 0;
5 while not done and step < L do
6 Select action a using ϵ-greedy policy from π(s);
7 Execute a, observe s′, r, done;
8 Store transition (s, a, s′, r, done) in D;
9 if |D| ≥ B then

10 Sample batch B of size B from D;
11 Compute loss L;
12 Update π using gradient from L (Eq. 7-9);
13 s← s′, cum reward← cum reward+ r, step← step+ 1;
14 if ep mod T = 0 then
15 Update πtar ← π;

4.1.3 CONVERGENCE ANALYSIS

The weights of the actor network θa of OCPDQN can converge to the optimal weight θa∗ at a super-
linear rate. Based on reference (Zhang et al., 2024) and Lemma 1 in the Appendix, the following
relationship can be obtained.

θa(i+1) − θa∗ = θa(i) − θa∗ − gi(θa(i))
= θa(i) − θa∗ − [gi(θa∗) + g′i(θa∗)(θa(i) − θa∗) + o(|θa(i) − θa∗|)]
≈ θa(i) − θa∗ − [g′i(θa∗)(θa(i) − θa∗)]
= (I − g′i(θa∗))(θa(i) − θa∗)

=
(
R+∇2L(θa∗)−1R

)i+1 (
θa(i) − θa∗

)
(10)

where o(|θa,c(i) − θa∗|) is the higher order approximation term. Thus we have

θa(i+1) − θa∗ ⩽
(
R+∇2L(θa∗)−1R

)i+1 (
θa(i) − θa∗

)
. (11)

When ∇2L(θa∗) > 0, we have
∥∥∥(R+∇2L(θa∗)

)−1
R
∥∥∥ < 1. When the number of iterations i is

sufficiently large,
(
R+∇2L(θa∗)−1R

)i+1 → 0, and thus we have

θa(i+1) − θa∗ =
(
R+∇2L(θa∗)−1R

)i+1 (
θa(i) − θa∗

)
= 0. (12)

Hence, it can be seen that the actor network of OCPDQN ultimately converges to the optimal solu-
tion at a super-linear rate. The detailed proof is in the Appendix section.

4.2 GN-OCPDQN METHOD

4.2.1 IMPROVED UPDATING FORMULAS

In OCPDQN, from Eq. (8), we can know that as the number of parameters increases, the dimension
of the Hessian matrix grows rapidly, and the computational resources of OCPDQN needed also
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increase significantly. Therefore, to accelerate the computation speed of the algorithm, we propose
an improved algorithm, GN-OCPDQN in this part, which combines the Gauss-Newton method (Hao
et al., 2024).

The Gauss-Newton method avoids the direct computation of the Hessian matrix by approximating it
with the product of the Jacobian matrix (Hao et al., 2024). Specifically, for a nonlinear least squares
problem with the loss function

L(θ) =
1

2
∥r(θ)∥2 =

1

2

n∑
i=1

ri(θ)
2, (13)

where r(θ) is the residual vector, the gradient and Hessian of L(θ) can be written as

∇θL(θ) = Jr(θ)
⊤r(θ),∇2

θL(θ) = Jr(θ)
⊤Jr(θ) +

n∑
i=1

ri(θ)∇2
θri(θ), (14)

where Jr(θ) is the Jacobian matrix of r(θ) with respect to θ. The Gauss-Newton method neglects
the second term involving the second derivatives of the residuals, and thus approximates the Hessian
as

∇2
θL(θ) ≈ Jr(θ)⊤Jr(θ). (15)

This approximation eliminates the need to compute the full Hessian matrix and only requires the
computation of the Jacobian, which is typically much more efficient. In the following part, we
replace the Hessian matrix in the OCP iterative formula with an approximation using the Jacobian
matrix based on Eq. (13-15). During the training process of the DQN network, the loss function can
be rewritten in the form of a nonlinear least squares problem, where the residual is defined as

r(θa) = Qθa(s, a)− y. (16)

Based on Eq. (13-15), the first and second derivatives of the loss function can be rewritten as follows:

∇θaL(θa) =
∂r(θa)

∂θa

⊤
r(θa),∇2

θaL(θa) =
∂r(θa)

∂θa

⊤
∂r(θa)

∂θa
, (17)

where ∂r(θa)
∂θa

denotes the Jacobian matrix of the residuals r(θa) with respect to θa. Let h(θa) =
∂r(θa)
∂θa

. Then, the iterative optimization formulas of the OCP method can be simplified as follows:

θa(i+1) = θa(i) − ĝi(θa(i)), (18)

ĝi(θa(i)) =
(
R+ h(θa(i))

⊤h(θa(i))
)−1 ×

[
h(θa(i))

⊤r(θa(i)) +Rĝi−1(θa(i))
]
, (19)

ĝ0(θa(i)) =
(
R+ h(θa(i))

⊤h(θa(i))
)−1

h(θa(i))
⊤r(θa(i)), (20)

where ĝi(θa(i)) represents the step size for updating the parameter θa(i) in this iteration.

4.2.2 ALGORITHM PROCESS

In this part, we present the pseudo-code of GN-OCPDQN. The training procedure of GN-OCPDQN
utilizes Eq. (18-20) to update the network, thereby avoiding the explicit computation of the full
Hessian matrix.

4.2.3 CONVERGENCE ANALYSIS

For parameters θa(i) based on Eq. (10-12), there holds

θa(i+1) − θa∗ ⩽
(
R+ Jr(θa∗)

⊤Jr(θa∗)
−1R

)i+1 (
θa(i) − θa∗

)
. (21)

Similarly, we have Jr(θa∗)⊤Jr(θa∗) > 0, so
∥∥∥(R+ Jr(θa∗)

⊤Jr(θa∗)
)−1

R
∥∥∥ < 1. When the

number of iterations i is sufficiently large,
(
R+

(
Jr(θa∗)

⊤Jr(θa∗)
)−1

R
)i+1

→ 0, we have

θa(i+1) − θa∗ =
(
R+ (Jr(θa∗)

⊤Jr(θa∗))
−1R

)i+1 ×
(
θa(i) − θa∗

)
= 0. (22)

Thus the weights of the actor network θa of GN-OCPDQN can converge to the optimal weight θa∗
at a super-linear rate. A more detailed proof is provided in the Appendix.
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Algorithm 2: GN-OCPDQN Algorithm
Input: Environment, batch size B, target update interval T
Output: Optimized policy network

1 Initialize environment, policy network π, target network πtar, replay buffer D;
2 for ep← 1 to N do
3 Reset environment, obtain initial state s0;
4 done← False, cum reward← 0, step← 0;
5 while not done and step < L do
6 Select action a using ϵ-greedy policy from π(s);
7 Execute a, observe s′, r, done;
8 Store transition (s, a, s′, r, done) in D;
9 if |D| ≥ B then

10 Sample batch B of size B from D;
11 Compute loss L;
12 Update π using gradient from L (Eq.18-20);
13 s← s′, cum reward← cum reward+ r, step← step+ 1;
14 if ep mod T = 0 then
15 Update πtar ← π;

5 EXPERIMENTS

In this section, we apply the proposed frameworks to a path planning problem to demonstrate the
training efficiency and convergence performance using PPO (Xiao et al., 2023) as the baseline. The
experiments were carried out on a workstation with an Intel Xeon Gold 6348 CPU, 100GB RAM,
and an NVIDIA A800 GPU, implemented using PyTorch. Besides, we compare the step time with
the original DQN.

5.1 IMPLEMENTATION DETAILS

This paper designs a specialized 2D path planning map, spanning 100 × 100 meters with obsta-
cles represented by several blue rectangular regions. The agent navigates from start (10, 0) to goal
(90, 100) while avoiding obstacles, forming an S-curve optimal path.

During training, the path was discretized into continuous points through thousands of iterations. The
agent begins each episode at the start position and concludes upon reaching the goal. An ϵ-greedy
strategy (ϵ decaying from 1 to 0.1) encourages exploration with eight possible actions (cardinal and
diagonal directions).

To verify the effectiveness of OCPDQN and GN-OCPDQN, we select a representative method from
the two types of classic reinforcement learning algorithms as the comparative methods. One is the
original DQN proposed in (Wu & Suh, 2024), and the other is the PPO algorithm presented in (Wen
et al., 2021), which belongs to the category of policy gradient. They achieve great performance in
path planning for autonomous driving (Wu & Suh, 2024), (Wen et al., 2021), (Li et al., 2022a), (Xiao
et al., 2023). Thus, we use the two models as the comparative methods.

5.2 LEARNING PERFORMANCE

This paper compares the learning performance of OCPDQN and GN-OCPDQN against traditional
DQN and PPO algorithms. Step-reward curves demonstrate the training efficiency, while the number
of steps required for path completion provides additional evaluation in the path planning scenario.
This provides a comprehensive evaluation of the algorithms’ learning performance.

5.2.1 LEARNING PERFORMANCE OF OCPDQN

As shown in Figure 2 (a), the OCPDQN quickly improves its cumulative reward and converges
to near-optimal performance in fewer episodes, while maintaining small fluctuations throughout

7
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(a) Comparison of cumu-
lative rewards for DQN,
OCPDQN, and PPO

(b) Comparison of the
number of steps for
DQN, OCPDQN, and
PPO

(c) Comparison of cumu-
lative rewards for DQN,
GN-OCPDQN, and PPO

(d) Comparison of the
number of steps for
DQN, GN-OCPDQN,
and PPO

Figure 2: Performance comparison of different algorithms

training. By contrast, DQN exhibits much larger fluctuations and slower convergence. Although the
PPO algorithm enables the agent to achieve relatively high rewards in the early stages of learning,
the curve of the PPO algorithm exhibits great fluctuations in the subsequent training process.

Figure 2 (a) shows that while PPO occasionally achieves higher rewards (e.g., at episodes 50 and
75) due to exploratory randomness, these gains are unstable—evidenced by significant fluctuations
even around episode 200. In contrast, OCPDQN converges more rapidly and stably to the optimal
solution despite occasional early inferiority.

As seen in Figure 2 (b), OCPDQN quickly reduces path length to a stable 30 steps, while DQN
converges gradually only after 100 episodes. Although PPO learns rapidly initially, its performance
remains volatile over time.

Joint analysis of (a) and (b) confirms that OCPDQN enables faster convergence to higher rewards
and more stable optimal paths, demonstrating significantly improved learning efficiency.

5.2.2 LEARNING PERFORMANCE OF GN-OCPDQN

As shown in Figure 2 (c), GN-OCPDQN achieves higher rewards faster than DQN and PPO, con-
verging after 75 episodes. While DQN attains only low rewards by episode 120, and PPO learns
shorter paths earlier (13 episodes), its unstable performance with fluctuating curves is outperformed
by GN-OCPDQN’s stability.

Although GN-OCPDQN’s Gauss-Newton approximation initially lags behind PPO before episode
60, it converges stably by episode 90, whereas PPO continues fluctuating. Around the 100th episode,
the training of the agent trained using GN-OCPDQN can be terminated. However, to highlight the
advantages of GN-OCPDQN, we also let this agent train for 200 episodes, further demonstrating
that the GN-OCPDQN framework we propose not only enables the agent to achieve higher rewards
but also results in more stable learning performance.

5.2.3 COMPARISON OF OPTIMAL PATHS

Figure 3 illustrates the experimental outcomes of the agent’s path-planning performance employing
the DQN, OCPDQN, and GN-OCPDQN algorithms, respectively. All three methods successfully
generate feasible paths that avoid obstacles from the start point to the goal. The DQN agent con-
verges to a 21-step path after exhibiting considerable training instability, whereas the OCPDQN
method achieves a shorter path of 18 steps with markedly improved convergence speed. By integrat-
ing the observations from Figure 3 with those from Figure 2 (c)(d), it is evident that GN-OCPDQN
attains superior reward values within fewer training iterations and identifies a collision-free path
consisting of 26 steps. Although this path is marginally longer than that obtained by DQN, the sig-
nificantly accelerated convergence rate of GN-OCPDQN renders this outcome highly acceptable.

5.3 REAL-TIME PERFORMANCE

Real-time performance is a crucial metric in path planning, which refers to the time required to ob-
tain an output decision from input data. The horizontal axis steps in Figures 4 represents each train-
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Figure 3: Comparison of the path of different algorithms

(a) Step time of DQN (1) (b) Step time of DQN (2) (c) Step time of GN-
OCPDQN (1)

(d) Step time of GN-
OCPDQN (2)

Figure 4: Step time comparison between DQN and GN-OCPDQN algorithms

ing step where the agent receives a movement command and updates the network parameters. As
shown in Figures 4, GN-OCPDQN requires approximately 0.35 seconds per step—slightly longer
than gradient descent methods. However, GN-OCPDQN converges in significantly fewer steps than
DQN with gradient descent, as evidenced in Figures 2. Additionally, the resulting path is relatively
short. Thus, the marginally longer computation time per step is acceptable given the substantial
reduction in total steps and competitive path quality.

6 CONCLUSION AND DISCUSSION

This paper introduces two novel frameworks, OCPDQN and GN-OCPDQN, each with distinct char-
acteristics. OCPDQN employs iterative formulas that leverage the Hessian matrix of network pa-
rameters to compute the updating step size, resulting in accelerated convergence. In contrast, GN-
OCPDQN adopts the Gauss–Newton method to approximate the gradient, circumventing Hessian
computations altogether. While this approximation entails a minor loss of accuracy, it markedly
enhances the efficiency of step size calculation.

Based on their distinct characteristics, the two algorithmic frameworks excel in different application
scenarios. When the network has a relatively small number of parameters (e.g., on the order of
1000), OCPDQN achieves faster convergence to the optimum than GN-OCPDQN. In contrast, for
large-scale networks, GN-OCPDQN offers significantly higher computational efficiency, enabling
quicker convergence and demonstrating superior scalability in high-dimensional parameter spaces.

7 REPRODUCIBILITY STATEMENT

To facilitate reproducibility and further research, the source code and implementation details for
this work have been made publicly available at the following anonymized repository: https:
//anonymous.4open.science/r/2026_anonymous-FF85.
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A APPENDIX

In this part, we will prove that the OCPDQN and GN-OCPDQN can converge to the optimal solution
at a super-linear rate.

A.1 CONVERGENCE ANALYSIS OF OCPDQN

The training objective of a neural network is to minimize the following function:

min
θ
L(θ) = E(s,a,r,s′)∼D

[
(Qθa(s, a)− y)

2
]
. (23)

In OCPDQN, we propose an updated relation for (23) based on Eq. (10) in the main text

min
u

N∑
i=0

[
L(θa(i)) +

1

2
uTi Rui

]
+ L(θa(N+1))), (24)

subject to θa(i+1) = θa(i) + ui. (25)
Thus, we can get the updating formulas of OCPDQN written as Eq. (7-9) in the main text.

Lemma 1. Since θa∗ is the minimum value of the functionL(θ), we have∇L(θa∗) = 0,∇2
θL(θa∗) >

0. Consider the function sequence gi(θa(i)) given by Eq. (7-9) in the main text, we have g′i(θa(i)) =

In −
[(
R+∇2L(θa∗)

)−1
R
]i+1

.

Proof. According to Eq. (7-9) in the main text, we have

g′i(θa(i)) = (R+∇2L(θa(i)))
−1 ×

(
∇2L(θa(i)) +Rḡ′i−1(θa(i))

)
− (R+∇2L(θa(i)))

−1 ×
(
ḡTi−1(θa(i))⊗ In

)
∇3L(θa(i)),

(26)

ḡ′0(θa(i)) = (R+∇2L(θa(i)))
−1∇2L(θa(i))− (R+∇2L(θa(i)))

−1

×
(
ḡT0 (θa(i))⊗ In

)
∇3L(θa(i)).

(27)

where ⊗ denotes the Kronecker product, ∇3L(θa(i)) =
d(vec(∇2L(θa(i))))

dθT
a(i)

and ∇2L(θa(i)) is vec-

torized as vec(∇2L(θa(i))). Eq. (27) implies that every ḡ′0(θa(i)) contains ∇L(θa(i)) as a factor.
Accordingly, due to ∇L(θa∗) = 0, we have

ḡk(θa∗) = 0, k = 0, 1, · · · , N, (28)
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which, together with (26-27), yields

ḡ′i(θa∗) = (R+∇2L(θa∗))
−1(∇2L(θa∗) +Rḡ′i−1(θa∗)), (29)

ḡ′0(θa∗) = (R+∇2L(θa∗))
−1∇2L(θa∗). (30)

Based on Eq. (30), it is direct that

ḡ′0(θa∗) = (R+∇2L(θa∗))
−1∇2L(θa∗) = In − (R+∇2L(θa∗))

−1R. (31)

Then, assume for all k ⩾ i+ 1, there always holds

ḡ′k(θa∗) = In − [(R+∇2L(θa∗))
−1R]k+1. (32)

Finally, we will show that in the case of k = i, (32) also holds.

ḡ′i(θa∗) = (R+∇2L(θa∗))−1
(
∇2L(θa∗) +Rḡ′i−1(θa∗)

)
= (R+∇2L(θa∗))−1

[
∇2L(θa∗) +R

(
In −

(
(R+∇2L(θa∗))−1R

)i )]
= In −

[
(R+∇2L(θa∗))−1R

]i+1
.

(33)

Theorem 1. The weights of the actor network θa of OCPDQN can converge to the optimal weight
θa∗.

Proof. Based on Eq. (15) in the main text and Lemma 1, the following relationship can be obtained

θa(i+1) − θa∗ = θa(i) − θa∗ − gi(θa(i))
= θa(i) − θa∗ − [gi(θa∗) + g′i(θa∗)(θa(i) − θa∗) + o(|θa(i) − θa∗|)]
≈ θa(i) − θa∗ − [g′i(θa∗)(θa(i) − θa∗)]
= (I − g′i(θa∗))(θa(i) − θa∗)

=
(
R+∇2L(θa∗)−1R

)i+1 (
θa(i) − θa∗

)
.

where o(|θa,c(i) − θa∗|) is the higher order approximation term.

Since θa∗ is the minimizer of the loss function, we have ∇2L(θa∗) > 0. There-
fore, ρ

(
R+∇2L(θa∗)−1R

)
< 1. When the number of iterations i is sufficiently large,(

R+∇2L(θa∗)−1R
)i+1 → 0, and thus we have

θa(i+1) − θa∗ =
(
R+∇2L(θa∗)−1R

)i+1 (
θa(i) − θa∗

)
= 0. (34)

Hence, it can be seen that the actor network of OCPDQN ultimately converges to the optimal solu-
tion at a super-linear rate.

A.2 CONVERGENCE ANALYSIS OF GN-OCPDQN

The weights of the actor network θa of GN-OCPDQN can converge to the optimal weight θa∗ at a
super-linear rate. Based on Eq. (10) and Eq. (15) in the main text, we can get the following formulas:

θa(i+1) − θa∗ = θa(i) − θa∗ − ĝi(θa(i))
= θa(i) − θa∗ − [ĝi(θa∗) + ĝ′i(θa∗)(θa(i) − θa∗) + o(|θa(i) − θa∗|)]
≈ θa(i) − θa∗ − [g′i(θa∗)(θa(i) − θa∗)]
= (I − ĝ′i(θa∗))(θa(i) − θa∗)

=
(
R+∇2L(θa∗)−1R

)i+1 (
θa(i) − θa∗

)
(35)

=
(
R+ (Jr(θa∗)

⊤Jr(θa∗))
−1R

)i+1 (
θa(i) − θa∗

)
. (36)

For parameters θa(i), there holds

θa(i+1) − θa∗ ⩽
(
R+∇2L(θa∗)−1R

)i+1 (
θa(i) − θa∗

)
. (37)
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Similarly, we have Jr(θa∗)⊤Jr(θa∗) > 0, so
∥∥∥(R+ Jr(θa∗)

⊤Jr(θa∗)
)−1

R
∥∥∥ < 1. When the

number of iterations i is sufficiently large,
(
R+

(
Jr(θa∗)

⊤Jr(θa∗)
)−1

R
)i+1

→ 0, we have

θa(i+1) − θa∗ =
(
R+ (Jr(θa∗)

⊤Jr(θa∗))
−1R

)i+1 ×
(
θa(i) − θa∗

)
= 0. (38)

The proof is complete.

A.3 THE USE OF LARGE LANGUAGE MODELS

All LLM-generated suggestions and revisions were meticulously corrected and approved by the au-
thors. This crucial step ensured that the final text remained fully aligned with the intended academic
content and that no factual inaccuracies or conceptual distortions were introduced.
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