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Abstract

Gradient compression is a popular technique for
improving communication complexity of stochas-
tic first-order methods in distributed training of
machine learning models. However, the exist-
ing works consider only with-replacement sam-
pling of stochastic gradients. In contrast, it is
well-known in practice and recently confirmed in
theory that stochastic methods based on without-
replacement sampling, e.g., Random Reshuffling
(RR) method, perform better than ones that sam-
ple the gradients with-replacement. In this work,
we close this gap in the literature and provide the
first analysis of methods with gradient compres-
sion and without-replacement sampling. We first
develop a distributed variant of random reshuf-
fling with gradient compression (Q-RR), and show
how to reduce the variance coming from gradient
quantization through the use of control iterates.
Next, to have a better fit to Federated Learning
applications, we incorporate local computation
and propose a variant of Q-RR called Q-NASTYA.
Q-NASTYA uses local gradient steps and different
local and global stepsizes. Next, we show how
to reduce compression variance in this setting as
well. Finally, we prove the convergence results for
the proposed methods and outline several settings
in which they improve upon existing algorithms.

1. Introduction

Federated learning (FL) (Konec¢ny et al., 2016; McMahan
et al., 2017) is a framework for distributed learning and
optimization where multiple nodes connected over a net-
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work try to collaboratively carry out a learning task. Each
node has its own dataset and cannot share its data with other
nodes or with a central server, so algorithms for federated
learning often have to rely on local computation and cannot
access the entire dataset of training examples. Federated
learning has applications in language modelling for mo-
bile keyboards (Liu et al., 2021), healthcare (Antunes et al.,
2022), wireless communications (Yang et al., 2022), and
continues to find applications in many other areas (Kairouz
etal., 2019).

Federated learning tasks are often solved through empirical-
risk minimization (ERM), where the m-th devices con-
tributes an empirical loss function f,,(x) representing the
average loss of model x on its local dataset, and our goal is
to then minimize the average loss over all the nodes:

M
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where the function f represents the average loss. Every f,,
is an average of sample loss functions f, each representing
the loss of model z on the i-th datapoint on the mth clients’

dataset: that is for each m € {1,2,..., M} we have
def 1 &
Fule) 2 LS i)
m
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For simplicity we shall assume that the datasets on all clients
are of equal size: nqy = ny = ... = nyy, though this
assumption is only for convenience and our results easily
extend to the case when clients have datasets of unequal
sizes. Thus our optimization problem is

M n
. 1 ;
min | f(z) =7 ﬂ;“z:;fm(x) : )

Because d is often very large in practice, the dominant
paradigm for solving (2) relies on first-order (gradient) in-
formation. Federated learning algorithms have access to
two key primitives: (a) local computation, where for a given
model z € R? we can compute stochastic gradients V f? (z)
locally on client m, and (b) communication, where the dif-
ferent clients can exchange their gradients or models with a
central server.
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1.1. Communication bottleneck: from one to multiple
local steps

In practice, communication is more expensive than local
computation (Kairouz et al., 2019), and as such one of the
chief concerns of algorithms for federated learning is com-
munication efficiency. Algorithms for federated learning
have thus focused on achieving communication efficiency,
with one common ingredient being the use of multiple local
steps (Wang et al., 2021; Malinovskiy et al., 2020), where
each node uses multiple gradients locally for several descent
steps between communication steps. In general, algorithms
using local steps fit the following pattern of generalized
FedAvg (due to (Wang et al., 2021)); see Algorithm 1.

When the client update method in Algorithm 1 is stochas-
tic gradient descent, we get the FedAvg algorithm (also
known as Local SGD). While FedAvg is popular in prac-
tice, recent theoretical progress has given tight analysis of
the algorithm and shown that it can be definitively slower
than its non-local counterparts (Khaled et al., 2020; Wood-
worth et al., 2020a; Glasgow et al., 2022). However, by
using bias-reduction techniques one can use local steps and
still maintain convergence rates at least as fast as non-local
methods (Karimireddy et al., 2020), or in some cases even
faster (Mishchenko et al., 2022). Thus local steps continue
to be a useful algorithmic ingredient in both theory and
practice for achieving communication efficiency.

1.2. Communication bottleneck: from full-dimensional
to compressed communication

Another useful ingredient in distributed optimization is gra-
dient compression, where each client sends a compressed
or quantized version of their update A, ,, instead of the
full update vector, potentially saving communication band-
width by sending fewer bits over the network. There are
many operators that can be used for compressing the update
vectors: stochastic quantization (Alistarh et al., 2017), ran-
dom sparsification (Wangni et al., 2018; Stich et al., 2018),
and others (Tang et al., 2020). In this work we consider
compression operators satisfying the following assumption:

Assumption 1.1. A compression operator is an operator
Q : R% — R4 such that for some w > 0, the relations

E[Q(x)] ==  and IE[IIQ(Q?)—JJIF < wllz|*

hold for z € R?,

Unbiased compressors can reduce the number of bits clients
communicate per round, but also increases the variance of
the stochastic gradients used slowing down overall con-
vergence, see e.g. (Khirirat et al., 2018, Theorem 5.2)
and (Stich, 2020, Theorem 1). By using control iterates,
Mishchenko et al. (2019b) developed DIANA—an algorithm
that can reduce the variance due to gradient compression

with unbiased compression operators, and thus ensure fast
convergence. DIANA has been extended and analyzed in
many settings (Horvéth et al., 2019; Stich, 2020; Safaryan
et al., 2021) and forms an important tool in our arsenal for
using gradient compression.

1.3. Communication bottleneck: from with replacement
to without replacement sampling

The algorithmic framework of generalized FedAvg (Algo-
rithm 1) requires specifying a client update method that is
used locally on each client. The typical choice is stochastic
gradient descent (SGD), where at each time step we sample
j from {1,...,n} uniformly at random and then do a gradi-
ent descent step using the stochastic gradient V f7, (),
resulting in the client update:

ClientUpdate(x;m7 v, myi) = x;m - 'ny,Jn(;v;m)

This procedure thus uses with-replacement sampling in
order to select the stochastic gradient used at each local
step from the dataset on node m. In contrast, we can use
without-replacement sampling to select the gradients: that
is, at the beginning of each epoch we choose a permutation
1,72, ..., 7 of {1,2, ... n} and do the i-th update using
the 7r;-ith gradient:

ClientUpdate(z} ,,,, v, m, 1) = &} ., — YV i (2} ).

Without-replacement sampling SGD, also known as Ran-
dom Reshuffling (RR), typically achieves better asymptotic
convergence rates compared to with-replacement SGD and
can improve upon it in many settings as shown by recent the-
oretical progress (Mishchenko et al., 2020; Ahn et al., 2020;
Rajput et al., 2020; Safran and Shamir, 2021). While with-
replacement SGD achieves an error proportional to O ()
after T" steps (Stich, 2019), Random Reshuffling achieves
an error of O (%) after T steps, faster than SGD when the
number of steps 7 is large.

The success of RR in the single-machine setting has inspired
several recent methods that use it as a local update method
as part of distributed training: Mishchenko et al. (2021)
developed a distributed variant of random reshuffling, Fe-
dRR. FedRR fits into the framework of Algorithm 1 and
uses RR as a local client update method in lieu of SGD.
They show that FedRR can improve upon the convergence
of Local SGD when the number of local steps is fixed as
the local dataset size, i.e. when H = n. Yun et al. (2021)
study the same method under the name Local RR under a
more restrictive assumption of bounded inter-machine gra-
dient deviation and show that by varying H to be smaller
than n better rates can be obtained in this setting than the
rates of Mishchenko et al. (2021). Other work has explored
more such combinations between RR and distributed train-
ing algorithms (Huang et al., 2021; Malinovsky et al., 2022;
Horvith et al., 2022).
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1.4. Three tricks for achieving communication efficiency

To summarize, we have at our disposal the following tricks
and techniques for achieving communication efficiency in
distributed training: (a) Local steps, (b) Gradient compres-
sion, and (c) Random Reshuffling. Each has found its use
in federated learning and poses its own challenges, requir-
ing special analysis or bias/variance-reduction techniques to
achieve the best theoretical convergence rates and practical
performance. Client heterogeneity causes local methods
(with or without random reshuffling) to be biased, hence re-
quiring bias-reduction techniques (Karimireddy et al., 2020;
Murata and Suzuki, 2021) or decoupling local and server
stepsizes (Malinovsky et al., 2022). Gradient compression
reduces the number of bits clients have to send per round,
but causes an increase in variance, and we hence also need
variance-reduction techniques to achieve better convergence
rates under gradient compression (Mishchenko et al., 2019b;
Stich and Karimireddy, 2019). However, it is not clear apri-
ori how these techniques should be combined to improve the
convergence speed, and this is our starting point.

2. Related work

Federated optimization has been the subject of intense study,
with many open questions even in the setting when all clients
have identical data (Woodworth et al., 2020b;a; 2021). The
FedAvg algorithm (also known as Local SGD) has also been
a subject of intense study, with tight bounds obtained only
very recently by Glasgow et al. (2022). It is now understood
that using many local steps adds bias to distributed SGD,
and hence several methods have been developed to mitigate
it, e.g. (Karimireddy et al., 2020; Murata and Suzuki, 2021),
see the work of Gorbunov et al. (2021) for a unifying lens
on many variants of Local SGD. Note that despite the bias,
even vanilla FedAvg/Local SGD still reduces the overall
communication overhead in practice (Ortiz et al., 2021).

There are several methods that combine compression or
quantization and local steps: both Basu et al. (2019) and
Reisizadeh et al. (2020) combined Local SGD with quanti-
zation and sparsification, and Haddadpour et al. (2021) later
improved their results using a gradient tracking method,
achieving linear convergence under strong convexity. In par-
allel, Mitra et al. (2021) also developed a variance-reduced
method, FedLin, that achieves linear convergence under
strong convexity despite using local steps and compression.
The paper most related to our work is (Malinovsky and
Richtarik, 2022) in which the authors combine iterate com-
pression, random reshuffling, and local steps. We study
gradient compression instead, which is a more common
form of compression in both theory and practice (Kairouz
etal., 2019). We compare our results against (Malinovsky
and Richtarik, 2022) and show we obtain better rates com-
pared to their work.

2.1. Contributions

In this paper, we aim to develop methods for federated opti-
mization that combine gradient compression, random reshuf-
fling, and/or local steps. While each of these techniques
can aid in reducing the communication complexity of dis-
tributed optimization, their combination is under-explored.
Thus our goal is to design methods that improve upon ex-
isting algorithms in convergence rates and in practice. We
summarize our contributions as:

o The issue: naive combination has no improvements.
As a natural step towards our goal, we start with non-
local methods and propose a new algorithm, Q-RR (Algo-
rithm 2), that combines random reshuffling with gradient
compression at every communication round. However,
for Q-RR our theoretical results do not show any improve-
ment upon QSGD when the compression level is reason-
able. Moreover, we observe similar performance of Q-RR
and QSGD in various numerical experiments. Therefore,
we conclude that this phenomenon is not an artifact of
our analysis but rather an issue of Q-RR: communication
compression adds an additional noise that dominates the
one coming from the stochastic gradients sampling.

¢ The remedy: reduction of compression variance. To
remove the additional variance added by the compres-
sion and unleash the potential of Random Reshuffling in
distributed learning with compression, we propose DIANA-
RR (Algorithm 3), a combination of Q-RR and the DIANA
algorithm. We derive the convergence rates of the new
method and show that it improves upon the convergence
rates of Q-RR, QSGD, and DIANA. We point out that to
achieve such results we use n shift-vectors per worker in
DIANA-RR unlike DIANA that uses only 1 shift-vector.

< Extensions to the local steps. Inspired by the NASTYA al-
gorithm of Malinovsky et al. (2022), we propose a variant
of NASTYA, Q-NASTYA (Algorithm 4), that naively mixes
quantization, local steps with random reshuffling, and uses
different local and server stepsizes. Although it improves
in per-round communication cost over NASTYA but, simi-
lar to Q-RR, we show that Q-NASTYA suffers from added
variance due to gradient quantization. To overcome this
issue, we propose another algorithm, DIANA-NASTYA (Al-
gorithm 5), that adds DIANA-style variance reduction to
Q-NASTYA and removes the additional variance.

All theoretical results can be found in appendix due to
space limitation.
3. Experiments

We tested our methods on solving a logistic regression prob-
lem and in training neural networks.



Federated Optimization Algorithms with Random Reshuffling and Gradient Compression

10! mushrooms; Rand-2 10! w8a; Rand-6 10! a9a; Rand-2
-@- QSGD -@- QSGD -@- QsGD
F- Q-RR 4p- Q-RR db- Q-RR
V- DIANA V- DIANA V- DIANA
107! —&- DIANARR | 1071 | —k- DIANARR | 1071 —k- DIANA-RR
3 7 | \ew 3 o e
= = LA e = Y Vew
11073 11073 ? v "'g‘“i?“‘i?«i"{?v‘g 11073 Ve Tumagorionel
% ‘g g.,.% %«%M% = v Vor Noseixg =
= \% = =
10°° 1075 10°°
-7 -7 =7
10 1000 3000 5000 10 1000 3000 5000 10 1000 3000 5000
Data passes Data passes Data passes
(a) Non-local methods
mushrooms; Rand-2 w8a; Rand-6 a9a; Rand-2
-@- Q-NASTYA -@- Q-NASTYA -@ Q-NASTYA
~#— DIANA-NASTYA —#— DIANA-NASTYA ~#— DIANA-NASTYA
| V- FedCOM V- FedcOM E& V- FedCOM
\ b FedPAQ &b FedPAQ 1 ¢ FedPAQ
T10-1 Z10-1 | =10t .
% = s Py
= = = o h: \
I I m T Prgt ‘ﬁ.u.@‘ﬂ.r{z‘é'ﬁ
X X X
= = . &"%~rﬁ\¥.$ =
10-3 AT 1073
1000 3000 5000 1000 3000 5000 1000 3000 5000

Data passes Data passes

(b) Local methods

Data passes

Figure 1: The comparison of the four proposed methods (Q-NASTYA, DIANA-NASTYA, Q-RR, DIANA-RR) and existing

baselines (FedCOM, FedPAQ) with tuned stepsizes and Rand-k compressor.
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Figure 2: The comparison of Q-RR, QSGD, DIANA, and DIANA-RR on the task of training ResNet—-18 on CIFAR-10

with n = 10 workers. Top-1 accuracy on test set is reported. Stepsizes were tuned and workers used Rand-k£ compressor
with ¥/d 2~ 0.05. Further details and additional experiments are provided in Appendix B.

3.1. Logistic Regression

To confirm our theoretical results we conducted several
numerical experiments on binary classification problem with
L2 regularized logistic regression of the form

batches of size ~ 0.1n,,,. In all algorithms, as a compression
operator Q, we use Rand-k (Beznosikov et al., 2020) with
fixed compression ratio ¥/d ~ 0.02, where d is the num-
ber of features in the dataset. We provide more details on
experimental setups, hardware and datasets in Appendix B.

] def 1 Mo e Experiment 1: Comparison of the proposed non-local

;2%@ flz) = M Z E Z S| 3 methods with existing baselines. In our first experiment

m=1 i=1 (see Figure 1a), we compare Q-RR and DIANA-RR with

def corresponding classical baselines (QSGD (Alistarh et al.,

o ~ymiaia)) + A3 | |

where  fp i ; log (1 +e>§p( Ymilp; ) + ll2 2017), DIANA (Mishchenko et al., 2019b)) that use a with-

(@mi; ymi) € RO € {=1,1},i = 1,...,ny, are the train- replacement mini-batch SGD estimator. Figure 1a illustrates
ing data samples stored on machines m = 1,..., M, and

A > 0 is a regularization parameter. In all experiments,
for each method, we used the largest stepsize allowed by
its theory multiplied by some individually tuned constant
multiplier. For better parallelism, each worker m uses mini-

that Q-RR experiences similar behavior as QSGD both los-
ing in speed to DIANA method in all considered datasets.
However, DIANA-RR shows the best rate among all consid-
ered non-local methods, efficiently reducing the variance,
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and achieving the lowest functional sub-optimality toler-
ance. The results observed in numerical experiments are in
perfect correspondence with the derived theory.

Experiment 2: Comparison of the proposed local meth-
ods with existing baselines. The second experiment shows
that DIANA-based method can significantly outperform in
practice when one applies it to local methods as well. In
particular, whereas Q-NASTYA shows comparative behavior
as existing methods FedCOM (Haddadpour et al., 2021),
FedPAQ (Reisizadeh et al., 2020) in all considered datasets,
DIANA-NASTYA noticeably outperforms other methods.

3.2. Training ResNet—-18 on CIFAR10

Since random reshuffling is a very popular technique in
training neural networks, it is natural to test the proposed
methods on such problems. Therefore, in the second set of
experiments, we consider training ResNet-18 (He et al.,
2016) model on the CIFAR10 dataset (Krizhevsky and
Hinton, 2009). To conduct these experiments we use FL_—
PyTorch simulator (Burlachenko et al., 2021). Further
technical details are deferred to Appendix B.

Experiment 3: Comparison of the proposed non-local
methods in training ResNet-18 on CIFAR10. The
main goal of this experiment is to verify the phenomenon
observed in Experiment 1 on the training of a deep neu-
ral network. That is, we tested Q-RR, QSGD, DIANA, and
DIANA-RR in the distributed training of ResNet-18 on
CIFARI1O, see Figure 2. As in the logistic regression ex-
periments, we observe that (i) Q-RR and QSGD behave
similarly and (ii) DIANA-RR outperforms DIANA.
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Algorithm 1 The generalized FedAvg framework for methods with local steps

Input: z( - starting point, v > 0 — local stepsize, 7 > 0 — global stepsize, H - number of local steps
1: for communication rounds ¢t = 0,1,...,7T — 1 do

M M A
Compute x4, 1 = ﬁ Dot ol (orxpyq = x + ﬁ > m—1 A m if clients sent updates)

10:  Broadcast x4 to the clients
11: end for
Output: z7

2:  for clients m € [M] in parallel do

3: Receive x; from the server and set chm =24

4: for local steps ¢ = 0,1,..., H do

5: Set xff;}b = ClientUpdate(} ,,,, v, m, i)

6: end for

7: Send xfm to the server, or alternatively send the update A, ,,, = xfm — x4 to the server
8:  end for

9:

Federated optimization has been the subject of intense study, with many open questions even in the setting when all clients
have identical data (Woodworth et al., 2020b;a; 2021). The FedAvg algorithm (also known as Local SGD) has also been
a subject of intense study, with tight bounds obtained only very recently by Glasgow et al. (2022). It is now understood
that using many local steps adds bias to distributed SGD, and hence several methods have been developed to mitigate it,
e.g. (Karimireddy et al., 2020; Murata and Suzuki, 2021), see the work of Gorbunov et al. (2021) for a unifying lens on many
variants of Local SGD. Note that despite the bias, even vanilla FedAvg/Local SGD still reduces the overall communication
overhead in practice (Ortiz et al., 2021).

There are several methods that combine compression or quantization and local steps: both Basu et al. (2019) and Reisizadeh
et al. (2020) combined Local SGD with quantization and sparsification, and Haddadpour et al. (2021) later improved their
results using a gradient tracking method, achieving linear convergence under strong convexity. In parallel, Mitra et al.
(2021) also developed a variance-reduced method, FedLin, that achieves linear convergence under strong convexity despite
using local steps and compression. The paper most related to our work is (Malinovsky and Richtérik, 2022) in which the
authors combine iferate compression, random reshuffling, and local steps. We study gradient compression instead, which is
a more common form of compression in both theory and practice (Kairouz et al., 2019). We compare our results against
(Malinovsky and Richtérik, 2022) and show we obtain better rates compared to their work.

A. ALGORITHMS AND CONVERGENCE THEORY

We will primarily consider the setting of strongly-convex and smooth optimization. We assume that the average function f
is strongly convex:

Assumption A.1. Function f : R¢ — R is u-strongly convex, i.e., for all z,y € RY,
1
f@) = f) = (V)2 —y) = Sllz —yl?, )
and functions fi, fi,..., fi, : R? — R are convex foralli = 1,...,n.

Examples of objectives satisfying Assumption A.1 include /5-regularized linear and logistic regression. Throughout the
paper, we assume that f has the unique minimizer =, € R?. We also use the assumption that each individual loss f?, is
smooth, i.e. has Lipschitz-continuous first-order derivatives:

Assumption A.2. Function f} : R? — Ris L; ,,,-smooth for every i € [n] and m € [M], i.e., for all z,y € R? and for all
m € [M]and i € [n], _ _
IV (@) =V @) < Ligmllz —yl|. )

. def
We denote the maximal smoothness constant as Ly,ax = max; ym Lj m

For some methods, we shall additionally impose the assumption that each function is strongly convex:

Assumption A.3. Each function f? : R? — R is fi-strongly convex.

11
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Algorithm 2 Q-RR: Distributed Random Reshuffling with Quantization

Input: z( — starting point, v > 0 — stepsize
1: fort=0,1,..., 7 —1do

2:  Receive z; from the server and set a:gm =4

3:  Sample random permutation of [n]: T, = (7),,..., 7% 1)

4: fori:=0,1,...,n—1do

5: form =1,..., M in parallel do _

6: Receive z! from the server, compute and send Q (V frm (xjg)) back

7: end for .

8: Compute and send ;' = 2} — v Moo (V fm™ (xi)) to the workers
9:  end for
10: Ti41 = ZL’?
11: end for

Output: zp

The Bregman divergence associated with a convex function h is defined for all z,y € R? as

def

= h(z) — h(y) — (Vh(y),z —y).

Note that the inequality (4) defining strong convexity can be compactly written as Dy (z,y) > 5|z — yl1>.

Dh(xa y)

A.1. Algorithm Q-RR

The first method we introduce is Q-RR (Algorithm 2). Q-RR is a straightforward combination of distributed random
reshuffling and gradient quantization. This method can be seen as the stochastic without-replacement analogue of the
distributed quantized gradient method of Khirirat et al. (2018).

We shall the use the notion of shuffling radius defined by Mishchenko et al. (2021) for the analysis of distributed methods
with random reshuffling:

Definition A.4. Define the iterate sequence ™! = 2% — Zm AV (x*) Then the shuffling radius is the quantity

M
def 1 ;

We now state the main convergence theorem for Algorithm 2:
Theorem A.5. Let Assumptions 1.1, A.2, A.3 hold and let the stepsize satisfy 0 < v < (

W Then fOr allT > 0
the iterates produced by Q-RR (Algorithm 2) satisfy

. 2 20.2
Eller — 2’ < (1= 0" llzo — o )? + e
2’yw
(C* o2), (6)

def def
where (2 def M Z IV fon (z4) |2, and o2 = ﬁ

nMi

inv (@) = (@),

All proofs are relegated to the appendix. By choosing the stepsize « properly, we can obtain the communication complexity
(number of communication rounds) needed to find an e-approximate solution as follows:

Corollary A.6. Under the same conditions as Theorem A.5 and for Algorithm 2, there exists a stepsize v > 0 such that
the number of communication rounds nT to find a solution with accuracy € > 0 (i.e. Ellzr — ,||> < €) is equal to

~ 2
(@] ((1 + ) % + % + \;L) where O(-) hides constants and logarithmic factors.

12
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Algorithm 3 DIANA-RR

Input To — starting pomt {ho m} — initial shift-vectors, 7y > 0 — stepsize, o > 0 — stepsize for learning the shifts

m,i= 1 1

fort=0,1,. —1do
2: Receive ¢ from the server and set x?ym =4
3:  Sample random permutation of [n]: T, = (7),,..., 7% 1)
4: fori=0,1,...,n—1do
5: form =1,2,..., M in parallel do
6: Receive z¢ from the server, compute and send Q (V Frm () — hfi’;) back
7 Set g gt o= h m+Q (me (} ) — hf;’,’l)
8: Set h7r = him 4 aQ (me (@) — hm)
9: end for
10: Compute z} " =z} — 4L SN gt m and send ! to the workers
11:  end for
12: Ti+1 = l‘?
13: end for

Output: zp

~ w 2 w 0'2
The complexity of Quantized SGD (QSGD) is (Gorbunov et al., 2020): O ((1 + ﬁ) L“;L‘”‘ + ( C*L(;IE) *>> . For

simplicity, let us neglect the differences between p and . First, when w = 0 we recover the complexity of FedRR
(Mishchenko et al., 2021) which is known to be better than the one of SGD as long as ¢ is sufficently small as we have
nwf/s < ofad < nLUf/4 from (Mishchenko et al., 2021). Next, when M = 1 and w = 0 (single node, no compression) our
results recovers the rate of RR (Mishchenko et al., 2020).

However, it is more interesting to compare Q-RR and QSGD when M > 1 and w > 1, which is typically the case. In these
settings, Q-RR and QSGD have the same complexity since the O(1/<) term dominates the O(1/,/z) one if ¢ is sufficiently
small. That is, the derived result for Q-RR has no advantages over the known one for QSGD unless w is very small, which
means that there is almost no compression at all. We also observe this phenomenon in the experiments.

The main reason for that is the variance appearing due to compression Indeed, even if the current point is the solution of the

problem (2} = x.), the update direction —y; Zm 19 (V I ’"( )) has the compression variance

M 2
gl o, o
PPw o
< 3 2 V£ @l

This upper bound is tight and non-zero in general. Moreover, it is proportional to 72 that creates the term proportional to
7 in (6) like in the convergence results for QSGD/SGD, while the RR-variance is proportional to 72 in the same bound.
Therefore, during the later stages of the convergence Q-RR behaves similarly to QSGD when we decrease the stepsize.

A.2. Algorithm DIANA-RR

To reduce the additional variance caused by compression, we apply DIANA-style shift sequences (Mishchenko et al., 2019b;
Horvith et al., 2019). Thus we obtain DIANA-RR (Algorithm 3). We notice that unlike DIANA, DIANA-RR has n shift-vectors
on each node.

Theorem A.7. Let Assumptions 1.1, A.2, A.3 hold and suppose that the stepsizes satisfy v < min { T M} ,
M ) max

13
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Algorithm 4 Q-NASTYA

Input: z( — starting point, v > 0 — local stepsize, > 0 — global stepsize
1: fort=0,1,...,7 —1do

2:  for m € [M] in parallel do

3: Receive z; from the server and set x?’m =

4 Sample random permutation of [n]: 7, = (72,,..., 7% 1)

5 fori=0,1,...,n—1do

6: Set xﬂ'ﬁ = xf;’m — AV fm (mim)

7: end for

8 Compute g; ,, = ,Yin (xt - :c?m) and send Q;(g¢ ) to the server
9:  end for

10:  Compute g; = 77 M Qi(9em)

11:  Compute z4+1 = x; — 1¢g; and send x4 to the workers
12: end for

Output:

and o < H% Define the following Lyapunov function for every t > 0

def
T

4(4}’)/2 M n-1

s 2L 2 (L= AL, %

m=1 j=0

where A{+1,m = hfﬁlm — Vf:,r;" (4) Then, for all T > 0 the iterates produced by DIANA-RR (Algorithm 3) satisfy

o 27202
E[Wr] < (1—y)"" Wy + 2 rad

Corollary A.8. Under the same conditions as Theorem A.7 and for Algorithm 3, there exists stepsizes v, « > 0 such that the

number of communication rounds nT to find a solution with accuracy € > 0 is O (n(l +w)+ (1 + ﬁ) % + "’) .

\/ens

Unlike Q-RR/QSGD/DIANA, DIANA-RR does not have a 5(1/5)-term, which makes it superior to Q-RR/QSGD/DIANA for
small enough . However, the complexity of DIANA-RR has an additive O(n(1 + w)) term arising due to learning the shifts
{hi)m}me[ M],ie[n]- Nevertheless, this additional term is not the dominating one when ¢ is small enough. Next, we elaborate

a bit more on the comparison between DIANA and DIANA-R. That is, DIANA has O ((1 + ) % + %) complexity
(Gorbunov et al., 2020). Neglecting the differences between p and i, Ly and Ly, .y, We observe a similar relation between
DIANA-RR and DIANA as between RR and SGD: instead of the term O((1+w)o?/(ap2¢)) appearing in the complexity of
DIANA, DIANA-RR has O(°n//c5%) term much better depending on €. To the best of our knowledge, our result is the only
known one establishing the theoretical superiority of RR to regular SGD in the context of distributed learning with gradient
compression. Moreover, when w = 0 (no compression) we recover the rate of FedRR and when additionally M = 1 (single

worker) we recover the rate of RR. I am not sure whether we should compare with Q-NASTYA/DIANA-NASTYA here.

A.3. Algorithm Q-NASTYA

By adding local steps to Q-RR, we can do enable each client to do more local work and only communicate once per epoch
rather than at each iteration of every epoch. We follow the framework of the NASTYA algorithm (Malinovsky et al., 2022)
and extend it by allowing for quantization, resulting in Q-NASTYA (Algorithm 4).

, . . 1 1
Theorem A.9. Let Assumptions 1.1, A.1, A.2 hold. Let the stepsizes vy, ) satisfy 0 < n < Ty —

S Thom(rg) V<7 S

14



Federated Optimization Algorithms with Random Reshuffling and Gradient Compression

Algorithm 5 DIANA-NASTYA

Input: z — starting point, {hg  }}_, — initial shift-vectors, v > 0 — local stepsize, 7 > 0 — global stepsize, o > 0 —
stepsize for learning the shifts
1: fort =0,1,..., T —1do

2 form =1,..., M in parallel do
3 Receive z; from the server and set »T?,m =2y
4: Sample random permutation of [n]: 7, = (70,,..., 7% 1)
5: fori=0,1,...,n—1do
6 Set )y = — YVl (},)
7 end for
8: Compute g; m, = %n (z¢ —a},,) and send Q; (g¢,m — he,m) to the server
9: Set ht+1,m = ht,m + aQt (gt,m - ht,m)
10: Set gt,m = ht,m + Qt (gt,m - ht,m)

11:  end for

12: ht+1 M Zm 1 hf+1 m ht + £ N3 Z -1 o) (gf m ht,m)
13: gt =M Zm:l gt,m = ht + M Z%:l Qt (gt,nL - ht,m)

14: Ti+1 = Tt — T]gt

15: end for

Output: zp

Then, for all T > O the iterates produced by Q-NASTYA (Algorithm 4) satisfy

T w
E [lor — o) < (1= ) llwo = ol 48,7072
9 21 Limax
+ -2 (n+ 1) +02).

2

Corollary A.10. Under the same conditions as Theorem A.9 and for Algorithm 4, there exist stepsizes v = "/n
and n > 0 such that the number of communication rounds T to find a solution with accuracy € > 0 is

O (Lmax (1 + %) + ﬁefg + 4/ %\/Cﬁ + f) Afv — 0, one can choose n > 0 such that the above complexity

bound improves to o ( Zmax (1 + 3 ) + 37 53) .

We emphasize several differences with the known theoretical results. First, the FedCOM method of Haddadpour et al. (2021)
was analyzed in the homogeneous setting only, i.e., fn,,(x) = f(x) for all m € [M], which is an unrealistic assumption for
FL applications. In contrast, our result holds in the fully heterogeneous case. Next, the analysis of FedPAQ of Reisizadeh

et al. (2020) uses a bounded variance assumption, which is also known to be restrictive. Nevertheless, let us compare to their
2

result. Reisizadeh et al. (2020) derive the following complexity for their method: o (@ (1 + i) + ﬁ% + ﬁ)

This result is inferior to the one we show for Q-NASTYA: when w is small, the main term in the complexity bound of FedPAQ
is O (1/z), while for Q-NASTYA the dominating term is of the order O (1/,/z) (when w and ¢ are sufﬁmently small). We also
highlight that FedCRR (Malinovsky and Richtarik, 2022) does not converge if w > M*vue/(2||a7 . |I*), while Q-NASTYA
does for any w > 0. Finally, when w = 0 (no compression) we recover NASTYA as a special case, and using v = 7/n, we
recover the rate of FedRR (Mishchenko et al., 2021).

A.4. Algorithm DIANA-NASTYA

As in the case of Q-RR, the complexity bound for Q-NASTYA includes a 6(‘*’/6) term, appearing due to quantization
noise. To reduce it, we apply DIANA-style correction sequences, which leads to a new method for which we coin the name
DIANA-NASTYA (Algorithm 5).

Theorem A.11. Let Assumptions 1.1, A.1, A.2 hold. Suppose the stepsizes v, 0, a satisfy 0 < v < ————

>
Lmaxn

0<n<

15



Federated Optimization Algorithms with Random Reshuffling and Gradient Compression

. 1 1 . . .
min {;L, mw&@*?\?)} s and oo < 5. Define the following Lyapunov function:
def 8wn? M
(S)
Vg1 = [l — 2’ + 55 D v — B> ®
m=1

Then, for all T' > 0 the iterates produced by DIANA-NASTYA (Algorithm 5) satisfy

9~2nL
2

T
E[Wr] < (1—%) U, +

(n+1)¢Z+02). 9)

Corollary A.12. Under the same conditions as Theorem A.11 and for Algorithm 5, there exist stepsizes v = n/n,
n > 0, a > 0 such that the number of communication rounds T to find a solution with accuracy ¢ > 0 is

o (w + % (1 + %) + 4/ %\/CE + f) .Ifv — 0, one can choose 1 > 0 such that the above complexity bound

improves to o (w + Lr;ax (1 + %)) )

In contrast to Q-NASTYA, DIANA-NASTYA does not suffer from the (5(1/5) term in the complexity bound. This shows
the superiority of DIANA-NASTYA to Q-NASTYA. Next, FedCRR-VR (Malinovsky and Richtdrik, 2022) has the rate

9] <Eij8(_11)’1))2 + \/E(:‘:/gg*)) , which depends on O (1/,/z). However, the first term is close to O ((w+ 1)K?) for a

large condition number. FedCRR-VR-2 utilizes variance reduction technique from Malinovsky et al. (2021) and it allows to
(w+1) (1 - ) B
(-(n) )
assumption on number of functions n and thus not directly comparable with our result. Note that if we have no compression
(w = 0), DIANA-NASTYA recovers rate of NASTYA.

7 + \f\/% complexity, but it requires additional

get rid of permutation variance. This method has O

B. Experiments: missing details and extra results
In this section, we provide missing details on the experimental setting from Section 3. The codes are provided in the

following anonymous repository: https://anonymous.4open.science/r/diana_rr—[]BOAS.

B.1. Logistic Regression

Hardware and Software. All algorithms were written in Python 3.8. We used three different CPU cluster node types:

1. AMD EPYC 7702 64-Core;
2. Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz;

3. Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz.

Datasets. The datasets were taken from open LibSVM library Chang and Lin (2011), sorted in ascending order of labels,
and equally split among 20 machines \clients\workers. The remaining part of size N — 20 - | N/20| was assigned to the last
worker, where N = 2%21 N, 1s the total size of the dataset. A summary of the splitting and the data samples distribution
between clients can be found in Tables 1, 2, 3, 4.

Hyperparameters. Regularization parameter A was chosen individually for each dataset to guarantee the condition
number L/, to be approximately 10*, where L and 1 are the smoothness and strong-convexity constants of function f. For
the chosen logistic regression problem of the form (3), smoothness and strong convexity constants L, Ly, L; p,, i, [t of
functions f, f,, and fi were computed explicitly as
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Table 1: Summary of the datasets and splitting of the data samples among clients.

Dataset M N (dataset size) d (# of features) n,, (# of datasamples per client)
mushrooms 20 8120 112 406

w8a 20 49749 300 2487

a%a 20 32560 123 1628

Table 2: Partition of the mushrooms dataset among clients.

Client’s Ne  # of datasamples of class ”-1”  # of datasamples of class "+1”

1-9 406 0

10 262 144
11-19 0 406
20 0 410

Table 3: Partition of the w8a dataset among clients.

Client’s Ne  # of datasamples of class ”’-1”  # of datasamples of class "+1”

1-19 2487 0
20 1017 1479

Table 4: Partition of the a 9a dataset among clients.

Client’s Ne  # of datasamples of class ”-1”  # of datasamples of class "+1”

1-14 1628 0

15 1328 300
16 -19 0 1628
20 0 1629

1
— TA
L = A ( E T, ALAL+ 2)\I>

1
L, = Aﬂm( A;Am+2u>
4n,,
1
Limy = Amax <4amza +2)\I)
wo= 2\
L= 2X

where A, is the dataset associated with client m, and a,,; is the i-th row of data matrix A,,,. In general, the fact that f is
L-smooth with

1 M 1 Nom
L<7 - le

follows from the L; ,,-smoothness of f?, (see Assumption A.2).

In all algorithms, as a compression operator Q, we use Rand-k as a canonical example of unbiased compressor with relatively
bounded variance, and fix the compression parameter k = |0.02d |, where d is the number of features in the dataset.
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In addition, in all algorithms, for all clients m = 1, ..., M, we set the batch size for the SGD estimator to be b,,, = [0.1n,, |,
where n,,, is the size of the local dataset.

The summary of the values L, Ly, L; y, Lmax, (4, by, and k for each dataset can be found in Table 5.

Table 5: Summary of the hyperparameters.

Dataset L Liax 1 A k b, (batchsize)
mushrooms 2.59 5.25 258-107% 1.29-107% 2 40

w8a 0.66 28.5 6.6-107° 3.3-107° 6 248

a%a 1.57 3.5 1.57-107* 7.85-107° 2 162

In all experiments, we follow constant stepsize strategy within the whole iteration procedure. For each method, we set
the largest possible stepsize predicted by its theory multiplied by some individually tuned constant multiplier. For a more
detailed explanation of the tuning routine, see Sections B.1.1 and B.1.2.

SGD implementation. We considered two approaches to minibatching: random reshuffling and with-replacement

sampling. In the first, all clients m = 1, ..., M independently permute their local datasets and pass through them within the
next subsequent | 7 | steps. In our implementations of Q-RR, Q-NASTYA and DIANA-NASTYA, all clients permuted their

datasets in the beginning of every new epoch, whereas for the DIANA-RR method they do so only once in the beginning
of the iteration procedure. Second approach of minibatching is called with-replacement sampling, and it requires every
client to draw b,,, data samples from the local dataset uniformly at random. We used this strategy in the baseline algorithms
(QSGD, DIANA, FedCOM and FedPAQ) we compared our proposed methods to.

Experimental setup. To compare the performance of methods within the whole optimization process, we track the
functional suboptimality metric f(x;) — f(x,) that was recomputed after each epoch. For each dataset, the value f(z,) was
computed once at the preprocessing stage with 10716 tolerance via conjugate gradient method. We terminate our algorithms
after performing 5000 epochs.

B.1.1. EXPERIMENT 1: COMPARISON OF THE PROPOSED NON-LOCAL METHODS WITH EXISTING BASELINES
(EXTRA DETAILS)

For each of the considered non-local methods, we take the stepsize as the largest one pre-
dicted by the theory premultiplied by the individually tuned constant factor from the set
{0.000975,0.00195, 0.0039, 0.0078,0.0156,0.0312,0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,

128,256,512, 1024, 2048, 4096} .

Therefore, for each local method on every dataset, we performed 20 launches to find the stepsize multiplier showing the best
convergence behavior (the fastest reaching the lowest possible level of functional suboptimality f(z:) — f(z4)).

Theoretical stepsizes for methods Q-RR and DIANA-RR are provided by the Theorems A.5 and A.7, whereas stepsizes for
QSGD and DIANA were taken from the paper (Gorbunov et al., 2020).

B.1.2. EXPERIMENT 2: COMPARISON OF THE PROPOSED LOCAL METHODS WITH EXISTING BASELINES (EXTRA
DETAILS)

In this set of experiments, we tuned stepsizes similarly to the non-local methods. However, for algorithms Q-NASTYA,
DIANA-NASTYA, and FedCOM we needed to independently adjust the client and server stepsizes, leading to a more extensive
tunning routine.

As before, for each local method on every dataset, tuned client and server stepsizes are defined by the theoretical one and
adjusted constant multiplier. Theoretical stepsizes for methods Q-NASTYA and DIANA-NASTYA are given by the Theorems
A.9 and A.11, whereas FedCOM and FedPAQ stepsizes were taken from the papers by Haddadpour et al. (2021) and
Reisizadeh et al. (2020) respectively. We now list all the considered multipliers of client and server stepsizes for every
method (i.e. v and 7 respectively):
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Q-NASTYA:

— Multipliers for 7 : {0.000975, 0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125, 0.25, 0.5, 1,2, 4, 8, 16, 32,
64,1281;

— Multipliers for 7 : {0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128}.

DIANA-NASTYA:

— Multipliers for ~ and 7 : {0.000975, 0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125,0.25, 0.5, 1,2, 4, 8,
16, 32, 64,128}

* FedCOM:

— Multipliers for 7 : {0.0312, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,1024, 2048, 4096, 8192,
16384, 32768 };

— Multipliers for 7 : {0.000975, 0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125,0.25, 0.5, 1, 2, 4, 8, 16, 32,
64, 128}.

* FedPAQ:

— Multipliers for « : {0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128,
256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576 }.

For example, to find the best pair (y,7) for FedCOM method on each dataset, we performed 378 launches. A similar
subroutine was executed for all algorithms on all datasets independently.

B.2. Training Deep Neural Network model: ResNet-18 on CIFAR-10

To illustrate the behavior of the proposed methods in training Deep Neural Networks (DNN), we consider the
ResNet-18 (He et al., 2016) model. This model is used for image classification, feature extraction for image seg-
mentation, object detection, image embedding, and image captioning. We train all layers of ResNet -18 model meaning
that the dimension of the optimization problem equals d = 11,173,962. During the training, the ResNet-18 model
normalizes layer inputs via exploiting 20 Batch Normalization (Ioffe and Szegedy, 2015) layers that are applied directly
before nonlinearity in the computation graph of this model. Batch normalization (BN) layers add 9600 trainable parameters
to the model. Besides trainable parameters, a BN layer has its internal state that is used for computing the running mean and
variance of inputs due to its own specific regime of working. We use He initialization (He et al., 2015).

B.2.1. COMPUTING ENVIRONMENT

We performed numerical experiments on a server-grade machine running Ubuntu 18.04 and Linux Kernel v5.4.0, equipped
with 16-cores (2 sockets by 16 cores per socket) 3.3 GHz Intel Xeon, and four NVIDIA A100 GPU with 40GB of GPU
memory. The distributed environment is simulated in Python 3.9 via using the software suite FL._PyTorch (Burlachenko
et al., 2021) that serves for carrying complex Federate Learning experiments. FL_PyTorch allowed us to simulate the
distributed environment in the local machine. Besides storing trainable parameters per client, this simulator stores all not
trainable parameters including BN statistics per client.

B.2.2. Loss FUNCTION
Training of ResNet—18 can be formalized as problem (1) with the following choice of f?,
[T |

Z CEMbY), g(aV) x)), (10)

|nm|

where CE(p,q) & — Sofelasses 1, log(gs) with agreement 0 - log(0) = 0 is a standard cross-entropy loss, function
g:R?8x28 x R4 [0, 1]#”‘bbes is a neural network taking image a/) and vector of parameters  as an input and returning
a vector in probability simplex, and n,, is the size of the dataset on worker m.

19



Federated Optimization Algorithms with Random Reshuffling and Gradient Compression

B.2.3. DATASET AND METRIC

In our experiments, we used CIFAR10 dataset (Krizhevsky and Hinton, 2009). The dataset consists of input variables
a; € R?8%28%3 "and response variables b; € {0, 1}'° and is used for training 10-way classification. The sizes of training
and validation set are 5 x 10* and 10 respectively. The training set is partitioned heterogeneously across 10 clients. To
measure the performance, we evaluate the loss function value f(z), norm of the gradient ||V f (x)||2 and the Top-1 accuracy
of the obtained model as a function of passed epochs and the normalized number of bits sent from clients to the server.

B.2.4. TUNING PROCESS

In this set of experiments, we tested QSGD (Alistarh et al., 2017), Q-RR (Algorithm 2), DIANA (Mishchenko et al., 2019a)
and DIANA-RR (Algorithm 3) algorithms. For all algorithms, we tuned the strategy € {A, B, C'} of decaying stepsize model
via selecting the best in terms of the norm of the full gradient on the train set in the final iterate produced after 20000 rounds.
The stepsize policies are described below.

A. Stepsizes decaying as inverse square root of the number epochs

1
e = Yinit \/ﬁa

Yinit ife <s,

ife > s,

where . denotes the stepsize used during epoch e + 1, s is a fixed shift.

B. Stepsizes decaying as inverse of number epochs

1
T ife>
7: 'anv,t €—S+1’ 16_8,
Yinit, ife < s.
C. Fixed stepsize
Y = Yinit-

We say that the algorithm passed e epochs if the total number of computed gradient oracles lies between e Z%zl Ny, and
(e+1) Zf‘le n.,. For each algorithm the used stepsize 7;,;; and shift parameter s were tuned via selecting from the
following sets:

Yinit € Vset de {4.0,3.75,3.00,2.5,2.00, 1.25,1.0,0.75, 0.5, 0.25,
0.2,0.1,0.06,0.03,0.01,0.003,0.001, 0.0006}.
def

SE Seer = {50,100, 200,500,1000}.

In all tested methods, clients independently apply Rand-k compression with carnality & = |0.05d]. Computation for all
gradient oracles is carried out in single precision float (fp32) arithmetic.
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Figure 3: Comparison of QSGD and Q-RR in the training of ResNet-18 on CIFAR-10, with n = 10 workers. Here (a)
and (d) show Top-1 accuracy on test set, (b) and (e) — norm of full gradient on the train set, (c) and (f) — loss function value
on the train set. Stepsizes and decay shift has been tuned from sg.; and ~;.; based on minimum achievable value of loss

function on the train set.
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Figure 4: Comparison of DIANA and DIANA-RR in the training of ResNet-18 on CIFAR-10, with n = 10 workers. Here
(a) and (d) show Top-1 accuracy on test set, (b) and (e) — norm of full gradient on the train set, (c) and (f) — loss function
value on the train set. Stepsizes and decay shift has been tuned from s,¢; and 4., based on minimum achievable value of
loss function on the train set. For both algorithms stepsize is fixed. For both algorithms stepsize is decaying according to
srategy B.

B.2.5. OPTIMIZATION-BASED FINE-TUNING FOR PRETRAINED RESNET—18.

In this setting, we trained ResNet —-18 image classification in a distributed way across n = 10 clients. In this experiment,
we have trained only the last linear layer.

Next, we have turned off batch normalization. Turning off batch normalization implies that the computation graph of NN
g(a, ) with weights of NN denoted as x is a deterministic function and does not include any internal state.

The loss function is a standard cross-entropy loss augmented with extra ¢5-regularization cll=ll”/2 with o = 0.0001. Initially
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used weights of NN are pretrained parameters after training the model on ImageNet.

The dataset distribution across clients has been set in a heterogeneous manner via presorting dataset D by label class and
after this, it was split across 10 clients.

The comparison of stepsizes policies used in QSGD and Q-RR is presented in Figure 6. The behavior of the algorithms with
best tuned step sizes is presented in Figure 5. These results demonstrate that in this setting there is no real benefit of using
Q-RR in comparison to QSGD.

B.2.6. EXPERIMENTS

The comparison of QSGD and Q-RR is presented in Figure 3. In particular, Figures 3b and 3e show that in terms of the
convergence to stationary points both algorithms exhibit similar behavior. However, Q-RR has better generalization and in
fact, converges to the better loss function value. This experiment demonstrates that Q-RR with manually tuned stepsize can
be better compared to QSGD in terms of the final quality of obtained Deep Learning model. For QSGD the tuned meta

parameters are: v;n;¢ = 3.0, = 200, strategy = B. For QSGD—-RR tuned meta parameters are: 7;n;; = 3.0, s = 1000,
strategy = B.

The results of comparison of DIANA and DIANA-RR are presented in Figure 4. For DIANA the tuned meta parameters are:
Yinit = 1.0,s = 0, strategy = C' and for DIANA-RR tuned meta parameters are: ~;,;; = 1.0, s = 0, strategy = C. These
results show that DIANA-RR outperforms DIANA in terms of the all reported metrics.

60 L <
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Figure 5: Comparison of QSGD and Q-RR in the training of the last linear layer of ResNet-18 on CIFAR-10, with
n = 10 workers. Here (a) shows Top-1 accuracy on test set, (b) — norm of full gradient on the train set, (c) — loss function
value on the train set. Stepsizes and decay shift has been tuned from s,¢; and v4¢; based on minimum achievable value of
loss function on the train set. Both algorithms used fixed stepsize during training.

22



Federated Optimization Algorithms with Random Reshuffling and Gradient Compression

Topl acc (validation)

S

50

S
8

Topl acc (validation)
8

#bits/n

— 2 LA
i hn*‘ul_*-’ﬁ#‘w

A*n r:g:_';qu- . o
el R
QSGD-RR 1v=u ouas) ¥= 00
QSGD-RR (y=0.003) y= 0.003 ]
QSGD-RR (y=0.001) y = 0.001
QSGD-RR (y=0.01) y= 0.01
QSGD-RR (y=0.03) y= 0.03
QSGD-RR (= 0.06) y = 0.
© QSGD-RR (y=0.1)y= 0.1
QSGD-RR (y=0.2) y= 0.2
QSGD-RR (y=0.25) y = 025
QSGD-RR (y=075) y= 0.75
QSGD-RR (y=1.0)
QSGD-RR (y=125)
QSGD-RR (y=2.00) y=
QSGD-RR (y=2.5) y= 2.5
QSGD-RR (y=3.00) y= 3.0
QSGD-RR (y=3.75)
QSGD-RR (y=4.00) y =

e ,_,x.-.nArm-.gr = .;p«-—-f‘i"%?

f

kbbbt hblobt ke

3 7 8
#bits/n 107

w.
o

(b)

102 QSGD (y=0.003) 102
A ~A——h—
[ == QsGD (y=0.001)
=< QSGD (y=0.01) ._..___.,,___*_
| A QSGD(Y=003)  y | e ] ——h
[t~ 2 46D (y=0.06) N
A ——A—-cose(y=05 & all mE=—
£ & QSGD (y=0.1) -
g | i e QSGD (y=02) £
= == QSGD (y=0.25) =
s =k~ QSGD (y=0.75) = e —
B s s S Py e roe
LA 56 QSGD (y=125) tA--k -
== QSGD (y =2.00)
= QSGD (y=2.5) N —— ] NS e |
—
—h— =< QSGD (y=3.00)
e e— e A QSGD (y=3.75) —h— S B
La* Qsgo{y=4.8) n A A ——k—— A=k~ — A= =k —— A~
| F 5 S g
2 2 5 2 3 a 5 [ 7 [
#bits/n 17 #bits/n 17
(©) (d)
=< QSGD (y=0.0006) =& QSGD-RR (y=0.0006) y = 0.0006
—h- QSGD-RR (y=0.003) y= 0.003
k- QSGD-RR (y=0.001) y= 0.001
=& QSGD-RR (y=0.01)
- QSGD-RR (y=0.03)
—4= QSGD-RR (y=0.06) y= 0.
=& QSGDRR (y=01)y= 0.1
k- QSGD-RR (y=02) y= 02
z <%= QSGD-RR (y=0.25) y = 0:
' =& QSGD-RR (y=0.75)
= =~ QSGD-RR (y=1.0) y:
3 == QSGD-RR (y=1.25)
g & QSGD-RR (y=2.00) b
- =~ QSGD-RR (y=2.5) y- E
= QSGD-RR (y =3.00)
-><- QSGD-RR (y=375)

2
#bits/n

©)

QSGD RR (y=4.00. v— %

\
~oAN ri" Nm& v A
N i"‘v’ \\f\';w'v*xl\r\szv\_,\ ?‘ \{*/ " ,t\é\(\‘ {
1 2 3 4 7 8
#bits/n le7

®

Figure 6: Comparison of QSGD and Q-RR in the training of the last linear layer of ResNet-18 on CIFAR-10, with
n = 10 workers. Here (a) and (b) show Top-1 accuracy on test set, (c) and (d) — loss function value on the train set, (e) and
(f) — norm of full gradient on the train set. Stepsizes and decay shift has been tuned from s;; and 4., based on minimum
achievable value of loss function on the train set. During training stepsize was fixed. Batch Normalization was turned off.
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C. Missing proofs for Q-RR

In the main part of the paper, we intoduce Assumptions A.2 and A.3 for the analysis of Q-RR and DIANA-RR. These
assumptions can be refined as follows.

Assumption C.1. Function ™ = 1 M frm . R4 5 R is L-smooth for all sets of permutations T = (7q,. .., Tpm)
from [n] and all ¢ € [n], i.e

max [|Vf™ (z) = V™ ()| < Lllz —y| Va,y € R%

i€[n],m
Assumption C.2. Function f“i = ﬁ Zi\il f;,r;n : R4 — R is fi-strongly convex for all sets of permutations m =
(71,...,7) from [n] and all i € [n], i.e

min {7 (@) = 7 (1) = (VW2 —y) } = Slr—yl? VoyeRr

i€[n],m
Moreover, functions fi, fi,..., fi, : R? — R are convex foralli = 1,...,n.

We notice that Assumptions A.2 and A.3 imply Assumptions C.1 and C.2. Moreover, L < Lupay. In the proofs of the results
for Q-RR and DIANA-RR, we use Assumptions C.1 in addition to Assumption A.2 and we use Assumption C.2 instead of
Assumption A.3.

C.1. Proof of Theorem A.5

For convenience, we restate the theorem below.

Theorem C.3 (Theorem A.5). Let Assumptions 1.1, A.2, C.1, C.2 hold and 0 < v <
iterates produced by Q-RR (Algorithm 2) satisfy

. Then, for all T > 0 the

L+2 ;I max

2v202 27w
Ellor — 2. < (1 =48)"" [lwo — 2.]* + == + TACREE

M
where G2 S5 ) P and o2 b S5 3 941 2) = V()2

m=1i=1

Proof. Using z't! = 2% — L M V fm (x,) and line 7 of Algorithm 2, we get

2
[t

vi— i o ]ij (e (Ve @) - Vfar @)

. .19 1 M i . i . .
A —27<MZ (2 (Vf;rr{"’(xi))—Vfgbm(m*)),x;—xi>
(

|
B
|
8
*

3
&

2

Taking the expectation w.r.t. ©, we obtain

) . . 1 M . . o i i
Eo [||ch+1 i+1||2} = ||x§ — xiHQ — 2y <M Z (me’" (x}) — V fm" (:C*)) , Ty — x*>

2

3
&

<=
M=
\®)

V(@) = Vi @)
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In view of Assumption 1.1 and E¢[|€ — ¢||? = E¢||€ — E¢||? + ||Ee€ — ||, we have

Eo [llef*! —2iP] = o} — =i/ z<w ~ Va2t - o)
i_( O (V55 (ah) - Vi +1)
M 2
g 2 (Vo) - VHi @)

[\

ot — i )” - = i (Vf3 () = VI (o *),xi—xi>
(vs7

IN

m=1

M
W 23 [

" (ad) = VR () )

where in the last step we apply independence of Q ( V f,f;i” (x@)) for m € [M]. Next, we use three-point identity' and obtain

M
Eo [l o5 < i — ol 2230 (D (ahh) 4 Dy (o) — Dy (2 )

: M 2 s s
2 1 al wt ’ 2
|| LS (T ) - VA )| + 2 HVf qeal
m=1
Applying L-smoothness and convexity of - Zm 1 fm , Ji-strong convexity of = Zm 1 *, and L, ,x-smoothness and

convexity of fi , we get

1

Mz

Eo [laf™ =i < (=) |lai —al|* =2y (1= Lv) 57 D Doy (aho)
M " 2
+27—ZD (2, z.) %ZHV
m:11 )
< (1— i) ol - at|” — 27 (1L7)M£Df«;”(:vt,x*)
1 a 2
sy 3 52 5 [
R S L
a2 27w s o 2 9y U _
< =il el + S X[V 4 5 30D )

wL 1 &
max 2 : i

Taking the full expectation and using a definition of shuffle radius, 0 < v < W and D i (zi,2,) > 0, we
™M Hmax

'For any differentiable function f : R* — R? we have: (Vf(z) — Vf(y),z — z) = D¢ (z,2) + Ds(z,y) — D¢ (2,7).
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obtain
E (et — 2P < (- E [|lof - ot 7] + 21002 + 2 Z E [Hm () }
= (1-9)E :||x§—xi|| + 29802 Z ZHW] ()
m=1 j=1
< (= E [l — ot ] + 2102+ 22 (2 4 02).
Unrolling the recurrence in ¢, we derive
E |z —2?)] < (1—7@)"E |:||1't - $*||2} + 2902 "21(1 - vy
=
P2 @) S

<.
I
=)

Unrolling the recurrence in ¢, we derive

T-1 n—1
Eflor — o] < (=) lwo — 2l + 20002 3 (1= A7) 3 (1~ 7Y
7=0

o+
o

272('0 nT—1 n—1 )
T (¢ +02) Z (1 =~r)™ ) (1 —~p).
J=0 3=0
Since Z"T Y1 —Ap) < =5» we get the result. O

Corollary C4. Let the assumptions of Theorem C.3 hold and

y—mind — 62, g‘ZMQ . (11)
L"‘Q%Lmax 6Urad 60.) (C*—'_U*)

Then, Q-RR (Algorithm 2) finds a solution with accuracy € > 0 after the following number of communication rounds:

~ z W Lax w <2+U2 Orad
Ol=+—— +5"5"+ :
(,u M n M ep? e

Proof. Theorem C.3 implies
9 nT 9 272Ur2ad 270.)
Eller —al” < (1= 5i)" llao — | + T2 4 S (¢ 402) (12)

To estimate the number of communication rounds required to find a solution with accuracy € > 0, we need to upper-bound
each term from the right-hand side by ¢/3. Thus, we get additional conditions on :

22 rad € 2w 5

<z, =

Jw S DR (Gl <3

and also the upper bound on the number of communication rounds n’1’
1
nT = O ( >
TH

Substituting (11), we get a final result. O
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C.2. Non-Strongly Convex Summands

In this section, we provide the analysis of Q-RR without using Assumptions A.3, C.2. Before we move one to the proofs, we
would like to emphasize that

. . 1 M i .
it =2ty > (Vi ah)

m=1

Then we have

n—1 M n—1 M
1 v 1 )
T =2 =) i > 9 (me'”(ftn =TT > 0 (Vf )) ;
=0 m=1 i=0 m=1
where 7 = ~yn. For convenience, we denote
d . 1 n—1 M
o )
— v Tm ) ,

which allows us to write the update rule as x;41 = x4y — 7g;.

Lemma C.5 (Lemma 1 from (Malinovsky et al., 2022)). Forany k € [n)], let &, ..., &x, be sampled uniformly without

replacement from a set of vectors {&1, ..., &,y and &, be their average. Then
BG =€ E[J— 87 = (13)
’ k(n—1)" "’

£ 5 def def z
wheref L E? 1 &ir = 1 ?:1 gm’ and o? = %Zfﬂ ||£z - €||2
Lemma C.6. Under Assumplzons 1.1, A.1, A.2, C.1, the following inequality holds

Eo [~2r{gi 20 — 2)] < — Doy — 2l = 7(f () = F@) + =2 3 ek — il
i=0

Proof. Using that Eg [g:] = 5= Yo i Zm LV ( ¢) and definition of h*, we get

n—1 M
1
—27Eq [<gt7$t - SL‘*>] = T Z <vfm Ty — SL'*>
M’ﬂ =0 m=1
1 M n—1 ; :
=~ . <Vf;; (x}) — Vfmm(zy), v — a:*> .
m=1 i=0
Using three-point identity, we obtain
M n—1
~27Eq (g1, — )] = Zz ZZZ (D, @12) + D oy, (20,2) = D oy (w0,
27 27 T
= —27Ds(xy,z,) — o Z D pri (@, xp) + o ZDfﬂ.i (x4, )
=0 i=0

-1
7L .
727—Df($ta (E*) + 7 ZO Hxi - xtH2v
=

IN

where in the last inequality we apply L-smoothness and convexity of each function f ™ Finally, using p-strong convexity of
f, we finish the proof of the lemma. O
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Lemma C.7. Under Assumptions 1.1, A.1, A.2, C.1, the following inequality holds

Proof. Taking the expectation with respect to Q and using variance decomposition E [||¢]|?] = E [||€ — E[¢] [|?] + |E€||%
we get

n—1 M 2

Z > o(vinnah)

zOml

Eg [llge]?]

Il
=
©

n—1 M 2

T (T ) - V)

=0 m=1

n—1 M 2

i 2 2 VA

zOml

Next, Assumption 1.1 and conditional independence of Q (V fﬁf‘ (xé)) form=1,...,Mandi=0,...,n— 1imply

Eo [lg:1?] = Mzngnzlfjﬁg [HQ(W CA) A

2

: ]

Z VI (af)

n—ZOM | nl M 2
< ZZHW o+ | 2 v
 FoEE pee-stnl S ol
i=0 m=1
1 n—1 M . 2 1 n—1 M . 2
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Using Lax-smoothness and convexity of f* and L-smoothness and convexity of f7 = L. _. fmm, we derive
m M m=1

n—1 M n—1 M
EQ I:Hgt”Q] S M2 2 maxz Z D "\'1 xt7xt M2 2 Z Z vam Tt H
i=0 m=1
n—1
+4L— ZDf« (af, 20) + 2|V f ()]
N n—1 M
S 4 (LJV max) Zwal .'lft,$t M2 2 Z Z vam l‘*
n—1
T > Z [vs7 @0~ V@ + 21950 - Vi@ P
1= ) 2 n—1 M
S 2L( max)ﬁZHm;_th M2 2 Z Z vam (E*
i=0
n—1 M
MQ 3L D D D ot () + 4L (f () = f(22))
i=0 m=1
Taking the full expectation, we obtain
w 1= 2 i 2
2 T(T i T
E[lgl?] < 2L (L+M—anaX) - i:o]E {||xt—:ct|| ] M2n2 gzl U’me () }
(4L + — max> ]E *)]
1= 4w
2 2
= 2L(L+7Lmax>g £ |:‘.’L't—$tH :|+m(c*+0'*)
AT T
Lemma C.8. Let Assumptions 1.1, A.1, A.2, C.1 hold and T < Wﬁ Then, the following inequality holds
+ 777 Lmax
15 llos —@el®) < 247 (T + < Lunax | ELf () = f(22)]
n vt t t = Mn max t *
202
8 - 8 *,M
+87° M (C+a2)+ -

where o3 ,, def LS IV (|2 and fi(z) = e & ey [ () forall i € [n).

Proof. Since
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we have

M i— B ‘
Bo[lef —wl?) = 7Eo || 3o S (Vrirh)
- 2

M i-1

i 2 Y B [HQ (Vo h) - Vﬂ"(ﬂfi)ﬂ

m=1 j=0

IN

2
M i—-1

i 2 Vi@

ml]O

Using Assumption 1.1, L-smoothness and convexity of f™ = ﬁ Z%Zl 7 and Ly, . -smoothness and convexity of f7 ,
we obtain

2

c2, Mol | M il ;
Bollel~al?] < 1o Y 5 |V @| +7* |57 0 S vaed)
n n ,
m=1 j=0 m=1 j=0
M i-1 2
272w < =3 =
< S 2 2| - Vi 2 va (@)
m=1 j=0
2
1A i, i 2r2 A il j 2
+27° EZ (VJMr (x1) = V7 (ﬂft)) T Z Z Hmem(xt)H
j=0 m=1 j=0
M n-1 2
4720 - 7rJ
S M2TL2 Z Lmafo::Lj (ﬂ?t,xt +27— va .’Et
m=1 j=0
N 1 n—1 , 27_ w M n-—1
+4LT2E D i (], my) + M2 5 Z Z Hme Tt H
3=0 m=1 j=0
~ w 1 n—1 .
= 47‘2 (L + mLmax) E 4 Df,rj (.fi,.’l)t)
=0
2
1 i—1 ; 27_ w M n-—1
272 | =SV @)|| + 2t Z > || H . (14)
3=0 =1j=0

Next, we need to estimate the second term from the previous inequality. Taking the full expectation and using Lemma C.5
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and using new notation o7 def 1 D) E[|Vfi(xr) — V f(x1)]]?], we get
- 2 . 2
1 j < 5
|2V | = SEIVAIA+ SE || 33 (V57 0 - Vi)
j=0 7=0
2 n
< SE[IVA@))] ZE IVf(2e) = V f(20)]°]
_]—1
< E[IIW(%)IIQH%U? (15)

Taking the full expectation from (14) and using (15), we obtain

E([llzi —z)?] < 4r ( max)ZE{ i (x7, x4)

9 9 272 9 272w M
2B [V @)l’] + ——0i + 7.5 > '

Using L-smoothness of f”j , we get

E[||lzi —z)?] < er( mx)ZE[let—ztlﬂ

9 9 272 5, 27%w Mo i 2
R IV + 2o + 2 S Sk |||
m=1 j=0
Since 7 < m we have
n—1
E[lei— 2] < 2 (1_2572 (E%—ﬁme)) Y E [||xg’ —a:t||2]
§=0
9 o1 AT? 5 47w Mond i 2
< APE[IVF@IF + ot 4 g YOS E U]vjfmm(xt)H ]
m=1 j=0
,7_2 2
< v ZZEU(W -]
8T M n—1
+=T leJZOIE [HW ] AR [V £ (1) — V()]
4 n
- (iz IV £ @] - [IIVf(wt)IIQ])
87'2w M n-—1 2
< s 2o B ||V - V5
2 M n-—1 ; 2
bl IPIE [Hvﬂm» ] +87E [|Vf(21) = V()]
2 n .
S E[IVA (@) - VA (@) ZE 1V £ @)
j=1
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Summing from ¢ = 0 to n — 1 and using L-smoothness of f% and Ly ax-smoothness of ffn, we obtain

n—1

1 i 167%w 1672 ~
CSE[le - wl?] S S LB — ()] + T EE[f(e) — f(2)
i=0
8732w 872 ~
+ (G0l + =0, + 8T LE[f(2,) — f(=.)].
O
Theorem C.9. Let Assumptions 1.1, A.1, A.2, C.1 hold and stepsize y satisfy
1
0<y< — . (16)
160 (L + 5% Liax)
Then, for all T > 0 the iterates produced by Q-RR (Algorithm 2) satisfy
2L
E[llor - 2.J/%] < 0—@¥0\uwﬂuﬁ+m1§f(%&f+ﬁ»+ﬁm)
YW 2 2
{12
+ /,LM (C* + U*)7
where
def 1 i
T Z IV fi ()| 17)

Proof. Taking expectation w.r.t. Q and using Lemma C.7, we get

e — 24||* = 27Eg [{ge, 7t — )] + T°Eq [[l9"]1%]
llzs — 2, ||* — 27Eg [(g" @ — x.)]

n—1

~ 1
12721, (L n —Lmax) - Z E [ — z]|?]

Eg [[lze41 — 2%

IN

473w

87 (L4 5oL ) (F(a1) = fl2) + 57 (62 + 7).

Mn

Using Lemma C.6, we obtain

T TL i
Eo [lorr —2ul®] < e = 2ull® = Sollwe = wll = (@) = f@)) + = D i — el

n—1
1
+272L (L+ max) ;ZE |z — 24 ||]
=0

472w

872 (L + 37 Linax ) (F(0) = f(@) + T (¢ +02)
(1 — 7) |z, — ~T*H -7 (1 — 87 (L + ManaX)> (f(xe) = flzx))

IN

~ 4
+rL(1+2r (T4 max)) ZIE o — ell?] + (62 + 02).
Next, we take the full expectation and apply Lemma C.8:
T ~ w
E o —ol?] < (1= E[llee =22 =7 (1 =87 (L4 1 Lumax ) ) E[f (@) = (a2)]

+247°L (1427 (L + 1=Linax) ) (L4 57 Lomax) (F(22) = F(22)

2
37 ~ w w 2 2 U*,n
+87 L(HQT (L+ ManaX)) (Mn(c* o)+, > T A (G50
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Using (16), we derive

2 2
T ~ [ w Oin 477w
Eﬂuwl—aW]s(r—;ﬁE[m—xwﬂ+oﬁL<Mm@f+ﬁ»+;;>+ Mn«3+£»
. . . . . . . oo T\t 2
Recursively unrolling the inequality, substituting 7 = n+y and using (1 — 7) < o5 we get the result. O
=0

Corollary C.10. Let the assumptions of Theorem C.9 hold and

. 1 EL (W o 5 \“2 euM
~ = min — 1/ ~(fA*+J*n> g (s (18)
16n (LJrﬁLmax) 82nL \M ' 24wA2
def

where A2 = (2 + 2. Then, Q-RR (Algorithm 2) finds a solution with accuracy € > 0 after the following number of
communication rounds:

Proof. Theorem C.9 implies

n T 2nL [ w
Eflor—al?] < (1=75F) lwo =l + 18702 (57 (¢ 4+ 02) +02,)

To estimate the number of communication rounds required to find a solution with accuracy € > 0, we need to upper bound
each term from the right-hand side by /3. Thus, we get additional conditions on :

.,
Yyl rw o, 2 2) € ) 2 &
L (@ rod) rol) <5 8 (@l <3,

and also the upper bound on the number of communication rounds n’1T’

nT = O <1> .
Y

Substituting (18) in the previous equation, we get the result. O
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D. Missing proofs for DIANA-RR
D.1. Proof of Theorem A.7
Lemma D.1. Let Assumptions 1.1, A.2, C.1, C.2 hold and o« < IJ%W Then, the iterates of DIANA-RR (Algorithm 3) satisfy

M M
1 i i 1—« o o
= Y Bo I, — Vi@l < S Y ki — Vi )|
m=1 m=1

2aLmax
M ;Df::;n (xtax*)
Proof. Taking expectation w.r.t. Q, we obtain
Eo [Ih1m = VI @ IP] = Eo [Inf +aQ(V frin (@) — hi) = Vfa (2.1

= i = V)l
+20Bq [( QY (2}) = W), b, — T fal (2.))]
+a?Eo Q17 (2}) — A 7]
= b = VIR @) P+ 20 (VAR @) = B W — VI ()

+a?Eo [IQ(V S () = hi) 2]

Assumption 1.1, Ly,,,-smoothness and convexity of £, and o < 1/(1+w) imply

Eo [Ihffm — VIR @] < 1075 — Vi (@)

20 (V fri (@) = Wi, h, = V S (@)

+a2(1+ w)[|V frm (2) — hmP?
< AT — Vi ()]

o (Vi () = W, B+ VIR () — 29 1 ()
< BT - Vi ()]

+al|V fin (@) = Vi (@) - allky, = Vi ()|
< (1 -a)lhfy — Vi @)l

+a|| V(@) =V fa (2.)|° (19)
< (1- Oé)Hh’Z:;;l _ vf;flﬁn(x*)H? + 2o¢Lmafo,,3n (zt, x,).

m

Summing up the above inequality for m = 1,..., M, we get the result. O

%}’QSL_

Theorem D.2 (Theorem A.7). Let Assumptions 1.1, A.2, C.1, C.2 hold and 0 < ~y < min {ﬁﬁ’ Treel o
M Hmax

Then, for all T' > O the iterates produced by DIANA-RR (Algorithm 3) satisfy

n 220_2
E[Wr] < (1—~yi)"T Wy + —rad.

where W, is defined in (7).
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Proof. Using z't! = 2% — L M V fm (x,) and line 9 of Algorithm 3, we derive

2
i — 22

_ _ 1M .
nel g (97 — Vi (@)
) 2 2y M i i . .
=l = 57 32 (a0 = VA7 (o) i =)

M - 2

m=1

Taking expectation w.r.t. Q and using E||¢ — ¢[|? = E||¢ — E£||? + ||E€ — ¢||?, we obtain

Eo [laf — 2t 7] = i —af* ~ 22 3" (Vi) — ViR @), 0 - o)
1 Mm:l i i i i 2
+Eo |57 2 (Q (Vi) = hi) + i = Vi (@)
m=1
2 2y M
< ot —ad|* = 2 0 (VR (@) - Vi @), @i - o)
m=1
1 & i ’
B |||+ D (Q (Vs () = i) = W (ah) + )
m=1

i

Independence of Q <V f;,r;” (zh) — hzrm) m € [M], Assumption 1.1, and three-point identity imply

M
Bo [lai" —ai™IP] < |lei—ail” - 5 X (Do (hiad) + D oy, (hw) = D oy (01, 22)

M?2 A
1 < ’
+’72 v Vim" (2+) = V fm" (1)
a7 2 ( )
2 2 M )
< let =2l - i Z (for%n (z, zh) —|—D i (), 24) —Df::}ﬂ (xi,x*)>
m=1
272w 1 M i 2
+2 Mm_luvf"’ (a}) = Vi (z.)
| M 2
+7° || = Vfar(a.) - Ve (al)
37 2 )
2920 e ||, At i 2
+ M2 mz_l)htm_vfm (.’IJ*) :

Using Lyax-smoothness and p-strong convexity of functions f, and L-smoothness and pi-strong convexity of f”i =
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it =, we obtain
M
Bo [llei*! —atIF] < (1= i — il -2y (1 7 (L+ M max» M Z D (x), )

2 M , 27 w 2
+M Z Df ;n(xi,x* me (z4)

m=1

Taking the full expectation and using Definition 2, we derive

, ~ o -2 1 & :
E [z - 2012 < <1—w>E{Hxé—will2}—27(1—7(L+AZLmax))MZE[ o (aha)]

3 2 27200 -
+2v00a + 2 E ’h
m=1

Recursively unrolling the inequality, we get

E (o — 2.2 < (1=v)"E [loc - 2.l + 2

~ 2w 1
27y 1-— L+ —Lyax —
V(10 (T4 2 57

7=0
n—1
+29%00 Z(l — ).
=0
Next, we apply (7) and Lemma D.1:
n—1
~\n 2 ~
B[] < (=) |2 — 2] +24%02 > (1 = 77
=0

M n—1

+<(1—a)+M>X;m§:7§ 1—7M3E[Hh Vfﬁ”(x*) 2}
( max>> 1 2:12 1—ya)E { ,r;n(xi,x*) 7

_2’7 (]- - C'yaLmax -

where ¢ = MQ Using o < <1z andy < mln{ (L-Q—W/LL)}’WC obtain
2 M n-—1 2
Bi] < (028 [loc— o] + (1-5) 250 50 S0 -y ik - vse) ||
m=1 j=0
n—1 .
+2’Y rad (I_Vﬁ)J
7=0
n—1
< max {(1— )", (1—2)}E[wt1+2v2o§ad;)<1—vmﬂ
n—1 .
< (L= ) "EW]+ 27700, Y (1 — i)
=0
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Recursively rewriting the inequality, we obtain

T-1 n—1
E[Ur] < (1= W+ 29302, > (1—y@)™ Y (1 —i)’
t=0 7=0
nT—1
< (=)o + 2902 Y (1 — i)k
k=0
+oo -\ k
Using that > (1 — %) < 2, we finish proof. O
= Ay
Corollary D.3. Let the assumptions of Theorem D.2 hold, o = ﬁ and

’Yzmin{a _ 1 ﬁ} (20)

2”/,1, L+ %Lmax7 2Urad

Then DIANA-RR (Algorithm 3) finds a solution with accuracy € > 0 after the following number of communication rounds:

A Z WLmax Ora
@<n(1+w)+ +— + d).

M p Vemd

Proof. Theorem D.2 implies

E[Ur] < (1— )" Wy 4 20,

To estimate the number of communication rounds required to find a solution with accuracy € > 0, we need to upper bound
each term from the right-hand side by 5. Thus, we get an additional condition on -y:

27 rad < E
I 2’

and also the upper bound on the number of communication rounds n7’

nT = (’)(1)
Y

Substituting (20) in the previous equation, we get the result. O

D.2. Non-Strongly Convex Summands

In this section, we provide the analysis of DIANA-RR without using Assumptions A.3 and C.2. We emphasize that

i+l _ 1 M
a7 = x] — y57 Yom—1 Gr - Then we have

n—1 1 M ; 1 n—1 M :
R0 e LB 3 oL
m= 1=0 m=1

. def
We denote g; = Mn > Zm 1 gt iy
Lemma D.4. Let Assumptions 1.1, A.1, A.2, C.1 hold. Then, the following inequality holds

n—1

~27Eg (g1 — hu, e — 2] < — Ll — 2l — 7 (F(@) = flw) + 7L Dl = =il

where h* = V f(z,) = 0.
Proof. Since h* = V f(x,) = 0, the proof of Lemma D.4 is identical to the proof of Lemma C.6. O
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Lemma D.5. Let Assumptions 1.1, A.1, A.2, C.1 hold. Then, the following inequality holds

Bo[lg—hil?) < 2F (T4 1o L) anﬁztn

+8 (Z + mLmaX) (f(ze) = f(24))

Aw n—1 M ;
T T 2
ten2 2 mz:; e = Vo™ () |
Proof. Taking expectation w.r.t. Q, we get
i 1 n—1 M 2
A 2 :
Eo [lg —h?] = Eo > o - h
L =0 m=1
[ 1 n—1 M i 2
- o[ S35 i+ o) .
L i=0 m=1
[ 1 n-l M ) i i ?
= o (|57 203 (hin — VA @) + Q (Vi ) ~ 7))
L i=0 m=1
2
1 n—1 M
o 3 SV,
Mn
i=0 m=1
Independence of Q <V f;r;” (zh) — h;i*;), m € [M] and Assumption 1.1 imply
n—1 M
Eo [lg: — hel?] = Mznz Z Z Eg U Vi (at) +Q (me (z1) = hf m) H }
n—1 M 2
DD INLHACIES
=0 m=1
o LM . . nz = o 2
SYErs] Z Z vamm(mi) - ht,de + o Z VIT (%) — ha
i i=0
n—1 M . 9 2n—1 ) ) ) 2
< M%?ZZHW " (@) = VR ()| +EZHW" (e) = V1 (o)
n—1 M 2

v +2

vaﬁ Ty)
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Using Lyyax-smoothness and convexity of f:, and L-smoothness and convexity of f™ , we obtain

n—1 M 4L n—1 )
Eo [llge — hell?] < Mzr;;x Z Z D i (zh, ) + — Z D i (24, )
i=0 m=1 =
n—1 M ; 9 "
= Vfm"(z0)|| +4L(f(ze) = f(z))

nil ]\; 2

B > |V s @e) = v 3 ()

o 1 n—1

< oL (L i Mianax) - ||act — a¢|* + AL (f(2) — f())

n—1 M
8w
+ max § § n—i xt,x*
=0 m
n—1 M

i 2
1
W = Vi @] -

Lemma D.6. Let aw < 1—— and Assumptions 1.1, A.1, A.2, C.1 hold. Then, the iterates produced by DIANA-RR (Algorithm 3)
satisfy

n—l M

— V()|

IN

n—1 M
3 S o [0~ Y )]
i=0 m=1

i=0 m=1

2o<LLmax i
0Ll $ s
i=0

+4aLmax (f(xt) - f(x*)) :

Proof. Fist of all, we introduce new notation:

n—1 M )
T30 S o Ik - VA I
i=0 m=1

Using (19) and summing it up for7 = 0,...,n — 1, we obtain
nfl n—1 M
2, 2
Hipr < Z me OllF + Mi Z Z_ |me me (x|
<

1=0 m=1

2 7r?'
it 2 2 IV @) = VA @

M

Z

N 1M
ZZHhtm Vi @)l + —“ van — V()P
o

2
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Next, we apply Ly,ax-smoothness and convexity of f!, and L-smoothness and convexity of f s

n—1 M n—1 M

-« i 4o )
< h V ;rrzm * 2 7Lmax D i Z7
M < 2 D 5 =V o)l L D D D (01,0
n—1 M
max Z D -ﬂ/ -Tth*
i=0m=1 """
n—1 M n—1
< M Z > BT, =V (@)1 + *LLmax >l —a)?
=0 m=1 =0
4o n—1 M
+mLmax ;;D]p;ﬁ(l’tax*)
Lemma D.7. Let Assumptions 1.1, A.1, A.2, C.1 and 7 < ———2———_ Then, the following inequality holds
24/L(L+ 5% Lmax)

n—1 2
EZE[Hxi—mH?] < 272 (Z+LL )]E[f(w)—f(:c ) + 82 2en
n gt t t = MTL max t * n

n—1 M i ;
8o > > Bl — Vi ()
1=0 m=1

def i
where O’Eyn = %Z?:l val(x*)Hz-

M i—1 j . i
Proof. Since 2} =z — 7~ > > ( ’;’n +9Q (Vf:,r;" (z]) — hf;’;l)) we have

m=1 j=0

1

(7 + Q (V3 () — 1T ) )

9

S
M=

Eg [[lzf — x|?)] = 7°Eg

3

I
N
<
I
o

2
1

(hﬁ% — V) + Q (v fn(ad) — o, ))

0

%

SE
M=

= TQEQ

3
Il

1y

2
M i—1

T 2 S VI

m=1 j=0
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Independence of Q (V frm(2d) — hi an)’ m € [M] and Assumption 1.1 imply

i—1

_ M . i , J 2
ol ol = gz 3 3 Bo ik - Vb + 0 (VA - 415

2

m=1j=0
20 M i—-1 ; 1 i—1 ; 2
< o 2 [Vl —hin| | v @)
=1;=0 =0
272w oL - i = i i
< S 2 2 [V =it e 2| Vs )

20w SR 2 2R e
s 2 2 |[Fe = V@) + T Y [V ) - v @)

Using Lyax-smoothness and convexity of f? and L-smoothness and convexity of f™ , we obtain

2
n—1 i—1

, 472w M o , 1 j
2 . J 2 s
Eq [IIwi—thI] < WLmaxZZDfﬁn(%vxt)'f‘% EZVJC (2)
m=1 j=0 7=0
272, M nl i i 2 9p272 7] j 2
o2 S it - v+ 22 ot -
m=1 j=0 7=0
2
w n—1 i—1
Tr‘j
< 2L (L4570 mx) lext o sz_gw (1)
or2y oL i j j
M2n2 Z Z ‘ hifm = V" ( )H
m=1 j=0

Taking the full expectation and using (15), we derive

n—1
) -/~ 1 )
Efla; —aill?] < 20°L (L4 1 Lmax) o O [lle] = ul?] + 27 [|Vf(z)|?]
7=0

472 Ml - 2 272
Tz Z E e = V™ () +7E [o7]
m=1 j=0
87'2(4} M n-—1
+WLmax mzz:l Jz::() E |:Df17yr]:’,'n ('rta x*)] .

Using Lyax-smoothness and convexity of f, and L-smoothness and convexity of f™ , we obtain

Eflai —2l?) < 270 (4 20 L) ZE{thfxtH}
2 M n-—1
S o [ e

m=1 j=0
2w

2
+4T (L+M2 5

Lmax) E [f(z:) - f(a.)].
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Now we need to estimate %E [0]. Dueto E [07] < 230 | E [V fi(z¢)]?]. we get

2 272 ,
LIE [Ut] < %ZE[”VJW(%)HQ]
j=1
472 & ,
< SF LENVS ) - Vel ZE V5 @) ]
< 872 ZZ]E Df; xt’x* +%Z(72
Jj=1 j=1

Combining two previous inequalities, we get

E[|le} — %] < 2T2L<L+ max) ZE[\wt—th]

i ]

m=1 j=0

him = fr ()

2w
+47? (L + M2n2 LmaX) E[f(z) — f(z.)]
872 ~ 472 &
+7LE [f(ze) — f(2)] + Tz Zai *
j=1
Summing from i = 0 to n — 1 and using 7 < ———1 we obtain
2 L(L-&-Mianax)
1 n—1 ) " w n—1
- ; E[lai—z)?] < 2 (1 —922L (L + Lmax>) ; E [l — z]|?]
872w L it i - 2
< 1E Y E U him = frm () }
m=1 j=0
2w
1872 (L o L) E[f(z) — f(z,)
8 2

j=1
O
We consider the following Lyapunov function:
def M n—1 2
Ui & oo — 2+ T Z > ||, = V)| 1)
=1j=0
Theorem D.8. Let Assumptions 1.1, A.1, A.2, C.1 hold and
< mi 1 < 1 10w
min al ——, c=——.
7= ’ T 14w’ aMn

np’ 12n (E + %Lmax)
Then, for all T > 0 the iterates produced by DIANA-RR (Algorithm 3) satisfy

E[Ur] < (1—%) U, +207 nL o2
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Proof. Taking expectation w.r.t. Q and using Lemma D.4, we get

lwe = 7g¢ — s + TR

|z — z4]|? — 27Eq [(G¢ — h*, ¢ — 24)] + 7°Eq [||g: — h*||]

Eo [[lot11 — z.?]

TH R
< o= 2ll? = S llze = 2l + 7°Eo [llge — 2717
n—1
—7 (f(we) = f(x.)) + 7L~ Z v — 1.
Next, due to Lemma D.5 we have
[ n—1
Bo [loe 2] < (1= )l — wall? 7 () — f(@) + 7T 3 e — il
i=1
+2r°L (L4 o m) Zth—xtH
87 (L + M—anax) (f(@2) = f(@2))
40.)72 gl
o O O Ihi = Vi @)
=0 m=1
" n—1 M i
< (1=) o —aul? + > 2 1T =V fri ()|
~r(1-8r(L+ -1 ))< (22) = f(2))
T T Mn max
w 1 n—1
T T i 2
+7L (1427 (L4 5 Lunax) ) 5; i — a1
Using (21), we obtain
1 2 n—1 M i
oW < (1-70) loe -l + 2505 30 D Ihfin — Vi ()
=0 1

1) —

77(1f87(Z+Mn max))( (z2) = f(24))
+TE<1+2T<L+ )) ZHSEt—%H

CT2 M n-1 2

:—&-l,m —Vim" (4)
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To estimate the last term in the above inequality, we apply Lemma D.6:

2 n—1 M

4(4.)7' ot ml
Eo[Win] < (1= 70) o=+ 55 30 > Ik — Vi @)l
2 MZn i=0 m=1
(1= 87 (L4 57 L) ) (F(a) = f(2)
= 7 w 1 = i 2
+7L (1 + 27 (L + mLmaX)> ﬁ Z: th - thH
n—1 M P
m Tm 2
st L0 S g )
=0 m=1
n—1
ZaLLm x
+cr? n . Z i — @e]l* + deraLmax (f (22) — f(24))
=0
m do \ er? S & '
2 ﬂ:*n Tm 2
< (1= ) o - ol + <1 Cat CMn) it 2 2 W~ VA o)
—T (1 —detalmax — 8T (Z + MLLmax)) (f(xe) = flx))
- 1%
+7L (1 + 2ctalmax + 27 (L Mi )) i lz: g — 4.

€

Let H; d:

i [th;;; — Ve (z4) ||2} . Taking the full expectation and using Lemma D.7, we get

4
E[¥,,] < (1 - %) E [z — 2.]?] + (1 —a+ cz\;n> ,

7 7 w 1 i 2
+7L (1 + 2ctalpax + 27 (L + mLmax>) - Zz: E [||o} — @]

T 4w
(1 - 7) E [|lz; — z. )] + (1 —a+ J\4n> He
E

—T (1 —deralmax — 87 (E + mLmax ) [f () = f(zs)]

IN

87Lw

+cM

37 7, W g
+87°L (1 + 2ctalmax + 27 (L + Limax

Mn

(1 4 2cta Loy + 27 (L 4+ — )

where A is a positive number to be specified later, we have

: _ _Aw
Selecting ¢ = 57—,

~ ~ A+1
1+ 2eraLygay + 27 (L + LLmax) =1+2r (L + H)C‘}Lmax) ,

Mn Mn

~ W ~ (A+ 1w
— — - >1— -~ 7 .
1 —4deralpax — 87 (L + n Lmax> >1-—87 <L + Wn Lmax)
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Then, we have

2 A

. (1 & <z . “‘*WLWD E(f(z) — f(z.)]

Mn
#2147 (L ) (142 (E+ 220, ) ) R 0 - s(00)

~ ~ (A+1 o,
1873L (1 + 27 (L + H)”Lmax» -

E[W, ] < (1—w)E[|xt—x*||2]+<1—a+4a>7-lt

Mn n
8o ~ ~ (A+ 1w
+ZTL (1 + 27 (L + T Mn Lmax)) Hy.

Taking 7 = m, where B is some positive constant, we obtain
T da  8a ~ 2
E[U,] < (1 — ?“) E [|lz: — z.|I] + (1 —at+—+ o7l <1 + B)) Hy
8 24 2
-7 (1 5B (1+B)>E[f($t) — f(2.)]
~ 2 0'2
8TIL( 1+ = ) ==,
+3T ( + B) "
Choosing A =10, B =12, 7 < %, we have
oo ~0?
E[W,.,] < (1 ~ min {7, f}) E[¥,] + 10730 ="
22 n
T ~o}
< (1 - 7) E[¥,] + 1073 L2
2 n
. . . . . . . oo T\t 2 .
Recursively unrolling the inequality, substituting 7 = n+y and using (1 — 7) < o5 we finish proof. O

t=0

Corollary D.9. Let the assumptions of Theorem D.8 hold, o = and

1
1+w’

v =min{ —~ 1 , e . (22)
2np” 19y, (L + e Lmax> 40nLo?,,

Then, DIANA-RR (Algorithm 3) finds a solution with accuracy € > 0 after the following number of communication rounds:
~ nlL wlL nL
O 1 = I max —Oyn
n( +w)+M+M m —H/gugo,

y =
y'nL ,
0*,n'

Proof. Theorem D.8 implies

E[Wr] < (1 —yu)"" o+ 20

To estimate the number of communication rounds required to find a solution with accuracy € > 0, we need to upper bound
each term from the right-hand side by 5. Thus, we get an additional condition on :

o
nlL
Y 03

20

13
n <5
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and also the upper bound on the number of communication rounds n’1’

nT = O (1> .
Y

Substituting (22) in the previous equation, we obtain the result.
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E. Missing proofs for Q-NASTYA

We start with deriving a technical lemma along with stating several useful results from (Malinovsky et al., 2022). For

convenience, we also introduce the following notation:
1 n—1 )
def Tt
gtm = 5 E mem (xim)
i=0

Lemma E.1. Let Assumptions 1.1, A.1, A.2 hold. Then, for all t > 0 the iterates produced by Q-NASTYA (Algorithm 4)

satisfy
2L?nax 1+ M n-—1 4
EQ [||gt||2] —M Z Z ||xt m xt” + 8Lmax (1 + M> (.f( ) f(x*)) + Mwéfa
m=1 i=0

where Eg is expectation w.r.t. Q, and (? Lf 1 i Zml:l IV fom () ||

=E[l¢-E[g]?]

2 we obtain

Proof. Using the variance decomposition E [||¢]|?]
n—1 2

= H ( ZW xt> ZW

Eo [llgell”] =

M n—1 2

Z SOV (@)
m=1 i=0

-1 i .
% vf:;—bm (‘r;,m)

2

n—1

1 L&
mzzvf’m' ,m

m=1 ¢=0

2

Asm.1.1 M
< Z
m=

Next, we use V f, () = L S0 Vfrm (z) and [|a + b||2 < 2[la|? + 2b||%:

2w L1 i ; ? 20 M
Bolllgl?] < —5 2 |I= 2 (Vi @h) = Viar @) | + 25 2 IVfm(@d)l?
m=1 1=0 m=1
M n—1 , 2 M 2
12 anz(w;w )= VIR @) | +2 %me)
m=1 1=0 m=1
21+ 57) 5~ 152 (o i
= T X X (T ) e )

2w M
S IV m@)? + 2V ()]
=1

Using L; ,,,-smoothness of fi and f and also convexity of f,,, we obtain

) 1 + 1\4 M n—1 2 Aw M )
Eo [lonl?] < S S Vs )~ VA @O|| 1 S IV ) = V()]
m=1 i=0 m=1

4 M
+ﬁ“; Z IV fo ()2 + 2|V F () — VF ()]

2L; L& 8Lmax (1 + &) & 4
< rmx— 21; [E—— W;Dfm(xt,x*) + ngf,
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Lemma E.2 (See (Malinovsky et al., 2022)). Under Assumptions 1.1, A.1, A.2, we have

M on_1 i 1 M n—1 9
Z Z< " xt m t_$*> S _Z”It —I*HZ - 5 (f(xt) B f 2]11\;; Z Z ||xtm It” ’
1o m=1 i=0

Lemma E.3 (See (Malinovsky et al., 2022)). Under Assumptions 1.1, A.1, A.2 and vy < 57—, we have

M n-—1
1 .
T 2 D Nt - 2e]|* < 89202 Linax (f(22) — f(24)) +29%n (02 + (n +1)¢?).
m=1 1=0

Theorem E.4 (Theorem A.9). Let Assumptions 1.1, A.1, A.2 hold and stepsizes ~, n satisfy

1
0<y<— (23)

< -
S L (14 2)° = Bl

Then, for all T' > 0 the iterates produced by Q-NASTYA (Algorithm 4) satisfy

9"}’27’”/ nw
E — 2] <« (1 — %) — 24 27 Tmax .2 1)¢2 2
[HxT | ] = 9 [zo — 2|l 9 (0* (n )C*) 8,u,7\[<*

Proof. Taking expectation w.r.t. Q and using Lemma E.1, we get

Eg [z —aull’] = o —aul® — 20Eg [ge, 4 — 24)] + 7°Eg [[l9]|]
1 M 1 n—1 i )
‘ mar - l< (L))
m=1 n =0
2L2 ( n—1

Zthm—xtH

e~ o) + ¢

iMz

{\

—~

2
L (1 =)
+8n +

|
—

n

M
2 o b < T (i _ >
< lze — ol 277Man:1; V fm (xt,m)axt L
QLrgnax(l_’_i) M n-—1 . )
T n;izo [t m —
80" Linax (14 77 ) (f(@0) = f(@2) +40* < C2.
Next, Lemma E.2 implies
Eg [[xr1 — z]?] < IIIt—l’*IIZ—%Ilfvt—z*\\Q—n(f(zt)—f(:L’*))
w M n-—1 9
89 Lo (1+ M) (Fle) — )+ 20m S™ S
m=1 i=0
2L2 ( M n—1
max ZZthm l'tH +4'I7
m=1 1=0
< (1—”2)||ast—x*|| n(l—sanax (1+ M))(f(xa—f(m)
andX 1+2andX 1—"_ AI s
oo LB UL D) §° 8o, o+ 42
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Using Lemma E.3, we get

Eo [loen -] < (f% ot =l =5 (1= 8nL (14 7)) (@) = f(a.))

)(1 20 Linax (14 77 ) ) - 8970 Linae (f(22) = f(2.))
Lo (14 20 L (14 57 ) ) - 290 (02 + (0 + 1))
+4’72M<*'
In view of (23), we have
Eo [lecr —al?] < (1= ") lae - aulf? + dnPoc?
1 (1= 8L (14 =5 ) = 89202 L 0 (14 2Lt (14 52 ) ) ) () = f ()

+292n Enax (1+ 201 (1+ %)) (02 +nc3)

9
< (1 - 7) ||xt - m*HQ + 477 CE + ianax’an (Uf + (n + 1)03) .
+oo
Recursively unrolling the inequality and using (1 — %) < —n we get the result. O
t=0

Corollary E.5. Let the assumptions of Theorem A.9 hold, v = L, and

. 1 eun 9 =12 M
= min , n+1)(; + o} , . 24
77 {16Lmax (1+ %> 9Lmax (( )C* g ) 2460(3 ( )

Then, Q-NASTYA (Algorithm 4) finds a solution with accuracy € > 0 after the following number of communication rounds:

A Lmax w C* max 0—2
O(u (1+M ME/A \l \/C* )

1
16 Linax (147

6 (P (1 57) + 7 )

If v — 0, one can choose n = min { ik 254’&42 } such that the above complexity bound improves to

Proof. Theorem A.9 implies

r 9 721 Linax
E [z — 2.°] < (1 - %) 2o — z.||* + ivTa ((n+1)¢2 +02) + su—g

To estimate the number of communication rounds required to find a solution with accuracy € > 0, we need to upper bound
each term from the right-hand side by /3. Thus, we get additional conditions on 7:

91 Linax 9 9 € Nw .o €
= 1 < =, 8—(?< -

and also the upper bound on the number of communication rounds 7'

r=0()

Substituting (27) in the previous equation, we get the first part of the result. When v — 0, the proof follows similar
steps. O
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F. Missing proofs for DIANA-NASTYA
Lemma F.1. Under Assumptions 1.1, A.1, A.2, the iterates produced by DIANA-NASTYA (Algorithm 5) satisfy

M
1 N
“Eo |37 2 {gm —hm —w)| < e -

m=1

where h* = V f(x,).

Proof. Using that Eg [§¢ ] = ¢¢m and definition of h*, we get

1 M 1 M
*EQ lM Z <§t,m - h*a Tt — IQ] = Z 9gt,m — h*,mt - »T*>

m=1

= <Vf m(zt )=V (x*) xt—x*>.

Next, three-point identity and L, -smoothness of each function f? imply

M M n-—1
1 _ _
—Eo lM Z Gtom — W — m)] = ~¥n Z ( i (w4, ) + Df,,’,'fn (s, @4 ) — Df:;n (xt,x;m))
m=1 1=0
M n—1
< *Df(-Tt,x*) ~ Mn mzzl 2 Df;{i” (:C*>$t,m)

19 M n-—1

a2 2 Nl =il
m=1 =0

Finally, using p-strong convexity of f, we finish the proof of lemma.

Lemma F.2. Under Assumptions 1.1, A.1, A.2, the iterates produced by DIANA-NASTYA (Algorithm 5) satisfy

2L2 M n—1

Eo [lg: - h*I?] < m“— 32 2 b = a1l + 8L (1+37) (Fla) = f@.))
=0

4w M
a2 Z [tm — By, |17
m=1

Proof. Since gy = & M g and E||€ — ¢||? = E||¢ — E€|? + E||EE — ¢||?, we have
B 2

(ht,m + Q (gt,m - ht,m) - h:n)

S

Eo [llg: — p*II?] = Eo

(ht.m + Q (Gtm — he.m)) — Gt + llg: — h*HQ .

M= i

S

1

<

n
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Next, independence of Q ( Jtm — htm) m € M, Assumption 1.1, and L,,,x-smoothness and convexity of each function

L, imply

M
N * w 2 112
Eo [|lg: — p*|I?] < e > lgtm = hemll* + llge — b

m=1
M n—1 2 M
2w 1 2w 2
< 3 D | XV ) = V(e + 355 3 IV~ bl
+2(lg: = VF@)l* + 2|V f (i) — b))
IR | Tt g X
! i 2
< S VAR )~ Vi) |+ e D IV ) Bl
m=1 1=0 m=1
2
1 x
Vi Z <nzvfm tm me(%)) +2(|Vf(ze) — h*|?
m=1
2Lr2nax M on-1 % M
< 5) 55 ik~ ul? + 25 5 9 foar) — B
m=1 1=0 m=1

+2||Vf(x0) = b**.

Using Ly, .x-smoothness and convexity of f,,, we get

2 2L (L4 57) <= 2 2
Eo [lge —h*|*] < =MD g — + Z\\me 1) = him
m=1 =0
+4Lmax (f(xe) — f(24))
2Ll?nx 1+& M n—1 *
< How (0P ) S z IV o) — B
m=1 1=0
4w M
37 2 W = Bl 4 AL () = £ ()
<

22 (1+4) L, ., 8L w
M Z Z 2% — |2 SEmax Z Dy, (w1, 2.)
m=1 =0

M
4w N
o D e = Bl + AL (£ (1) = ()
m=1

Lemma F.3. Under Assumptions 1.1, A.1, A.2, and o < 1+ , the iterates produced by DIANA-NASTYA (Algorithm 5)
satisfy

n—1

M
— hin|I” + 20 L Z % 1 —
m=1 ¢=0

E

Z errm = hillP] <

m=1

+4aLma; (f(wt) - f(l‘*)) '
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Proof. Taking expectation w.r.t. Q and using Assumption 1.1, we obtain

1 M
i > Eo [herim —
m=1

Using o <

Finally, L,.x-smoothness and convexity of f,,

1+ , we get

M

hI?]

S

A
S

Z hesim =B l?] <

m=

1 M
M Z Eq [||ht+1,m -

m=1

A
S

<

honl]

S

<[

M
> Eo [Ihem + aQgem — hem) — byl
m=1
M
([1Pe,m — B |I” + 20E 0 [(Q(gt,m — hesm)s Btm — Biy)])
m=1

M

Miz

(1hem = Wi |I? + 20 (gem — hems bum — )

3
&

1+w

Z ||gt m ht m”

m=1

M

7 (lhen = Wl + a (gtim = hens B + Gram — 215,))
m=1

M

> (htam = 31> + allgem — B |1 = allbem — b5, 1?)
m=1

—hyl?+ - Z ge.m = hrall?.

imply

IA

IA

IA

Theorem F.4 (Theorem A.11). Let Assumptions 1.1, A.1, A.2 hold and stepsizes v, 1, « satisfy

|
Dcnme _*
<= T6Lom

11—« M
M mzz:tht,m m”2
90 M
+37 D (I9tan = Vm(@)l? + IV fin ) = 3] 1)
m=1
M M
l1—« 2 4Lmaxa
7 mz::tht,m—h* mll™ = ;Dfm(wtaﬂ?*)
20 M 1 n—1 i ‘ ) 2
S SV () V()
m=1 i=0
l1—« !
Vi Hht,m - h:nH2 + 4Lmaxa (f (7)) — f(24))
- M n—1
2Lt ) DD B A
m=1 1=0
O
« 1 1
0 < min{ —, ——m8M ¥ < . 25
’ <n_mm{2u’16me(1+?\}’)}’ “S1rw @5
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Then, for all T' > 0 the iterates produced by DIANA-NASTYA (Algorithm 5) satisfy

9+2nL
E[Ur] < (1—%) \D0+§7M (02 + (n+1)¢?). (26)
Proof. We have
lzers —@? =z —nge — zu + "]

= loe = 2ul® = 20(ge — A", we — @) +07[lge — h¥1%.
Taking expectation w.r.t. Q and using Lemma F.1, we obtain

lze — 2l = 20E g [(ge — h*, we — 2.)] + 0*Eg [[lge — h*|]?]

Eo [[lwt11 — z.?]

M n-—1
2n i
< (1-8) lae =l = n(f (@) = f@)) = 2= 30" Dy (@i )
m=1 1=0
I n M n-—1 .
+% Z Z %5, — el + 0°Eg [|1ge — *[1%] -
n m=1 i=0
Next, Lemma F.2 implies
nu 9 M n-—1 )
Eo [lars —l?] < (1= ) llae =zl = n(f(z) = f@) = 57 2 DD o, (@es7h )
m=1i=0 "
M n—1 2712 w M n—1
Lmaxn i 277 Lmax 1+ 47 i
sl S g P e LS $2 S
m=1 i=0 m=1 i=0
w 4w M
2 * |12
+n <8Lmax (14 57) W) = 1@+ 575 3 M = 1| )
< (1=") o =@l = (1 = 8nLumax (1+ M)) (f(@) = f(@.))
1 M n—1
Lmax (1 2 Lmax (1 )) - 2
+ Lunasx? (14 277 + nﬂ;;lmm |
277 M n—1 QQJ M
* 12
—mZZDﬁ; (T, T4y > Mhm = I

Using (7) and Lemma F.3, we get
o] < (1-%) ot — 2l =1 (1= 8nLmax (1417 ) ) (@) = f(a2))

M n-—1
w
+Limaxn (1 + 2nLmax (1 + M)) Z Sl = wl?
m=1 i=0
2SS D e 4’“’Znh P
Mn - f:)r{” *9 t,m t,m m
m=1 1=0
1—a M M n—1
o (L 3 e 4 2508 375 it oo ) 105
m=1 m=1 1=0

M

4w 1 *
(1= 2 o=l (el =)+ M> a7 2 Moo =

=1 (1= 80 Lmax (14 17 ) = 4amcLunas ) (F(a) = f(2.)

IA

=

n—

M
w 1 i
+Ln (1 + 2nLmax (1 + M) + QQHCLmaX) Un E ‘ 2t — 2.

m=1 i=0
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Taking the full expectation, we derive

7 1 &
Bl < (L) Ellecm ] o (o0 -0)+ 57 ) 37 DB [l #i]

—n (1 — 81 Lmax (1 + %) - 4ancL) E[f(z:) — f(zy)

=

1 M n—

w i 2
+Lmaxn (1 + 20 Lax (1 + M) + 20mchaX) Un 2 ; E [th,m — | } .

Using Lemma E.3, we get

E[U < (1-"\g 2 42 (1 4‘”1MEh h*
W] < ( —7> [lze — zl?] +7 (c( —a)+M>Mmz_:l [Ihe,m — hiy|I?]

=1 (1= 80 Lmax (14 17 ) = 4ancLunas ) ELf (@) = f(2.)]
8712 L ) (14 20 Lunax (14 37 ) + 200 Linax ) E1f (0) = f (@)
2921 L) (1+ 20 Lo (14 %) + 200 L ) (07 + (0 + 1)C3)

In view of (25), we have

9 M
E[‘I’Hﬂ < (1—%)1@[”%—3@\\2}—#( )CJ\ZMZ_lE ‘ht,m_h:n”ﬂ

+gw2anaxn (02 + (n+1)¢2)

4
. " . . o t 2
Using the definition of the Lyapunov function and using > (1 — %) < e we get the result. O
t=0
Corollary E.5. Let the assumptions of Theorem A.11 hold, v = 1, a = H% and
. o 1 epn 9 o —1/2

=min<{ —, , n+ 1) + o} . 27
n {ZM 16 Lmax (1 i ?7‘},) 9L man (( )5 ) 27

Then, DIANA-NASTYA (Algorithm 5) finds a solution with accuracy € > 0O after the following number of communication

rounds:
~ L w Lo
0 ma (1 )y [ 2 ot |
(W + — [ + M + (-:‘LLd C* + /

1
16 Lmax (1+92 )

(5<w+ Lr;‘““‘ (1+J\°})>

If v — 0, one can choose n = min {20‘ } such that the number of communication rounds T to find solution

with accuracy € > 0 is

Proof. Theorem A.11 implies

T 9 2 Lmax
E[Ur] < (1 _ %) T, + 5% ((n+1)C2+02).

To estimate the number of communication rounds required to find a solution with accuracy € > 0, we need to upper bound
each term from the right-hand side by 5. Thus, we get an additional restriction on 7:

9 2Lmax
B 1 ((n

+ 1)+ Uf) <

| ™
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and also the upper bound on the number of communication rounds 7'

-of2)

Substituting (27) in the previous equation, we get the first part of the result. When v — 0, the proof follows similar
steps. O
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G. Alternative Analysis of Q-NASTYA

In this analysis, we will use additional sequence:

i—1

Tom =T =7 > V(@) (28)
j=0
Theorem G.1. Ler Assumptions 1.1, A.2, A.3 hold. Moreover, we assume that (1 — yp)™ < g/fi:/léc = C < 1 for some

numerical constant C > 1. Also let § = and v < ﬁ Then, for all T > 0 the iterates produced by

Q-NASTYA (Algorithm 4) satisfy

< e

[”IT—.T*H } (1_ ﬂ) H$t —SU*||2+ B’Y rm(i+352iiA*v

A def .
where A, = L Zm e, — xl|? and 62y < Liax (C2 + no?/4).

Proof. The update rule for one epoch can be rewritten as

| M wo—al
xt+1:l‘t_"7MZQ T :
m=1

Using this, we derive

2

2441 — ff*||2 =
yn

||xtx*22n<wt ZQ( xm)>

m=1

FSe(5)

1 & Tt — Ty
nngy Yo (M)
m=1

m=

Taking conditional expectation w.r.t. the randomness comming from compression, we get

M
1 Ty —
E - *2: T Lk 2_2 T Lky o —_—
allzis = 2|2 = llo — o n<xt @ MZ( - >>

m=1

LSa(n)|

Next, we use the definition of quantization operator and independence of Q) (ztif”’m ), m € [M]:

+ UQIEQ

n

M
1 Ty —
E - *2< - *2_2 Ly 0 —_—
ollec =l < oy - o n<xt . MZ( n )>

m=1
2
M
TP PR
M yn

m=1

n 2
Tt — T m

n

9 w1

+77 MMm:l

56



Federated Optimization Algorithms with Random Reshuffling and Gradient Compression

Since § = ’yn’ we obtain

m=1

M
Eqllzers — 2l < oy — 2. — 28 <1't — Ty, o7 Z

52**2% il + 6% | 3

M

'rt m >

M

5: xtm

_ 2
- T Lk T Ly T o -
lxy — z4||* + 28 <xt x Z Ty — Tt >

H Z ot — 2|

Using the condition that z,. = 37 Zm 1 2%, We have:

Eqllwis: — . <

1 M
(1= B)(w —z.) + (M > (a

Convexity of squared norm and Jensen’s inequality imply

Eqllwers —aul® < (1= B)llwe — aul* + B || =

Next, from Young’s inequality we get

Eqllzert — .l < (1= B)|lwe — a.l* + B

277 o2 2 W

m,l

Theorem 4 from (Mishchenko et al., 2021) gives

M
E xtm_
m=1

7l
*

m)

L m)>

M
27 2 (@t~
m=1
M
1
7 2 e =l
m=1

TL
*m

1 M
MZ(mtm_xt)
m=1
2 M
) S
m=1

2

2

2 W 1 o n
Sy S v DN ETEE e b
m=1

2
_,_5277 Z |l — acth .

2
+ 357l — .

n—1

M

1

T —x;ﬁmn?] < (1= )" o = @] + 20°62 (Z (1= m)’
m=1

= (1= )" [Jloe - 2.]°] + 29762
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It leads to
Ellzs1 — 2.l < (1= B)llz — 2.l + 5 ((1 — )" (e = 2 ]?] + 247 mdjﬂ)
+3 o— 3872 (1= ) e =] + 25
+352——Z||x*m z.?
3(1—5+6(1—w) +357 > + 382 (1—7/1)”)Hact—ﬂc*ll2

+ 26750 (1+3B%)+36L*Z|lm P

9/10—1/c

Using (1 — yu)™ < e We have

(L—yu)™ < 9/11:1/1?

(1—w)"<1+é) < 1%—%
—l%ﬂJr/J’(l—w) g g(l—W) = 0

1= B+ B(1—yu)" + g g(l—w) < 1—1%-

Next, applying § < HS%’ we derive the inequality
M

1= B+ 601 —yu)" +362 +362 VAR
Finally, we have
2 5 2 1
Ellzes —2ul* < (1= 15 ) llze — 2 ]* + 2876 radu 1+

wl &
2 n 2

m=1

5
(1—10 @y — . ||” + ﬁV 67na

M
9 W 2
+36 MMmZ: — "
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H. Alternative analysis of DIANA-NASTYA

Theorem H.1. Let Assumptions 1.1, A.2, A.3 hold Moreover, we assume that (1 — fyu)” < 9/113:/15 = B < 1 for some
numerical constant B > 1. Also let § = ’m < m andy < £ and also o < —. Then, for all T' > 0 the iterates
produced by DIANA-NASTYA (Algorithm 5) satisfy
T
g 2 2

EVr <max|(1—-—,1——=] Yy+ 7B6’y amd (29)

Proof. We start with expanding the square:
lze4r = 2al|* = llze — nge — 2.

M
1
e =N Z (Pt,m + Q(gtm — htm)) — .

M
1
= [|lze — a.||” — 27 <M Z (htym + Q(gt,m — he,m)) T — CC*>

m=1
2

M
Z ht m + Q gt,m ht,m))

Taking the expectation w.r.t. Q, we get

M
Eqllzer1 —z.* = Ixt—x*||2—277< > Gtmow — >
o

M 2

+1°Eq % Z (ht.m + Q(gt,m — Pt.m))
m=1 o
= e~ ]2~ 20 <MZ=gm —x*>
LM 2 Lo 2
+17°Eq i ; (ht.m + Q(gt,m — Pt.m) — Gtm) Vi mZI 9t,m

<l — @ —2n< Z Gt,ms Tt — >
M

+7 M2 Z”gtm hemll* + 0 HZ
" 1 M m:

< e — .| —277<M thm,a?t >

2w 2w
2 2 2 2 2
+n e Z gtm = haem | + Z [htm = ham” + 7

m=1

2

1 M
M Z gt,m

m=1
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Next, using definition of g; ,,,, we obtain

1M M o 2
El|zep1 — o] < ||$t—$*||2—277< E =t $> E
m=1 m=1

M
w 2w
+ ’72W Z gt,m = hamll” + 772@ Z ot,m = Fre o ®
m=1 m=1
M
:||17t—a:*||2—|—204< Z T — T xt—x*>+o¢
m=1

M
2w 2w
2 2 2 2
035 D Mgt — B * 01 5 mgl B — ol

m=1

M 2

1
MZ CCtm—l’t)

M
w 2w
03z 2 Ngem = heml + 07 75 Z e = |2
m=1

m=1
2

m=1

1 M
0 o)+ 5 (M 5 (ot =2t )
M
<({1- )Hift—f*||2+5 ZH%m— 2l 2

2w 2w
Sy Z ge.m = heml® +1° 15 Z (heim — Pwn |-

m=1
Let us consider recursion for control variable:

||ht+1,m - h*,mHQ = ||ht,m + aQ(gt,m - ht,m) - h*,rn”2
= ||ht,m - h*,m”2 + <Q(gt,7n - ht,m)a ht,m, - h*,m> + a2||Q(gt,m - ht,m)HZ-

Taking the expectation w.r.t. Q, we have

Eollhs1m — humll® < htym — P ||* + 20 (Geam — Bty htgm — haim) + 0 (0 + 1) || gem — el
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Using a < = we have

Ellhtt1.m = henll? < heim — hoam)?

+20 (Gt — Bt i = R + @ llgtm — e
= Hht,m - h*,m”2

+ 20 (gt,m — htm, I
= Hht,m - h*,m”2

+ a{gt,m — Pt.m, Gtom — Pt.m + 2hem — 2ha m)
= Hht,m - h*,m”2

+ a{gt,m — Pt.m, Gtom + Pem — 2R )
= Hht,m - h*,m”2

+ a(ge,m — Pem — haom + M, Geom + P — 2R m)
= Hht,m - h*,m”2

+a{gtm — Pam — (Rt — Pam)s (Gtm — Paom) + (Pt — Pacm))
= [lhtun — B> + @l gem — hamll® = allhem — B

= (1= )llhem = hamll® + allgem — hamll*.

m = hem) + @ (gem = P, Gem — hem)

Using this bound we get that

M M
1
= " Bollhsim — bl < (1- ) ZHM— B2 + anm— 2.

m=1

Let us consider the Lyapunov function

def 4w772 1 M
v, = \|9Ct—$*||2+7* Z 1Pt = B |-

Using previous bounds and Theorem 4 from (Mishchenko et al., 2021) we have

[
BV 1 < (1= B)]oe —a.l* + 8 ((1 — )" Ellze — 2. + 73w03ad)
M

M
2w 9 2w 1 9
MM;EHgtm_ B ZEHhtm— |

4wn? 1 2 4w772 1 M 9
+(1—a)— o Z;Ellht,m — bl + Z El|gem = o

4wn? 1 M 6w 1 &
< 1—7) El|htm — haml? + 72 El[gem — Fuml|?
<( aar a7 2 Elhe #4057 37 2 Bl e

n 3 1 ~
(1= BEfe — a2+ 8 ((1 W) e — 2. +~w‘woiad.)
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Let us consider

Ellgt,m — hemll” = - =
m: m 7" :1 ’yn
L1 M . o M o, — 2
< 2n? M E || = Z —tm  Tem
= m=
M M
swz ZEth a.|? +262 Z — 2

m=

M
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Unrolling this recursion we get the final result
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