
Under review as submission to TMLR

Privacy-Preserving Language Model Inference
with Instance Obfuscation

Anonymous authors
Paper under double-blind review

Abstract

Language Models as a Service (LMaaS) offers convenient access for developers and re-
searchers to perform inference using pre-trained language models. Nonetheless, the input
data and the inference results containing private information are exposed as plaintext dur-
ing the service call, leading to privacy issues. Recent studies have started tackling the
privacy issue by transforming input data into privacy-preserving representation from the
user-end with techniques such as noise addition and content perturbation, while the ex-
ploration of inference result protection, namely decision privacy, is still a blank page. In
order to maintain the black-box manner of LMaaS, conducting data privacy protection,
especially for the decision, is a challenging task because the process has to be seamless to
the models and accompanied by limited communication and computation overhead. We
thus propose Instance-Obfuscated Inference (IoI) method, which focuses on addressing the
decision privacy issue of natural language understanding tasks in their complete life-cycle.
Besides, we conduct comprehensive experiments to evaluate the performance as well as the
privacy-protection strength of the proposed method on various benchmarking tasks.

1 Introduction

Language Models as a Service (LMaaS; Yao et al. 2024; Sun et al. 2022; Brown et al. 2020) empowers
researchers and developers to access pre-trained language models (PLMs) through cloud services without
worrying about the complexities of model training, deployment, and infrastructure management. To interact
with LMaaS, users usually send API requests to the designated endpoints designed by the service providers
and receive responses generated by the remote language models. Such a setup benefits both parties: on
the one hand, users can jump-start on integrating the powerful PLMs into their data processing tasks;
on the other hand, the underlying models and the processing pipelines, as the intellectual properties, are
hidden from end users so that the service providers can protect them from leakage. However, given the
lack of user control over the blackbox cloud service, the data in the requests can be illegally used by the
service providers or potential attackers, thus causing privacy issues, including data leakage, unauthorized
data access, profiling, and tracking (Sen, 2015; Tang et al., 2016).

Recent literature (Das et al., 2024) has started to address the privacy issues of user inputs in LMaaS, for
which solutions are typically based on techniques privatizing the input representation into intermediate ones.
Methods of such kind include noise injection (Plant et al., 2021), differential privacy (DP) (Hoory et al., 2021;
Yue et al., 2021; Xu et al., 2020), and adversarial training (Li et al., 2018; Coavoux et al., 2018). Moreover,
the intermediate representations are further fused or manipulated to prevent reverse engineering, while still
remaining sufficient information for effective model inference (Zhou et al., 2022). Unfortunately, to the best of
our knowledge, none of the existing methods takes decision privacy into consideration, that is, the inferencing
results are not protected which could implicitly or explicitly reveal users’ sensitive information based on the
specific tasks applied (Shejwalkar et al., 2021; Kahla et al., 2022). For example, as shown in Figure 1, a PLM
employed by the online disease diagnosis service can analyze and determine the type of diseases based on the
symptom descriptions from the patients. Even though privacy-preserving representations as the input can
somehow protect the patients’ submitted content, sensitive information such as the distribution of diseases
(Mao et al., 2011) from the output aggregation still discloses to the malicious cloud service providers or the

1

Under review as submission to TMLR

I’m having a fever,
cough, sore throat,

and sometimes I feel
shortness of breath.

Encoder

Online Disease
Diagnosis

1011010010111

{Type: COVID-19}

Privacy-preserving
representation

Decision
in plaintext

PLM

Malicious
Cloud Service

Network Sniffing

Figure 1: A privacy adversary example with state-of-the-art privacy protection in LMaaS. Despite encoding
the end user’s input into privacy-preserving representations, the raw output representations or decisions are
still in plaintext, making them vulnerable to attacks from both network channels and servers.

hackers via network sniffing.1 Besides, there are many everyday scenarios where LMaaS is used, including
personal assistants, customer support chatbots, language translation, and financial advisory. In almost all
these cases, users want to access the service without having their queries and results stored or used for
learning.

Considering the significance and necessity of decision privacy protection, we propose to investigate a method
that ensures the protection of both raw input content and raw output representation. However, protection
in the decision phase could be more challenging than its counterpart in the input phase due to several
reasons. First, unlike user inputs, since the final decision is made by the PLM on the cloud, users will have
no direct means to intervene in it. Second, due to the required anonymity, incurred communication costs
inevitably increase. Third, from the perspective of intellectual property protection, it is not practical for
LMaaS providers to disclose parameters and architectures of the models, including the last few layers that
are close to the decisions, to users. These challenges call upon a solution that effectively protects the models’
decisions before they come out, while does not violate the black-box nature of the LMaaS.

In this paper, we propose IoI (Instance-obfuscated Inference), which aims to protect the privacy of PLM
decisions without losing the compatibility of utilizing the state-of-the-art input privacy protection approaches
at inference phase. During inference, IoI intentionally obfuscates the instance, hiding the raw decision
distribution from revealing any sensitive information. However, the user who applies the obfuscation retains
the ability to recover the true decision distribution. Note as a pilot study, IoI focuses on text classification
tasks.

Despite distinctiveness, to avoid the ambiguity of understanding different privacy techniques, in Figure 2, we
summarize them according to the application scenarios. Specifically, SOTA methods utilize DP for training
time data privacy. Other aforementioned noise addition or perturbation methods safeguard the raw input
from being reverse-engineered. On the contrary, IoI ensures the confidentiality of decisions from the model
inference.

The contributions of this work are three-folds. First, we explore the feasibility of protecting PLM decisions
in a black-box manner (operating solely during inference without requiring any training)for text classification
tasks. Second, we define decision privacy, and comprehensively study the instance obfuscation strategies and
privacy-preserving decision resolution in the context of it. Third, we define evaluation metrics for decision
privacy, and empirically verify the performance and privacy strength of the proposed method.

2 Privacy-Preserving Inference

For a text classification task M : X → Y, where X is the input text and Y is the label set. The privacy-
preserving inference takes a step further avoiding the exposure of any private information about the inputs

1The security of the network channel is not the scope of this paper. You can assume it is already end-to-end encrypted.

2

Under review as submission to TMLR

(a)

(b)

(c)

Figure 2: Privacy-preserving scenario comparison. (a) Training Privacy aims to protect the private
training data. A typical privacy tool for this scenario is differential privacy. Inference Privacy includes
(b) Input Privacy that prevents the raw input data from being revealed; and (c) Decision Privacy that
protects the inference results. The vectors in orange are privacy-preserving, while the ones in gray are not.

and model decisions to the service provider. While the encoding methods2 for protecting the privacy of X
start emerging, the counterpart for Y, which we call decision privacy, remains uncharted.

The intuition for achieving decision privacy is to make the model’s raw decision as random as possible to all
parties except the input instance owner, and the raw decision can only be recovered via a certain resolution
method by the input instance owner. In the rest of this section, we formally define decision privacy in the
context of text classification, as well as privacy-preserving inference.

2.1 Decision Privacy

For text classification, suppose (x, y) is an instance of (X ,Y), and a finite label set C = {ci|1 ≤ i ≤ n, n ≥ 2}
is the range of Y. We say M ’s output has perfect privacy if

Pr[M(x) = ci] ≈
1
n

, (1)

that is, the probability of an adversary acquiring the predicted label ci from M for the given input x is
almost no better than a random guess.

However, directly adhering to Equation (1) leads to compromised functionality of M , since M is essentially
a random choice function and useless in practice. Instead, a certain encoding function E(·) can be performed
on the input x, so that the decision privacy of an arbitrary model M is ensured by E(·):

|Pr[M(E(x)) = ci]−
1
n
| ≤ ϵ, (2)

where ϵ ∈ [0, 1) is seen as a privacy budget. Adjusting ϵ balances the utility and privacy: the smaller the ϵ
is, the better the decision privacy.

2.2 Problem Definition

The privacy-preserving inference is defined as:

M(E(x))→ y′, (3)

where the encoding function E(·) has two functionalities: (1) It encodes the raw x into some privacy-
preserving representation remaining interpretable by M , which is already studied by previous work (Qu
et al., 2021; Yue et al., 2021; Zhou et al., 2022) and is not the focus of this paper. (2) The inference result

2The encoding mentioned in this paper is not by the PLM’s encoder but as “encryption”.

3

Under review as submission to TMLR

transitions from the actual prediction y to the privacy-preserving y′, whose distribution satisfies decision
privacy defined by Equation (2):

|Pr[y′ = ci]−
1
n
| ≤ ϵ. (4)

The privacy property is ensured by E(·). It is mathematically hard or impossible to find its inverse function
E−1(·), so that the adversary can not either recover the raw input x from the privacy-preserving representa-
tion E(x), or the actual prediction y from the privacy-preserving prediction y′. A decoding function D(·) is
available to decode true y from y′ with the knowledge of the raw input and encoding settings,

y ← D(y′, E, x). (5)
Without loss of generality, rather than determining the true prediction y from a single y′, Equation (5) can
be extended to cases where the solution for y depends on multiple y′ values, that is,

y ← D(y′
0, · · · , y′

g, E, x), (6)
where y′

0 · · · y′
g are all necessary y′s to decode y. Note that E and x serve to identify these y′ values as a

group and can be omitted if the user maintains the reference between y′s and y.

Therefore, privacy-preserving inference allows the user to query LMaaS without exposing sensitive informa-
tion to the service provider or the adversary, by sending E(x) to the server and decoding y from y′ with
D(·) locally. Throughout the process, the adversary learns nothing from the encoded input E(x) or encoded
decision y′.

Distinctions to DP or input privacy. In general, DP adds proper noise to the given input instances
so that the individual information of input instances will not be leaked, but the overall statistical features
of them remain. Similarly, most input privacy methods perturb the raw input to prevent input reverse-
engineering while keeping the necessary information for inference. Hence, an ideal DP or input privacy
method should satisfy M(E(x)) ≈M(x), where E is the corresponding DP or input privacy method, while
protecting the privacy of x. On the contrary, decision privacy tends to make M(E(x)) as random as possible
whereas D(M(E(x))) ≈M(x).

3 Method

This section begins with an overview of our privacy-preserving inference framework for text classification. It
follows by detailing the core component E(·) for encoding in Section 3.1, and D(·) for decoding in Section 3.2.

The intuition behind IoI is to obfuscate the raw instance with obfuscators so that the PLM’s inference
distribution is intentionally steered. Thus, the adversaries cannot deduce the true decision unless they
possess knowledge of the corresponding resolution method and parameters. The general workflow of IoI is
shown in Figure 3 (we also provided an end-to-end pseudo-code in Appendix A.1), consisting of instance
obfuscation as E(·) and decision resolution as D(·). Instead of sending the raw instance x to the PLM and
acquiring the decision, IoI conceals x by concatenating it with an obfuscator b, which is also a text sequence
(Section 3.1). The concatenated text [b; x] along with the obfuscator b are sent to the privacy-preserving
representation generation (PPRG) module, respectively, where the input is encoded by a compatible SOTA
input privacy method. PPRG produces privacy-preserving representations, which are irreversible and remain
distinct even for identical inputs, and are treated as inputs for the PLM. After PLM’s inference on PPRG-
encode b and [b; x], the raw decision distribution of [b; x] does not reflect the inference of x since it is steered
by the elaborated obfuscator b. But as the data owner, the actual decision y can be resolved via decision
resolution (Section 3.2) by utilizing the decision distributions of [b; x] and corresponding b. We further show
that the true y is hard to be recovered from y′s in Section 4.

3.1 Instance Obfuscation

Sending the input instance x in plaintext to the PLM reveals the input completely. Hence, some previous
studies (Zhou et al., 2022; Plant et al., 2021) employ a privacy-preserving text representation that transforms

4

Under review as submission to TMLR

I’m having a fever. I don’t have any issues.

I don’t have any issues. I’m having a fever.

0.12

NoYes

Decision Resolution

Privacy-Preserving
Representation Generation

PLM

Obfuscator Pool

0.88

0.650.35

Illness? Yes

The answer is No???

Obfuscated DecisionPPRG-protected Input

Resolved Decision

I don’t have any issues. 0.12/0.88

… …
It’s a sunny day today. 0.93/0.07

Service Provider

x b

[b;x]

PPRG([b;x])

PPRG(b)

y’[b;x]

y’b

y

Figure 3: The demonstration of IoI workflow for decision privacy protection. If a user (bottom left) makes
illness inquiries via a PLM-driven online diagnosis system, normally, the inference result will be returned
in plain text. As a most basic example, in IoI, the raw text is concatenated with an obfuscator, which
is also a text. Subsequently, the concatenated text and the obfuscator are encoded respectively by the
privacy-preserving representation generation module, which ensures the produced embedding representation
is privacy-preserving (irreversible and unique). Consequently, instead of receiving one “plaintext”, the PLM
receives two independent “ciphertext” and makes inferences on them without knowing their correlation,
raw text, and true decision. However, only the user is able to recover the true decision by leveraging the
distribution of these two inferences. In practice, each input text is obfuscated by a group of obfuscators, and
the requests from multiple inputs are sent to the PLM in arbitrary order.

the input into “ciphertext” form by perturbing representations. In this way, although the raw input content
is not exposed, the output of the PLM still carries meaningful information and may be exploited by the
adversary. To tackle the flaw of limited protection of the decision by previous methods, IoI uses instance
obfuscation, acting as E(·) in Section 2. It not only protects the input privacy by reusing the existing SOTA
privacy-preserving text representation methods as PPRG but also “fools” the adversary with baffled output
for decision privacy.

The instance obfuscation is motivated by mixup (Zhang et al., 2018), originally proposed for data augmen-
tation. Zhang et al. (2018) shows that mixup can produce virtual feature-target pairs sampled from the
same distribution as the original data.Specifically, it shows that, through a mapping (i.e., the LM in this
context), the mixup of two raw inputs can be mapped to the mixup of their corresponding labels. Based
on that, if E(·) conceals the real instance x by mixing it up with dummy instances, the PLM only makes
an inference on the mixup instance without seeing x, and the proportion of dummy instances participated
in the mixup steers the final decision. We call these dummy instances obfuscators b; thus, E(·) obscures
the true instance with selected obfuscators and let the PLM make decisions based on the elaborated input.
However, our initial experiments indicate that constructing E(·) by directly mixing embedding vectors of x
and b, following the original approach of Zhang et al. (2018), results in unstable performance for D(·). This
instability arises because a vanilla PLM without mixup fine-tuning may lack the ability to accurately infer
the mixed label solely from the mixed input. Therefore, we replace the proportional mixup of b and x with
concatenation. Namely, each x is represented by obfuscators bs and obfuscated instances [b; x]s

x ≡ {[bi; x]}k
i=1 ∪ {bi}k

i=1, (7)

where ; denotes the text concatenation, ≡ means “represented by”, and k is the number of obfuscators.

The obfuscation process is the key for concealing information in a black-box LMaaS setting. This leads to
the question of what is considered to be a high-quality obfuscator and how to obfuscate x with b properly,
hence maximizing the performance as well as privacy protection.

Obfuscator Selection. Obfuscators are simply normal (unlabeled) sentences that could be with or without
any relation to the real instances to be protected. To be used as an obfuscator, an instance requires to have

5

Under review as submission to TMLR

a corresponding predicted label from PLM. Note that the predicted label does not need to be correct so
there is no need for a gold label. Thus, an obfuscator b could be a sentence from any arbitrary corpus.

To steer the PLM’s decision towards being affected by b instead of x, we prioritize b instances with higher
confidence regarding the PLM decision. For example, in a binary classification task, if an instance x1 scored
0.9 for label 1 and x2 scored 0.7, then x1 is picked over x2 for x1 is more deterministic to get label 1. Since
the selected obfuscators can be paired with any real instances, an optimized way to re-use them is to have
them pre-computed in an obfuscator pool.

Obfuscator Balancing. Based on the observation, a single b instance for obfuscating x results in the
un-stableness in decision resolution (Section 3.2) due to the uneven distribution of the PLM’s decision. For
example, in a 3-class classification, assume b1 has label c1, b2 has label c2, and b3 has label c3. After a single
obfuscation with b1, the label of [b1; x] predicted by M could remain c1, or change to c2 or c3. Thus, the
steering of decision distribution using a single obfuscator is not steady. Balancing, as a solution, is employed
to mitigate this issue. Specifically, each real instance x is paired with at least one unit group of obfuscators.
A unit group of obfuscators is defined as a set containing obfuscators with uniformly distributed labels from
the label set C, that is,

g = {bj ∈ B | M(bj) = ci,∀ci ∈ C} with |g| = |C|, (8)

where B is the obfuscator pool. This means a |C|-size g contains one qualified combination of bjs. Moreover,
to enhance the balancing effect, a group can consist of more than one unit group. Formally, a group contains
n unit groups is defined as

Gn = g1 ∪ g2 ∪ · · · ∪ gn. (9)

Therefore, the obfuscated instances of x are noted as [bi; x] where bi ∈ Gn.Using balancing in the previous
example, assume that only a unit group of obfuscators is used (n = 1) for obfuscation; then x should
concatenate with all three obfuscators and result in three obfuscated instances [b1; x], [b2; x] and [b3; x].

Privacy-Preserving Representation Generation. Even though the raw instance x is replaced with
[b; x] and x, the content remains in plaintext. To protect their privacy, IoI uses PPRG, which can be any
compatible SOTA input privacy methods (Zhou et al., 2022; Plant et al., 2021), for transforming [b; x] and b
from text sequences to privacy-preserving representations. A qualified SOTA input privacy method has two
requirements regarding privacy. First, the produced representation is not invertible so that the adversary
can not reverse it back to plaintext. Second, the input privacy method is equipped with randomness so that
the produced representation is distinct even for identical inputs. As long as the methods satisfy these two
requirements and convert input text to embedding vectors, they are considered compatible. After applying
PPRG, the order of multiple [b; x]s and bs should be uniformly shuffled and sent to PLM. This prevents the
adversary from pairing up the encoded [b; x] and b.A more detailed discussion regarding privacy is in Section 4.

In conclusion, the process of encoding E(·) on one instance x can be formally denoted as

E(x) ≡ {PPRG([bi; x])}|Gn|
i=1 ∪ {PPRG(bi)}|Gn|

i=1 . (10)

For k input instances {xi}k
i=1, after encoding, the representation is

{E(xi)}k
i=1 ≡ σ({PPRG([bi; x])}k×|Gn|

i=1 ∪ {PPRG(bi)}k×|Gn|
i=1), (11)

where σ denotes the uniform shuffle applied to a set.

6

Under review as submission to TMLR

3.2 Privacy-Preserving Decision Resolution

While the obfuscated instance ceases the raw instance x from being accessible by the PLM, the true decision
of x is concealed in the concatenated result y′s as well. We outline a decision resolution method, as D(·) in
Section 2 (Equation (6)), to resolve true y from multiple associated y′s.

As the balancing described in Section 3.1, successfully executing D(·) to get the decision of x requires all the
associated [b; x] and b pairs. As to adversaries, correctly locating all associated instances from a tremendous
amount of mixed instances, which are sufficiently obfuscated and randomized, is equivalent to finding a
needle in a haystack. We have detailed analysis in Section 4.

Oppositely, as the data owner, running D(·) is as easy as pie. The strategy to separate x’s result y from y′s
is based on the divergence between the decision distribution of [b; x] and b. Specifically, if x’s label is ck,
blending it with b shifts the confidence of [b; x]’s decision distribution towards ck regardless of the b’s label.
Taking our example in Figure 3, [b; x] has 0.35 for “yes” and 0.65 for “no,” while b has 0.12 for “yes” and
0.88 for “no”. The confidence of “yes” for [b; x] increases because of the involvement x, thus x is highly like
to be “yes.”

Without loss of generality, we inductively evaluate this divergence over a group Gn. The true label of x is
determined as the one for which the average confidence difference between the decision of the obfuscated
instance and the obfuscator exhibits the greatest variation. Formally, the true label is determined as

arg max 1
|Gn|

|Gn|∑
j=1

(z[bj ;x] − zbj), (12)

where bj ∈ Gn. The logits of the model decision are denoted by z, represented as a |C|-dimensional vector,
i.e., z ∈ R|C|. The superscripts in z[bj ;x] and zbj indicate that z is inferred from the corresponding input.

In conclusion, the process of decoding D(·) on k instance xs can be formally denoted as

{D(E(xi))}k
i=1 = {arg max 1

|Gn|

|Gn|∑
j=1

(M(PPRG([bj ; xi])−M(PPRG(bj))}k
i=1. (13)

Note that, except for the data owner, no one can distinguish whether an input to M originates from [b; x] or
b, as they are PPRG-encoded. Additionally, the association between zs and a specific x remains unknown,
since the inputs to M are uniformly shuffled. A more detailed discussion on privacy is provided in Section 4.

4 Privacy Discussion

In this section, we formally define the threat model in Section 4.1, and rigorously prove IoI’s privacy in
Section 4.2. Moreover, we discuss the incurred cost of privacy in Section 4.3.

4.1 Threat Model and Privacy Definitions

Definition 1 (Honest-but-curious adversary) An honest-but-curious adversary is a proper, but passive par-
ticipant of a communication protocol who does not deviate from it, but attempts to learn as much information
as possible from all legitimate communication (Paverd et al., 2014).

Definition 2 (Irreversibility) A function E is irreversible if no probabilistic polynomial-time adversary A
can efficiently compute the input x given only E(x). Formally, for any such A, the advantage

Pr[A(E(x)) = x] ≤ ϵ(θ)

for a negligible function ϵ in the security parameter θ.

7

Under review as submission to TMLR

Definition 3 (Distinctiveness) A function E is said to be distinctive if, for any input x, the outputs E(x)
are distinct even when the same input is provided multiple times. Formally,

Pr[E(x1) = E(x2)] ≤ ϵ(θ),

where x1 = x2 and ϵ(θ) is a negligible function of the security parameter θ.

Definition 4 (Security) A protocol Π is said to be secure if it satisfies the following condition: there exists
a simulator S such that no environment Z can distinguish between an execution of the protocol Π and an
ideal execution with the ideal functionality F . Formally, for any adversary A and any environment Z, the
following condition must hold:

|RealΠ,A,Z − IdealF,S,Z | ≤ ϵ(θ),

where RealΠ,A,Z denotes the view of Z in a real execution of the protocol Π, involving the adversary A;
IdealF,S,Z denotes the view of Z in an ideal execution with the ideal functionality F and the simulator S,
who acts on behalf of the adversary; ϵ is a negligible function in the security parameter θ (Canetti, 2001).

We assume the presence of an honest-but-curious (semi-honest) adversary (Definition 1) A who can be the
service provider P2 (having white-box access to the PLM M) or any other entity that eavesdrops on the
inputs and outputs of P2.

Given the inherent uncertainty in language models (arising from their probabilistic nature, data ambiguity,
overparameterization, prompt sensitivity, decoding strategies, etc), we introduce an additional parameteri-
zation to quantify the security as follows:

Definition 5 ((ϵ, δ)-security) A protocol is said to be (ϵ, δ)-secure if it satisfies Definition 4 under the (ϵ, δ)
condition. The parameter ϵ quantifies the tolerance for output randomness (Equation (2)). The param-
eter δ bounds the difference in the inference logit distribution between [b; x] and b, formally defined as
DKL(P (z[b;x]) ∥ P (zb)) + DKL(P (zb) ∥ P (z[b;x])) ≤ δ, where DKL denotes the KL divergence (Kullback
and Leibler, 1951).

4.2 Simulation-based Proof

The IoI protocol involves two parties, a client P1 and a service provider P2. The client P1 aims to query
the remote PLM M (in P2) with k text instances xs while ensuring that the original inputs xs and the
corresponding decisions y = M(x)s remain private from any other parties.

We use a simulation-based proof (Lindell, 2017) to show that the real-world execution is indistinguishable
from an ideal-world functionality. The ideal-world trusted functionality F is specified in Figure 4. The
detailed IoI’s protocol is specified in Algorithm 2, and can be simplified to the real-world protocol π in
Figure 5 for privacy analysis. We describe a simulator S that simulates the view of the A in the real-world
execution of π.

1. P1 sends k text instances x to F .
2. P2 sends the PLM M to F .
3. F computes y = M(x) and sends y to P1.
4. P2 receives nothing.

Figure 4: IoI’s ideal-world functionality F

Mathmatically, the view in the ideal-world is ViewF = ∅, and the view in the real-world is Viewπ =
{PPRG([bi; x])}k×|Gn|

i=1 ∪ {PPRG(bi)}k×|Gn|
i=1 ∪ {y′

i}
2×k×|Gn|
i=1 .

8

Under review as submission to TMLR

1. Local input encoding: Each original instance x is encoded to a privacy-preserving representation
E(x) by P1. Specifically, E(·) contains two steps:

i. Each x is transformed into two sets of instances:

{[b1; x], · · · , [b|Gn|; x]} and {b1, · · · , b|Gn|}.

ii. Both sets are then processed using a compatible PPRG method:

{PPRG([b1; x]), · · · , PPRG([b|Gn|; x])} and {PPRG(b1), · · · , PPRG(b|Gn|)}.

Additionally, P1 uniformly shuffles the sending order of all k × 2 × |Gn| encoded instances and
maintains a list O which records each x along with its corresponding [b; x]s and bs.

2. Remote PLM inference: The encoded and shuffled instances E(x)s are transmitted to the
service provider P2 for inference, where each encoded input is processed as y′ = M(E(x)).

3. Local decision resolution: Upon receiving k× 2× |Gn| outputs y′s, the client groups them into
k sets according to O. For each group of y′s, client executes decision resolution to acquire the true
decision

y = D(y′s) = D(y′[b1;x], · · · , y′[b|Gn|;x]; y′b1 , · · · , y′b|Gn|).

Figure 5: IoI’s real-world protocol π

A can challenge Definition 4 in two aspects: (1) reverse the original input x from E(x); (2) recover the true
output y from all available obfuscated decisions y′s.

Reversing original input. To reverse E(x) to x, A needs to reverse the representation produced by PPRG.
Then A identifies bs and [b; x]s, and extracts x from one of the [b; x]s.

As mentioned in Section 3.1, a qualified PPRG ensures the irreversibility (Definition 2) of the input text
sequence, meanwhile generating distinct (Definition 3) representations even for identical input. Although
A may have white-box access to M , these do not help A reverse PPRG encoded instances as long as
PPRG has sufficient privacy strength to resist known attacks (Song and Raghunathan, 2020). Note that,
from the perspective of A, it cannot determine which is PPRG([b; x]) and which is PPRG(b), i.e., Viewπ =
{PPRG(x′

i)}
2×k×|Gn|
i=1 ∪ {y′

i}
2×k×|Gn|
i=1 , where x′ can either be [b; x] or b. Therefore, a E(x) is computationally

indistinguishable from a random string.

In the simulation, S generates a random string r, which has the same length as E(x). Thus, we get
ViewF = {ri}2×k×|Gn|

i=1 .

Recover true decision. When resolving y from y′s without knowing O, A must determine three aspects:
(1) identify all |Gn| associated y values from the k×2×|Gn| available y′s, (2) distinguish which y′ originates
from [b; x] and which from b, (3) verify whether the inputs of two y′s form a pair, meaning [b; x] and b share
the same b. However, it is no better than exhausting all the possible combinations because of the hardness
of reversing PPRG-encoded instances and the uniformly shuffled order of unique representations. Therefore,
all the y′ is also computationally indistinguishable from a random string.

In the simulation, S generates a random string s, which has the same length as a y′. Thus, we get
ViewF = {ri}2×k×|Gn|

i=1 ∪ {si}2×k×|Gn|
i=1 .

9

Under review as submission to TMLR

The execution of S implies ViewF ≡ Viewπ, which satisfies Definition 5. Since no computationally bounded
A can distinguish the real-world protocol from the ideal-world functionality, we prove that the protocol is
secure under simulation-based security.

4.3 Privacy Cost

Privacy comes with a cost. Here, we elaborate it from two aspects: communication and computation.

Communication cost. As a baseline, each instance x sends one request to the PLM. In IoI, as Equation (9),
each x is concatenated with |Gn| = n × |C| instances. All these obfuscated instances, along with the same
amount of obfuscators, form the total requests to the PLM, namely, 2×n× |C|. In practice, when there are
multiple xs, the obfuscators are pre-computed and reused from the obfuscator pool. Hence, for k x instances,
the total number of requests ranges in [(1 + k × n)× |C|, 2× k × n× |C|].

Computation cost. On PLM’s side, the number of requests to inference is indicated in the communication
cost. On the data owner’s side, resolving a y requires the execution of Equation (12), which only involves
trivial matrix operations.

5 Experiments

We first introduce the datasets, baselines, and evaluation metrics in Section 5.1. The main results and multi-
lingual results regarding task performance and decision privacy are illustrated in Section 5.2. We further
study the functionalities of technical components in Section 5.3.

5.1 Experimental Setup

Datasets. Our experiments are conducted on four benchmark datasets that span across various text clas-
sification tasks. SST-2 (Socher et al., 2013) requires to classify the sentiment of the given text into either
positive or negative class. SST-5, as an extension of the SST-2, granularizes the binary label into five
categories: very negative, negative, neutral, positive, and very positive. MRPC (Dolan and Brockett, 2005)
is a paraphrase identification task to determine whether two sentences are paraphrases. QNLI (Wang et al.,
2018), derived from SQuAD (Rajpurkar et al., 2016), is a natural language inference task seeking to identify
if the context sentence contains the answer to the question. Financial Phrasebank (Fin) (Malo et al.,
2014) is for English language financial news sentiment classification. Tweet Sentiment Multilingual
(TSM) (Barbieri et al., 2022) consists of sentiment analysis dataset on Twitter in 8 different languages.

Baselines. Although no direct comparable methods regarding decision privacy are available, we select
four reasonable and related baselines. Fine-tuned is task fine-tuned model without privacy protection.
Random Guess denotes the random guess results. PP-BERT (Qu et al., 2021) is a privacy-preserving
encoder that perturbs the token embeddings by adding random noise N = rp where r is the distance from
the origin and p is a unit hypersphere. r is sampled from the Gamma distribution Γ(n, 1

η).3 SanText+ (Yue
et al., 2021) replaces sensitive words with GloVe (Pennington et al., 2014) and utilizes differential privacy to
ensure the privacy of the sanitized words.4 TextFusion (Zhou et al., 2022) alters the input text sequence or
intermediate representations by eliminating redundant or sensitive information. Note PP-BERT, SanText+,
and TextFusion were all designed for input privacy.

Metrics. Generally, the performance is evaluated by task-specific metrics (Accuracy/F1) denoted as T . To
measure the raw performance, we use the obfuscated (To) for the obfuscated version of the decision, and the
resolved (Tr) for the true (original) performance from the decision resolution.

Besides, to quantify the effectiveness of the decision privacy protection and decision resolution, we addi-
tionally define Φr = Tbaseline−Tr

Tbaseline
and Φo = |To−Trandom|

1−Trandom
. They measure the relative performance difference

3We set η = 100, a moderate value in the original paper, for balancing the noise strength and accuracy.
4Considering fairness, we set ϵ = 3 in SanText+ and use sanitized text directly in inference.

10

Under review as submission to TMLR

Dataset Method Tr To Φr ↓ Φo ↓ Φ ↓

SST-2
(Acc.)

Fine-tuned .924 .924 − − −
Random Guess .500 .500 − − −
PP-BERT .909 .909 .016 .818 .417
SanText+ .830 .830 .102 .660 .381
TextFusion .904 .904 .022 .808 .415
IoI .913 .770 .012 .540 .276

MRPC
(Acc./F1)

Fine-tuned .860/.904 .860/.904 − − −
Random Guess .500/.500 .500/.500 − − −
PP-BERT .434/.294 .434/.294 .489/.675 .132/.412 .310/.543
SanText+ .711/.750 .711/.750 .164/.170 .422/.500 .293/.335
TextFusion −/.882 −/.882 −/.024 −/.764 −/.394
IoI .745/.794 .570/.628 .124/.122 .166/.256 .132/.189

SST-5
(Acc.)

Fine-tuned .500 .500 − − −
Random Guess .200 .200 − − −
PP-BERT .490 .490 .020 .362 .191
SanText+ .426 .426 .148 .282 .215
IoI .467 .339 .066 .174 .120

QNLI
(Acc.)

Fine-tuned .915 .915 − − −
Random Guess .500 .500 − − −
PP-BERT .658 .658 .281 .316 .298
SanText+ .725 .725 .208 .450 .329
IoI .849 .648 .072 .296 .184

Fin
(Acc.)

Fine-tuned .907 .907 − − −
Random Guess .333 .333 − − −
PP-BERT .254 .254 .720 .118 .419
SanText+ .853 .853 .060 .780 .420
IoI .855 .683 .057 .525 .291

Table 1: Performance of resolved and obfuscated decisions by IoI and baselines. Tr indicates the task raw
performance after decision resolution by the data owner, while To indicates the performance that model
owner or attacker retrieves. Φr and Φo measure how close Tr and To to the baseline and the random
guess, respectively, and Φ is a balance between Φr and Φo. The smaller the three Φs, the better the task
performance and decision privacy protection. The best result in each task is highlighted in bold. Only IoI
has effects on decision privacy, while the other baselines are either non-privacy-preserving or only protect
input privacy.

from resolved Tr to non-privacy-preserving baseline, and from obfuscated To to random guess, respectively.
Finally, a unified metric Φ = Φo+Φr

2 measures the balance between the obfuscation strength and the task
performance.5

5.2 Main Results

The backbone PLM used in each task is fine-tuned and consistent with all baselines because PP-BERT,
SanText+, TextFusion, and IoI are applied in the inference phase. The parameter settings of IoI are in
Table 2. PPRG is not enabled in this experiment and the effect of it is studied in Section 5.3. As the
main results presented in Table 1, IoI performs almost the best among all tasks regarding the resolved (Φr)
and obfuscated (Φo) results, and the balance between them (Φ), except few are lower but close to the best
baselines. Note that only IoI can protect decision privacy, thus, its Φo is the best as compared to all others.

Specifically, on SST-2 and QNLI, the resolved results Tr by IoI have similar accuracy as the non-privacy
fine-tuned baselines indicated by the smaller Φr while still deviating obfuscated result To to be as close to
random as possible showing as the smaller Φo. For SST-5, as a harder version of SST-2, albeit it is not
the best regarding task performance, IoI balances the trade-off, indicated by Φ, to still archive relatively
better decision privacy. For MRPC and Fin, the evaluation metrics capture the abnormal performance of

5All three metrics are scaled to be in the range [0, 1], and the smaller value indicates better performance.

11

Under review as submission to TMLR

SST-2 MRPC SST-5 QNLI Fin TSM (ar) TSM (es) TSM (fr) TSM (it)
Max sequence len 128 512 128 256 128 128 128 128 128

Min confidence of b > 0.99 > 0.90 > 0.90 > 0.99 > 0.90 > 0.95 > 0.92 > 0.90 > 0.95
Group size n 1 1 1 1 1 1 1 1 1

Table 2: IoI settings for main and multi-lingual results

Language Fine-tuned Random Tr To Φr ↓ Φo ↓ Φ ↓
Arabic (ar) 0.647 0.333 0.615 0.469 0.049 0.204 0.127
Spanish (es) 0.706 0.333 0.541 0.417 0.234 0.126 0.180
French (fr) 0.713 0.333 0.609 0.483 0.146 0.225 0.185
Italian (it) 0.622 0.333 0.600 0.433 0.035 0.150 0.092

Table 3: The multi-lingual performance on TSM (Acc.)

PP-BERT, whose resolved prediction performance Tr is worse than a random guess. This could be attributed
to improper perturbation, which misleads the model’s predictions. In this case, while its Φo seems to be the
best among all other methods, the high Φr and Φ precisely reflect its poor balance between task performance
and decision privacy.

Furthermore, as a common practice in LMaaS, we evaluate the multilingual performance of IoI on four widely
used languages: Arabic (ar), Spanish (es), French (fr), and Italian (it). The results in Table 3 demonstrate
that IoI is effective in a multilingual setting, with some variation in performance across different languages.
On average, IoI achieves the best performance in Italian among all tested languages. However, by adjusting
specific settings, IoI can be optimized either for privacy or for task performance.

5.3 Analyses

We further study the influence of the technical components described in Section 3.

Obfuscator Selection. To verify the loose policy of obfuscator selection that any normal sentence can be a
qualified obfuscator, we conduct the following contrastive experiment on SST-2 and SST-5. Specifically, we
test the real instances with the obfuscator from the same and different datasets. As shown in Table 4, using
instances from a different dataset as obfuscators is indistinguishable from the ones from the same dataset.

Balancing. This technique is intended for mitigating the issue of unbalanced obfuscator distributions, thus
increasing the accuracy for decision resolution. Here, we study the necessity of balancing. Because SST-5
can be identified as a 5-class classification problem, a unit group g (Equation (8)), in which the obfuscator’s
labels are uniformly distributed, contains five obfuscators with different labels. According to Equation (9),
a group Gn consists of n gs. We set the n to be from 1 to 5, that is, 5 to 25 obfuscators. Additionally, as
the baseline, we test the obfuscation without balancing by randomly sampling 1 to 25 obfuscators from the
obfuscator pool regardless of the classes they belong to. In Figure 6, the performance of applying balancing
is presented in a solid line, and the one for the randomly sampled obfuscators is in the dashed line. For
the resolved version, without balancing, the accuracy Tr (random) improves by more than 15% from one
randomly sampled obfuscator to five, and fluctuates relatively smooth after having more than a unit group
of obfuscators (orange dashed line). With balancing Gn (Tr, orange solid line), where n ranges from 1 to
5, performs overall better and more steadily than the random samples. Unlike the resolved version, which
receives the performance gains, for the obfuscated version, the performance remains stable with different n,
and is outperformed by the resolved version for more than 10% when the group size is at least a unit (blue
lines). As a consequence, balancing archives the best and most robust performance for the resolved version,
meanwhile maintaining the maximum gap to the obfuscated version for better decision privacy protection.

Privacy-Preserving Representation Generation. PPRG utilizes the compatible input privacy method
in a black-box fashion to transform obfuscated instances and obfuscators into representations that preserve
privacy. Since the privacy strength and the ability to prevent attacks of the input privacy method are already

12

Under review as submission to TMLR

Evaluation Obfuscator Tr To

SST-2 SST-2 0.907 0.770
SST-2 QNLI 0.891 0.777
SST-5 SST-5 0.467 0.339
SST-5 QNLI 0.461 0.331

Table 4: The performance impact with obfuscators from the same and different datasets

1/5 2/5 3/5 4/5 1 2 3 4 5
Group size n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Tr (random)
Tr (group)

To (random)
To (group)

Figure 6: Balancing with different group size (SST-5)

comprehensively studied in its corresponding papers and follow-up works, we focus on the performance of
plugging it with IoI.

Table 5 demonstrates the performance of IoI when employing PP-BERT as PPRG. We test PP-BERT with
various η and compute its accuracy on SST-2. We then use it as PPRG and report Tr and To. From the
observation, the difference between the resolved result Tr and PP-BERT is trivial (see %), which indicates
the strong compatibility and recovering ability of IoI. Hence, we conclude that IoI’s task performance is
dominated by the selected PPRG method as well as input privacy, meanwhile keeping the decision privacy.

Obfuscated Decision Distribution. According to Equation (4), the obfuscated decision distribution of
M(b) or M([b; x]) should be as close to random as possible, and the overall decision distribution of M(·) should
also lean towards randomness. For validation purposes, we conduct an additional experiment in Table 6,
which presents the decision distribution of M(b), M([b; x]) and the overall M(·) on SST-2. Specifically, each
cell denotes the distribution of negative/positive decisions. The parameter k controls the strength of the
obfuscator, a higher k enhances privacy but reduces utility (details of k is in Appendix B.1).

At k = 1 (optimal utility), the distributions of M(b), M([b; x]) and M(·) approach randomness. As k
increases, the level of randomization intensifies. At k = 10, the distribution becomes equivalent to random.
Moreover, we set k = 1, and report the decision distribution for the other three datasets in Table 7. Similarly,
each cell denotes the distribution of decisions. The results show that our method achieves a promising decision
distribution even with optimal utility.

Logit Difference Distribution. Ideally, after IoI’s decision resolution, all true decisions should be cor-
rectly recovered. However, some failure cases still occur. According to Equation (12), the dimension with the
highest final logit after resolution is selected as the true decision. To better understand the causes of these
failures, we analyze the logit difference distribution of decision resolution in SST-2. As shown in Figure 7,
for correctly resolved cases, 25.6% of the logit differences exceed 2. In contrast, for incorrect cases, 77.6%
of the logit differences are below 2. This observation suggests that many incorrect cases have a small logit
difference and could potentially be corrected if the obfuscator were able to nudge the prediction toward the
correct dimension slightly more.

Confidence Distribution. One potential privacy concern is that the adversary might differentiate between
[b; x] and b in input queries based on confidence levels, as obfuscators are preferred to have high confidence in

13

Under review as submission to TMLR

PP-BERT Acc Tr To %
η = 200 .914 .912 .768 .002
η = 100 .925 .908 .759 .018
η = 50 .851 .846 .698 .006
η = 25 .536 .528 .516 .015

Table 5: PPRG-enabled IoI performance (SST-2)

k M([b; x]) M(b) M(·)
1 0.431/0.569 0.5/0.5 0.465/0.535
5 0.487/0.513 0.5/0.5 0.493/0.507
10 0.502/0.498 0.5/0.5 0.501/0.499

Table 6: Decision distribution (SST-2)

0 2 4 6 8
Logit

0

10

20

30

#

Logit difference distribution (correct)

0 1 2 3 4 5
Logit

Logit difference distribution (incorrect)

Figure 7: Logit difference distribution of the decision resolution (SST-2)

0.80 0.85 0.90 0.95 1.00
Confidence

0

200

400

600

800

#

[b; x] confidence distribution

0.80 0.85 0.90 0.95 1.00
Confidence

0

50

100

150

200
b confidence distribution

Figure 8: Confidence distribution of [b; x] and b (SST-2)

the decision. However, this does not imply that only high-confidence inferences originate from bs. The [b; x]
instances can also produce high-confidence results. As shown in Figure 8, for SST-2, we set the minimum
confidence threshold for selecting obfuscators to 0.99. Even in this extreme case, the confidence distribution
of [b; x] remains predominantly above 0.98, making its distribution nearly indistinguishable from that of bs.

Time Cost. We conducted an experiment regarding running time (in seconds) on SST-2 and SST-5 with
872 and 1101 instances, respectively. The result is reported in Table 8, where each number averaged from 5
runs. Two numbers in inference are the time cost in the best and worst cases.

14

Under review as submission to TMLR

Dataset M([b; x]) M(b) M(·)

SST-5 0.141/0.227/0.191
0.273/0.168

0.2/0.2/0.2
0.2/0.2

0.171/0.213/0.195
0.236/0.184

MRPC 0.528/0.472 0.5/0.5 0.514/0.486
QNLI 0.532/0.468 0.5/0.5 0.516/0.484

Table 7: Decision distribution (k = 1)

Dataset Method Pre-process Inference Resolution
SST-2 Plaintext 0.002 0.936 -
SST-2 IOI 0.005 1.652/3.327 0.060
SST-5 Plaintext 0.001 1.149 -
SST-5 IOI 0.003 5.223/10.421 0.145

Table 8: Time Cost

The results indicate that the experimental outcomes align with the theoretical analysis in Section 4.3 and
are even faster in practice, likely due to factors like memory caching. The time cost for decision resolution
is also minimal since it involves only summation and averaging operations.

6 Related Work

Privacy Preservation in LMaaS. Recent studies are actively engaged in addressing the privacy concerns
associated with LMaaS. Methods including noise injection (Plant et al., 2021), differential privacy (Hoory
et al., 2021; Yue et al., 2021; Xu et al., 2020), and adversarial training (Li et al., 2018; Coavoux et al.,
2018), and representation fusion (Zhou et al., 2022) tend to perturb the input text sequence or intermediate
representations by reducing unnecessary or sensitive information for PLM’s inference. There also exist
approaches (Feng et al., 2020; Chen et al., 2022) that seek to protect data flow end-to-end, relying on
homomorphic encryption, albeit the execution of such models is very time-consuming and computationally
expensive, and needs to modify the model from the server side. On the other hand, to mitigate privacy
issues in cloud PLM fine-tuning, offsite-tuning (Xiao et al., 2023) compresses the full PLM into a distilled
version that allows users to tune plug-in adapters on their local, which protects the privacy of the user as
well as the weights of PLM. Du et al. (2023) exploit local differential privacy to sanitize the embedding (and
labels) for fine-tuning. However, none of the above work protects inference decision privacy of the LM under
the black-box setting, which is exactly the focus of this work.

Data Obfuscation. Although mixup (Zhang et al., 2018) is designed to alleviate the undesirable drawbacks
of large deep neural networks, the concept of data combination and its effect on inference with minimal
computation overhead is valuable and worth learning. Guo et al. (2019) extend the mixup into the NLP
world, and Co-mixup (Kim et al., 2021) discovers the possibility of applying mixup on multiple instances.
Besides representation mixup, recent studies also obfuscate authorship of text by neutralizing the stylistic
features of text with techniques, such as back-translation or representation disentanglement (Mahmood
et al., 2022; Altakrori et al., 2022; Bevendorff et al., 2019). Our instance obfuscated technique is inspired by
representation mixup, while representing a pilot approach for LM decision protection.

7 Conclusion

In this work, we introduce decision privacy and propose IoI that prohibits information leakage of PLMs
under the settings of black-box LMaaS. In contrast to prior works, we consider the end-to-end privacy
protection of PLM’s input and decision via instance obfuscation. Correspondingly, we define the evaluation
metrics tailored for decision privacy and conduct comprehensive experiments regarding task performance and
privacy protection. We anticipate our work conveys valuable insight and sheds some light on the trajectory
of privacy in NLP.

15

Under review as submission to TMLR

References
Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large language

model (llm) security and privacy: The good, the bad, and the ugly. High-Confidence Computing, page
100211, 2024.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for language-
model-as-a-service. In International Conference on Machine Learning, pages 20841–20855. PMLR, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Jaydip Sen. Security and privacy issues in cloud computing. In Cloud technology: concepts, methodologies,
tools, and applications, pages 1585–1630. IGI global, 2015.

Jun Tang, Yong Cui, Qi Li, Kui Ren, Jiangchuan Liu, and Rajkumar Buyya. Ensuring security and privacy
preservation for cloud data services. ACM Computing Surveys (CSUR), 49(1):1–39, 2016.

Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu. Security and privacy challenges of large language
models: A survey. arXiv preprint arXiv:2402.00888, 2024.

Richard Plant, Dimitra Gkatzia, and Valerio Giuffrida. CAPE: Context-aware private embeddings for private
language learning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 7970–7978, Online and Punta Cana, Dominican Republic, November 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.628. URL https://aclanthology.
org/2021.emnlp-main.628.

Shlomo Hoory, Amir Feder, Avichai Tendler, Sofia Erell, Alon Peled-Cohen, Itay Laish, Hootan Nakhost,
Uri Stemmer, Ayelet Benjamini, Avinatan Hassidim, and Yossi Matias. Learning and evaluating a differ-
entially private pre-trained language model. In Findings of the Association for Computational Linguistics:
EMNLP 2021, pages 1178–1189, Punta Cana, Dominican Republic, November 2021. Association for Com-
putational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.102. URL https://aclanthology.org/
2021.findings-emnlp.102.

Xiang Yue, Minxin Du, Tianhao Wang, Yaliang Li, Huan Sun, and Sherman S. M. Chow. Differential privacy
for text analytics via natural text sanitization. In Findings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3853–3866, Online, August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.findings-acl.337. URL https://aclanthology.org/2021.findings-acl.
337.

Zekun Xu, Abhinav Aggarwal, Oluwaseyi Feyisetan, and Nathanael Teissier. A differentially private text
perturbation method using regularized mahalanobis metric. In Proceedings of the Second Workshop on
Privacy in NLP, pages 7–17, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.privatenlp-1.2. URL https://aclanthology.org/2020.privatenlp-1.2.

Yitong Li, Timothy Baldwin, and Trevor Cohn. Towards robust and privacy-preserving text representations.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pages 25–30, Melbourne, Australia, July 2018. Association for Computational Linguistics.
doi: 10.18653/v1/P18-2005. URL https://aclanthology.org/P18-2005.

Maximin Coavoux, Shashi Narayan, and Shay B. Cohen. Privacy-preserving neural representations of text.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1–10,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/
v1/D18-1001. URL https://aclanthology.org/D18-1001.

Xin Zhou, Jinzhu Lu, Tao Gui, Ruotian Ma, Zichu Fei, Yuran Wang, Yong Ding, Yibo Cheung, Qi Zhang,
and Xuanjing Huang. TextFusion: Privacy-preserving pre-trained model inference via token fusion. In

16

https://aclanthology.org/2021.emnlp-main.628
https://aclanthology.org/2021.emnlp-main.628
https://aclanthology.org/2021.findings-emnlp.102
https://aclanthology.org/2021.findings-emnlp.102
https://aclanthology.org/2021.findings-acl.337
https://aclanthology.org/2021.findings-acl.337
https://aclanthology.org/2020.privatenlp-1.2
https://aclanthology.org/P18-2005
https://aclanthology.org/D18-1001

Under review as submission to TMLR

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 8360–
8371, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.572.

Virat Shejwalkar, Huseyin A Inan, Amir Houmansadr, and Robert Sim. Membership inference attacks
against nlp classification models. In NeurIPS 2021 Workshop Privacy in Machine Learning, 2021.

Mostafa Kahla, Si Chen, Hoang Anh Just, and Ruoxi Jia. Label-only model inversion attacks via boundary
repulsion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 15045–15053, 2022.

Huina Mao, Xin Shuai, and Apu Kapadia. Loose tweets: an analysis of privacy leaks on twitter. In Proceedings
of the 10th annual ACM workshop on Privacy in the electronic society, pages 1–12, 2011.

Chen Qu, Weize Kong, Liu Yang, Mingyang Zhang, Michael Bendersky, and Marc Najork. Natural language
understanding with privacy-preserving bert. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, pages 1488–1497, 2021.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In International Conference on Learning Representations, 2018.

Andrew Paverd, Andrew Martin, and Ian Brown. Modelling and automatically analysing privacy properties
for honest-but-curious adversaries. University of Oxford, 2014. https://ajpaverd.org/publications/
casper-privacy-report.pdf.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings
42nd IEEE Symposium on Foundations of Computer Science, pages 136–145. IEEE, 2001.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathematical
statistics, 22(1):79–86, 1951.

Yehuda Lindell. Tutorials on the Foundations of Cryptography. Springer, 2017.

Congzheng Song and Ananth Raghunathan. Information leakage in embedding models. In Proceedings of
the 2020 ACM SIGSAC conference on computer and communications security, pages 377–390, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics. URL
https://aclanthology.org/D13-1170.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL https://
aclanthology.org/I05-5002.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–
355, Brussels, Belgium, November 2018. Association for Computational Linguistics. doi: 10.18653/v1/
W18-5446. URL https://aclanthology.org/W18-5446.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 2383–2392, Austin, Texas, November 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and P. Takala. Good debt or bad debt: Detecting semantic
orientations in economic texts. Journal of the Association for Information Science and Technology, 65,
2014.

17

https://aclanthology.org/2022.emnlp-main.572
https://ajpaverd.org/publications/casper-privacy-report.pdf
https://ajpaverd.org/publications/casper-privacy-report.pdf
https://aclanthology.org/D13-1170
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://aclanthology.org/W18-5446
https://aclanthology.org/D16-1264

Under review as submission to TMLR

Francesco Barbieri, Luis Espinosa Anke, and Jose Camacho-Collados. XLM-T: Multilingual language mod-
els in Twitter for sentiment analysis and beyond. In Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 258–266, Marseille, France, June 2022. European Language Resources
Association. URL https://aclanthology.org/2022.lrec-1.27.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word represen-
tation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, Doha, Qatar, October 2014. Association for Computational Linguistics. doi:
10.3115/v1/D14-1162. URL https://aclanthology.org/D14-1162.

Bo Feng, Qian Lou, Lei Jiang, and Geoffrey C Fox. Cryptogru: Low latency privacy-preserving text analysis
with gru. arXiv preprint arXiv:2010.11796, 2020.

Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li, and
Furu Wei. THE-X: Privacy-preserving transformer inference with homomorphic encryption. In Findings
of the Association for Computational Linguistics: ACL 2022, pages 3510–3520, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.277. URL https:
//aclanthology.org/2022.findings-acl.277.

Guangxuan Xiao, Ji Lin, and Song Han. Offsite-tuning: Transfer learning without full model. arXiv preprint
arXiv:2302.04870, 2023.

Minxin Du, Xiang Yue, Sherman SM Chow, and Huan Sun. Sanitizing sentence embeddings (and labels) for
local differential privacy. In Proceedings of the ACM Web Conference 2023, pages 2349–2359, 2023.

Hongyu Guo, Yongyi Mao, and Richong Zhang. Augmenting data with mixup for sentence classification:
An empirical study. arXiv preprint arXiv:1905.08941, 2019.

JangHyun Kim, Wonho Choo, Hosan Jeong, and Hyun Oh Song. Co-mixup: Saliency guided joint mixup
with supermodular diversity. In International Conference on Learning Representations, 2021.

Asad Mahmood, Faizan Ahmad, Zubair Shafiq, Padmini Srinivasan, and Fareed Zaffar. A girl has no name:
Automated authorship obfuscation using mutant-x. Proceedings on Privacy Enhancing Technologies, 1:18,
2022.

Malik Altakrori, Thomas Scialom, Benjamin C. M. Fung, and Jackie Chi Kit Cheung. A multifaceted frame-
work to evaluate evasion, content preservation, and misattribution in authorship obfuscation techniques.
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 2391–
2406, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.153.

Janek Bevendorff, Martin Potthast, Matthias Hagen, and Benno Stein. Heuristic authorship obfuscation.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1098–
1108, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1104.
URL https://aclanthology.org/P19-1104.

18

https://aclanthology.org/2022.lrec-1.27
https://aclanthology.org/D14-1162
https://aclanthology.org/2022.findings-acl.277
https://aclanthology.org/2022.findings-acl.277
https://aclanthology.org/2022.emnlp-main.153
https://aclanthology.org/P19-1104

Under review as submission to TMLR

Limitations

We discuss two main limitations of this work. First, the extra instance inference cost. IoI hides the target
instance behind obfuscators so that the target instance never exposes directly to the PLM. To guarantee the
strength of privacy protection and stability of the task performance, the strategies, including balancing and
randomization, emit additional requests which result in multiple inferences for one instance. However, such
incurred cost is not as severe as the previous works, for some of them need significant effort to fine-tune the
remote PLMs, and some others require partial/entire model sharing hence compromising the privacy of the
model.

Second, IoI is deliberated for text classification tasks in a solely black-box fashion, thus it is not suitable
for generative tasks. As for natural language generation, the adaption based on the current method requires
addressing the problems such as mix-up tokens and variable lengths of generated text which are non-trivial.
We leave this to be the future work.

Ethical Considerations

Technology innovations generally offer potential benefits, but they also possess the risk of intentional ex-
ploitation for nefarious purposes, and LMaaS is not immune to this reality. The presence of regulations and
standards establishes a legal structure that ensures responsible utilization of data and grants individuals the
right to request the deletion of their data. In the absence of such regulations, society depends on the ethical
responsibility of technology practitioners to ensure the ethical usage of data.

Decision privacy, defined in this paper, provides a fundamental direction for protecting the data, as well as
LMaaS, from being abusively used. The proposed method technically guarantees the privacy of the input and
output data to and from the LMaaS being fully obfuscated. Adopting this method ensures the operations and
data are intended for legitimate purposes rather than malicious. Besides, the method itself can seamlessly
be integrated into compatible underlying technologies or running systems without any extra modification,
which reduces the barriers associated with implementation for increasing accessibility for individuals or
organizations.

All experimental datasets used in this work are openly available benchmarks. No demographic or identity
characteristics are used in this paper.

19

Under review as submission to TMLR

Algorithm 1: Obfuscation generation (GenObfu)
Input: The number of unit obfuscator groups n.
Output: The selected obfuscator set R.
Note: M is the PLM. C is a set of all PLM’s labels.

1 Function GenObfu(n):
// Candidate obfuscator construction

2 L← {c ∈ C 7→ []};
3 B ← Random text corpora;
4 for b ∈ B do
5 c← M(b);
6 L[c].append(b);

// Obfuscator selection with balancing
7 R← ∅;
8 for c ∈ C do
9 H ← randomly choose n elements with high inference confidence from L[c];

10 R← R ∪H;
11 return R;

A Method

A.1 End-to-End Workflow in Pseudo-code

Algorithm 1 outlines the process for generating obfuscators. In the candidate obfuscator construction phase
(Lines 1–6), a mapping is created from the PLM’s label to a list, and a set of random text corpora serving
as candidates is prepared. These candidates are then categorized based on their inference results. During
the candidate selection phase (Lines 7–10), n unit groups of candidates with high PLM decision confidence
are randomly chosen.

The end-to-end workflow of IoI in pseudo-code is outlined in Algorithm 2. In Lines 1-9, IoI generates m×n
obfuscators, where each obfuscator group consists of m labels, and there are n such groups. Each obfuscator
b is concatenated with x to form [b; x] (bx in the algorithm). In Lines 10-13, both b and the obfuscated
instance [b; x] are encoded into privacy-preserving embedding representations using the compatible PPRG
method. Before transmitting BX and B to the service provider, the client uniformly shuffles their union into
U and records the relationship between each x and its corresponding [b; x]s and bs in O. Lines 10-16 involve
sending U to the PLM model for inference. From the service provider’s perspective, it cannot differentiate
whether an input in U corresponds to b or [b; x]. Finally, in Lines 19-23, the raw inference logit set Z is
returned to the client. Using O, the client reconstructs the associations between x and its corresponding
[b; x]s and bs, then determines the true result y for each x based on Equation (12).

It is unnecessary to run inference repeatedly for all obfuscators. Instead, the results can be precomputed and
stored in an obfuscator pool, where each b is associated with its corresponding label. This allows obfuscator
results to be reused when needed, reducing redundant computation and communication (highlighted in gray),
thereby improving efficiency.

B Experiments

We report additional information regarding experiments and analyses in this section.

B.1 Length Expansion

The privacy strength of a single obfuscated instance [b; x] mainly comes from the domination of b. Kim et al.
(2021) demonstrate that the model has the ability to map a mixed instance consisting of more than two raw
instances to a mixed label. Inspired by that, We expand the length of b to amplify the impact of it on PLM’s

20

Under review as submission to TMLR

Algorithm 2: IOI workflow
Input: A set of instances X in the text form. The number of unit obfuscator groups n.
Output: A set of results Y .
Note: GenObfu is for obfuscator generation. PPRG is any compatible PPRG methods. M is the PLM. C is a set

of all PLM’s labels.
// Apply obfuscation

1 m← |C|;
2 BX ← ∅;
3 B ← ∅;
4 for x ∈ X do
5 Bi ← GenObfu(n);
6 B ← B ∪Bi;
7 for b ∈ Bi do
8 bx← b⊕ x;
9 BX ← BX ∪ {bx};

// Apply PPRG
10 for bx ∈ BX do
11 BX ← BX \ {bx} ∪ {PPRG(bx)};
12 for b ∈ B do
13 B ← B \ {b} ∪ {PPRG(b)};

// Uniform shuffle σ
// The relation of x ∈ X and its corresponding bx and b is recorded in O

14 U ← σ(BX ∪B);
// Send U to the PLM and run the model
// These steps are executed by the service provider

15 Z ← ∅;
16 for u ∈ U do
17 z ← M(u);
18 Z ← Z ∪ {z};

// Send obfuscated results Z back to the client and resolve the true result
19 Y ← ∅;
20 for x ∈ X do
21 {(zbj x, zbj)}m×n

j=1 ← Identify all bx and b pairs associated with x according to O;
22 y ← arg max 1

m×n

∑m×n

j=1 (zbj x − zbj);
23 Y ← Y ∪ y;

decision by duplicating it k times. 6 Correspondingly, the concatenation sequence length becomes k|b|+ |x|.
Here, we seek to verify the relation between the accuracy and the obfuscator’s length over obfuscated and
resolved prediction results.

We duplicate b by k times before encoding to realize the length increment, and the dataset we used here
is SST-2. As the solid lines shown in Figure 9, k is tested from 1 to 10 consecutively, and it presents a
negative correlation to accuracy. Specifically, when k = 1, the accuracy of resolved inference is more than
0.9 whereas the accuracy of obfuscated inference is less than 0.8. When k becomes larger, the accuracy
of resolved inference Tr drops gradually until it reaches around 0.82 when k is 10. As a comparison, the
trend of obfuscated To falls quickly almost throughout the k’s process and when k is 10, it hits 0.55, which
is close to the random guess. The maximum difference of the accuracy between two variants is more than
2.25 times to the minimum difference at the beginning (k=2). This experiment demonstrates the massive
impact of length expansion on the performance, and a proper k could deviate the obfuscated distribution
of PLM’s decision far from the true one, thus intensifying the privacy protection. Note that we set another
hyper-parameter n in Gn to be 1 and 5 in this experiment; regardless of n, the negative correlation holds.

6The duplication does not hurt the privacy of the generated representation because it is before semantic-neutral shuffling.

21

Under review as submission to TMLR

1 2 3 4 5 6 7 8 9 10
Length Expansion k

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Tr (n=5)
To (n=5)
Tr (n=1)
To (n=1)

Figure 9: Length Expansion (SST-2)

22

	Introduction
	Privacy-Preserving Inference
	Decision Privacy
	Problem Definition

	Method
	Instance Obfuscation
	Privacy-Preserving Decision Resolution

	Privacy Discussion
	Threat Model and Privacy Definitions
	Simulation-based Proof
	Privacy Cost

	Experiments
	Experimental Setup
	Main Results
	Analyses

	Related Work
	Conclusion
	Method
	End-to-End Workflow in Pseudo-code

	Experiments
	Length Expansion

