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Abstract

Privacy and communication constraints are two major bottlenecks in federated
learning (FL) and analytics (FA). We study the optimal accuracy of mean and
frequency estimation (canonical models for FL and FA respectively) under joint
communication and (ε, δ)-differential privacy (DP) constraints. We consider both
the central and the multi-message shuffled DP models. We show that in order to
achieve the optimal ℓ2 error under (ε, δ)-DP, it is sufficient for each client to send
Θ
(
nmin

(
ε, ε2

))
bits for FL and Θ

(
log
(
nmin

(
ε, ε2

)))
bits for FA to the server,

where n is the number of participating clients. Without compression, each client
needs O(d) bits and O (log d) bits for the mean and frequency estimation problems
respectively (where d corresponds to the number of trainable parameters in FL or
the domain size in FA), meaning that we can get significant savings in the regime
nmin

(
ε, ε2

)
= o(d), which is often the relevant regime in practice.

We propose two different ways to leverage compression for privacy amplification
and achieve the optimal privacy-communication-accuracy trade-offs. In both cases,
each client communicates only partial information about its sample and we show
that privacy is amplified by randomly selecting the part contributed by each client.
In the first method, the random selection is revealed to the server, which results in a
central DP guarantee with optimal privacy-communication-accuracy trade-offs. In
the second method, the random data parts from the clients are shuffled by a secure
shuffler resulting in a multi-message shuffling scheme with the same optimal trade-
offs. As a result, we establish the optimal three-way trade-offs between privacy,
communication, and accuracy for both the central DP and multi-message shuffling
frameworks.

1 Introduction

In the basic setting of federated learning (FL) [68, 64, 61] and analytics (FA), a server wants to
execute a specific learning or analytics task on raw data that is kept on clients’ devices. Consider, for
example, model updates in FL or histogram estimation in FA, both of which can be modeled as a
distributed mean estimation problem. Clients communicate targeted messages to the server and the
privacy of the users’ data is ensured (in terms of explicit differential privacy (DP) [38] guarantees) by
adding carefully calibrated noise to the computed mean at the server before releasing it to downstream
modules (e.g., the server computes the average model update and corrupts it with the addition of
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noise). This is called the trusted server or central DP model, as it entrusts the central server with
privatization and is one of the most common ways in which federated learning and analytics are
implemented today 1.

In this paper, we ask the following question: given that the server needs to privatize the mean, can
the clients communicate “less information” to the server? More precisely, can we leverage the
fact that the server only needs to output a noisy (approximate) estimate of the mean to reduce the
communication load without sacrificing accuracy? In recent years, there has been significant interest
in the central DP model [1] as well as communication efficiency and privacy for FL and FA under
different models, including local DP [78, 63, 58, 80, 17, 6, 16, 32], shuffle [40, 43] and distributed
DP [9, 59, 8, 33, 34]; however, this basic question has remained open.

One natural way to reduce communication is to have clients communicate only partial information
about their samples. For example, in the case of model updates, each client can update only a subset
of the model coefficients. In histogram estimation, information about a client’s sample can be “split”
into multiple parts, and the client can communicate only one part. However, this results in less
information at the server, or effectively fewer samples to estimate the target quantity, e.g., each
model coefficient is now updated only by a subset of the clients. A quick calculation reveals that this
increases the sensitivity of the estimate to each user’s sample and therefore requires the addition of
larger noise at the server to achieve the same privacy level. Hence, reducing communication reduces
accuracy for the same privacy guarantee.

We circumvent this challenge with a simple but insightful observation: when each client communicates
only partial information about its sample, we can amplify privacy by randomly selecting the part
contributed by each client. This random selection is hidden from a downstream module which has
only access to the estimate revealed by the server, which leads to privacy amplification. Privacy
amplification by subsampling has been studied in [66, 14] but usually refers to the selection of a
random subset of the clients (from a larger pool of available clients). In our case, it is the "piece
of information" that is randomly selected at each client. We call this gain privacy amplification via
compression as it emerges from the fact that each client does not fully communicate its sample. We
use it to establish the optimal communication-privacy-accuracy trade-off for central DP. Note that
this same type of gain cannot be leveraged in the local DP model where the server is untrusted. The
server needs to know the random selection at each client to construct an estimate. Indeed, in the
local DP model, the privacy-accuracy trade-off is known to be significantly worse than the central DP
model (see Table 1).

This naturally leads to a follow-up question: can we leverage privacy amplification via compression
and achieve the same three-way trade-off by using secure aggregation [33] and shuffling [40] type
models which hide information from the server? For secure aggregation, the three-way trade-off has
been studied in [31] and the communication cost is significantly larger than the communication cost
for central DP proved in this paper (see Table 1). For shuffling, the optimal communication cost has
been posed as an open problem in [31]. We resolve this problem by showing that the optimal central
DP trade-off can also be achieved with a multi-message shuffling scheme, establishing the optimal
communication cost. (We note that a similar result has been concurrently and independently proved
in [54] under the shuffle DP setting.) As before, our scheme leverages a privacy amplification gain.
Each client communicates partial information about its sample; the identity of the message is erased
by the secure shuffler, and hence the untrusted server does not know which part is contributed by
each client. We show that to achieve the optimal trade-off, it is critical for each client to split its
information into multiple messages and employ multiple shuffling rounds by carefully splitting the
privacy budget across different rounds. In contrast, the linearity of secure aggregation requires all
participating clients to communicate consistent information (same parts), hence precluding privacy
amplification by compression. See Table 1 for a detailed comparison.

Our contributions. We study distributed mean and frequency estimation as canonical building
blocks for FL and FA. We consider both the central DP and the multi-message shuffling models.
We characterize the order-optimal privacy-accuracy-communication trade-offs for distributed mean
estimation and provide an achievable scheme for frequency estimation (in Appendix A) under the
central DP model. Our results reveal that privacy and communication efficiency can be achieved
simultaneously with no additional penalty for accuracy. In particular, we show that Õ

(
nmin

(
ε, ε2

))
1We assume a trusted service provider who applies the DP mechanism faithfully. This can be enforced by

implementing the DP mechanism inside of a remotely attestable trusted execution environment [11].
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Communication (bits) ℓ22 error

Local DP [32, 42] Θ(⌈ε⌉) Θ
(

d
nmin(ε2,ε)

)
Distributed DP (with SecAgg) [33] Õ

(
n2 min

(
ε, ε2

))
Θ
(

d
n2 min(ε2,ε)

)
Central DP (Theorem 4.4) Õ

(
nmin

(
ε, ε2

))
O
(

d log d
n2 min(ε2,ε)

)
Shuffle DP (Theorem 5.3, [54]) Õ

(
n log(d)min

(
ε, ε2

))
O
(

d
n2 min(ε2,ε)

)
Table 1: Comparison of the communication costs of ℓ2 mean estimation under local, distributed,
central, and shuffle DP (with δ terms hidden). Compared to local DP, we see that error under central
DP decays much faster (e.g., 1/n2 as opposed to 1/n); compared to distributed DP with secure
aggregation, our schemes achieve similar accuracy but saves the communication cost by a factor of n.

and Õ
(
log
(
nmin

(
ε, ε2

)))
bits of (per-client) communication are sufficient to achieve the order-

optimal error under (ε, δ)-privacy for mean and frequency estimation respectively, where n is the
number of participating clients. Without compression, each client needs O(d) bits and log d bits
for the mean and frequency estimation problems respectively (where d is the number of trainable
parameters in FL or the domain size in FA), which means that we can get significant savings in the
regime nε2 = o(d) (assuming ε = O(1)). We note that this is often the relevant regime not only
for cross-silo but also for cross-device FL/FA. For instance, in practical FL, d usually ranges from
106 to 109, and n, the per-epoch sample size, is usually much smaller (e.g., of the order of 103 to
105). For distributed mean estimation, we show that the central DP trade-off can also be achieved
with a multi-message shuffling scheme (within a log d factor in communication cost). Hence our
paper establishes the three-way trade-off between privacy, communication, and accuracy for both
the central DP and multi-message shuffling frameworks, both of which were open problems in the
prior literature. Compared with local DP where 1 bit is sufficient when ε = O(1), this shows that
central/shuffling DP has a larger communication cost but can achieve much smaller error (by a factor
of n) and hence is usually preferable in practical applications. Compared with distributed DP where
the server aggregates local (encoded) messages with secure multi-party computation (e.g., [23, 8, 34]),
we can improve the communication cost by a factor of n, therefore showing that the communication
cost can be reduced with a trusted server or shuffler. We summarize the comparisons of our main
results to local and distributed DP in Table 1.

Notation. Throughout this paper, we use [m] to denote the set of {1, ...,m} for any m ∈ N. Random
variables (vectors) (X1, ..., Xm) are denoted as Xm. We also make use of Bachmann-Landau
asymptotic notation, i.e., O, o,Ω, ω, and Θ.

2 Problem Formulation

We first present the distributed mean estimation (DME) [74] problem under differential privacy.
Note that DME is closely related to federated learning with SGD (or similar stochastic optimization
methods, such as FedAvg [68]), where in each iteration, the server updates the global model by a
noisy mean of the local model updates. This noisy estimate is typically obtained by using a DME
scheme, and thus one can easily build a distributed DP-SGD scheme (and hence a private FL scheme)
from a differentially private DME scheme. Moreover, as shown in [49], as long as we have an
unbiased estimate of the gradient at each round, the convergence rates of SGD (or DP-SGD) depend
on the ℓ2 estimation error.

Distributed mean estimation. Consider n clients each with local data xi ∈ Rd that satisfies
∥xi∥2 ≤ C for some constant C > 0 (one can think of xi as a clipped local gradient). A server wants
to learn an estimate µ̂ of the mean µ(xn) ≜ 1

n

∑
i xi from xn = (x1, . . . , xn) after communicating

with the n clients. Toward this end, each client locally compresses xi into a b-bit message Yi =
enci (xi) ∈ Y through a local encoder enci : X 7→ Y (where |Y| ≤ 2b and sends it to the central
server, which upon receiving Y n = (Y1, . . . , Yn) computes an estimate µ̂ = dec (Y n) that satisfies
the following differential privacy:
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Definition 2.1 (Differential Privacy). The mechanism µ̂ is (ε, δ)-differentially private if for any
neighboring datasets xn := (x1, ..., xi, ..., xn), x′n := (x1, ..., x

′
i, ..., xn), and measurable S ⊆ Y ,

Pr {µ̂ ∈ S|xn} ≤ eε · Pr {µ̂ ∈ S|x′n}+ δ,

where the probability is taken over the randomness of µ̂.

Our goal is to design schemes that minimize the ℓ22 estimation error:

min
(enc1(·),...,encn(·),dec(·))

max
xn

E
[
∥µ̂ (enc1(x1), ..., encn(xn))− µ(xn)∥22

]
,

subject to b-bit communication and (ε, δ)-DP constraints.

Distributed frequency estimation. Similarly, frequency estimation can also be formulated as a
mean estimation problem but with sparse (one-hot) vectors. Let each user i hold an item xi in a size
d domain X . The server aims to estimate the histogram of the n items. Without loss of generality, we
can assume that X := {e1, ..., ed} ∈ {0, 1}d (where ej is the j-th standard basis vector in Rd), i.e.,
each item is expressed as a one-hot vector. Then, the histogram of the n items can be expressed as
π (xn) :=

∑
i∈[n] xi. Similar to the mean estimation problem, clients locally compute and then send

Yi = enci (xi) ∈ Y (for some Y such that |Y| ≤ 2b), and the central server computes the estimate
π̂ = dec (yn). Our goal is to design schemes that minimize the ℓ22 or ℓ1 error2:

min
(enc1(·),...,encn(·),dec(·))

max
xn

E [∥π̂ (enc1(x1), ..., encn(xn))− π(xn)∥] ,

subject to communication and DP constraints (where ∥·∥ can be ℓ1 or ℓ22).

3 Related Works

Federated learning and distributed mean estimation. Federated learning [64, 68, 60] emerges as
a decentralized machine learning framework that provides data confidentiality by retaining clients’
raw data on edge devices. In FL, communication between clients and the central server can quickly
become a bottleneck [68], so previous works have focused on compressing local model updates via
gradient quantization [68, 10, 48, 74, 79, 77, 24], sparsification [18, 56, 41]. To further enhance
data security, FL is often combined with differential privacy [38, 1, 9]. Among these works, [? ]
also employs gradient sparsification (or gradient subsampling) to reduce the problem dimensionality.
However, the sparsification takes place after the aggregation of local gradients, so the randomness
introduced during sparsification cannot be leveraged to amplify the differential privacy guarantee. As
a result, this approach leads to a suboptimal trade-off between privacy and communication compared
to our scheme.

Note that in this work, we consider FL (or more specifically, the distributed mean estimation)
under a central-DP setting where the server is trusted, which is different from the local DP model
[63, 37, 70, 76, 22, 32] and the distributed DP model with secure aggregation [23, 21, 59, 8, 33, 34].

A key step in our mean estimation scheme is pre-processing the local data via Kashin’s representation
[67]. While various compression schemes, based on quantization, sparsification, and dithering have
been proposed in the recent literature, Kashin’s representation has also been explored in a few works
for communication efficiency [47, 73, 29, 71] and for LDP [42] and is particularly powerful in the
case of joint communication and privacy constraints as it helps spread the information in a vector
evenly in every dimension.

Distributed frequency estimation and heavy hitters. Distributed frequency estimation (a.k.a.
histogram estimation) is another canonical task that has been heavily studied under a distributed
setting with DP. Prior works either focus on 1) the local DP model with or without communication
constraints, e.g., [20, 19, 25, 26, 57] (under an ℓ∞ loss for heavy hitter estimation) and [58, 80, 76,
6, 5, 32, 46, 72, 45] (under an ℓ1 or ℓ2 loss), or 2) the central DP model without communication
constraints [38, 52, 65, 27, 13, 81, 36]. As suggested in [37, 3, 2, 4, 16], compared to central DP,
local DP models usually incur much larger estimation errors and can significantly decrease the utility.
In this work, we consider central DP but with explicit communication constraints.

2Note that the ℓ1 error corresponds to the total variation distance between the true and estimated frequency
vectors.
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Local DP with shuffling. A recent line of works [40, 35, 12, 43, 50, 51] considers shuffle-DP,
showing that one can significantly boost the central DP guarantees by randomly shuffling local
(privatized) messages. In this work, we show that the same shuffling technique can be used to achieve
the optimal central DP error with nearly optimal communication cost. Therefore, we can obtain the
same level of central DP with small communication costs while weakening the security assumption:
achieving the optimal communication cost (under central DP) only requires a secure shuffler (as
opposed to a fully trusted central server).

4 Distributed Mean Estimation

In this section, we present a mean estimation scheme that achieves the optimal Õδ

(
C2d
n2ε2

)
error

under (ε, δ)-DP while only using Õ(nε2) bits of per-client communication.

We first consider a slightly simpler, discrete setting with ℓ∞ geometry (as opposed to the ℓ2 mean
estimation stated in Section 2): assume each client observes xi ∈ {−c, c}d where c > 0 is a constant,
and a central server aims to estimate the mean µ (xn) := 1

n

∑n
i=1 xi by minimizing the ℓ22 error

subject to the privacy and communication constraints. We argue later that solutions to the above ℓ∞
problem can be used for ℓ2 mean estimation by applying Kashin’s representation.

To solve the aforementioned ℓ∞ mean estimation problem, first observe that each client’s local data
can be expressed in d bits since each coordinate of xi can only take values in {c,−c}. To reduce the
communication load to o(d) bits, each client adopts the following subsampling strategy: for each
coordinate j ∈ [d], client i chooses to send xi(j) to the server with probability γ. We assume that
this subsampling step is performed with a seed shared by the client and the server3, hence the server
knows which coordinates are communicated by each client. Therefore upon receiving the client
messages, it can compute the mean of each coordinate and privatize it by adding Gaussian noise.
The key observation we leverage is that the randomness in the compression algorithm can be used
to amplify privacy or equivalently reduce the magnitude of the Gaussian noise that is needed for
privatization. Note that such randomness needs to be kept private from an adversary as the privacy
guarantee of the scheme relies on it.

Algorithm 1 Coordinate Subsampled Gaussian
Mechanism (CSGM)

Input: users’ data x1, ..., xn, sampling parame-
ters γ := b/d, DP parameters (ε, δ).
Output: mean estimator µ̂.
for user i ∈ [n] do

for coordinate j ∈ [d] do
Draw Zi,j

i.i.d.∼ Bern(γ).
if Zi,j = 1 then

Send xi(j) to the server.
end if

end for
end for
for coordinate j ∈ [d] do

Server computes the average µ̂j :=
1
nγ

∑
i:Zij=1 xi(j) + N(0, σ2), where σ2 is

computed according to (1) in Theorem 4.1.
end for
Return: µ̂ := (µ̂1, µ̂2, ..., µ̂d).

We summarize the scheme in Algorithm 1 and
state its privacy and utility guarantees in the
following theorem.
Theorem 4.1 (ℓ∞ mean estimation.). Let
x1, ..., xn ∈ {−c, c}d and ε, δ > 0. There exists
a

σ2 = O

(
c2 log(1/δ)

n2γ2
+

c2d(log(d/δ) + ε) log(d/δ)

n2ε2

)
(1)

such that Algorithm 1 is (ε, δ)-DP and the ℓ22
estimation error of µ̂ is at most

E
[
∥µ̂− µ∥22

]
≤ dc2

nγ
+ dσ2

= O
(d2c2

nb
+

d3c2 log(d/δ)

n2b2
(2)

+
c2d2(log(1/δ) + ε) log(d/δ)

n2ε2

)
. (3)

In addition, the (average) per-client communica-
tion cost is γd = b bits, and Algorithm 1 yields
an unbiased estimator of µ.
Remark 4.2 (Unbiasedness). Note that for
mean estimation, we usually want the final mean estimator to be unbiased since standard con-
vergence analyses of SGD [49] require an unbiased estimate of the true gradient in each optimization

3In practice, such randomness can be agreed by both sides ahead of time, or it can be generated by the server
and communicated to each client.
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round. Given that our proposed mean estimation schemes (Algorithm 1 and Algorithm 2 in the next
section) are all unbiased, we can combine them with SGD/federated averaging and readily apply
[49] to obtain a convergence guarantee for the resulting communication-efficient DP-SGD.

For the ℓ2 mean estimation task formulated in Section 2, we pre-process local vectors by first
computing their Kashin’s representations and then performing randomized rounding [62, 75, 42, 32].
Specifically, if xi has ℓ2 norm bounded by C, then its Kashin’s representation (with respect to a tight
frame K ∈ Rd×D where D = Θ(d)) x̃i has bounded ℓ∞ norm: ∥x̃i∥∞ ≤ c = O

(
C√
d

)
and satisfies

xi = Kx̃i. This allows us to convert the ℓ2 geometry to an ℓ∞ geometry. Furthermore, by randomly
rounding each coordinate of x̃i to {−c, c} (see for example [32]), we can readily apply Algorithm 1
and obtain the following result for ℓ2 mean estimation as a corollary:
Corollary 4.3 (ℓ2 mean estimation). Let x1, ..., xn ∈ B2(C) (i.e., ∥xi∥2 ≤ C for all i ∈ [n]). Then
for any ε, δ > 0, Algorithm 1 combined with Kashin’s representation and randomized rounding yields
an (ε, δ)-DP unbiased estimator for µ with ℓ22 estimation error bounded by

O

dC2

nb
+

C2d2 log(1/δ)

n2b2︸ ︷︷ ︸
(α)

+
C2d(log(d/δ) + ε) log(d/δ)

n2ε2︸ ︷︷ ︸
(β)

 . (4)

The first term (α) in the estimation error in Corollary 4.3 is the error due to compression, and
the second term (β) is the error due to privatization (which is order-optimal under (ε, δ)-DP up to
an additional log(d/δ) factor as we discuss in Section 4.2). In particular, if we ignore the poly-
logarithmic terms and assume ε = O(1), the privatization error (β) can be simplified to Õ

(
dC2

n2ε2

)
,

which dominates the total ℓ22 error when b = Ω̃δ

(
max

(
nε2,
√
dε
))

, i.e. in this regime the total ℓ22
error is order-wise equal to the optimal centralized DP error (β). This implies that no more than
b = Ω̃δ

(
max

(
nε2,
√
dε
))

bits per client are needed to achieve the order-optimal ℓ22 error.

In the next section, we introduce a modification to Algorithm 1, which allows the removal of the
Ω
(√

dε
)

term in the communication cost.

4.1 Dimension-free communication cost

In order to remove the dependence on the dimension d in the communication cost b =

Ω̃δ

(
max

(
nε2,
√
dε
))

from the previous section, we need to improve the performance of our

scheme in the small-sample regime nε2 = o(
√
dε). Equivalently, we want to be able to achieve the

centralized DP performance by using only b = Ω̃δ

(
nε2
)

bits per client when nε = o(
√
d). Assuming

ε ≈ 1, note that this implies that the total communication bandwidth of the system nb = o(d), i.e.
the server can receive information about at most nb = n2ε2 = o(d) coordinates. We show that in this
regime the performance of the scheme can be improved by a priori restricting the server’s attention to
a subset of the coordinates.

We make the following modification to Algorithm 1: before performing Algorithm 1, the server
randomly selects d′ ≈ O

(
min(d, n2ε2)

)
coordinates and only requires clients to run Algorithm 1 on

them. We present the modified scheme in Algorithm 2 and summarize its performance in Theorem 4.4.

Similarly, we can obtain the following ℓ2 mean estimation via Kashin’s representations:
Theorem 4.4 (ℓ2 mean estimation.). Let x1, ..., xn ∈ B2(C) (i.e., ∥xi∥2 ≤ C for all i ∈ [n]),

ε, δ > 0, and d′ = min
(
d, nb, n2ε2

(log(1/δ)+ε) log(d/δ)

)
. Then there exists a

σ2 = O

(
C2 log(1/δ)

d′n2γ2
+

C2d′(log(1/δ) + ε) log(d′/δ)

dn2ε2

)
. (5)

such that Algorithm 2 is (ε, δ)-DP. In addition, the (average) per-client communication cost is γd = b
bits, and the ℓ22 estimation error is at most

O

(
max

(
C2d log(d/δ)

nb
,
C2d log(d/δ)(log(1/δ) + ε)

n2ε2

))
. (6)
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Corollary 4.5. As long as b = Ω
(

nε2

log(1/δ)+ε

)
, the ℓ22 error of mean estimation is

O

(
C2d log(d/δ)(log(1/δ) + ε)

n2ε2

)
.

Algorithm 2 CSGM with Coordinate Pre-selection

Input: users’ data x1, ..., xn, coordinate selec-
tion d′ ≤ d, sampling parameters γ := b/d′, DP
parameters (ε, δ).
Output: mean estimator µ̂.
Randomly select d′ coordinates J :=
{j1, ..., jd′} ⊂ [d].
for user i ∈ [n] do

Pre-processing xi by restricting it on J :
xi(J ) := (xi(j1), ..., xi(j|J |)).

end for
Apply CSGM (Algorithm 1) on xi(J ), i ∈ [n]:
µ̂J ← CSGM (xi(J ), i ∈ [n]).
for j ∈ [d] do

if j ∈ J then
µ̂j = µ̂J (j).

else
µ̂j = 0.

end if
end for
Return: µ̂ :=

(
d
d′ µ̂1,

d
d′ µ̂2, ...,

d
d′ µ̂d

)
.

As suggested by Corollary 4.5, we see that when
ε = O(1), b = Ω̃

(
nε2
)

bits per client are suf-

ficient to achieve the order-optimal Õδ

(
c2d
n2ε2

)
error (even in the small sample regime n ≤

√
d),

i.e. the communication cost of the scheme is in-
dependent of the dimension d.

4.2 Lower bounds

In this section, we argue that the estimation er-
ror in Theorem 4.4 is optimal up to an log (d/δ)
factor. Specifically, Theorem 5.3 of [31] shows
that any b-bit unbiased compression scheme will
incur Ω

(
C2d
nb

)
error for the ℓ2 mean estimation

problem (even when privacy is not required).
This matches the first term in (6) up to a loga-
rithmic factor.

On the other hand, the centralized Gaussian
mechanism (under a central (ε, δ)-DP) achieves
O
(

C2d log(1/δ)
n2ε2

)
MSE [15] (which is order-

optimal in most parameter regimes; see the
lower bounds in Theorem 3.1 of [28] or Propo-
sition 23 of [30]). Hence, we can conclude that
the total communication received by the server has to be at least Ω(n2ε2) bits in order to achieve the
same error as the Gaussian mechanism. Therefore, the (average) per-client communication cost has to
be at least Ω(nε2) bits. Hence we conclude that Algorithm 2 is optimal (up to a logarithmic factor).

For completeness, we state the communication lower bound in the following theorem:

Theorem 4.6 (Communication lower bound for mean estimation under central DP). Let x1, ..., xn ∈
B2(C). Let Y1, ..., Yn be any b-bit local reports generated from a (possibly interactive) compres-

sor and be unbiased in the sense that E [
∑

i Yi] =
∑

i xi. Then if E
[∥∥ 1

n

∑
i Yi − 1

n

∑
i xi

∥∥2
2

]
≤

O
(

C2d log(1/δ)
n2ε2

)
, it holds that b = Ω

(
nε2

log(1/δ)

)
.

Finally, we remark that the logarithmic gap between the upper and lower bounds may be due to
the specific composition theorem (Theorem III.3 of [39]) we use in our proof, which is simpler to
work with but possibly slightly weaker. However, in our experiments, we compute and account for
all privacy budgets with Rényi DP [69, 82], and hence can obtain better constants compared to our
theoretical analysis.

5 Achieving the Optimal Trade-off via Shuffling

In Section 4 and Section A, we see that the communication cost can be reduced to (Õ
(
nε2
)

for
mean estimation and Õ

(
log
(
⌈nε2⌉

))
for frequency estimation) while still achieving the order-wise

optimal error, as long as the server is trusted. On the other hand, when the server is untrusted, [33, 31]
show that optimal error under (ε, δ)-DP can be achieved with secure aggregation. However, the
communication cost of these schemes is Õ

(
n2ε2

)
bits per client for mean estimation and Õ (nε) bits

per client for frequency estimation. This corresponds to a factor of n increase for mean estimation
and an exponential increase for frequency estimation. In this section, we investigate whether the
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optimal communication-accuracy-privacy trade-off from the previous sections can be achieved when
the server is not fully trusted.

In this section, we show that if there exists a secure shuffler that randomly permutes clients’ locally
privatized messages and releases them to the server, we can achieve the nearly optimal (within a log d
factor) central-DP error in mean estimation with Õ

(
nε2
)

bits of communication. We note that a
similar result has been proven in a concurrent work [54]. Specifically, we present a mean estimation
scheme that combines a local-DP mechanism with privacy amplification via shuffling by building on
the following recent result [40, 43]:
Lemma 5.1 ([43]). LetMi be an independent (ε0, 0)-LDP mechanism for each i ∈ [n] with ε0 ≤ 1

and π be a random permutation of [n]. Then for any δ ∈ [0, 1] such that ε0 ≤ log
(

n
16 log(2/δ)

)
, the

mechanism S : (x1, . . . , xn) 7→
(
M1

(
xπ(1)

)
, . . . ,Mn

(
xπ(n)

))
is (ε, δ)-DP for some ε such that

ε = O

(
ε0

√
log(1/δ)√

n

)
.

Privacy analysis. With the above amplification lemma, we only need to design the local randomiz-
ersMi that satisfy ε0-LDP. Note that the above lemma is only tight when ε0 = O(1), thus restricting
the (amplified) central ε = O(1/

√
n), i.e. to be very small. To accommodate larger ε, users can

send different portions of their messages to the server in separate shuffling rounds. Equivalently, we
repeat the shuffled LDP mechanism for T = O

(
⌈nε2⌉

)
rounds while ensuring that in each round,

clients communicate an independent piece of information about their sample to the server. More
precisely, within each round, each client applies the local randomizersMi with a per-round local
privacy budget ε0 = O(1) and sends an independent message to the server. This results in (amplified)
central O(1/

√
n)-DP per round, which after composition over T = O

(
⌈nε2⌉

)
rounds leads to ε-DP

for the overall scheme as suggested by the composition theorem [58]). We detail the algorithm in
Algorithm 4 in Appendix F.

Communication costs. The communication cost of the above T -round scheme can be computed
as follows. As shown in [32], the optimal communication cost of an ε0-LDP mean estimation is
O (⌈ε0⌉) bits. In addition, the (private-coin) SQKR scheme proposed in [32] uses O (⌈ε0⌉ log d) bits
of communication (we state the formal performance guarantee for this scheme in Lemma 5.2), where
compression is done by subsampling coordinates and privatization is performed with Randomized
Response. Therefore, since the per-round ε0 = O(1), the total per-client communication cost is
O
(
nε2 log d

)
, matching the optimal communication bounds in Section 4 within a log d factor.

Lemma 5.2 (SQKR [32]). For all ε0 > 0, b0 > 0, there exists a (ε0, 0)-LDP mechanism using

b0 log(d) bits such that µ̂ is unbiased and satisfies E
[
∥µ (xn)− µ̂ (xn)∥22

]
= O

(
c2d

nmin(ε20,ε0,b0)

)
.

Finally, we summarize the performance guarantee for the overall scheme (Algorithm 4) in the
following theorem.
Theorem 5.3 (ℓ2 mean estimation). Let x1, ..., xn ∈ B2(C) (i.e., ∥xi∥2 ≤ C for all i ∈ [n]). For

all ε > 0, b > 0, n > 30, and δ ∈ (δmin, 1] where δmin = O
(

be−n

log(d)

)
, Algorithm 4 combined

with Kashin’s representation and randomized rounding is (ε, δ)-DP, uses no more than b bits of
communication, and achieves

E
[
∥µ (xn)− µ̂ (xn)∥22

]
= O

(
C2dmax

(
log(d)

nb
,
log(b/δ)(log(1/δ) + ε)

n2ε2

))
.

Remark 5.4. As opposed to previous schemes Algorithm 1-3, the shuffled SQKR requires some
condition on δ, i.e., δ ∈ [δmin, 1] due to the specific shuffling lemma we used. In practice, however, δmin

is small due to the exponential dependence on n. The order-wise optimal error of O
(

C2d
n2 min(ε2,ε)

)
is

achieved, up to logarithmic factors, when b = Ωδ

(
n log(d)min

(
ε2, ε

))
.

Remark 5.5. We note that similar ideas of private mean estimation based on shuffling have been
studied before, see, for instance, [53]. However, these papers do not use the above privacy budget
splitting trick over multiple rounds, so their result is only optimal when ε is very small. The above
scheme can be viewed as a multi-message shuffling scheme [35, 51], and in particular, can be
regarded as a generalization of the scalar mean estimation scheme [35] to d-dim mean estimation.
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Figure 1: MSEs of CSGM (Algorithm 1) and shuffle LDP schemes.

6 Experiments

In this section, we empirically evaluate our mean estimation scheme (CSGM) from Section 4, examine
its privacy-accuracy-communication trade-off, and compare it with other DP mechanisms (including
the shuffling-based mechanism introduced in Section 5).

Setup. For a given dimension d, and number of samples n, we generate local vectors Xi ∈ Rd

as follows: let Xi(j)
i.i.d.∼ 1√

d
(2 · Ber(0.8)− 1) where Ber(0.8) is a Bernoulli random variable with

bias p = 0.8. This ensures ∥Xi∥∞ ≤ 1/
√
d and ∥Xi∥2 ≤ 1, and in addition, the empirical mean

µ (Xn) := 1
n

∑
i Xi does not converge to 0. Note that as our goal is to construct an unbiased

estimator, we did not project our final estimator back to the ℓ∞ or ℓ2 space as the projection step may
introduce bias. Therefore, the ℓ2 estimation error can be greater than 1. We account for the privacy
budget with Rényi DP [69] and the privacy-amplification by subsampling lemma in [82] and convert
Rényi DP to (ε, δ)-DP via [30].

Privacy-accuracy-communication trade-off of CSGM. In the first experiment (left of Figure 1),
we apply Algorithm 1 with different sampling rates γ, which leads to different communication budgets
(b = γd). Note that when γ = 1, the scheme reduces to the central Gaussian mechanism without
compression. In Figure1, we see that with a fixed communication budget, CSGM approximates the
central (uncompressed) Gaussian mechanism in the high privacy regime (small ε) and starts deviating
from it when ε exceeds a certain value. In addition, that value of ε depends only on sample size
n and the communication budget b and not the dimension d as predicted by our theory: recall that
the compression error dominates the total error, and hence the performance starts to deviate from
the (uncompressed) Gaussian mechanism when b = o(nε2), a condition that is independent of d.
Observe, for example, that when b = 50 bits, the Gaussian mechanism starts outperforming CSGM
at ε ≥ 0.5 for both d = 500 and d = 5000. Hence, for ε ≈ 0.5 CSGM is able to provide 10X
compression when d = 500, but 100X compression when d = 5000 without impacting MSE.

Comparison with local and shuffle DP. Next, we compare the CSGM with local and shuffled
DP for d = 103 and n = 500. For local DP, we consider the private-coin SQKR scheme introduced
in Section 5 which uses (⌈log d⌉+ 1)T = 11T bits for T shuffling rounds and DJW [37] which is
known to be order-optimal when ε = O(1) (but is not communication-efficient). For shuffle-DP, we
apply the amplification lemma in [43] to find the corresponding local ε0 (see Section 5 for more
details) and simulate both SQKR and DJW as the local randomizers.

The MSEs of all mechanisms are reported in the right of Figure 1. Our results suggest that for a fixed
communication budget (say, 10 bits), the practical performance of CSGM significantly outperforms
shuffled-DP mechanisms, including the shuffled SQKR and DJW, eventhough they have the same
order-wise guarantees theoretically. In addition, the amplification gain of single-round shuffling
diminishes fast as ε increases. Indeed, when ε ≥ 0.8, we observe no amplification gain compared to
the pure local DP.
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7 Limitations and Future Work

While we have characterized the (nearly) orderwise optimal trade-offs under central and shuffled
DP, it remains unclear whether the pre-constants can be further sharpened, potentially enhancing the
practical applicability of these approaches. Furthermore, our analysis is based on a classical privacy
amplification technique. By employing more advanced accounting methods, it might be possible to
shave off the logarithmic factors.
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A Distributed Frequency Estimation

In this section, we consider the frequency estimation problem for federated analytics. Recall that
for the frequency estimation task, each client’s private data xi ∈ {0, 1}d satisfies ∥xi∥0 = 1, and the

goal is to estimate π := 1
n

∑
i xi by minimizing the ℓ2 (or ℓ1, ℓ∞) error E

[
∥π − π̂(Y n)∥22

]
subject

to communication and (ε, δ)-DP constraints. When the context is clear, we sometimes use xi to
denote, by abuse of notation, the index of the item, i.e., xi ∈ [d].

To fully make use of the ℓ0 structure of the problem, a standard technique is applying a Hadamard
transform to convert the ℓ0 geometry to an ℓ∞ one and then leveraging the recursive structure of
Hadamard matrices to efficiently compress local messages.

Specifically, for a given b-bit constraint, we partition each local item xi into 2b−1 chunks
x
(1)
i , ..., x

(2b−1)
i ∈ {0, 1}B , where B := d/2b−1 and x

(j)
i = xi[B · (j − 1) : B · j − 1]. Note

that since xi is one-hot, only one chunk of x(j)
i is non-zero. Then, client i performs the following

Hadamard transform for each chunk: y(ℓ)i = HB · x(ℓ)
i , where HB is defined recursively as follows:

H2n =
1√
2

[
H2n−1 , H2n−1

H2n−1 , −H2n−1

]
, and H0 = [1] .

Each client then generates a sampling vector Zij
i.i.d.∼ Bern

(
1
B

)
via shared randomness that

is also known by the server, and commits (y
(1)
i (j), ..., y

(2b−1)
i (j)) as its local report. Since

(y
(1)
i (j), ..., y

(2b−1)
i (j)) only contains a single non-zero entry that can be 1√

B
or − 1√

B
, the local

report can be represented in b bits (b− 1 bits for the location of the non-zero entry and 1 bit for its
sign).

From the local reports, the server can compute an unbiased estimator by summing them together
(with proper normalization) and performing an inverse Hadamard transform. Moreover, with an
adequate injection of Gaussian noise, the frequency estimator satisfies (ε, δ)-DP.

The idea has been used in previous literature under local DP [19, 6, 3, 32], but in order to obtain the
order-optimal trade-off under central-DP, one has to combine Hadamard transform with a random
subsampling step and incorporate the privacy amplification due to random compression in the
analysis. In Algorithm 3, we provide a summary of the resultant scheme which builds on the
Recursive Hadamard Response (RHR) mechanism from [32], which was originally designed for
communication-efficient frequency estimation under local DP.

In the following theorem, we control the ℓ∞ error of Algorithm 3.
Theorem A.1. Let π̂(xn) be the output of Algorithm 3. Then it holds that for all j ∈ [d],

E [|π(j)− π̂(j)|] ≤
√∑

i 1{xi∈[B·(j−1):B·j−1]}

n2
+

σ2

B
, (7)

and the ℓ22 and ℓ1 errors are bounded by

E
[
∥π − π̂∥22

]
≤ B

n
+

dσ2

B
, and (8)

E [∥π − π̂∥1] ≤
√

dB

n
+

d2σ2

B
. (9)

Theorem A.2. For any ε, δ > 0, Algorithm 3 is (ε, δ)-DP, if

σ2 ≥ O

(
B2 log(B/δ)

n2
+

B(log(1/δ) + ε) log(B/δ)

n2ε2

)
.

By combining Theorem A.1 and Theorem A.2, we conclude that Algorithm 3 achieves (ε, δ)-DP
with ℓ22 error

O

(
B

n
+

dB log(B/δ)

n2
+

d(log(1/δ) + ε) log(B/δ)

n2ε2

)
= O

(
d

n2b
+

d2 log(d/δ)

n22b
+

d(log(1/δ) + ε) log(d/δ)

n2ε2

)
.
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Algorithm 3 Subsampled Recursive Hadamard Response

Input: user data x1, ..., xn ∈ {0, 1}d (where d is a power of two), DP parameters (ε, δ), commu-
nication budget b.
Output: frequency estimate π̂

Set B := d/2b−1 and partition each one-hot vector xi into 2b−1 chunks: x
(1)
i , ..., x

(2b−1)
i ∈

{0, 1}B .
for user i ∈ [n] do

Compute the Hadamard transform of each chunk: y(ℓ)i = HB · x(ℓ)
i .

for coordinate j ∈ [B] do
Draw Zi,j

i.i.d.∼ Bern
(
1
B

)
if Zi,j = 1 then

Send (y
(1)
i (j), ..., y

(2b−1)
i (j)) to the server.

end if
end for

end for
Server computes the average: ∀ℓ ∈ [2b−1], j ∈ [B],

ŷ(ℓ)(j) :=
B

n

∑
i:Zij=1

y
(ℓ)
i (j) +N(0, σ2),

where σ2 is computed according to Theorem A.2.
Server performs the inverse Hadamard transform π̂(ℓ) = HB · ŷ(ℓ), for ℓ = 1, ..., B.

Return: π̂ =
((

π̂(1)
)⊺

, ...,
(
π̂(2b−1)

)⊺)
.

Notice that when n = Ω̃(d), the error can be simplified to

O

(
d

n2b
+

d(log(1/δ) + ε) log(d/δ)

n2ε2

)
,

which matches the order-optimal estimation error (up to a log d factor) subject to a b-bit constraint
[55, 3, 2] and (ε, δ)-DP constraint [15, 7].
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B Proof of Theorem 4.1

It is trivial to see that the average communication cost is d · γ = b bits. To compute the ℓ22 estimation
error, observe that

E
[
∥µ̂xn − µxn∥22

]
=

d∑
j=1

E

( 1

nγ

∑
i

xi(j) · Zi,j +N(0, σ2)− 1

n

∑
i

xi(j)

)2


=

d∑
j=1

1

n2
E

( 1

γ

∑
i

xi(j) · Zi,j −
∑
i

xi(j)

)2
+ dσ2

=

d∑
j=1

1

n2
E

( 1

γ

∑
i

xi(j) · Zi,j

)2
− 1

n2

(∑
i

xi(j)

)2

+ dσ2

=

d∑
j=1

1

n2
E

 1

γ2

∑
i

x2
i (j) · Z2

i,j +
1

γ2

∑
i ̸=i′

xi(j)xi′(j)Zi,jZi′,j

− 1

n2

(∑
i

xi(j)

)2

+ dσ2

=

d∑
j=1

1

n2

 1

γ

∑
i

x2
i (j) +

∑
i̸=i′

xi(j)xi′(j)

− 1

n2

(∑
i

xi(j)

)2

+ dσ2

=

d∑
j=1

1

n2

(
1

γ
− 1

)(∑
i

x2
i (j)

)
+ dσ2

≤ dc2

nγ
+ dσ2,

which yields the inequality of (2). Next, we analyze the privacy of Algorithm 1. We first the following
two lemmas for subsampling and the Gaussian mechanism:
Lemma B.1 ([66, 82]). If M is (ε, δ)-DP, then M′ that applies M ◦ PoissonSample satisfies
(ε′, δ′)-DP with ε′ = log (1 + γ (eε − 1)) and δ′ = γδ.
Lemma B.2 ([15]). For any ε, δ ∈ (0, 1), the Gaussian output perturbation mechanism with
σ2 := ∆22 log(1.25/δ)

ε2 satisfies (ε, δ)-DP, where ∆ is the ℓ2 sensitivity of the target function.

Now, we use the above two lemmas to analyze the per-coordinate privacy leakage of Algorithm 1. For
simplicity, we analyze the sum of xi(j)’s instead (and normalized it in the last step). Let Sj(x

n) :=∑n
i=1(xi(j)), then clearly the sensitivity of Sj(x

n) is 2c, so Lemma B.2 implies Sj(x
n) +N(0, σ2

1)

satisfies (ε1, δ1)-DP if we set σ2
1 = 2c2 log(1.25/δ1)

ε21
(assuming ε1 < 1). Next, if applying subsampling

before computing the sum, i.e.,

Sj ◦ PoissonSampleγ(x
n) :=

n∑
i=1

xi(j)Zi,j ,

where Zi,j
i.i.d.∼ Bern(γ) as defined in Algorithm 1, then by Lemma B.1,

Sj ◦ PoissonSampleγ(x
n) +N(0, σ2

1)

satisfies (ε2, δ2)-DP with ε2 := log (1 + γ (eε1 − 1)) = C1γε1 (since we assume ϵ1 < 1) and
δ2 := γδ1. Equivalently, we have {

ε1 = C̃1
1
γ ε2

δ1 = 1
γ δ2.

(10)

Now, since we have established the per-coordinate privacy leakage, we apply the following composi-
tion theorem to account for the total privacy budgets.
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Theorem B.3 ([39]). For any ε > 0, δ ∈ [0, 1] and δ̃ ∈ (0, 1], the class of (ε, δ)-DP mechanisms
satisfies (ε̃δ̃, dδ + δ̃)-DP under d-fold adaptive composition, for

ε̃δ̃ = dε (eε − 1) + ε

√
2d log(1/δ̃).

According Theorem B.3, Algorithm 1 satisfies (ε, δ)-DP for

ε = dε2(e
ε2 − 1) + ε2

√
2d log(1/δ̃), (11)

and δ = dδ2 + δ̃ (where δ̃ is a free parameter that we can optimize).

Consequently, for a pre-specified (total) privacy budget (ε, δ), we set parameters as follows. Let
δ̃ = δ

2 and δ1 = 1
γ δ2 = 1

2dγ δ. Let ε2 ≤ 1 so that eε2−1 ≤ 2ε2 holds. Then (11) implies Algorithm 1
is

ε = 2dε22 + ε2

√
2d log(1/δ̃) ≥ dε2(e

ε2 − 1) + ε2

√
2d log(1/δ̃).

Solving the above quadratic (in-)equality for ε2, it suffices that

ε2 = min

(
1,
−
√
2d log(2/δ) +

√
2d log(2/δ) + 8εd

4d

)
= O

(
min

(
1,

ε√
d (log(1/δ) + ε)

))
.

Consequently, we set ε1 = C̃1

γ ε2 = O

(
min

(
1, ε

γ
√

d(log(1/δ)+ε)

))
(note that we require ε1 = O(1)

so that (10) holds).

Plugging (ε1, δ1) into σ2
1 , we need to choose

σ2
1 :=

2c2 log(1.25/δ1)

ε21
= Ω

(
max

(
c2 log(d/δ),

γ2c2d(log(1/δ) + ε) log(d/δ)

ε2

))
.

Finally, as we are interested in estimating the (subsampled) mean instead of the sum, we will
normalize the private sum by

µ̂j(x
n) =

1

nγ

(
Sj ◦ PoissonSampleγ(x

n) +N(0, σ2
1)
)
=

1

nγ
Sj◦PoissonSampleγ(x

n)+N(0, σ2),

where

σ2 = Θ

(
max

(
c2 log(d/δ)

n2γ2
,
c2d(log(1/δ) + ε) log(d/δ)

n2ε2

))
.

Plugging in σ2 above and γ = b/d yields the desired accuracy in Theorem 4.1. □

Since we will reuse the above result, we summarize it into the following lemma:

Lemma B.4. Let fi : Rd×m 7→ RD for i = 1, ..., B be n functions with sensitivity bounded by ∆
(where the number of inputs m can be a random variable). Then(

f1 ◦ PoissonSampleγ(x
n) +N(0, σ2), ..., fB ◦ PoissonSampleγ(x

n) +N(0, σ2)
)

satisfies (ε, δ)-DP, if

σ2 ≥ O

(
max

(
∆2 log(B/δ),

γ2∆2B(log(1/δ) + ε) log(B/δ)

ε2

))
.

C Omitted details of dimension-free communication cost

C.1 Proof of Theorem 4.4

To prove Theorem 4.4, it suffices to prove the following ℓ∞ version:
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Theorem C.1. Let x1, ..., xn ∈ {−c, c}d, d′ = min
(
nb, n2ε2

(log(1/δ)+ε) log(d/δ)

)
, and

σ2 = O

(
c2 log(1/δ)

n2γ2
+

c2d′(log(d′/δ) + ε) log(d′/δ)

n2ε2

)
. (12)

Then Algorithm 2 is (ε, δ)-DP and yields an unbiased estimator on µ. In addition, the (average)
per-client communication cost is γd′ = b bits, and the ℓ22 estimation error is at most

O

(
c2d2 log

(
d

δ

)
max

(
1

nb
,
(log(1/δ) + ε)

n2ε2

))
. (13)

With a slight abuse of notation, we let µJ ∈ Rd be such that

µJ (j) =

{
0, ifj ̸∈ J
dµj

d′ , else.

Note that µJ is an unbiased estimate of µ if J is selected uniformly at random. Then the ℓ22 error
can be controlled by

E
[
∥µ− µ̂∥22

]
(a)
= E

[
∥µ− µJ ∥22

]
+ E

[
∥µJ − µ̂∥22

]
(b)
≤ E

[
∥µ− µJ ∥22

]
+

d2

d′2
O

(
max

(
d′2c2

nb
,
d′3c2 log(d/δ)

n2b2
,
c2d′2(log(1/δ) + ε) log(d/δ)

n2ε2

))
= E

[
∥µ− µJ ∥22

]
+O

(
max

(
d2c2

nb
,
d2d′c2 log(d/δ)

n2b2
,
c2d2(log(1/δ) + ε) log(d/δ)

n2ε2

))
(c)
≤ d2c2

d′
+O

(
max

(
d2c2

nb
,
d2d′c2 log(d/δ)

n2b2
,
c2d2(log(1/δ) + ε) log(d/δ)

n2ε2

))
,

where (a) holds since µJ is an unbiased estimate of µ and conditioned on J , µ̂ is an unbiased
estimate of µJ ; (b) follows from Theorem 4.1; (c) holds due to the following fact:

E
[
∥µ− µJ ∥22

]
≤
∑
j∈J

µJ (j)2 +
∑
j∈[d]

µ2
j ≤

d2c2

d′
+ dc2 ≤ 2d2c2

d′
.

Therefore, by setting d′ = min
(
nb, n2ε2

(log(1/δ)+ε) log(d/δ)

)
we ensure the first term in (c) is always

smaller than the second term, and the second term can be simplified as follows:

O

(
c2d2 max

(
1

nb
,
d′ log(d/δ)

n2b2
,
(log(1/δ) + ε) log(d/δ)

n2ε2

))
≤ O

(
c2d2 max

(
1

nb
,
nb log(d/δ)

n2b2
,
(log(1/δ) + ε) log(d/δ)

n2ε2

))
≤ O

(
c2d2 log(d/δ)max

(
1

nb
,
(log(1/δ) + ε)

n2ε2

))
.

Finally, applying the same trick of Kashin’s representation, we can transform the ℓ∞ geometry to ℓ2
(similar to Corollary 4.3), hence proving Theorem 4.4. □

D Proof of Theorem A.1

Let π := 1
n

∑
i xi and π(ℓ) be defined in the same way as x(ℓ)

i for ℓ ∈ [B]. Then our goal is to bound∣∣π(ℓ)(j)− π̂(ℓ)(j)
∣∣, for all ℓ ∈ [2b−1] and j ∈ [B].

To this end, let y(ℓ) := HB · π(ℓ) (so it holds that π(ℓ) = 1
BHB · y(ℓ)). Then we have

E
[∣∣∣π(ℓ)(j)− π̂(ℓ)(j)

∣∣∣] (a)
≤
√
E
[(
π(ℓ)(j)− π̂(ℓ)(j)

)2]
=

√√√√E

[(
1

B
HB ·

(
y(ℓ) − ŷ(ℓ)

)
(j)

)2
]
. (14)
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Next, observe that due to the subsampling step, for all ℓ ∈ [2b−1] and j ∈ [B],

ŷ(ℓ)(j) =
B

n

n∑
i=1

⟨(HB)j , x
(ℓ)
i ⟩ · Zij +N(0, σ2),

where recall that Zij
i.i.d.∼ Ber(1/B). Therefore, ŷ(ℓ)(j) is an unbiased estimator of y(ℓ)(j). In

addition, since we choose Zij independently in Algorithm 3, ŷ(ℓ)(j)’s are independent for different
j’s, so we have

E
[(

ŷ(ℓ)(j)− y(ℓ)(j)
)2]

= Var
(
ŷ(ℓ)(j)

)
= σ2 +

B2

n2

n∑
i=1

⟨(HB)j , x
(ℓ)
i ⟩

2Var (Zij)

≤ σ2 +
B

n2

n∑
i=1

⟨(HB)j , x
(ℓ)
i ⟩

2

= σ2 +
B

n2

n∑
i=1

1{xi∈ℓ-th chunk}︸ ︷︷ ︸
:=Cℓ

, (15)

and for all j ̸= j′

E
[(

ŷ(ℓ)(j)− y(ℓ)(j)
)
·
(
ŷ(ℓ)(j′)− y(ℓ)(j′)

)]
= 0. (16)

Therefore, we continue bounding (14) as follows:√√√√E

[(
1

B
HB ·

(
y(ℓ) − ŷ(ℓ)

)
(j)

)2
]
=

√
1

B2
E
[
⟨(HB)j ,

(
ŷ(ℓ) − y(ℓ)

)
⟩2
]

=

√√√√√ 1

B2
E

( B∑
k=1

(HB)jk ·
(
ŷ(ℓ)(k)− y(ℓ)(k)

))2


(a)
=

√√√√ 1

B2
E

[
B∑

k=1

(
ŷ(ℓ)(k)− y(ℓ)(k)

)2]
(b)
=

√
Cℓ

n2
+

σ2

B

(c)
≤
√

1

n
+

σ2

B
,

where (a) holds since each entry of HB takes value in {−1, 1} and by (16), (b) holds due to (15), and
(c) holds because Cℓ ≤ n for all ℓ.

Finally, to bound the ℓ22 error, observe that the above analysis ensures that

E
[(

π(ℓ)(j)− π̂(ℓ)(j)
)2]
≤

Cℓ(j)

n2
+

σ2

B
,

where ℓ(j) ∈ [2b−1] is the index of the chuck containing j. Therefore, summing over j ∈ [d], we
must have

E
[∥∥∥π(ℓ) − π̂(ℓ)

∥∥∥2
2

]
≤

d∑
j=1

Cℓ(j)

n2
+

dσ2

B
=

B

n
+

dσ2

B
,

since ∑
j

Cℓ(j) =

2b−1∑
ℓ=1

∑
j′∈ℓ-th chunk

n∑
i=1

1{i∈ℓ−th chunk} = B

2b−1∑
ℓ=1

n∑
i=1

1{i∈ℓ−th chunk} = B · n.

□
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E Proof of Theorem A.2

Let fj(xn) := (π(1)(j), ..., π(2b−1)(j)), for j = 1, ..., B. Then the ℓ2 sensitivity of fj is ∆ = B
n . Set

the sampling rate γ = 1
B and the proof is complete by Lemma B.4. □

F Algorithm of Shuffled SQKR

Algorithm 4 Shuffled SQKR

Input: users’ data x1, . . . , xn, local-DP parameter ε0, communication parameters b0, T
Output: mean estimator µ̂
for round k ∈ [T ] do

for user i ∈ [n] do
Sample s(i, 1), . . . , s(i, b0)

i.i.d.∼ Unif[d]

Sample Z ∼ Bern
(

eε0

eε0+2b0−1

)
if Z=1 then

Set Y (i, 1), . . . , Y (i, b0)← xi(s(i, 1)), . . . , xi(s(i, b0))
else

Sample Y (i, 1), . . . , Y (i, b0)
i.i.d.∼ Unif {−c, c}

end if
Send Y (i, 1), . . . , Y (i, b0) and s(i, 1), . . . , s(i, b0) to shuffler

end for
Shuffler samples a permutation π ∼ Unif {f : [n]→ [n] bijective}
for j ∈ [b0] do

Shuffler sends Y (π(1), j), . . . , Y (π(n), j) and s(π(1), j), . . . , s(π(n), j) to server
end for
µ̂(k) ← d

nb0
eε0+2b0−1

eε0−1

∑n
i=1

∑b0
j=1 Y (π(i), j)es(π(i),j)

end for
Return µ̂ := 1

T

∑T
k=1 µ̂

(k)

G Proof of Theorem 5.3

Each round xn 7→ µ̂(k) of Algorithm 4 implements the private-coin SQKR scheme of [32], achieving
the communication cost and error as stated in Lemma 5.2.

Lemma G.1 (SQKR [32]). For all ε0 > 0, b0 > 0, the random mapping
xi 7→ Y (i, 1), . . . , Y (i, b0), s(i, 1), . . . , s(i, b0) in Algorithm 4 is (ε0, 0)-LDP and has
output that can be communicated in b0 log(d) bits, and the µ̂(k) computed from
Y (i, 1), . . . , Y (i, b0), s(i, 1), . . . , s(i, b0) is an unbiased estimator of µ satisfying

max
xn

E
[∥∥∥µ (xn)− µ̂(k) (xn)

∥∥∥2
2

]
= O

(
C2d

nmin (ε20, ε0, b0)

)
. (17)

We now characterize the error performance of Algorithm 4 for general choices of parameters that
satisfy privacy and communication constraints.

Proposition G.2. For all ε > 0, b > 0, n > 0, with any arbitrary choice of

δ1 ∈
(
e−n/16e, 1

]
(18)

δ2 ∈ (0, 1] , (19)

there exists a choice of parameters ε0, b0, T such that Algorithm 4 is (ε, Tδ1 + δ2)-DP, uses no more
than b bits of communication, and produces µ̂ such that

max
xn

E
[
∥µ− µ̂∥22

]
= O

(
max

(
C2d log(d)b0

nb
,
C2d log(1/δ1) (log(1/δ2) + ε)

n2ε2

))
. (20)
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Proof. For arbitrary choice of

b0 < log

(
n

16 log(2)

)
, (21)

it suffices to choose

T =

⌊
b

(log2(d) + 1)b0

⌋
(22)

ε0 = O

(
min

(
1,

ε
√
n√

T log(1/δ1) (log(1/δ2) + ε)

))
. (23)

The fact that Algorithm 4 uses less than b bits is immediate from the choice of T .

Applying Lemma G.1, by construction the mapping from each xi to Y (i, 1), . . . , Y (i, b0) is (ε0, 0)-
LDP. By assumption

δ1 > e−n/16e, (24)

the inequality

1 < log

(
n

16 log(2/δ1)

)
(25)

is satisfied. Then the choice of

ε0 ≤ 1 (26)

also satisfies ε0 ≤ log
(

n
16 log(2/δ)

)
, so by Lemma 5.1 the mapping xn 7→ µ̂(k) is (ε1, δ1)-DP, where

ε1 = O

(
ε0
√

log(1/δ1)√
n

)
. (27)

Since the output of Algorithm 4 is a function of
(
µ̂(1), . . . , µ̂(T )

)
, by B.3 it suffices to have

ε1 = O

(
min

(
1,

ε√
T (log(1/δ2) + ε)

))
(28)

for Algorithm 4 to be (ε, T δ1 + δ2)-DP. The first inequality follows from the assumption of δ1 >
e−n/16e and choice of ε0 = O(1), and the second from choice of

ε0 = O

(
ε
√
n√

T log(1/δ1) (log(1/δ2) + ε)

)
. (29)

Since ε0 ≤ 1 ≤ b, we have min(ε20, ε0, b) = ε20. Applying Lemma G.1,

max
xn

E
[
∥µ− µ̂∥22

]
=

1

T
max
xn

E
[∥∥∥µ− µ̂(1)

∥∥∥2
2

]
(30)

= O

(
d

Tnε20

)
(31)

= O

(
max

(
d

Tn
,
d log(1/δ1) (log(1/δ2) + ε)

n2ε2

))
. (32)

Substituting the choice of T gives the desired result.

To show Theorem 5.3, it suffices to choose

b0 = 1 (33)

δ1 =
δ

2T
(34)

δ2 =
δ

2
, (35)

which requires n > 16e log(2) ≈ 30.14 due to (21), and apply the previous proposition.
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H Using Kashin’s Representation

We first introduce the idea of a tight frame in Kashin’s representation. A tight frame is a set of vectors
{uj}Dj=1 ⊂ Rd that satisfy Parseval’s identity, i.e. ∥x∥22 =

∑D
j=1 ⟨uj , x⟩2 for all x ∈ Rd.

A frame can be viewed as a generalization of the notion of an orthogonal basis in Rd for D > d. To
increase robustness, we wish the information to be spread evenly across different coefficients, which
motivates the following definition of a Kashin’s representation:

Definition H.1. For a set of vectors {uj}Dj=1, we say the expansion

x =

D∑
j=1

ajuj , with max
j
|aj | ≤

K√
D
∥x∥2

is a Kashin’s representation of the vector x at level K .

By Theorem 3.5 and Theorem 4.1 in [67], we have the following lemma:
Lemma H.2. There exists a tight frame U = [u1, ..., uD] with (1) D = Θ(d) and (2) level K = O(1).

The above lemma implies that for each xi ∈ Rd such that ∥xi∥2 ≤ 1, one can always represent each
xi with coefficients yi ∈ [−γ0/

√
d, γ0/

√
d]γ1d for some γ0, γ1 > 0 and xi = Uyi.

I Rényi-DP for Shuffled SQKR

In this section we restate some results for RDP which are useful for privacy accounting in experiments.

Following the proof of Corollary 4.3 in [44], applying Theorem 4.1 in the same paper yields the
following.
Lemma I.1. LetMi be an independent (ε0, 0)-LDP mechanism for each i ∈ [n] with ε0 ≤ 1 and π
be a random permutation of [n]. Then for any α < n

16ε0 exp(ε0)
, the mechanism

S : (x1, . . . , xn) 7→
(
M1

(
xπ(1)

)
, . . . ,Mn

(
xπ(n)

))
is (ε1(α), δ)-RDP with

ε1(α) =
log
(
e2α

2σ2

+ 4δmine
αε0
)

α− 1
, (36)

where

σ = 8

√
eε0

n
(37)

δmin = e
− n

8(eε0+1) . (38)

For small ε0, the result below is useful.
Lemma I.2 ([40]). Under the same assumptions as Lemma I.1, S is (ε(α), δ)-RDP

ε1(α) = 2αe4ε0 (eε0 − 1)
2
/n. (39)

Applying Lemma G.1, by construction the mapping from each xi to y(i, 1), . . . , y(i, b0) is (ε0, 0)-
LDP. By Lemma I.1, respectively Lemma I.2, the mapping xn 7→ µ̂(k) is (ε1(α), α)-RDP where
ε1(α) is given by (36), respectively (39). By composition, Algorithm 4 is (Tε(α), α)-RDP.

We can convert this bound back to (ε, δ)-DP using Proposition 12 from [30].
Proposition I.3. For all δ > 0, Algorithm 4 is (ε, δ)-DP where

ε = inf
α∈(1,∞)

Tε1(α) +
log(1/δ) + (α− 1) log(1− 1/α)− log(α)

α− 1
, (40)

where

ε1(α) = min

2αe4ε0 (eε0 − 1)
2
/n,

log
(
e2α

2σ2

+ 4δmine
αε0
)

α− 1

 (41)

and σ, δmin are given by (37), (38) respectively.
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J Additional Experiments

Here experiments are done with the same setup as in Section 6, with local vectors Xi(j)
i.i.d.∼

1√
d
(2 · Ber(0.8)− 1). We set δ = 10−6.

Figure 2: Comparison of MSE vs. number of clients n for LDP scheme (SQKR) and shuffled SQKR.
For shuffled SQKR, we set b0 = 1 and choose ε0 using results in Section I. Communication cost is
⌈(log2(2000) + 1)⌉ = 12 bits per round.

Figure 2 illustrates separation between Algorithm 4 and LDP schemes. Algorithm 4 achieves error
decreasing quadratically with n as guaranteed by Theorem 5.3. With only one round of shuffling,
there is separation from the LDP scheme only when n is sufficiently large, and thus order-optimal
error performance only occurs for large n (or equivalently small ε). This problem is avoided with
multiple rounds of shuffling.

Figure 3: CSGM with and without coordinate pre-selection using d′ = 833.

Figure 3 compares the performance of CSGM with and without coordinate pre-selection. In this
regime coordinate pre-selection improves performance for all b. As predicted by Corollary 4.3 and
Corollary 4.5, the MSE decreases with b but is effectively constant for sufficiently high b where the
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privacy term dominates. We can determine the communication cost needed for order-optimal central
DP error performance to be the b at which the MSE is within some fixed constant factor away from
the limiting value. We see that the communication cost increases with dimension d with the vanilla
CSGM scheme, but a dimension-free communication cost is achieved with coordinate pre-selection.
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