

000 001 002 003 004 005 006 007 008 009 010 GRAPH REWIRING BASED ON FLOW ALIGNMENT FOR 011 IMPROVING FLUID SIMULATION

012 **Anonymous authors**
013

014 Paper under double-blind review
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

ABSTRACT

033 To overcome computation burden of traditional computational fluid dynamics
034 (CFD) simulations, researchers have explored different architectures to develop
035 physics-informed simulation methods. Among them, graph neural networks
036 (GNN) are most suitable for adopting CFD meshes, which are extensively used
037 in engineering and industrial applications. However, classical GNNs propagate
038 information among neighbour nodes, which highly restrict information exchange
039 within the network. To address this issue, graph rewiring methods have been
040 developed for generic graph problems, but not particular for fluid simulation.
041 PIORF, introducing edges connecting distant nodes, is the first graph rewiring
042 method to do so, and previous experiments have demonstrated its effectiveness
043 against state-of-the-art generic rewiring methods. Nevertheless, in this work,
044 we found that simply connecting all 2-hop nodes can provide competitive per-
045 formance with PIORF. This result raises three questions: 1) Is physics-informed
046 rewiring really useful for improving flow predictions? 2) Should we consider just
047 local connection, instead of connecting distant nodes? 3) Do we need to change
048 the connections based on input flow for rollout simulations? By thoroughly adopt-
049 ing physical fluid principles, we propose a simple yet very efficient method, Flow
050 Alignment Rewiring (FLARE) technique, which connects 2-hop nodes only when
051 the node direction aligns with input flow direction. Hence, FLARE is a physics-
052 informed local rewiring method, different from PIORF and well-aligned with fluid
053 physics. Extensive numerical experiments on flows over a cylinder and single
054 and tandem airfoil under different flow conditions and deep network architec-
055 tures demonstrate that FLARE outperforms PIORF and various 2-hop rewiring
056 approaches by a significant margin.

057 1 INTRODUCTION

058 Computational fluid dynamics (CFD) is widely employed in engineering to simulate fluid flows
059 around objects. Traditionally, CFD involves solving the Navier–Stokes equations numerically, re-
060 quiring sufficiently fine meshes, especially near boundary layers and wakes, where flow behaviors
061 vary rapidly (Rumsey & Ying, 2002; Spalart & Venkatakrishnan, 2016). Although mesh refine-
062 ment substantially improves simulation accuracy, it significantly increases computational demands,
063 often rendering high-fidelity simulations resource intensive. To address the limitations of tradi-
064 tional numerical solvers, deep learning methods with integration of physics prior knowledge have
065 been investigated and considered as a viable solution. Physics-informed neural networks (PINNs),
066 introduced by Raissi et al. (2019), integrate physical equations directly into neural network train-
067 ing, laying the foundational work for future physics-informed machine learning methods. Although
068 PINNs showed early success, they often encountered scalability and generalization challenges in
069 complex fluid scenarios involving multiple interacting features (Krishnapriyan et al., 2021; Wang
070 et al., 2022).

071 Various common neural architectures such as multilayer perceptron (MLP), convolutional neural
072 network (CNN), and graph neural network (GNN) have been employed in previous fluid simulation
073 studies (Raissi et al., 2019; Tompson et al., 2017; Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020).
074 Among them, GNNs attract considerable attention for their abilities to take CFD mesh as an input
075 directly and exploit the prior knowledge in the mesh, e.g., a dense cell region corresponding to a
076 region with fast-changing velocity and/or pressure. However, this direct adoption of CFD mesh in

054 GNN inherits the weaknesses from both GNN and the mesh. More precisely: 1) Classical GNN only
 055 propagates information to connected neighbors, thus limiting its speed of information exchange. 2)
 056 The mesh constructed for discretizing the governing equations is generally not related to flow direc-
 057 tion. 3) In a rollout simulation with static object(s), even though velocities of different regions may
 058 change constantly, the same graph structure, and hence the mesh, is used in the entire simulation.

059 The first weakness is well-known in the AI community (Alon & Yahav, 2020) so various rewiring
 060 methods have been proposed (Micheli & Tortorella, 2025). These non-physics-informed rewiring
 061 methods are designed to identify information bottleneck nodes through the topology of the graph
 062 and distribute the information to less information-congested regions. Since they are developed
 063 for generic graph problems, no physical quantities are required in their rewiring. Yu et al. (2025)
 064 pinpointed the state-of-the-art generic rewiring methods, including DIGL (Gasteiger et al., 2019),
 065 SDRF (Topping et al., 2021), FoSR (Karhadkar et al., 2022) and BORF (Nguyen et al., 2023), are
 066 ineffective for fluid simulation. Their results imply that there are some fundamental differences
 067 between fluid simulation and graph problems studied in previous works.

068 To improve fluid simulation, Yu et al. (2025) proposed a new rewiring method, PIORF, which uses
 069 Ollivier–Ricci curvature (ORC) to identify bottleneck nodes and connects those nodes to high-
 070 velocity gradient nodes. Like other methods, PIORF measures information congesion based on
 071 topology of the graph but its connections based on velocity gradient were not employed by any
 072 previous methods. PIORF allows long distant nodes to be connected, and all connections are bidi-
 073 rectional, as illustrated in Fig. 1(a). It achieves optimal performance when ORC selects 3% – 7% of
 074 nodes (dataset-dependent) with the highest information compression for rewiring. Selecting more
 075 nodes would degrade its performance. PIORF can consistently achieve improvements against base-
 076 lines with and without state-of-the-art rewiring methods.

077 However, PIORF does not totally align with physical principles. First, contrary to PIORF’s distant
 078 connections, fluid flow convects and diffuses locally. Also, net fluid flux across space is not bidi-
 079 rectional. Because of these misalignments with physical principles yet good performance, PIORF
 080 draws our attention. We compare PIORF with all 2-hop connections, which add bidirectional edges
 081 to all nodes with 2-hop distances, as illustrated in Fig. 1(b). It is a local and non-directional¹ connec-
 082 tion scheme. Surprisingly, this simple and non-physics-informed method can provide competitive
 083 performance against PIORF. For example, the average velocity RMSE of the PIORF and the 2-hop
 084 connection method (2-HOP-ALL in Tab. 2) over three baseline architectures on the *CylinderFlow*
 085 database (Pfaff et al., 2020) are 55.23 and 46.97, and their average velocity RMSE on the *Airfoil*
 086 dataset (Pfaff et al., 2020) are 38.69 and 39.47, respectively. More details about this comparison are
 087 given in the experiment section. Although we should mention that PIORF has lower training cost
 088 compared with the 2-hop connection, these experimental results raise three important questions:

- 089 1. Is physics-informed based rewiring really useful for improving fluid flow simulations?
- 090 2. Should we consider just local connection, instead of connecting distant nodes?
- 091 3. Do we need to change the connections based on input flow for rollout simulations?

092 To answer these questions and develop an effective rewiring method for fluid simulation, we propose
 093 the Flow Alignment Rewiring (FLARE) method, which is designed based on physics principles,
 094 considering local and input flow direction for connections, as shown in Fig. 1(c). The contributions
 095 of this work include:

- 096 • FLARE is the first physics-informed rewiring method aligned with physical principles².
- 097 • FLARE is the first rewiring method using local information on flow velocity and direction
 098 for directional connection.
- 100 • Extensive experiments on the *CylinderFlow*, *Airfoil*, and *Tandem-Airfoil-Cruise* datasets
 101 with different flow conditions demonstrate that FLARE outperforms PIORF, baselines, and
 102 variations of 2-hop connections, indicating its effectiveness and robustness.

104
 105 ¹Because of the bidirectional connections, information from node i can flow to node j and vice versa, same
 106 as the original graph constructed from CFD Mesh, so the scheme is considered non-directional.

107 ²PIORF does use the term physics-informed and velocity gradient to determine its connections, but it does
 108 not align with physical principles as explained in the introduction.

Figure 1: Illustration of different rewiring (dashed-line) under different connections: (a) PIORF’s rewiring by connecting the bottleneck nodes (black) to the largest velocity difference node (white), (b) 2-HOP-ALL connection that satisfies Eqn. (2), and (c) FLARE, the proposed rewiring connections that are local, directional, and based on current flow directions as labeled in blue arrows, whereas the existing bidirectional edges (red dashed-line) are due to opposite flow directions between two corresponding nodes.

2 RELATED WORK

Recent years have seen the rapid adoption of graph neural networks (GNNs) for simulating unsteady fluid flows, owing to their flexibility on irregular meshes and strong inductive biases for physical interactions. Pioneering works (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020) have demonstrated the potential of message-passing frameworks to capture dynamics across fluids, rigid bodies, and deformable solids on unstructured domains. Subsequently, other models (Obiols-Sales et al., 2020; Chen et al., 2021; Jessica et al., 2023; Lim et al., 2025) applied similar architectures to predict velocity and pressure fields efficiently, achieving significant acceleration compared to traditional CFD solvers. More recent extensions addressed scalability and long-range dependencies. X-MeshGraphNet (Nabian et al., 2024) introduced domain partitioning and multi-scale halo exchange to improve scalability, while AMGNet (Yang et al., 2022) and BSMS-GNN (Cao et al., 2023) incorporated multi-scale pooling for efficient simulation on large meshes. These models consistently demonstrated a speedup of several orders of magnitude while retaining accuracy across laminar and turbulent regimes. To further increase fidelity, physics-informed GNNs (Chen et al., 2021; Belbute-Peres et al., 2020; Lim et al., 2024; Yu et al., 2024) have been explored through integration of governing equations as soft constraints or coupling with a differentiable PDE solver. These advances highlight GNNs as promising surrogates for high-dimensional, unsteady fluid simulations, though they remain challenged by long-range information propagation and bottleneck issues deeply tied to over-squashing.

Early theoretical studies characterized over-squashing as information contraction (Banerjee et al., 2022) and vanishing sensitivity in deep GNNs (Di Giovanni et al., 2023), while also uncovering trade-offs with over-smoothing mediated by the spectral gap (Giraldo et al., 2023). Geometry has played a key role. For instance, Topping et al. (2021) introduced curvature-based rewiring via Stochastic Discrete Ricci Flow, showing that negatively curved edges induce over-squashing. Nguyen et al. (2023) extended this with Batch Ollivier–Ricci Flow (BORF), unifying over-squashing and over-smoothing via local curvature. These previous works are developed for generic graph learning problems, not specifically for fluid simulations. They rely on the graph topology to determine the connections, and no physical quantities, such as flow velocity, are involved in the determination.

162 Based on previous works, PIORF (Yu et al., 2025) leverages Ollivier–Ricci flow to identify information
 163 bottleneck nodes and determines their connections with other nodes using velocity gradients to
 164 enhance long-range interactions in mesh-based GNNs. It is the first work to exploit velocity gradients
 165 in rewiring, allowing long-distance, bidirectional connections. However, as mentioned above,
 166 such treatments do not align with physical principles. To understand PIORF’s performance more
 167 deeply and the importance of fluid principles in rewiring, we systematically compare PIORF with the
 168 local and non-directional 2-hop connection scheme and develop FLARE based on the principles.
 169

170 3 FLOW ALIGNMENT REWIRING

172 3.1 NOTATIONS AND PRELIMINARIES

174 **Graph representation:** We represent the computational mesh as a directed graph $G = (V, E)$.
 175 Each node $i \in V$ corresponds to a mesh point with position \mathbf{x}_i and input velocity \mathbf{v}_i , where $\mathbf{x}_i =$
 176 $[x_i, y_i]^T \in \mathbb{R}^2$ and $\mathbf{v}_i = [u_i, v_i]^T \in \mathbb{R}^2$. Bold symbols, e.g., \mathbf{x}_i and \mathbf{v}_i represent vectors and
 177 non-bold symbols, e.g., x_i and y_i represent scalars. Nodes are connected by directional edges,
 178 $(i, j) \in E$, where messages are sent from node i (sender) to node j (receiver). For bidirectional
 179 connection, edges from node i to node j , i.e., (i, j) and from node j to node i i.e., (j, i) are needed.
 180 In standard physics-informed AI studies with CFD mesh as the input, all edges are bidirectional,
 181 i.e., both (i, j) and (j, i) exist in the graph because the CFD mesh is non-directional. The graph of
 182 the previous rewiring work PIORF is also bidirectional. Different from previous studies, our graph
 183 is directional, meaning that the presence of edge (i, j) in the graph does not imply that edge (j, i)
 184 also exists.

185 **Message passing:** Let $h_i^{(l)}$ denote the hidden state of node i at layer l of a GNN, and e_{ij} be the edge
 186 feature on (i, j) . A generic message passing layer is represented as:

$$187 \mathbf{m}_{i \rightarrow j}^{(l)} = m_\phi(\mathbf{h}_i^{(l)}, \mathbf{h}_j^{(l)}, e_{ij}), \quad \mathbf{h}_j^{(l+1)} = u_\theta \left(\mathbf{h}_j^{(l)}, \sum_{i:(i,j) \in E} \mathbf{m}_{i \rightarrow j}^{(l)} \right), \quad (1)$$

191 where m_ϕ and u_θ are network components for updating the hidden state through the features on
 192 connected edges and nodes. In the rollout simulation, $h_i^{(0)}$ representing input features can include
 193 output velocity and density of the previous timestep and other features such as signed distance
 194 function (SDF) and directional integration distance (DID) (Jessica et al., 2023). In static simulation,
 195 input feature can also include SDF, DID and preliminary velocity estimates from another method
 196 (Jessica, 2025).

197 **2-hop connection:** The proposed rewiring method FLARE considers local connections instead of
 198 long-distance connection used in PIORF. 2-hop connection is the shortest connection, except for
 199 those 1-hop connections in the original graph from CFD mesh. A pair of nodes (i, j) is 2-hop
 200 connected if there exists a node $k \in V$ with $(i, k) \in E$ and $(k, j) \in E$, while the direct edge
 201 $(i, j) \notin E$. The set of all 2-hop connected edges is defined as:

$$202 C_2 = \{(i, j) \in V \times V : \exists k \in V, (i, k) \in E, (k, j) \in E, (i, j) \notin E, i \neq j\}. \quad (2)$$

204 3.2 PHYSICAL PRINCIPLES AND FLARE

206 The proposed FLARE method is developed based on fundamental physical principles of fluid
 207 dynamics. First, at any given time, the net fluid transport between two neighboring regions is inherently
 208 unidirectional. In other words, fluid mass flows from one region to another without simultaneous
 209 reverse transport. Second, fluid mass is a physical quantity constrained by locality, for which it
 210 can only propagate over short spatial distances, $\Delta \mathbf{x}$, within a finite time interval, Δt , and cannot
 211 instantaneously appear in distant regions. These two principles form the basis of classical numerical
 212 solvers, such as the finite volume method (Moukalled et al., 2016), which are widely employed in
 213 engineering and industrial fluid simulations. Lastly, the transport of fluid mass is determined by the
 214 instantaneous velocity field, \mathbf{v} , meaning that movement is aligned with the current prevailing flow
 215 direction. Figure 2 illustrates these three principles: (i) unidirectionality, (ii) locality, and (iii) flow
 alignment that establish the concept of FLARE.

Figure 2: Illustration of the three physical principles underlying the proposed FLARE method in the context of flow over a cylinder: (i) unidirectional flow, fluid transport occurs in a single direction between regions, (ii) locality, transport is constrained to short spatial distance proportional to $\Delta x = \Delta t \cdot v$, and (iii) flow alignment, connections follow the instantaneous flow direction. The progressively darker circles indicate temporal progression of fluid elements from t_n to t_{n+3} or $t_{n+\Delta t}$.

Adopting the three principles in the development of a rewiring method, the rewiring connections should be local, directional, and based on current flow direction, which are respectively suggested by the first, second, and third principles. Although PIORF also uses velocity in their rewiring and claims to be a physical-informed method, it violates all three principles. From the perspective of fluid research, it is therefore physically invalid. In contrast, the proposed FLARE is designed based on the three principles. FLARE only considers directional 2-hop connections, which are the most local connections, except those connections in the original CFD mesh, and its connections are determined by the velocity of input flow. Given each candidate $(i, j) \in C_2$, their displacement vector \mathbf{d}_{ij} can be obtained by:

$$\mathbf{d}_{ij} = \mathbf{x}_j - \mathbf{x}_i = [x_j - x_i, y_j - y_i]^T. \quad (3)$$

The flow alignment score s_{ij} is defined by the projection of the velocity vector of the sender onto the displacement vector:

$$s_{ij} = \mathbf{v}_i^T \mathbf{d}_{ij} = u_i(x_j - x_i) + v_i(y_j - y_i). \quad (4)$$

It is worthy to highlight that the flow alignment score only uses velocity of the sender, different from PIORF, which uses velocity of both nodes to compute velocity gradient. FLARE selects 2-hop connections based on flow alignment for rewiring. More precisely, FLARE connects nodes $(i, j) \in C_2$ only when $s_{ij} > T$, a predefined threshold. The selected connections form the set:

$$A_{align} = \{(i, j) \in C_2 : s_{ij} > T\}. \quad (5)$$

The connections in A_{align} and the original graph $G = (V, E)$ from the mesh form a new graph as:

$$G^+ = (V, E \cup A_{align}). \quad (6)$$

This new rewired graph fulfills the three principles. Note that in rollout simulation, this graph keeps changing because flow velocity field at each point of time is different, as shown in Fig. 1(c).

During training, the ground truth velocity field at time t is used to derive A_{align} and G^+ to predict flows at time $t + 1$. At time of inference, a velocity field at time 0 given by another method is used in the initial rewiring. If no velocity field is given at the beginning, FLARE will not rewire the graph at time 0. It will rewire graph connections in the rest of the time steps based on the output flow of the previous time steps. Following PIORF’s setting, in our experiments, we use ground truth velocity field to rewire the graph at the starting time point. By using 2-hop connections, FLARE can extend information propagation range from L to $2L$ for classical GNN, where L is the total number of layers in the network.

270

4 EXPERIMENTS

272 To evaluate the proposed physics-informed rewiring method FLARE, we systematically compare it
 273 with PIORF and various wo 2-hop connections on three datasets with compressible and incompress-
 274ible steady and unsteady flows.

275

4.1 DATASETS

276 Figure 3: Velocity contours from datasets (a) *CylinderFlow*, (b) *Airfoil*, and (c) *Tandem-Airfoil-277
 Cruise*.

278 The experiments are conducted on three benchmark datasets: *CylinderFlow* (Pfaff et al., 2020),
 279 *Airfoil* (Pfaff et al., 2020), and *Tandem-Airfoil-Cruise* (Jessica, 2025), as illustrated in Fig. 3. *Cylin-280
 derFlow* and *Airfoil* are widely employed in physics-informed AI studies, including evaluation of
 281 PIORF, and thus serve as our primary unsteady flow benchmarks. To further assess performance
 282 under steady flow conditions, we additionally employ the *Cruise* subset of the recently generated
 283 *Tandem-Airfoil* dataset, which captures complex steady interactions between tandem airfoils.

284 *CylinderFlow* contains 1200 incompressible unsteady flow simulations around cylindrical obstacles
 285 of varying radii. Each simulation consists of 600 time steps with a fixed mesh topology, averaging
 286 1885 nodes per mesh. The dataset is split into 1000 training, 100 validation, and 100 testing simu-
 287 lations. During inference, the ground-truth velocity field at the initial time step is used for rewiring,
 288 and subsequent steps rely on the previous time step of model’s predicted velocity field.

289 *Airfoil* comprises 1200 compressible unsteady flow simulations over airfoil geometries. Similar to
 290 *CylinderFlow*, each simulation contains 600 time steps with static meshes averaging 5223 nodes.
 291 The dataset is partitioned into 1000 training, 100 validation, and 100 testing simulations. As in
 292 *CylinderFlow*, graph rewiring at the first time step uses ground-truth velocity, with later steps up-
 293 dated using predicted velocities.

294 *Tandem-Airfoil-Cruise* dataset consists of 784 incompressible steady flow simulations of tandem-
 295 airfoil configurations with average 351315 nodes per simulation. Two airfoils of varying shapes and
 296 sizes are randomly sampled and positioned within a bounded region at a fixed angle of attack of 5°
 297 and Reynolds number of 500. This setup creates complex flow interactions. The dataset is divided
 298 into training, validation, and test sets in an 8:1:1 ratio. Following Jessica (2025), initial tandem-
 299 airfoil flow fields are estimated by a deep network trained on single-airfoil data, which are then used
 300 for graph rewiring in our experiments.

301 Table 1 summarizes the edge features, node features, and prediction targets for each dataset. Since
 302 *CylinderFlow* is incompressible flow, pressure field can be directly derived from velocity via Pois-
 303 son’s equation, and thus we do not include pressure field as our prediction target. For *Airfoil*, we
 304 follow the recently released BSMS-GNN implementation to predict the spatial gradients of the ve-
 305 locity and density fields. Additional features, such as signed distance functions employed in Mesh-
 306 GraphNets, are incorporated where relevant, ensuring consistency with prior baselines. More details
 307 are given in the Appendix.

308

4.2 BASELINES AND EXPERIMENTAL SETTINGS

309 Since Yu et al. (2025) systematically compared PIORF with the state-of-the-art generic rewiring meth-
 310 ods, including DIGL (Gasteiger et al., 2019), SDRF (Topping et al., 2021), FoSR (Karhadkar et al.,
 311 2022) and BORF (Nguyen et al., 2023) and concluded that PIORF consistently outperforms them in
 312 fluid simulations, we do not include them in this evaluation. Instead, we focus our comparisons on
 313 PIORF and 2-hop connections, which can be considered as variations of the proposed FLARE. PI-
 314 ORF serves as the key method in this evaluation as it also uses velocity in its rewiring and was tested

324
 325 Table 1: Feature specification employed in experiments, average number of nodes, and flow types
 326 for the three datasets. Variables denote: (u_i, v_i) —velocity components in x and y directions; ρ_i —fluid
 327 density; p_i —pressure; $\nabla(\cdot)$ —spatial gradient; \mathbf{n}_i —node type; \mathbf{x}_{ij} —relative position vector.

Dataset	Edge Features	Node Features	Prediction Targets	Ave. Nodes	Flow Type
<i>CylinderFlow</i>	$\mathbf{x}_{ij}, \ \mathbf{x}_{ij}\ $	\mathbf{n}_i, u_i, v_i	$\nabla u_i, \nabla v_i$	1885	Incompressible, unsteady
<i>Airfoil</i>	$\mathbf{x}_{ij}, \ \mathbf{x}_{ij}\ $	$\mathbf{n}_i, u_i, v_i, \rho_i$	$\nabla u_i, \nabla v_i, \nabla \rho_i$	5223	Compressible, unsteady
<i>Tandem-Airfoil-Cruise</i>	$\mathbf{x}_{ij}, \ \mathbf{x}_{ij}\ $	$\mathbf{n}_i, u_i, v_i, p_i$	u_i, v_i, p_i	351315	Incompressible, steady

328
 329
 330
 331
 332
 333
 334 on fluid simulations. In addition to PIORF, we also include a full 2-hop connection scheme, denoted
 335 as 2-HOP-ALL, which uses bidirectional edges to connect all 2-hop nodes directly. 2-HOP-ALL
 336 serves as a local and non-physical-informed baseline. Because of the bidirectional connections, 2-
 337 HOP-ALL can be regarded as a non-directional scheme, same as PIORF. Since FLARE selectively
 338 connects 2-hop nodes based on the physical principles, comparing FLARE with 2-HOP-ALL is an
 339 important indicator to validate the necessity of the physical principles. Moreover, a random 2-hop
 340 scheme, denoted as 2-HOP-RANDOM, which randomly connects 2-hop nodes with same number
 341 of edges as FLARE, is also included. Its performance difference with FLARE is used to evaluate
 342 the effectiveness of FLARE’s connections based on input flow directions.

343 In the experiments, MeshGraphNets (MGN) (Pfaff et al., 2020), BSMS-GNN (Cao et al., 2023)
 344 and Transolver++ (Luo et al., 2025) are employed as baseline architectures. The first two are graph
 345 networks and adopted by PIORF’s study. For MeshGraphNets, we strictly adhere to established ex-
 346 perimental configurations and dataset splits (Pfaff et al., 2020), ensuring comparability by modifying
 347 only edge connectivity without altering existing message transmission or update mechanisms. In the
 348 BSMS-GNN (Cao et al., 2023; Yu et al., 2025) setting, the rewiring methods specifically applied at
 349 the finest resolution level. It is worth noting that BSMS-GNN has a hierarchical scheme to improve
 350 message passing. Transolver++ is a transformer-based architecture. We include it in our evaluation
 351 to test FLARE on transformer-based architecture, which is not FLARE designed for. Given that
 352 Transolver++ does not have explicit edge-based messaging, we integrate FLARE through adding
 353 message-passing (MP) blocks on top of the transformer blocks, facilitating effective utilization of
 354 the rewired graph structure. We validate this by prepending two MP blocks to Transolver++ and
 355 compare them on *CylinderFlow*. The standard Transolver++ achieves RMSE of 38.12×10^{-3} and
 356 the revised Transolver++ with additional 2MP blocks achieves RMSE of 32.77×10^{-3} . The two
 357 MP blocks provide over 14% improvement on RMSE. Thus, we employ the revised Transolver++
 358 to evaluate different rewiring methods.

359 All experiments and implementation are conducted using PyTorch, leveraging publicly available
 360 codebases to ensure reproducibility and transparency. Experiments are executed on NVIDIA RTX
 361 5090 GPUs with W9-3475X CPUs, and complete training details, hyperparameters, and supplemen-
 362 tary evaluation specifics are comprehensively documented in the appendix to facilitate reproducibil-
 363 ity and future research. Upon acceptance, we will share our codebases.

364 4.3 RESULTS

365
 366 Table 2 shows the full rollout RMSE on *CylinderFlow* and *Airfoil*. For *CylinderFlow*, we can
 367 see that 2-HOP-ALL consistently outperforms PIORF and the baseline models without using any
 368 rewiring schemes. For *Airfoil*, 2-HOP-ALL performs very similar to PIORF in most of the com-
 369 parisons, except for density predictions of MGN and BSMS-GNN, 95.04×10^{-3} vs 86.49×10^{-3}
 370 and 99.75×10^{-3} vs 128.96×10^{-3} . These results indicate that in terms of accuracy, PIORF has
 371 no clear advantages over the non-physics-informed scheme, 2-HOP-ALL. Comparing FLARE with
 372 PIORF and 2-HOP-ALL on *CylinderFlow*, we can observe clear performance gains from FLARE.
 373 On average, FLARE achieves 27.40% improvement over PIORF and 26.03% improvement over
 374 2-HOP-ALL.

375 Figure 4 shows the RMSE of MGN with different rewiring methods in rollout simulation. The
 376 RMSE of all rewiring methods have the same trend. After the 20th time step, RMSE of all methods
 377 increase. However, RMSE of FLARE increases significantly slower than the others. It is worth
 378 noting that PIORF performs similarly as 2-HOP-RANDOM in this experiment.

378

379
380
Table 2: Full-rollout RMSE on *CylinderFlow* and *Airfoil* datasets (mean \pm SE). Values scaled by
 $\times 10^3$ except *Airfoil* velocity. Best results are highlighted in **bold**, second-best results are underlined.

Model	Method	<i>CylinderFlow</i>		<i>Airfoil</i> Velocity		<i>Airfoil</i> Density	
		RMSE ($\times 10^3$)	Improv.	RMSE	Improv.	RMSE ($\times 10^3$)	Improv.
MGN	Baseline	40.35 \pm 4.30	-	35.45 \pm 2.33	-	94.39 \pm 6.28	-
	PIORF	33.59 \pm 3.70	16.8%	33.66 \pm 2.17	5.1%	95.04 \pm 5.79	-0.7%
	2-HOP-ALL	29.40 \pm 2.60	<u>27.1%</u>	34.03 \pm 2.62	4.0%	86.49 \pm 5.71	8.4%
	2-HOP-RANDOM	33.52 \pm 3.20	16.9%	33.33 \pm 2.28	6.0%	95.16 \pm 5.85	-0.8%
	FLARE (ours)	23.38 \pm 2.50	42.1%	33.27 \pm 2.39	6.1%	90.58 \pm 5.76	4.0%
	FLARE + 10% Density 2HOP	-	-	31.93 \pm 2.57	9.9%	85.66 \pm 6.12	9.2%
BSMS-GNN	Baseline	97.15 \pm 6.80	-	46.57 \pm 3.20	-	126.78 \pm 8.14	-
	PIORF	101.01 \pm 5.70	-4.0%	44.25 \pm 2.80	5.0%	99.75 \pm 6.93	<u>21.3%</u>
	2-HOP-ALL	79.60 \pm 5.32	18.1%	45.91 \pm 3.10	1.4%	128.96 \pm 8.12	-1.7%
	2-HOP-RANDOM	64.80 \pm 3.73	<u>33.3%</u>	51.84 \pm 3.10	-11.3%	195.92 \pm 6.36	-54.6%
	FLARE (ours)	56.28 \pm 3.80	42.1%	43.63 \pm 3.31	6.3%	110.85 \pm 9.30	12.6%
	FLARE + 10% Density 2HOP	-	-	39.46 \pm 2.90	15.3%	95.58 \pm 7.05	24.6%
Transolver++	Baseline	32.77 \pm 4.09	-	40.27 \pm 2.19	-	73.76 \pm 4.61	-
	PIORF	31.10 \pm 3.74	5.1%	38.16 \pm 2.78	5.2%	73.89 \pm 5.04	-0.2%
	2-HOP-ALL	31.90 \pm 2.96	2.7%	38.49 \pm 2.52	4.4%	74.66 \pm 4.97	-1.2%
	2-HOP-RANDOM	32.21 \pm 3.19	1.7%	37.36 \pm 2.80	7.2%	73.89 \pm 5.04	-0.2%
	FLARE (ours)	28.76 \pm 3.16	12.2%	35.40 \pm 2.40	<u>12.1%</u>	67.93 \pm 4.48	<u>7.9%</u>
	FLARE + 10% Density 2HOP	-	-	34.26 \pm 2.32	14.9%	64.76 \pm 4.71	12.2%

397

398
399
400
401
402
403
404
405
406
407
408
For velocity field of *Airfoil*, among the basic compared methods (Baseline, PIORF, 2-HOP-ALL, and 2-HOP-RANDOM), FLARE always performs the best. It achieves 3.26% improvement over PIORF and 5.38% improvement over 2-HOP-ALL. For density field of *Airfoil*, FLARE performs either the best or the second best. On average error over the three models, FLARE and PIORF perform very similarly for the density prediction. Comparing with 2-HOP-ALL, FLARE provides 6% improvement for density prediction. It is worth noting that FLARE gains more significant improvements on *CylinderFlow* than *Airfoil*, we performed an analysis, whose details are given in Appendix A.5. Comparing with 2-HOP-RANDOM, FLARE outperforms it in all comparisons. In addition, Table 2 includes an extended variant with separate rewiring for density (“FLARE + 10% Density 2HOP”), which further improves both velocity and density on *Airfoil* across all three models; the details of this extension is introduced in Appendix A.4.409
410
411
412
413
Table 3 shows the results of *Tandem-Airfoil-Cruise*. We do not include BSMS-GNN in this comparison because of its memory requirements exceeding our equipment limits and its lowest performance on *CylinderFlow* and *Airfoil*. On average, FLARE provides 14.43% performance gain over PIORF and 2.50% performance gain over 2-HOP-ALL. As with results in Table 2, FLARE consistently outperforms 2-HOP-RANDOM.414
415
416
417
418
The experimental results on the three datasets indicate that FLARE outperforms 2-HOP-ALL and PIORF. These results demonstrate the effectiveness of our design combining flow alignment, directionality, and 2-hop locality. FLARE achieves consistent improvements across different flow dynamics regimes in the three datasets, with particularly strong benefits in regions with evolving flow patterns.

419

420

421
422
Table 3: MSE on *Tandem-Airfoil-Cruise* dataset (Reynolds number, $Re = 500$; AoA, $\alpha = 5^\circ$). Mean \pm SD values are scaled by $\times 10^3$.

Model	Method	MSE ($\times 10^3$)	Improv.
MGN	Baseline	67.53 \pm 33.82	-
	PIORF	18.95 \pm 26.61	71.9%
	2-HOP-ALL	<u>12.76 \pm 15.94</u>	<u>81.1%</u>
	2-HOP-RANDOM	<u>24.57 \pm 29.29</u>	63.6%
Transolver++	FLARE (ours)	11.68 \pm 11.47	82.7%
	Baseline	1.04 \pm 0.76	-
	PIORF	0.71 \pm 0.71	31.7%
	2-HOP-ALL	0.66 \pm 0.67	36.5%
	2-HOP-RANDOM	0.86 \pm 0.71	17.3%
	FLARE (ours)	0.68 \pm 0.67	34.6%

Figure 4: Rollout prediction error on *CylinderFlow* test set. Error bars indicate standard error across 100 trajectories. The initial decrease in error reflects models’ robustness to noise levels encountered during training, while subsequent increase occurs as accumulated prediction errors exceed training noise magnitudes. FLARE achieves the lowest long-horizon error.

4.4 ABLATION STUDY

In the first ablation experiment, we study the importance of connection direction. We inversely connect the FLARE to form a new rewiring scheme denoted as 2-HOP-OPOSITE. Table 4(a) clearly indicates that the inverse connections deteriorate the performance on both *CylinderFlow* and *Airfoil* datasets. Comparing results in Table 2, we can observe that 2-HOP-OPOSITE performs even worse than 2-HOP-RANDOM. These results demonstrate that the selection of connection directions has significant impact on prediction performance.

In the second ablation experiment, we study the effect of applying flow alignment rewiring on longer hop distances. We extend FLARE to select 3-hop or 4-hop connections based on flow alignment, while applying adaptive thresholds to maintain connection counts aligned with basic FLARE, denoted as FLARE-3HOP and FLARE-4HOP respectively. Table 4(b) clearly indicates that FLARE-3HOP and FLARE-4HOP underperform standard FLARE on *CylinderFlow*. This further confirms the importance of local connections guided by the physical principles. These results suggest that 2-hop connections balance between local flow alignment and computational efficiency, with longer-range connections potentially introducing noise that degrades prediction stability.

Table 4: Ablation studies on rewiring strategies. Full-rollout RMSE values with *CylinderFlow* velocity and *Airfoil* density scaled by $\times 10^3$.

(a) Flow Direction Comparison

Model	Method	<i>CylinderFlow</i>		<i>Airfoil</i>
		Velocity($\times 10^3$)	Velocity	Density($\times 10^3$)
MGN	2-HOP-OPOSITE	55.48 \pm 3.10	34.17 \pm 2.36	96.39 \pm 5.50
	FLARE (ours)	23.38 \pm 2.50	33.27 \pm 2.39	90.58 \pm 5.76
BSMS	2-HOP-OPOSITE	69.96 \pm 4.50	47.77 \pm 2.95	162.31 \pm 7.23
	FLARE (ours)	56.28 \pm 3.80	43.63 \pm 3.31	110.85 \pm 9.30
Trans++	2-HOP-OPOSITE	29.35 \pm 3.05	40.85 \pm 2.63	72.20 \pm 5.07
	FLARE (ours)	28.76 \pm 3.16	35.40 \pm 2.40	67.93 \pm 4.48

(b) Hop Distance Impact

Method	<i>CylinderFlow</i> Velocity($\times 10^3$)
FLARE-2HOP	23.38 \pm 2.50
FLARE-3HOP	28.67 \pm 2.84
FLARE-4HOP	34.87 \pm 3.14

5 CONCLUSION

In this study, we exploit physical principles of fluids to develop the FLARE method. FLARE performs graph rewiring with 2-hop connections based on input flow directions. It is a local and directional rewiring method, which is significantly different from the non-directional and long-distance rewiring technique, PIORF, which does not abide the physical principles. Extensive experiments conducted on three datasets and multiple architectures confirmed that FLARE outperforms PIORF and physical principles are critical to the performance.

486 REFERENCES
487

488 Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
489 In *International Conference on Learning Representations*, 2020.

490 Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar. Over-
491 squashing in GNNs through the lens of information contraction and graph expansion. In 2022
492 *58th Annual Allerton Conference on Communication, Control, and Computing (Allerton)*, pp.
493 1–8. IEEE, 2022.

494 Filipe De Avila Belbute-Peres, Thomas Economou, and Zico Kolter. Combining differentiable pde
495 solvers and graph neural networks for fluid flow prediction. In *International Conference on ma-
496 chine learning*, pp. 2402–2411. PMLR, 2020.

497 Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. Efficient learning of mesh-based phys-
498 ical simulation with bi-stride multi-scale graph neural network. In *International conference on
499 machine learning*, pp. 3541–3558. PMLR, 2023.

500 Junfeng Chen, Elie Hachem, and Jonathan Viquerat. Graph neural networks for laminar flow pre-
501 diction around random two-dimensional shapes. *Physics of Fluids*, 33(12), 2021.

502 Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
503 Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
504 and topology. In *International conference on machine learning*, pp. 7865–7885. PMLR, 2023.

505 Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
506 learning. *Advances in neural information processing systems*, 32, 2019.

507 Jhony H Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D Malliaros. On the
508 trade-off between over-smoothing and over-squashing in deep graph neural networks. In *Pro-
509 ceedings of the 32nd ACM international conference on information and knowledge management*,
510 pp. 566–576, 2023.

511 L. S. E. Jessica. Ai techniques in cfd: leveraging physical priors with deep learning to improve on
512 numerical solvers. 2025.

513 L. S. E. Jessica, N. A. Arafat, W. X. Lim, W. L. Chan, and A. W. K. Kong. Finite volume features,
514 global geometry representations, and residual training for deep learning-based cfd simulation. In
515 *International Conference on machine learning*, 2023.

516 Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring for
517 addressing oversquashing in gnns. *arXiv preprint arXiv:2210.11790*, 2022.

518 Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
519 acterizing possible failure modes in physics-informed neural networks. *Advances in neural infor-
520 mation processing systems*, 34:26548–26560, 2021.

521 W. X. Lim, N. A. Arafat, W. L. Chan, and W. K. A. Kong. Multi-order loss functions for acceler-
522 ating unsteady flow simulations with physics-based AI. In *2024 IEEE Conference on Artificial
523 Intelligence (CAI), Singapore*, pp. 940–946. IEEE, 2024.

524 W. X. Lim, J. S. E. Loh, Y. Lv, A. W. K. Kong, and W. L. Chan. Accelerating fluid simulations with
525 graph convolution network predicted flow fields. *Aerosp. Sci. Technol.*, pp. 110414, 2025. doi:
526 <https://doi.org/10.1016/j.ast.2025.110414>.

527 Huakun Luo, Haixu Wu, Hang Zhou, Lanxiang Xing, Yichen Di, Jianmin Wang, and Mingsheng
528 Long. Transolver++: An accurate neural solver for PDEs on million-scale geometries. In *Forty-
529 second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=AM7iAh0krx>.

530 Alessio Micheli and Domenico Tortorella. An empirical evaluation of rewiring approaches in graph
531 neural networks. *Pattern Recognition Letters*, 2025.

540 F. Moukalled, L. Mangani, and M. Darwish. *The Finite Volume Method in Computational Fluid*
 541 *Dynamics: An Advanced Introduction with OpenFOAM® and Matlab*. Springer, Cham, 2016.
 542 doi: 10.1007/978-3-319-16874-6.

543 Mohammad Amin Nabian, Chang Liu, Rishikesh Ranade, and Sanjay Choudhry. X-
 544 meshgraphnet: Scalable multi-scale graph neural networks for physics simulation. *arXiv preprint*
 545 *arXiv:2411.17164*, 2024.

546 Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
 547 Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In *International*
 548 *Conference on Machine Learning*, pp. 25956–25979. PMLR, 2023.

549 Octavi Obiols-Sales, Abhinav Vishnu, Nicholas Malaya, and Aparna Chandramowliswaran. Cfd-
 550 net: A deep learning-based accelerator for fluid simulations. In *Proceedings of the 34th ACM*
 551 *international conference on supercomputing*, pp. 1–12, 2020.

552 Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
 553 simulation with graph networks. In *International conference on learning representations*, 2020.

554 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 555 deep learning framework for solving forward and inverse problems involving nonlinear partial
 556 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

557 Christopher L Rumsey and Susan X Ying. Prediction of high lift: review of present cfd capability.
 558 *Progress in Aerospace sciences*, 38(2):145–180, 2002.

559 Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
 560 Battaglia. Learning to simulate complex physics with graph networks. In *International conference*
 561 *on machine learning*, pp. 8459–8468. PMLR, 2020.

562 Philippe R Spalart and V Venkatakrishnan. On the role and challenges of cfd in the aerospace
 563 industry. *The Aeronautical Journal*, 120(1223):209–232, 2016.

564 Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian
 565 fluid simulation with convolutional networks. In *International conference on machine learning*,
 566 pp. 3424–3433. PMLR, 2017.

567 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
 568 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. *arXiv preprint*
 569 *arXiv:2111.14522*, 2021.

570 Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
 571 kernel perspective. *Journal of Computational Physics*, 449:110768, 2022.

572 Zhishuang Yang, Yidao Dong, Xiaogang Deng, and Laiping Zhang. Amgnet: multi-scale graph
 573 neural networks for flow field prediction. *Connection Science*, 34(1):2500–2519, 2022.

574 Youn-Yeol Yu, Jeongwhan Choi, Woojin Cho, Kookjin Lee, Nayong Kim, Kiseok Chang, Chang-
 575 Seung Woo, Ilho Kim, Seok-Woo Lee, Joon-Young Yang, et al. Learning flexible body collision
 576 dynamics with hierarchical contact mesh transformer. *International Conference on Learning*
 577 *Representations*, 2024.

578 Youn-Yeol Yu, Jeongwhan Choi, Jaehyeon Park, Kookjin Lee, and Noseong Park. PIORF: Physics-
 579 informed ollivier-ricci flow for long-range interactions in mesh graph neural networks. In *Inter-*
 580 *national Conference on Learning Representations*, 2025.

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A APPENDIX**595 **A.1 EXPERIMENTAL CONFIGURATIONS**596 **A.1.1 MODEL ARCHITECTURES**

597 We conduct experiments with three baseline models:

- **MGN:** We make PyTorch reimplementation of the original TensorFlow release, preserving all architectural details including 15 message passing blocks and the original training protocol.
- **BSMS-GNN:** Following the authors' latest release, we configure the model with dataset-specific hierarchical levels—7 levels for *CylinderFlow* and 9 levels for *Airfoil*, as validated in PIORF work.
- **Transolver++:** We adopt the default configuration with additional message passing blocks to better handle mesh-based representations. For incompressible flow datasets (*CylinderFlow* and *Tandem-Airfoil-Cruise*), we add 2 message passing blocks, while for the compressible *Airfoil* dataset, we add 1 message passing block to the base architecture.

612 **A.1.2 TRAINING DETAILS**613 Table 5 summarizes our training configurations. We use unit batch size for *CylinderFlow* and 614 *Tandem-Airfoil-Cruise* due to various mesh topologies across simulations, and for MGN to maintain 615 consistency with the original implementation. For *Airfoil*, where mesh structures are uniform, we 616 scale batch size to maximize GPU utilization. In addition, throughout our base FLARE experiments, 617 we employ a zero threshold ($T = 0$) for flow-aligned rewiring, retaining all candidate edges with 618 positive velocity projections.619 **A.1.3 Tandem-Airfoil-Cruise PREPROCESSING**620 For *Tandem-Airfoil-Cruise*, we employ geometry-aware encodings tailored to each architecture: 621 signed distance functions (SDF) for MGN and extended directional integrated distance (DID) (Jes- 622 sica, 2025) on the dual-body configuration for Transolver++, enabling effective representation of 623 complex tandem airfoil interactions.624 **Table 5: Experimental configurations for models across datasets**

Dataset	Batch size			Noise scale	FLARE T
	MGN	BSMS-GNN	Transolver++		
<i>CylinderFlow</i>	1	1	1	velocity: 2e-2	0
<i>Airfoil</i>	1	32	24	velocity: 1e1, density: 1e-2	0
<i>Tandem-Airfoil-Cruise</i>	1	/	1	no noise	0

633 **A.2 ABLATION STUDIES OF FLARE DESIGN CHOICES**634 In this section, we analyze how FLARE behaves for positive thresholds $T > 0$ on the *CylinderFlow* 635 dataset. We focus on three aspects: (i) how sensitive performance is to the choice of T (threshold 636 sensitivity), (ii) whether 3-hop edges help compared to using only 2-hop edges (locality), and (iii) 637 whether the flow-alignment rule itself matters beyond simply adding more unidirectional edges (di- 638 rectionality and flow alignment). These questions are addressed by the *Ablation Threshold*, *Ablation* 639 *Multi-hop*, and *Ablation Unidirectional* variants defined below.640 **Flow-alignment score for $T > 0$.** When $T > 0$, the flow-alignment score is also used to rank 641 and threshold candidates, which more explicitly accounts for both velocity magnitude and the spatial 642 scale of the displacement. For the main ablation experiments reported in Table 6, we therefore apply 643 the distance-normalized score

644
$$norm_s_{ij} = \mathbf{v}_i^\top \frac{\mathbf{d}_{ij}}{\|\mathbf{d}_{ij}\|^{3/2}}, \quad (7)$$

648 to each candidate pair (i, j) , where $\mathbf{d}_{ij} = \mathbf{x}_j - \mathbf{x}_i$, and use the same $norm_s_{ij}$ for both 2-hop and
 649 3-hop candidates (when 3-hop edges are included in the multi-hop ablation). Note that the denom-
 650 inator is strictly positive, so the sign of $norm_s_{ij}$ is unchanged compared to the flow-alignment
 651 score s_{ij} used in the main FLARE configuration. Consequently, with $T = 0$ this normalized score
 652 selects exactly the same 2-hop connections as FLARE; the normalization only affects ranking and
 653 thresholding when $T > 0$ and when 3-hop candidates are additionally considered.

654
 655 **Ablation design.** All ablations are run on *CylinderFlow* with the MGN backbone. We consider
 656 thresholds $T \in \{0.2, 0.5, 0.8, 1.0\}$ and design one variant for each of the three aspects above:

657

- 658 • *Ablation Threshold.* To focus on the effect of T itself, we keep the 2-hop candidates and
 659 the score $norm_s_{ij}$ fixed, and only vary the threshold. For a given T , we add exactly those
 660 2-hop edges with $norm_s_{ij} > T$.
- 661 • *Ablation Multi-hop.* To investigate whether longer-range edges can substitute for 2-hop
 662 locality, we start from the Threshold variant for a given T (fewer 2-hop edges) and then
 663 add top-scoring 3-hop edges, ranked by the same score $norm_s_{ij}$, until the total number of
 664 added edges matches FLARE’s edge count. This keeps the edge budget fixed while trading
 665 some 2-hop edges for 3-hop edges.
- 666 • *Ablation Unidirectional.* To test whether FLARE gains from its flow-aligned selection,
 667 or merely from having more unidirectional edges, we construct this variant separately for
 668 each T . For a given T , we start from all 2-hop candidates, apply FLARE’s alignment rule at
 669 that threshold, and exclude the 2-hop connections that the corresponding Threshold variant
 670 would select. From the remaining 2-hop candidates, we then select unidirectional edges
 671 without enforcing the flow-alignment rule; if this still yields fewer edges than FLARE, we
 672 additionally include 3-hop edges until the total number of added edges matches FLARE’s
 673 edge count.

674

675 Table 6: Full-rollout RMSE on *CylinderFlow* for FLARE and ablation variants (mean \pm SE). Values
 676 are scaled by $\times 10^3$.

Method ($norm_s_{ij}$)	$T = 0$	$T = 0.2$	$T = 0.5$	$T = 0.8$	$T = 1.0$
FLARE (ours)	23.38 ± 2.50	-	-	-	-
Ablation Threshold	-	28.94 ± 3.36	31.55 ± 2.98	29.91 ± 2.61	30.56 ± 3.05
Ablation Multi-hop	-	32.88 ± 3.06	29.06 ± 2.86	39.84 ± 3.83	25.40 ± 1.96
Ablation Unidirectional	-	34.68 ± 3.25	38.80 ± 3.14	36.23 ± 3.50	37.80 ± 3.50

681 FLARE with $T = 0$ attains the lowest error among all configurations, and all variants with $T > 0$
 682 remain noticeably above this level, indicating that the default $T = 0$ configuration is effective
 683 while remaining the simplicity to apply. The Threshold ablation shows that positive T still clearly
 684 improves over the baseline graph (see Table 2), but does not surpass $T = 0$, suggesting that re-
 685 taining all flow-aligned 2-hop edges is preferable in this setting. The Multi-hop ablation indicates
 686 that introducing additional 3-hop edges, while keeping the edge budget fixed, does not provide a
 687 clear advantage over using 2-hop edges alone, which supports 2-hop locality as a reasonable design
 688 choice here. Finally, the Unidirectional ablation, which uses a comparable edge budget but does
 689 not enforce flow alignment, is markedly worse than FLARE across all T , indicating that the gains
 690 come from selectively adding flow-aligned edges rather than merely from increasing the number of
 691 unidirectional shortcuts.

692 **Ablation experiments with s_{ij} .** The ablations above use the distance-normalized flow-alignment
 693 score $norm_s_{ij}$ for $T > 0$, which down-weights longer displacements and therefore prefers shorter,
 694 more local connections. In addition to these ablations, we also test the three variants (Threshold,
 695 Multi-hop, Unidirectional) with the original, unnormalized score s_{ij} to compare directly against the
 696 modified flow-alignment rule for $T > 0$.

697 For each threshold $T \in \{0.2, 0.5, 0.8, 1.0\}$ used with $norm_s_{ij}$ in Table 6, we choose a corre-
 698 sponding threshold $\hat{T}(T)$ for s_{ij} , such that on average over the training set, the rule $s_{ij} > \hat{T}(T)$
 699 retains a similar proportion of 2-hop candidates as $norm_s_{ij} > T$. The resulting mapping is sum-
 700 marized in Table 7, and the associated rollout errors for the three ablation variants are reported
 701 in Table 8. Taken together, the experiments with s_{ij} further confirm the conclusions drawn from

the $norm_s_{ij}$ ablations, while validating that the distance-normalized score $norm_s_{ij}$ is the better choice. It consistently achieves lower rollout error under comparable rewiring and works as intended by prioritizing edges with strong, well-aligned velocities while penalizing large $\|\mathbf{d}_{ij}\|$, which helps discourage long jumps that tend to hurt performance when higher-hop candidates are present. Given these benefits, we adopt $norm_s_{ij}$ as our flow-alignment score for $T > 0$.

Table 7: Mapping from thresholds T used with the normalized score $norm_s_{ij}$ to the corresponding thresholds $\hat{T}(T)$ for the original score s_{ij} on *CylinderFlow*.

T	$\hat{T}(T)$
0.2	0.0014
0.5	0.0036
0.8	0.0058
1.0	0.0079

Table 8: Full-rollout RMSE on *CylinderFlow* for ablation variants using s_{ij} (mean \pm SE). Values are scaled by $\times 10^3$.

Method (s_{ij})	$\hat{T}(0.2)$	$\hat{T}(0.5)$	$\hat{T}(0.8)$	$\hat{T}(1.0)$
Ablation Threshold	32.14 ± 3.16	34.40 ± 2.83	36.66 ± 1.94	36.52 ± 3.32
Ablation Multi-hop	36.53 ± 3.07	33.83 ± 3.11	28.02 ± 2.52	40.54 ± 3.95
Ablation Unidirectional	38.19 ± 2.99	52.09 ± 3.09	39.13 ± 3.11	36.74 ± 2.94

A.3 RUNTIME AND MEMORY ANALYSIS

In this section, we report per-step training and inference time, as well as peak GPU memory usage, for *CylinderFlow* on the MGN backbone with different rewiring schemes. All timings are measured on the same hardware and implementation as in the main experiments. For each method, we discard an initial warm-up phase and then average over 50 iterations. The offline computation of Ollivier–Ricci curvature (required by PIORF) is not included in the timings below.

Table 9: Per-step training and inference time (mean \pm SD) on *CylinderFlow* (MGN backbone).

Model	Training (ms)	Inference (ms)	Train vs MGN	Infer vs MGN
MGN (Baseline)	52.47 ± 8.76	30.44 ± 7.74	$1.000 \times$	$1.000 \times$
PIORF (3% ORC)	58.65 ± 9.16	36.38 ± 9.61	$1.118 \times$	$1.195 \times$
2-HOP-ALL	97.84 ± 7.14	33.56 ± 8.51	$1.865 \times$	$1.103 \times$
2-HOP-RANDOM	58.06 ± 9.21	32.10 ± 7.90	$1.107 \times$	$1.054 \times$
FLARE (ours)	67.79 ± 8.33	39.54 ± 9.51	$1.292 \times$	$1.299 \times$

A.4 EXTENSION: SEPARATE REWIRING FOR DENSITY ON COMPRESSIBLE *Airfoil*

From the results in Table 2, we observe that on the compressible *Airfoil* dataset, FLARE yields notable improvements for velocity prediction, while the relative gain on density is smaller. In this section, we propose a simple extension in which we introduce a separate 2-hop based rewiring for density and use it in parallel with the FLARE rewiring for velocity.

Start from graph $G = (V, E)$, 2-hop candidate set C_2 , and A_{align} as selected connections by FLARE following the flow-alignment rule $s_{ij} > T$ as defined in Section 3. For velocity prediction, we continue to use the rewired edge set $E \cup A_{\text{align}}$. For density prediction, we introduce an additional selected 2-hop connections A_ρ built on top of the same base edges E , such that density uses the edge set $E \cup A_\rho$.

To construct A_ρ , we consider all node pairs $(i, j) \in C_2$ and define

$$\Delta\rho_{ij} = |\rho_i - \rho_j|, \quad (8)$$

where ρ_i and ρ_j are the density values at nodes i and j . We rank all 2-hop pairs by $\Delta\rho_{ij}$ and select the top 10% pairs. For each selected pair (i, j) , we make a bidirectional connection by adding both directed edges (i, j) and (j, i) to A_ρ so that density information can propagate in both directions between neighbouring regions with strong local contrast.

756

757

Table 10: Edge counts and peak GPU memory usage on *CylinderFlow* (MGN backbone).

758

759

Model	Params	Base Edges	Added Edges	Total Edges	Peak Mem. (GB)	vs MGN
MGN (Baseline)	2,332,930	10,488	0	10,488	0.67	1.00 ×
PIORF (3% ORC)	2,332,933	10,488	109	10,597	0.68	1.02 ×
2-HOP-ALL	2,332,930	10,488	20,378	30,866	1.84	2.76 ×
2-HOP-RANDOM	2,332,930	10,488	10,928	21,416	1.27	1.90 ×
FLARE (ours)	2,332,930	10,488	10,928	21,416	1.27	1.90 ×

760

761

762

763

764

In the model with separate rewiring, each message passing layer uses two edge sets on the same node set V : $E \cup A_{\text{align}}$ for velocity updates and $E \cup A_{\rho}$ for density updates. At each layer, we perform separate message passing on these two edge sets using the current node features, and then combine the two updated feature vectors at each node with a small MLP to obtain the input for the next layer. We apply this extension to MGN, BSMS-GNN, and Transolver++ on the *Airfoil* dataset.

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

Table 11 reports the resulting full-rollout RMSE for velocity and density. The same numbers are also included in the main *Airfoil* results (Table 2) as the “FLARE + 10% Density 2HOP” rows, where this extension achieves the lowest velocity and density RMSE among all compared methods for each of the three backbones on this dataset, suggesting that FLARE can be extended with improvements by introducing separate rewiring for additional fields such as density.

Table 11: FLARE extension with separate rewiring for density on *Airfoil*. Values are full-rollout RMSE (mean \pm SE); velocity is reported in original scale and density is scaled by $\times 10^3$.

Method	Velocity RMSE	Density RMSE ($\times 10^3$)
MGN (FLARE + 10% Density 2HOP)	31.93 ± 2.57	85.66 ± 6.12
BSMS-GNN (FLARE + 10% Density 2HOP)	39.46 ± 2.90	95.58 ± 7.05
Transolver++ (FLARE + 10% Density 2HOP)	34.26 ± 2.32	64.76 ± 4.71

780

781

782

783

784

785

786

A.5 FLOW DYNAMICS ANALYSIS ON *CylinderFlow*

787

788

789

790

791

792

793

794

795

796

Table 12: Quintile ranges of average velocity-direction change on *CylinderFlow*.

Quintile	θ Range (avg)
Q1	$0.00^\circ - 0.03^\circ$
Q2	$0.03^\circ - 0.04^\circ$
Q3	$0.04^\circ - 0.11^\circ$
Q4	$0.11^\circ - 0.63^\circ$
Q5	$0.63^\circ - 90.00^\circ$

802

803

804

805

806

807

808

809

For each quintile, we evaluate the per-node rollout RMSE of different rewiring methods based on the MGN backbone. Table 13 reports the errors and relative improvements over the MGN baseline.

The quintile analysis shows that FLARE achieves the lowest error and the largest improvement over the baseline across all dynamics levels. In particular, the highest improvement (45.4%) occurs in the most dynamic quintile (Q5). This supports our observation that FLARE provides particularly strong benefits in regions with evolving flow patterns, such as the unsteady wake structures in *CylinderFlow*.

810
 811 Table 13: **Per-node RMSE and relative improvement (%) by flow-dynamics quintiles on *Cylinder-***
 812 ***Flow*.**

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843	Q1		Q2		Q3		Q4		Q5	
	Method	RMSE	Impr.	RMSE	Impr.	RMSE	Impr.	RMSE	Impr.	RMSE
Baseline (MGN)	12.61	-	9.95	-	13.16	-	47.59	-	51.99	-
PIORF	11.61	8.0%	9.74	2.1%	10.49	20.3%	36.25	23.8%	43.05	17.2%
2-HOP-ALL	10.68	15.3%	8.16	18.0%	10.70	18.7%	33.88	28.8%	34.16	34.3%
2-HOP-RANDOM	10.79	14.5%	8.19	17.7%	11.25	14.6%	40.91	14.0%	40.54	22.0%
FLARE (ours)	7.34	41.8%	5.87	41.0%	8.04	38.9%	30.88	35.1%	28.40	45.4%

A.6 ROLLOUT PREDICTION ERROR VISUALIZATION

844 Figure 5: Rollout prediction errors at timesteps $t = \{30, 300, 598\}$ for different graph rewiring
 845 methods on *CylinderFlow* dataset. Color intensity indicates error magnitude.

Figure 6: Rollout prediction errors (velocity) at timesteps $t = \{30, 300, 598\}$ for different graph rewiring methods on *Airfoil* dataset. Color intensity indicates error magnitude.

Figure 7: Rollout prediction error (velocity) on *Airfoil* test set.